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ABSTRACT: A two-dimensional Finite Element (FE) model has been developed for 
determining crack opening and closure stresses, with the eventual aim of investigating 
plasticity induced closure effects on crack growth under variable amplitude loading. 
An issue with model verification is obtaining accurate experimental values of crack 
opening and closure loads. Validation was therefore carried out using experimental 
data from constant amplitude loading tests, recently obtained by the authors1, 2 where 
there was good confidence in the accuracy of the opening and closing loads. Elastic-
perfect plastic and work hardening material properties were investigated to determine 
the effect they had on crack growth. The modelling considered long cracks by 
dividing the crack into consecutive small lengths. For this purpose, the restart 
capability included in the ABAQUS code was employed. In addition, a mesh 
refinement strategy was optimised to reduce the memory requirements for the 
thousands of cycles analysed. This enabled both long crack lengths and small element 
sizes to be studied which has not been done in the literature before. The FE results 
were in good agreement with most of the experimental results and possible reasons 
are given for some of the minor discrepancies observed.  
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1. Introduction 
There is some controversy with crack closure as a theory for determining crack 
growth with some researchers believing that crack growth rate is driven by Kmax and 
ΔK, as assumed by the “Unified Approach” (UA) theory3. Citrella et al.4, 5 uses the 
UA to investigate crack growth, in compact tension specimens, plates with inherent 
residual stresses and stir welded aluminium joints, using the finite element method 
and dual boundary element method. Other researchers have looked to build on crack 
closure models to improve on their accuracy. Adedipe et al.6 has for example used the 
difference in area under the load curve for the crack open portion of the fatigue cycle 
between a new R ratio and an R ratio of 0.1 to predict the crack growth at the new R 
ratio. An issue in comparing theories is the difficulty in obtaining appropriate 
measurements of crack opening and closing7, 8. The authors have therefore carried out 
experimental work using an optical technique to obtain measurements of the loads 
when crack tip opening and closing occurs for 6082-T6 aluminium, subjected to 
constant amplitude loading and overload and underload cycles2. Other issues with 
comparing crack growth theories have been the lack of sufficiently developed 
numerical models to validate crack closure9 which is related to the issue of 
inadequacy of the materials models used10. 
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Ohji et al.11 and Ogura and Ohji12 developed an FE model to investigate fatigue crack 
growth using constant strain triangular elements. The model included the effect of 
kinematic hardening and was used to investigate simple overload and 
overload/underload cycles. The model though was not used to investigate propagating 
cracks. 
 
Newman et al. developed a FE model to investigate fatigue crack closure due to 
cyclic loading13. The model was developed to include plasticity, a crack growth 
criterion and a mixed hardening rule14. As Newman admitted, there were 
shortcomings in the model which were strong dependency on mesh size and the value 
of the critical strain. 
 
A very different approach was taken by Nakagaki and Atluri15 who used a hybrid 
displacement element to study mixed mode fracture. The crack growth was modelled 
by moving the “core” singular element a defined distance determined by a crack 
growth law. The crack growth law incorporated a critical crack extension stress to 
determine crack growth. A single value for the critical crack extension stress was 
obtained, though calibration, which prevents the model from being used to model 
variable loading situations.     
 
Fleck16, Fleck and Newman17, and Fleck and Shercliff18 evolved the FE code 
developed by Newman14 to investigate the effect of plasticity due to overloads on 
crack retardation under plane strain conditions. The stress intensity factor range ΔK 
was kept constant by shedding the load as the crack length increased. Determination 
of crack growth was not the intention of the authors who focused on crack closure. 
 
McClung and Sehitoglu19, 20 used a two-dimensional elastic-plastic FE model to 
examine the behaviour of crack closure. They utilized four-noded isoparametric 
elements and used the Ziegler kinematic hardening law. Maximum stress, stress ratio 
and material effects, such as strain hardening and yield strength, were investigated to 
see what their effect on crack closure was. The study was for constant amplitude 
loading only.  
 
Borrego et al.21 modelled crack closure in MT specimens subjected to overloads and 
high-low blocks also using a two-dimensional elastic-plastic FE model. In their work 
similar crack growth response rates between numerical and experimental results were 
found. Even so they concluded that “further work is required to obtain robust 
plasticity induced closure prediction”. 
 
FE models now seem able to handle the problem more efficiently than analytical 
models. The work of McClung and Sehitoglu20 indicates that numerical models can 
do as well as analytical models and can also deal with more complex problems 
involving sophisticated material models, complicated geometries, and large 
deformations. Three-dimensional FE models have also been used to overcome issues 
related to thickness when using plane stress and plane strain models22, 23.  
 
The models presented in literature have shown that the limitations for numerical 
analysis are the high computational requirements and the difficulty of correctly 
simulating the contact between the crack flanks. The computational requirements are 
caused by the need to have high mesh density to capture plasticity generated by the 
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crack growth accurately and the desire to model long cracks. In the following sections 
a finite element model is presented, which utilises mesh optimization and a restart 
analysis to enable the simulation of long cracks subject to constant amplitude and 
variable amplitude loading. Comparison is made between the model and constant 
amplitude load tests. 
 
2. Numerical procedure 
Material data and experimental tests results have been presented previously by the 
authors1 but some of the data is presented again in this paper for ease of reference. 
 
2.1. Material properties 
 
The material selected for study was aluminium alloy 6082 T6 (HE30TF). The elastic 
material properties used in the model were Young’s modulus, E=70 GPa, and 
Poisson’s ratio, ʋ= 0.33. Four different plasticity cases were initially investigated, as 
discussed in section 3.1, but the following cyclic hardening rule was eventually 
selected for the models. 
 
The material properties for cyclic hardening behaviour were obtained by using the 
Ramberg Osgood relationship shown in Eq. (1). The hardening coefficient H=443 
MPa and the hardening exponent n’=0.064 were obtained from the work carried out 
by Borrego et al.24, 25, who performed experimental work with the same 6082-T6 
aluminium alloy and reported similar properties for monotonic tensile tests as those 
obtained by Aguilar Espinosa et al.2. 
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The yield point was calculated using Eq. (2), and the plastic strain offset εpo was 
considered to be 0.002, which according to Dowling26 is employed generally for 
engineering calculations. 
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The resulting yield strength was 298 MPa, and the input material properties were 
introduced in a tabular form in the ABAQUS27 material module. Antunes et al.28 state 
that aluminium alloy 6082 exhibits both isotropic and kinematic hardening behaviour 
and investigated the use of a mixed hardening rule for some of their models. In this 
work an isotropic hardening rule was used, within ABAQUS, based on the work by 
Gonzalez-Herrera and Zapatero29 with the sub option selected of cyclic hardening. 
 
2. 2 Geometry 
 
The geometry of the model replicated the four-point bending specimens (SENB4) 
used in the experiments with dimensions B=9.52 mm, W=15.875 mm and L=200 mm 
with initial notch length, M, set to 1.25mm. To reduce computation time, just one half 
of the specimen was modelled using symmetry conditions. The dimensions of the 
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specimens are illustrated in Fig. 1 and the model boundary conditions are shown in 
Fig. 2. 

  
2.3 Crack faces contact 
 
The contact between crack flanks has been simulated by several authors and a good 
review of these methods was made by Solanki30. In his work he stated that contact can 
be achieved by changing the stiffness of spring elements attached to the crack surface 
by removing or imposing crack closure nodal constraints, by using truss elements on 
the crack surface or by using contact elements.  
 
With the current capabilities of commercial FE codes, the contact interaction can be 
modelled. ABAQUS has the capability to simulate contact between a master and a 
slave surface with a corresponding interaction property. The contact of the crack 
flanks was therefore simulated by introducing a constrained rigid line at the symmetry 
boundary position. In this case the crack face was modelled as the slave and the rigid 
line as a master. ABAQUS has an interaction property to simulate hard contact with 
two different options. According to ABAQUS, when two surfaces are in contact 
pressure can be transmitted between them. The surfaces separate if the contact 
pressure reduces to zero and separated surfaces come into contact when the clearance 
between them reduces to zero. Currently two methods of constraint enforcement can 
be used in ABAQUS/Standard; the classical Lagrange multiplier method and the 
augmented Lagrange method. Both methods can be used to simulate the contact so 
they were compared in a simple constant amplitude simulation and it was found that 
the augmented Lagrange method is faster and produces a maximum penetration of the 
order 10-13 m. For these reasons the augmented Lagrange method was employed. 
 
The augmented Lagrange method uses a penalty function during each iteration. 
Iterations continue until convergence in the solution is obtained with the penalty 
method. If the slave node penetrates the master surface by more than 0.1% of the 
characteristic interface length, the contact pressure is augmented, and another series 
of iterations are executed until convergence is once again achieved. Only when the 
penetration tolerance requirement is satisfied, is the solution achieved. This option 
cannot be used in conjunction with the debond option included in ABAQUS, which 
instead, uses a fracture criterion that must be satisfied in order to debond the two, 
previously determined, surfaces. 
 
2.4 Element type 
 
The element type used for all the FEM simulations was a CPS4R, which is a four 
node bilinear plane stress quadrilateral element of first order. Quadrilateral elements 
have been used by other authors31-34  and they have reported good results when using 
first order elements. Borrego et al.21 used plane stress elements due to issues of 
racheting and mesh dependency when utilising linear kinematic hardening with plane 
strain elements based on the  principle that the plane stress conditions at the surface of 
3D bodies will dominate regardless of specimen thickness.  In this work, although the 
specimens are thicker than those used by Borrego et al.21, planes stress conditions 
were also assumed as the experimental crack closure opening and closure load values 
were measured at the surface. 
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In order to reduce running time, the reduced integration option was employed, which 
means that only one integration point per element is present. Also ABAQUS27 
includes an hourglass control to avoid excessive distortion of the elements, which was 
employed during the analysis. 
 
2.5 Mesh and Element Size 
 
The meshing scheme to simulate constant amplitude load has been studied by several 
authors. The element size is a key issue in the model in order to produce correct 
plastic zone sizes. This can be achieved by employing very small size elements but 
this is computationally expensive. During crack propagation under mode I two 
different types of plastic zones are generated; reverse and forward plastic zones. Fig. 
3 shows the plastic deformation around the crack tip, the forward plastic zone is the 
material near the crack tip undergoing plastic tensile deformation at maximum load 
and the reversed plastic zone is the material near the crack tip undergoing plastic 
compressive yielding at the minimum load. The plastic wake is created as the crack 
advances. This plasticity must be generated accurately in the finite element model in 
order to accurately account for effects of plasticity induced crack closure. 
 
Some studies have been carried out to select the minimum element size to produce a 
proper representation of the plastic zone. The most commonly used criteria is based 
on McClung analysis19.  In this work it was stated that the mesh refinement should be 
based on the length of the forward plastic zone along the crack plane denoted as rp in 
Eq. (3) and Eq. (4) from Irwin
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Once the plastic zone is calculated it is necessary to know the number of elements that 
should be within the reverse and forward plastic zones. The mesh selected has to be 
fine enough to capture both reverse and forward plastic zones.  
 
2.5.1 Minimum number of elements in the forward plastic zone (rp) 
There is a criteria proposed by McClung19 for the number of elements present in the 
forward plastic zone in order to capture the near-tip strain intensification for 
quadrilateral elements (Q4). These criteria estimate the width of the forward plastic 
zone size along a crack line at maximum load according to a simple Irwin-type 
relationship for centre-cracked panels under plane stress. Eq. (5) shows the 
relationship between the forward plastic zone size (rp) and the crack length a. 
McClung recommended a value of Δa/rp ≤ 0.05 for triangular elements and Δa/rp ≤ 
0.10 for Q4 elements, when R = 0. The numerical crack increment is denoted as Δa; 
which refers to the minimum element size. 
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Several researchers29, 32, 34, 36, 37 have employed the criterion proposed by McClung 
and have reported good results in the simulation of crack growth.  
 
2.5.2 Minimum number of elements in the reversed plastic zone (ry) 
One more important aspect of the plastic zone size is reversed plasticity. The reversed 
or cyclic plastic zone size for a stationary crack is four times smaller than the 
comparable monotonic value38, see Fig. 4. As the nominal tensile load is reduced, the 
plastic region near the crack tip is put into compression by the surrounding elastic 
body. Eqs. (3) and (4) become Eqs. (6) and (7) to represent the reverse plastic zone, 
ry. The reverse plastic zone size has been shown to be small and tend towards the 
approximation for the plane strain state, Eq. (7), even in thin plates (where plane 
stress should dominate). Thus LEFM concepts can often be used in the analysis of 
fatigue crack growth problems even in materials that exhibit considerable amounts of 
ductility as the basic assumption that the plastic zone size is small in relationship to 
the crack and the cracked body usually remains valid39. 
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According to Solanki et al.30, 31 the number of elements in the reverse plastic zone 
should be at least 3 to 4. Other authors34, 40 have followed this suggestion and have 
reported good results.  
 
2.5.3 Mesh refinement and optimization 
One of the principal problems when simulating fatigue crack closure is the need for 
significant computing capabilities and the amount of running time that a solution 
takes. The crack lengths that can be simulated are limited in proportion to the element 
size. For constant amplitude load this is not a significant problem, because once the 
crack reaches the steady state the σop and σcl values remain relatively constant for the 
whole crack, with a small increasing tendency, where normalized opening levels are 
plotted against normalized crack length19, 29, 32, 34. When symmetry conditions apply in 
the modelling of crack closure, a solution to optimizing the cost of computing is 
simulating half or quarter specimen geometries and also utilising mesh reduction as 
shown in Fig. 5. Utilising the linear option with multi-point constraints, within 
ABAQUS27, linearly constrains non-aligned nodes, between a high density mesh and 
low density that met along an edge, to the aligned nodes on that edge. This enables 
mesh reduction to be carried out with minimal mesh distortion. 
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For later models the tie constraint capability in ABAQUS27, which enables surfaces 
with differing amount on nodes to be tied together, was utilised rather than multi-
point constraints. Two constraint enforcement methods (Lagrange multiplier and 
augmented Lagrange), which try to prevent penetration between surfaces, were used 
to compare their effectiveness and effect on solution speed. 
 
Up to now the ability to simulate long cracks has been restricted by the element size 
and by the large amount of steps required to propagate the crack9, 12, 16, 29, 31, 32, 34, 36, 37, 

41-43. The maximum length found in the literature is about 4.584 mm employing 100 
μm element size41, which represents a large element size when simulating variable 
amplitude loading. The smallest element found for crack growth simulation was 
estimated to be 0.5μm from the work by Tarantino et al.44, but this was for micro 
specimens which had very short crack lengths. 
 
In this work several different element sizes have been used with mesh refinement to 
examine their effect on the prediction of crack opening and closing stresses (in light 
of the recommendations given by other authors as discussed in sections 2.5.1 and 
2.5.2). The largest element size was based on the distance at which the crack growth 
rate da/dN was measured experimentally2, which corresponded to 125 μm. The mesh 
size was then reduced in steps (125/2, 62.5/2, etc), halving the mesh size each time to 
the minimum element size used of 3.90625 μm. This minimum value was selected as 
it was seen in SEM pictures of failed specimens2 that crack jumps of approximately 5-
10 microns occurred after overloads. Therefore, to capture the opening and closure 
loads immediately following an overload it would be necessary for the node distance 
along the crack to be less than 5 µm. 
 
2.5.4 Size of crack tip plastic zone and applicability of LEFM 
The plastic zone generated by numerical analysis should ideally be identical to that 
generated experimentally. The yield criterion used in ABAQUS is that the material 
deforms plastically when the Von Mises stress reaches the yield stress value. The Von 
Mises yield criterion states that yielding will occur when: 
 

  ( ) ( ) ( )2
13

2
32

2
21

22 σσσσσσσ −+−+−=y                      (8) 
 
In the case of mode I load, the stress field equations for a two-dimensional principal 
stresses case, are given by Eq. (9) and Eq. (10) 
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where σ3 is either zero (plane stress) or υ(σ1+σ2) for plane strain. Substitution into Eq. 
(8) gives for plane stress 
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The application of LEFM has a limitation on the size of the plastic zone. If the plastic 
zone is small enough, there will be a region outside of it where the elastic stress field 
equations still apply, called the region of K-dominance26. Thus, K continues to 
characterize the severity of the crack situation, despite the occurrence of some limited 
plasticity. Fig. 6, illustrates the K-field area where LEFM applies.  
 
The plastic zone size for plane stress under monotonic load is represented in Fig. 7. 
Linear elastic fracture mechanics (LEFM) specify that the plastic zone must be small 
compared with the distance from the crack tip to any boundary of the member. Eq. 
(12), states the criteria for the specimen dimensions, see Fig. 8, for the plastic zone rp 
to be within LEFM. The experimental tests2 that are being replicated by the numerical 
models meet this criterion. 
 

4rp   ≤   a, (b-a), h                                               (12)  
 
2.6 Restart option 
 
Initial simulations to grow the crack by 4 mm with a 3.9 µm element size resulted in 
long model run times and made post processing difficult due to the large result files. 
All simulations were carried out on a standard PC with 4 GB RAM of memory and a 
3.0 GHz speed Intel Core Duo E8400 processor. Current computing capabilities 
allows longer crack models to be run, however this does not resolve the issue of 
generating large files (> 100 GB). To overcome this issue the restart capability was 
used within ABAQUS27 which gives the ability to run models with long crack growth, 
utilising low frequency processors (such as used in laptops) and minimising post 
processing data, through the discretisation of the crack growth into separate model 
files.  
 
The restart option divides up the number of steps within the model into sets and 
generates an input file for each set. These sets can then be run sequentially with 
information from one set being fed into the following set. This provides an important 
improvement in memory storage during running of the model and during post 
processing analysis, as the results data can be analysed separately. 
 
For the constant amplitude load using the smallest element size 4094 steps were 
required. Every input file was divided into approximately 200 steps, which generated 
an output file around 3.6 GB. The number of steps per input file was decided on to 
facilitate the management and storage of the files. Bigger output files are more 
difficult to handle and to manipulate for post processing analysis. In total 20 input 
files were generated to simulate the 4 mm of crack growth for all load cases. 
 
2.7 Modelling of crack growth 
 
To accurately model crack growth a detailed knowledge of the microscopic 
phenomena that occurs is necessary45. In this work stage II type I crack opening is 
examined, where nominally the crack grows in a direction macroscopically 
perpendicular to the main principal stress. During stage II the crack growth is 
independent of microstructural effects and crack closure models can be applied. 
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In real conditions the crack follows an irregular path line as illustrated in Fig. 9(a) and 
Fig. 9(b), however within the developed finite element model the crack was 
predefined as a straight path without any irregularity in its trajectory, as it is 
illustrated in Fig. 9(c) and Fig. 9(d), which correspond to the FEM simulation. This is 
one of the limitations with numerical modelling. However some analysis has been 
carried out to model plasticity and roughness induced crack closure such as Parry et 
al.’s model46. In that work a 2D model was created to study the effect of crack 
deflection and prior plastic deformation under constant amplitude load for a 100 µm 
crack length simulation. The results showed that the closure levels increase strongly 
with the deflection angle, which is closer to the real conditions. Nevertheless, the 
modelling is not simple and exhaustive work is required to model simple variable 
amplitude loading in 2D analysis. Ideally due to the irregular crack flanks 3D 
modelling is required but this would be a highly complex task. Currently issues exist 
with regard to the release node scheme along the crack tip front line and the 
appropriate mesh to employ. 
 
Another issue that does not correspond to real situations is the crack increment ∆a 
used per number of cycles. This issue is discussed in light of the results in section 3.2. 
 
Two dimensional analysis for plasticity induced crack closure has been carried out by 
some authors for constant amplitude load with some applications of block and single 
overloads10, 14, 47and they have reported acceptable results when modelling cracks with 
a straight path. Based on this work, the present study employs a straight line to model 
plasticity induced crack closure.  
 
2.8 Crack growth scheme 
 
The crack advance simulation was performed by the release node technique; thus the 
boundary conditions for each node ahead of the crack tip were released periodically 
every two cycles, hence the increment ∆ai of the crack is equal to the element size. 
The point in the load cycle where the node is released has been discussed by several 
researchers, but until now no general agreement has been postulated as to the correct 
one. Some authors release the node at minimum load12, 34, 48 to avoid convergence 
problems. Others have suggested advancing the crack at maximum load, arguing that 
the crack growth occurs at maximum load16, 30-33, 40, 43, 46. In this work the crack 
extension was carried out immediately after maximum load which is in accordance 
with several works19, 20, 49-51. 
 
2.9 Measurement of crack opening stresses 
 
The opening stress and closure stress is defined as the stress value, during a loading 
cycle, when the crack flanks open fully (no contact between crack flanks) or just start 
to close (initial contact between crack flanks). In the numerical model the first node 
behind the crack tip was monitored to find the exact moment it changed from a zero to 
a positive displacement during the loading stage as the measure of the crack being 
completely open (or vice versa for closure). This method has been used by several 
authors16, 19, 20 to extract the opening values. Some authors30, 31 have though argued 
that the first node should not be used to monitor the opening stress as a result of the 
high stress concentration that makes the information unreliable. The contact pressure 
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between crack surfaces was therefore also monitored to detect the instant when it 
became completely zero. 
 
2.10 Time increments to apply the loads 
 
ABAQUS can automatically determine the number of increments in which to 
subdivide the load, however some authors29, 34 mention that this parameter has some 
influence on the values of the opening stresses. In this work intervals from 1/32 to 
1/40 were used for the opening load cycle and from 1/19 to 1/40 for the closure load 
cycle. The results (see section 3.4) showed no significant difference between the 
number of time increments, hence the maximum increment size was used to reduce 
computational time. 
 
3. Results and discussion 
 
3.1 Material properties 
 
The correct use of material properties in numerical simulations has a significant effect 
due to the plasticity generated at the crack tip. Some researchers have used elastic-
perfect plastic behaviour for the simulation of aluminium, as some aluminium alloys 
tend to exhibit elastic-perfect plastic behaviour.  In this work comparison was made 
between using an elastic perfect plastic rule, two bilinear hardening rules 
(H/E=0.0138 and H/E=0.00869) and a cyclic hardening rule (see section 2.1). It was 
seen that the cyclic and bilinear hardening properties gave higher opening and closing 
stress values, which were closer to the experimental data. The choice of using 
isotropic hardening is discussed in more detail in section 3.5. 
 
3.2 Effect of element size on plastic zone and crack opening and closure stresses  
 
In Table 1, the elements that have yielded, using a von Mises criterion, in front of the 
crack tip are presented for varying minimum element sizes. 
 
The highlighted values in the table correspond to values that meet the convergence 
criteria suggested by McClung et al.19 that Δa/rp ≤ 0.1 (for quadrilateral elements and 
R=0). It can be seen that a minimum size of 7.8 μm would be required to meet the 
criteria but that an element length of 15.6 μm would be appropriate apart for very 
short crack lengths. 
 
The opening and closure stresses for different element sizes are shown in Fig. 10.  
 
It can be seen that as the element size drops below 15 μm the opening and closure 
stresses start to converge at medium to high crack lengths. The convergence for the 
opening stresses correlates well with the results of McClung et al. and indicates that 
an element size of 15 μm should give good stress opening values for constant 
amplitude loading. For closure stresses the crack lengths at which convergence 
happens is much later than from the McClung et al. criteria and smaller element sizes 
would be needed to obtain convergence at the shorter crack lengths. It was seen 
experimentally2 that crack jumps as small as 5 μm occur when applying overloads. 
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For the model utilising 3.9 µm size elements along the crack path, 1024 nodes had to 
be released to grow the crack 4 mm (5.25 mm crack length as initial notch is 1.25 mm 
deep) with an increment of 3.9 µm for every two numerical load cycles (see section 
2.8). The experimental crack growth was 0.11 µm/cycle. Therefore, there are 35.5 real 
increments (35.5 load cycles) for every 1 simulated increment (2 numerical load 
cycles). It is possible to model extremely small element sizes, <0.1 µm, but this would 
significantly increase the computational run time to grow a 4mm crack, as well as the 
corresponding analysis time. This must be weighed against the increase in accuracy 
obtained and as can be seen in figure 10, for constant amplitude loading, the opening 
and closure stresses have converged by the time the element size reaches 3.9 µm. 
 
Normal reduction and reduction using tie restraints were carried out but no discernible 
difference in results was found between the opening and closure values. Also the 
forward plastic zone size was similar for both cases. The augmented Lagrange 
constraint method produced slightly smaller penetrations levels than multiplier 
Lagrange method and gave solution times that were about six times faster. 
 
3.3 Comparison of analytical and numerical plastic zone sizes. 
 
The plastic zone size rp in Table 2 shows the values obtained using the Irwin 
approximation. The values obtained using an FE model utilising a minimum element 
size of 3.9 μm with the Von Mises criterion, are compared in Fig 11. The size of the 
plastic zone given by the FE model was obtained by counting the failed elements 
ahead of the crack tip (σ > σy). It can be seen that the plastic zone simulated by the FE 
model is smaller than the one calculated by the Irwin approximation for plane stress, 
Eq. (3). The results are though close and it would be expected that the Irwin 
approximation which assumes elastic perfectly plastic conditions would be higher 
than the numerical model that assumes material hardening occurs. 
 
In Fig. 12, the size of the reverse plastic zone is shown. The FE simulations fall 
between the approximations for plane stress and plain strain, Eq. (5) and Eq. (6). It 
was expected that the reverse plasticity zone size would be closer to the plain strain 
condition even when the loading is close to plane stress, see section 2.5.2. 
 
One possible cause for the smaller plastic zone size from the FE model is due to the 
number of cycles applied between the releasing of each node. One recent study34 
addressed the issue of the number of cycles between node release. In that work it was 
pointed out that for plane strain there is a strong dependence between the opening 
stress level and the number of load cycles, in addition for plane stress it was reported 
that 2 cycles between node releases gave more consistent results than single load 
cycles.  
 
In order to assess the effect that the amount of load cycles between node releases has 
models were run where nodes were released every load cycle or every other load 
cycle. As can be seen in Fig 13, this does not seem to affect the opening and closing 
stress values determined. Models with more load cycles per node release were not run 
due to time restrictions. 
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The measurement of the opening loads due to node separation behind the crack tip 
should be reliable because it directly monitors the time of separation of the node 
within the load cycle. There is though some dispute over how accurate this is hence 
results were compared against the contact pressure in the first node behind the crack 
tip and the time load increment values were the same for both methods.  
 
3.4 The effect of load time increments on opening and closing stress values. 
 
In Fig. 14, the opening and closure stress values utilising different load time 
increments are presented for a 15 μm element size. The variation in load time 
increment size will clearly have some effect on the opening and closing loads 
measured due to the discretisation of the load. The results though showed no 
significant variation on the determined opening and closing stress values. 
 
3.5 Comparison with experimental crack opening and closing loads  
 
The experimental results for normalised crack opening stresses and closure stresses 
are presented in Fig. 101, 2. As can be seen the normalised opening stresses rise from 
approximately 0.67 to 0.73 and the closure stress from 0.6 to 0.65. It is expected that 
the experimental opening and closure loads would be similar but there can be 
differences as stated by Schijve52. In Fig. 10 it can be seen that numerically the 
normalised opening stresses rise to approximately 0.62 and the normalised closure 
stresses rise to approximately 0.5 for the 3.9 μm element size. The predicted 
normalised closure and opening stresses are therefore significantly smaller than the 
experimental results but follow the same trend in that the closure stresses are lower 
than the opening stresses. 
 
There could be several factors that account for this such as load discretisation, 
difficulty in accurately measuring the crack opening and closing experimentally, 
under estimation of the plastic zone, and the surface roughness not being taken into 
account in the model. The assumption of plane stress conditions is not the cause of the 
discrepancy as this would increase the crack closure loads, due to increased plasticity 
at the crack tip. 
 
An issue when comparing numerical and experimental results is the inherent error that 
exists with experimental data. The optical method selected by the authors2 was 
selected to minimise the error but none the less the method requires some user 
interpretation in terms of the point the crack is open and closed. Full field 
displacement techniques such as moiré interferometry, which can give high resolution 
measurements of crack opening, have been used but it is an experimentally complex 
method with many drawbacks53. Digital Image Correlation has similar benefits to 
moiré interferometry, has the advantage of 3D measurement and is relatively much 
easier to apply. Due to this, it is becoming more widely used, which should lead to 
more accurate experimental data45, 53, 54. 
 
Although there is some error generated due to load discretisation it should be small 
and the major error is more likely due to not correctly modelling the amount of 
plasticity and its distribution. In real situations the plastic zone is likely to be larger 
and more uniform because it is created every cycle. In the numerical analysis the load 
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is only applied at Δa increments, which creates wider gaps between the plasticity 
generated, leading to smaller plastic zones and lower closure values.  
 
An aspect that was not investigated in this work is the effect of changing the material 
model to incorporate kinematic hardening. Antunes et al.28 obtained results from 
middle tension specimen numerical models, using small crack tip elements, that 
showed that kinematic hardening decreased the crack opening loads. This would 
indicate that using kinematic hardening would cause a larger discrepancy in our case 
with the experimental results. They did though also show a model dependency in 
terms of element size and the material hardening model. 
 
The surface roughness of the crack is also likely to have a significant effect on the 
distribution of the plasticity generated behind the crack tip. 
 
3.6 Comparison of numerical and experimental crack growth prediction  
 
Fig. 15 shows the fitting of crack growth versus length data using the Paris Law55 and 
Elber’s equation56 (utilising numerical opening and closure load data) for one 
experimental test. In the Elber equation the Keff (effective stress intensity) was 
calculated by taking the average Kop and Kcl values (numerically obtained) from the 
Kmax value. As the value of the fitting parameter m is similar for both methods this 
would seem to indicate that the percentage underestimation of the numerical crack 
opening and closing stress loads relative to the max load applied, see section 3.5, is 
constant. The constant percentage difference generated between the stress intensities 
for each method is accommodated, when fitting, by the C value (scaling factor) to 
give similar crack growth predictions. 
 
4. Conclusions 
Fatigue crack propagation was carried out with FEM using a two-dimensional plane 
stress elastic-plastic model and compared with experimental results for four-point 
bend specimens1,2.  
 
The release node technique was used to advance the crack, after every load cycle or 
every other load cycle. Very little difference was found in the opening or closure 
stresses measured between the two methods for constant amplitude loading. 
 
The opening stresses were measured by monitoring the step time when the 
displacement at the first node behind the crack tip became positive during the second 
load cycle. The point at which the contact pressure, at the same node, became zero 
was also measured. Both methods gave the same results for the opening stress. 
 
Two constraint enforcement methods were compared and the results showed a 
minimum penetration in both cases. The augmented Lagrange method was preferred 
to the multiplier Lagrange method as it produced a smaller amount of allowable 
penetration and gave solution times that were approximately six times faster. 
 
In line with the work of McClung18, it was found that the smaller the element size the 
larger the numerical prediction was for the plastic zone. Even so, when using the 
smallest minimum element size of 3.91 μm the monotonic plastic zone rp was smaller 
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from the ABAQUS model than predicted by the Irwin approximation for plane stress. 
A difference in results is expected though as the Irwin approximation assumes elastic 
perfectly plastic conditions whereas the numerical model assumes material hardening 
occurs. The assumed plane stress condition in the model would increase plasticity at 
the crack tip and is therefore not the cause. Another explanation is that the numerical 
model is under predicting the plastic zone size.  
 
The lower numerical crack opening and closure results compared with the 
experimentally measured results would support this contention. The authors believe 
the most probably causes of the difference in results are due to the model not 
capturing the real material plastic behaviour10, a non-realistic plastic distribution in 
the model due to load cycle discretisation along the crack path and an incorrect 
distribution of the plasticity behind the crack tip due to surface roughness. Kinematic 
hardening was not considered in this work but kinematic hardening would likely 
generate a larger error in the results, as Antunes et al.28 have shown that kinematic 
hardening reduces the crack opening loads. 
 
Although the experimental method employed by the authors2 was selected to 
minimise errors in crack opening load measurements, techniques such as DIC have 
the potential to significantly improve experimental accuracy. 
 
The experimental Paris55 and the numerical Elber56 fits for constant amplitude loading 
both give good predictions of crack growth showing that the percentage difference 
between the stress intensity values used in the methods is remaining constant. 
 
The restart capability within ABAQUS and mesh refinement techniques were utilised 
to reduce post processing requirements. These techniques allow long crack lengths to 
be modelled with high mesh density enabling future models to be developed to 
investigate variable amplitude loading up to failure with high enough element 
resolution to give better predictions of crack growth using crack closure theory. 
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Fig 1. Position of loading points and notch detail.  
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Fig 2. 2D half model showing FE boundary conditions.  
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Fig 3. Plastic zone regions for a fatigue crack. 
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Fig 4. Reversed plastic zone size (also called cyclic plastic zone)39. 
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Fig 5. Mesh reduction scheme with combination of normal handmade reduction and MPC. 
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Fig 6. Plastic zone ahead of the crack, and the larger K-field that must exist 

for LEFM to be applicable26. 
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Fig 7. Plastic zone size under monotonic load for plane stress, Irwin’s approximation. 
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Fig 8. Specimen geometry. 
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Fig 9. Crack path comparisons among real and numerical cases.  
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a)

 
b)

 
Fig 10. Comparison for a) opening and b) closure values for constant amplitude 

loading using different element sizes. 
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Fig 11. Plastic zone size rp. 
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Fig 12. Reversed plastic zone size ry. 
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Fig 13. Opening and closure stresses measured for node release every cycle and every other 

cycle. 
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a)

 
b)

 
Fig 14. Analysis of time increments on numerical a) opening and b) closure values for 

constant amplitude loading (M=1.25 mm, σmax=0.29σy). 
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Fig 15. Constant amplitude crack growth rate data versus crack length. 
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Table 1 
Number of elements yielded in front of crack tip, M=1.25, σmax/ σy=0.3, R=0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 
mm 

2
1











=

y

I
p

Kr
σp

 

forward plastic 
zone 
mm 

Element size of the mesh employed  
in simulation 

125 
μm 

62.5 
μm 

31.1 
μm 

15.6 
μm 

7.8 
μm 

3.9 
μm 

1.75 0.1622 1 1 2 8 17 33 

2.25 0.2071 1 2 5 10 21 42 

2.75 0.255 1 3 6 12 25 50 

3.25 0.3075 1 3 7 15 30 61 

3.75 0.3665 2 4 8 18 36 71 

4.25 0.4338 2 5 10 21 42 83 

4.75 0.5112 3 6 12 24 48 97 

5.25 0.6012 3 7 14 27 55 112 
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Table 2  
Number of elements within the monotonic plastic zone (rp), element size Δa=0.00390625 
mm. 
 

Crack 
length 
(mm) 

Plastic zone 
size (mm) 
analytical 

Number 
of 

elements 
at Kmax 

Plastic zone 
size (mm) 
ABAQUS 

McClung 
(1989) 

criterion 
Δa/rp ≤0.1 a rp rp 

1.25 0.119078 29 0.113281 0.034483 
1.5 0.141061 34 0.132813 0.029412 

1.75 0.163071 40 0.15625 0.025 
2 0.18536 45 0.175781 0.022222 

2.25 0.208166 49 0.191406 0.020408 
2.5 0.231721 54 0.210938 0.018519 

2.75 0.256247 60 0.234375 0.016667 
3 0.281962 64 0.25 0.015625 

3.25 0.309078 70 0.273438 0.014286 
3.5 0.337811 76 0.296875 0.013158 

3.75 0.368376 81 0.316406 0.012346 
4 0.400998 89 0.347656 0.011236 

4.25 0.435916 96 0.375 0.010417 
4.5 0.473385 103 0.402344 0.009709 

4.75 0.513689 110 0.429688 0.009091 
5 0.557146 120 0.46875 0.008333 

5.25 0.604121 128 0.5 0.007813 
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