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ABSTRACT 

Extracellular vesicles are small, lipid bound structures that are involved in 

intercellular signalling. They are known to be involved in numerous processes within the 

body, including in disease. One interesting function of EVs appears to be the induction of 

the bystander effect. The bystander effect refers to the non-targeted effects of stress, 

whereby stressed cells induce damage in neighbouring cells. EVs released from cells 

following irradiation have previously been shown to induce the bystander effect.  EVs have 

also been implicated in the induction of cancer-cachexia, a muscle wasting disease. This 

disease is common in patients with cancer and is often linked to poor prognosis. 

In this project the ability of EVs released from heat shocked cells to induce bystander 

effects has been assessed. EVs released from cancer cells following 45°C treatment induced 

the bystander effect and the bystander cells were shown to be more resistant to 

subsequent stress treatment. EVs retained this functionality for up to two weeks when 

stored at -80°C. EVs released following short, 70°C treatment were also able to induce 

bystander effects. 

The ability of EVs from both stressed (cisplatin) and unstressed cancer cells to induce 

cachexia was also examined. Cancer EVs were able to reduce differentiation in vitro, but no 

effects were observed when these EVs were injected into mice. The proteome of these EVs 

and their parent cells was also identified via liquid chromatography-mass spectrometry and 

pathway analysis was carried out on these proteins. 

These data suggest possible roles for EVs in cell-cell communication during stress and 

disease, with EVs being able to induce bystander effects and alter muscle development in 

vitro.  
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1  INTRODUCTION 

1.1 STRESS RESPONSE 

1.1.1 THE CELLULAR RESPONSE TO STRESS  

Cells require a controlled environment to ensure optimal function and health of the 

cells, the tissues they comprise and the organisms they make up. The body has numerous 

systems to maintain the correct environment which is collectively known as homeostasis. 

When cells are cultured in a laboratory they need to be maintained in strict conditions, 

nourished with buffered medium and grown in CO2 controlled, humidified incubators. 

Deviation from these conditions can cause problems for the cells; leading to the cells 

becoming stressed or causing them to die. At high temperatures protein folding begins to 

collapse, as the hydrogen bonds holding their secondary, tertiary and quaternary structures 

break, leading to them becoming denatured (Neurath et al., 1944). The temperature at 

which these problems occur differs for different proteins, with some having evolved to 

function at extreme temperatures (Feller 2010).  At low temperatures chemical reactions 

will slow and low temperature has also been shown to cause proteins to denature (Privalov 

& Privalov 1990). Changes to the pH also affect the functioning of cells and organs. Cells 

attempt to buffer any changes to pH and can pump protons into the extracellular space to 

control internal pH (Aoi & Marunaka 2014). Blood is maintained at a pH narrow range of 

7.36-7.44 and cells at 7.2 through the use of the HCO3
-/CO2 buffer (Lee Hamm et al., 2015). 

Protein kinetics are impaired when not in their optimum pH range and they can even 

become denatured causing them to malfunction (Jain et al., 2015). Oxidative stress occurs 

when the regulation of reactive oxygen species (ROS) breaks down. ROS are generated as 

part of normal cellular metabolism and are utilised in numerous ways by cells such as in 

iron homeostasis (Ray et al., 2012). However, if the levels of ROS get too high then the cells 
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will experience damage, therefore the levels of ROS are tightly controlled in cells via the 

action of molecules known as antioxidants (Ray et al., 2012). 

Alteration of the cellular environment is not the only thing that can affect the 

functioning of cells, there are also numerous exogenous agents that will negatively impact 

their function. Many drugs are intended to alter or impair cellular functions in order to help 

the overall health of the organism. Many chemotherapeutic agents aim to kill cells that are 

undergoing cell division. As cancer cells grow rapidly they are more sensitive to these drugs 

than normal cells; however, normal cells will inevitably be affected as well (Malhotra & 

Perry 2003). Radiation is able to cause mutations within DNA leading to errors in protein 

synthesis (Hutchinson 1966) and it is used in Radiotherapy to cause fatal damage to cancer 

cells. However, it affects both normal and cancerous cells, but as normal cells divide more 

slowly than cancer cells it is easier for them to repair DNA damage (Panganiban et al., 

2013).  

When an organism becomes diseased the affected tissues, their neighbouring sites 

and even the whole organism can experience a disruption to homeostasis (Brestoff & Artis 

2015; Kotas & Medzhitov 2015; Haughey et al., 2002). In cancers numerous physiological 

processes can become disturbed, leading to numerous stress responses in an attempt to 

counter the damage being done (Luo et al., 2009). Normal cells contain numerous 

checkpoints to ensure a tightly-regulated cell cycle and numerous processes that will 

attempt to repair or kill damaged cells. However, in cancer these systems are subverted 

and the cells grow out of control (Hanahan & Weinberg 2011; Pflaum et al., 2014). As such, 

normal physiology breaks down and cancer cells often exist in stressed conditions: e.g. 

hypoxia due to poor vasculature within the tumour (Ackerman & Simon 2014). On top of 

the surrounding environment inducing stress, the activity of the tumour cells also induces 

stress in them. The speed of cancer cell replication leads to high levels of DNA damage as 

the cell is constantly reproducing its genome (Gaillard et al., 2015). The increased growth 
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also demands an increase in the levels of proteins produced which can lead to stress in the 

endoplasmic reticulum (ER) (Ackerman & Simon 2014; Giampietri et al., 2015). Tumour cells 

also often display high levels of heat shock proteins; chaperones that protect the other 

proteins within the cell (Mosser & Morimoto 2004). This means that tumour cells rely on 

numerous stress responses in order to stop themselves from undergoing cell death (Luo et 

al., 2009). An interesting phenotype in cancer is the unexplained loss of fat and muscle 

mass known as cancer cachexia (Fearon & Moses 2002; Aoyagi et al., 2015). This wasting is 

accompanied with very high levels of resting energy expenditure (Mak & Cheung 2006) and 

an increase in protein catabolism (Jeevanandam et al., 1984; Vaughan et al., 2013) which 

is implicated in the condition, showing that the breakdown of metabolic homeostasis can 

have catastrophic effects. 

One key regulator of cell survival following damage is the transcription factor p53. 

First observed in 1979 (Kress et al., 1979; Lane & Crawford 1979) this protein is integral in 

the choice between repair and apoptosis. P53 is a tumour suppressor and halts the cell’s 

division in G1 phase, should the cell be damaged or stressed in some fashion (Hirao & Kong 

2000; Kuerbitz et al., 1992). The mechanism that dictates whether the cell is to be repaired 

or removed is as yet known but, seems to be related to the presence of pro-apoptotic 

cofactors and other survival signals that modulate the cell’s susceptibility to apoptosis 

(Vousden & Lu 2002). If the cells goes down the cell death route p53 will activate apoptosis 

pathways, such as the CD95 (APO-1/Fas) system (Müller et al., 1998), leading to the death 

and clearance of the cell. This mechanism allows p53 to stop damaged cells from dividing 

and propagating, which could potentially give rise to tumours. 

Without any way to protect themselves from these stresses cells, tissues and 

organisms would be fragile, unable to survive even slight fluctuations in their environment. 

They would accumulate damage, become non-functional and perish. The stress response 
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is therefore integral to the survival of organisms. A brief overview potential stress 

responses is shown in Figure 1-1. 

 
Figure 1-1: Cellular stress responses. There are numerous different ways in which cells can attempt to 

mitigate damage caused due to stressful conditions. Stress often inhibits correct protein synthesis and 
function. Heat Shock Proteins (HSPs) are involved in ensuring that cellular proteins remain functional. Most 
HSPs are molecular chaperones whose role is to ensure that proteins fold correctly and maintain their 
structure. However, some have other functions such as transporting proteins or targeting damaged proteins 
for degradation. Cells that undergo DNA damage have numerous different methods which can be used to try 
and fix the problem, depending on the type of damage that has occurred. Double strand breaks can be 
repaired one of two ways. Homologous recombination is where a sister chromatid is recruited to be used as a 
template strand for repair. Non-homologous end joining does not use a template, and as such is more prone 
to error. The unfolded protein response is triggered by a build-up of unfolded proteins with in the endoplasmic 
reticulum. This triggers several cascades which lead to the reduction of the levels of protein by, for example, 
increasing the rate of protein degradation. If the cell is unable to resist the stress it will undergo cell death. 
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1.1.2 THE HEAT SHOCK RESPONSE 

Cells are sensitive to differences in temperature with changes of only a few degrees 

inducing stress response (Richter et al., 2010; Purschke et al., 2010). When outside of the 

optimal growth conditions the cell’s proteins begin to denature, leading to the proteins 

unfolding and aggregating, inhibiting their correct function (Neurath et al., 1944). As the 

hydrogen bonds holding the cell’s proteins together break, their tertiary and quaternary 

structure can be altered, potentially leading to loss of function if they lose their active sites 

(Richter et al., 2010). It is therefore imperative for cells to be able to maintain protein 

structure during stress. Heat shock proteins (Hsps) are a class of proteins commonly found 

up-regulated during stress conditions. They earned their name as they were first observed 

following heat treatment, however they are not solely involved in the heat shock response. 

In fact, Hsps are induced in most types of stress (Feder & Hofmann 1999) and many are 

even active in normal physiological conditions (Hartl et al., 2011; Uma et al., 1999; Matts 

et al., 1992). The majority of Hsps act as molecular chaperones whose role during stress is 

to ensure the cellular protein maintains a functional structure, stop protein aggregation 

and to aid the correct folding of newly synthesised proteins (Feder & Hofmann 1999; 

Whitley et al., 1999; Richter et al., 2010; Bao et al., 2002). 

Molecular chaperones are able to distinguish between folded and unfolded proteins 

as unfolded proteins tend to have a large number of exposed hydrophobic amino acids 

(Richarme & Kohiyama 1993). They act either by binding to unfolded proteins, halting 

erroneous interactions within the cells that could cause problems or by helping the proteins 

fold correctly; these two types are known as holdases and foldases (Richter et al., 2010; 

Nunes et al., 2015). There is some evidence that holdases and foldases work together to 

ensure efficient protein refolding (Hoffmann et al., 2004) with the presence of foldases 

linked to the dissociation of protein from holdases. There are several major classes of 

molecular chaperones (based on the molecular weight of the proteins) within the Hsps: 
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Hsp60s, 70s, 90s, 100s and small Hsps. An overview of the Hsps can be found in Figure 1-2. 

Hsp60 is mainly found within the mitochondria and is able to both hold unfolded protein 

and provide an isolated environment for the peptide to fold correctly (Calderwood et al., 

2006; Cheng et al., 1989; Magnoni et al., 2014). This ring-shaped chaperone surrounds the 

unfolded protein, separating it from other non-native proteins which might affect the 

folding process or cause aggregation of unfolded protein (Hartl et al., 2011). Hsp70 is a 

highly conserved chaperone and is expressed both during stress and normal physiological 

conditions. It comprises an N-terminal domain involved in regulating conformational 

changes to the other domains; a substrate binding domain specific for exposed 

hydrophobic regions of the proteins; and the C-terminal domain which can change position 

to “close” the substrate binding domain (Hartl et al., 2011). It has a wide range of biological 

functions such as protein folding, transport and degradation. Whilst the Hsp70s are similar 

in terms of their structure, their diversity is due to the wide range of cofactors that they 

interact with, such as Hsp40/J-domain-containing proteins (Kampinga & Craig 2010). BiP is 

a member of the HSP70 family of chaperones that is involved with protein folding within 

the ER (Griesemer et al., 2014). This chaperone is also involved in the induction of the 

unfolded protein response (UPR) as it binds to the intercellular regions of three key proteins 

within the ER stress cascade, holding them in an inactive state (Bertolotti et al., 2000). Once 

BiP disassociates from these proteins the UPR cascade begins (Okamura et al., 2000). Hsp90 

is found at high levels in the cytosol during normal conditions and increases when cells 

encounter stress conditions (Buchner & Li 2013). This homodimeric chaperone acts as a 

foldase and helps to ensure the correct folding of proteins during physiological and stress 

conditions. Unlike other HSPs it deals with proteins in the final stages of maturation 

(Buchner & Li 2013; Nathan et al., 1997). It is also involved in regulating numerous facets 

of cancer progression such as: tumour growth, metastasis and angiogenesis. As such it is a 

target for anti-tumour therapy (Wu et al., 2017). GRP94 is a HSP90-like chaperone that 



Introduction 

Findlay Bewicke-Copley Page | 7 PhD Thesis 

operates within the ER in response to incorrectly folded proteins (Kozutsumi et al., 1988). 

This protein is known to be involved in the innate immune response, with the absence of 

this protein in B cells leading to internal retention of Toll-like receptors which subsequently 

stops the B cell from recognising pathogens (Randow & Seed 2001). Hsp100 is a protein 

disassembler or unfoldase; it unfolds misfolded proteins allowing them to refold correctly 

and separates aggregated proteins (Saibil 2013). Non-native proteins are pulled through 

the centre of a ring-like structure causing them to unfold, therefore allowing them to re-

fold correctly (Richter et al., 2010; Saibil 2013). Some members of the Hsp100 proteins such 

as ClpX have proteolytic activity, degrading the proteins as they pass through the ring-like 

structure (Labreck et al., 2017). Small Hsps range in size from around 12-43 kDa, and are 

often active as large oligomeric structures (Bakthisaran et al., 2014). They are chaperone 

proteins that exhibit holdase activity and aim to stop partially folded or unfolded proteins 

aggregating within cells (Richter et al., 2010; Bakthisaran et al., 2014). Some sHsps have 

also been shown to be able to aid correct folding for their targeted proteins (Bakthisaran 

et al., 2014). Several classes of heat shock proteins have been shown to have an anti-

apoptotic effect achieved in numerous ways (Hatayama et al., 2001; Wu et al., 2017; Fulda 

et al., 2010; Takayama et al., 2003; Pasupuleti et al., 2010).  

The heat shock proteins are invaluable to the cell, both during normal conditions and 

whilst attempting to ensure correct protein folding continues under stress conditions. 

Without these chaperones to ensure the stability of their protein complement, the cells 

physiological processes would begin to shut down as misfolded, non-functional proteins 

are created and protein aggregates form overwhelming the cell.   
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Figure 1-2: The five major classes of heat shock proteins. The heat shock proteins are a family of 
proteins that are involved both during normal physiological conditions and during stress conditions. There are 
five main classes of HSPs: HSP60, HSP70, HSP90, HSP100 and small HSPs. The majority of HSPs expressed 
within cells act as molecular chaperones whose function is to ensure and maintain the correct folding of 
cellular proteins. HSP60 acts as a compartment within the cell in which protein folding can occur away from 
other unfolded proteins, preventing aggregation. HSP70 binds to non-native/partially synthesised protein and 
prevents aggregation. HSP70 is also known to aid in protein transport, targeting protein for degradation and 
aiding the correct protein folding. HSP90 is commonly found in normal physiological conditions and is involved 
with the final maturation of newly synthesised protein. Incorrectly folded protein is passed through HSP100 
causing the protein to unfold. Some HSP100s have protease activity and degrades the protein as it passes 
through. Small HSPs bind with non-native and correctly folded protein in order to prevent protein aggregation 
and unfolding.  
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1.1.3 UNFOLDED PROTEIN RESPONSE 

Many proteins are modified post-translationally at the endoplasmic reticulum, such 

as folding, glycosylation or oligomerization (Braakman & Bulleid 2011). When the cells 

undergo various stresses, such as glucose deficiency or hypoxia, the ability of the ER to 

produce correctly assembled proteins is impaired, leading to the accumulation of unfolded 

proteins in the ER, known as ER stress (Fulda et al., 2010). When the ER is unable to 

maintain protein homeostasis due to this accumulation the unfolded protein response is 

initiated. This starts several processes all with the aim of increasing protein transport, 

folding and degradation, reducing the aggregated protein within the ER whilst also reducing 

the levels of protein synthesis (Fulda et al., 2010; Wang & Kaufman 2014; Hetz 2012). If the 

cells are unable to combat the stress successfully then they will undergo apoptosis, via the 

mitochondrial pathway. Three transmembrane proteins exist within the lumen of the ER 

that are activated in order to initiate the unfolded protein response: Inositol-requiring 

protein 1α (IRE1α), PRKR-like ER kinase (PERK) and activating transcription factor 6α 

(ATF6α) (Hetz 2012). These proteins are held in an inactive state through physical 

interaction with immunoglobulin heavy-chain binding protein (BiP) (Wang et al., 2009). 

Build-up of unfolded protein within the ER causes dissociation of BiP with these receptors, 

leading to their activation (Hetz 2012). 

When IRE1α is activated it formers homodimers and begins to splice mRNA coding 

for the transcription factor X-box binding protein 1 (XBP1) which is then translated 

(Kawahara et al., 1997). This transcription factor then upregulates various UPR genes such 

as ER chaperones (Chen & Brandizzi 2014). IRE1α also acts to reduce the levels of cellular 

mRNA in order to reduce the levels of protein synthesis, a process known as regulated IRE1-

dependent decay of mRNA, or RIDD (Maurel et al., 2014). If the ER stress reaches extreme 

levels, the cell no longer tries to reduce protein synthesis; instead IRE1 α begins to target 
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the apoptosis repressor Anti-Casp2 miRNA leading to the induction of apoptosis (Hetz 

2012; Chen & Brandizzi 2014). 

PERK activation leads to the formation of PERK homodimers which phosphorylate the 

eukaryotic initiation factor 2α (eIF2α), part of the eIF2 trimer (Wang & Kaufman 2014; 

Harding, et al., 2000). This then leads to reduction of general protein translation and an 

upregulation of translation of ATF4  (Harding, et al., 2000) which then acts to increase the 

transcription of ER genes. Phosphorylated eIF2α also affects the translational capabilities 

of the subunit eIF2β reducing protein synthesis (Nika et al., 2001). 

When activated ATF6α travels from the ER to the Golgi where the luminal and 

cytosolic region of the protein is cleaved by site-1 and site-2 proteases respectively (Sun et 

al., 2015; Chen et al., 2002). This releases the N-terminal fragment ATF6(N) into the cytosol, 

which travels to the nucleus and acts as a transcription factor, leading to the upregulation 

of UPR genes such as BiP, which acts as a molecular chaperone, and protein disulphide-

isomerase, which is involved with forming and breaking disulphide bonds in protein folding 

(Walter & Ron 2012). 

Without the UPR cells would be unable to clear blockages in the endoplasmic 

reticulum leading to protein aggregation in the ER and protein synthesis becoming 

restricted. 

1.1.4 DNA DAMAGE RESPONSE 

When a cell’s DNA becomes damaged it is important that the cell is able to repair the 

damage with as few errors as possible to reduce the chances of mutations arising. 

Numerous factors are able to induce DNA damage in cells such as: irradiation, heat stress, 

oxidative damage and chemical agents (Hakem 2008; Velichko et al., 2012). 

Due to the various different types of DNA damage there are several distinct methods 

of DNA repair. Base excision repair (BER) removes a single nucleotide that has undergone 



Introduction 

Findlay Bewicke-Copley Page | 11 PhD Thesis 

minor chemical alterations such as deamination or oxidation (Krokan & Bjoras 2013). The 

altered base is removed by a DNA glycosylase leaving an AP (apurinic/apyrimidinic) site 

(Jacobs & Schär 2012). AP endonuclease then creates a strand incision at the location of 

the AP site which is then either filled with short- patch (single nucleotide) or long- patch (2-

13 nucleotides) repair (Hakem 2008). Nucleotide excision repair (NER) occurs when more 

complex lesions occur which leave the DNA helix distorted (Jackson & Bartek 2009; Ciccia 

& Elledge 2010), meaning a number of nucleotides must be completely removed and 

replaced. When the damaged DNA is detected, helicases separate the DNA strands both 

up- and down-stream from the damage (Coin et al., 2008; Tirode et al., 1999). The damaged 

section is then excised as a 24-32 nucleotide fragment before the gap is filled and sealed as 

above (Fadda 2016). Mismatch repair (MMR) is used to fix errors that occur in the newly 

synthesised strand during normal cell replication (Kunkel 2004; Bridge et al., 2014). When 

mismatches are found on the daughter strand they are bound by a complex that degrades 

the erroneous section. Again the missing section is refilled by DNA polymerase and DNA 

ligase (Bridge et al., 2014; Iyer et al., 2008). 

The above can only repair single-stranded breaks (SSBs) however as they require a 

template strand to re-synthesise and correctly match the excised nucleotides, double-

stranded breaks (DSBs) are repaired by different pathways. In non-homologous end-joining 

(NHEJ) the broken ends of the DNA are ligated together, this is an error prone process 

(Jackson & Bartek 2009). In contrast homologous recombination (HR) uses a sister 

chromatid as a template sequence to faithfully repair the DNA (Ciccia & Elledge 2010; 

Jackson & Bartek 2009). Only around 10% of the DSB in mammalian cells are repaired with 

HR compared with NHEJ and HR can only occur S/G2 phase (Hakem 2008; Jasin & Rothstein 

2013). 
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Mutations arising within a cell’s genetic code can be disastrous, causing the 

production of malfunctional proteins, which can lead to diseases such as cancer. It is, 

therefore, vital for the cell to be able to quickly and efficiently repair damage to its DNA. 

1.1.5 APOPTOSIS 

If cells are unable to survive stress they will activate cell death pathways, such as the 

apoptotic pathway. Apoptosis is controlled by the action of several caspases which, when 

activated, target numerous proteins for degradation, causing cells to be deconstructed 

from the inside. The nucleus begins to condense and break apart into smaller pieces. The 

cells then begin to break up into apoptotic bodies, large blebs from the plasma membrane, 

before being cleared by phagocytes for recycling (Ichim & Tait 2016; Taylor et al., 2008). 

This controlled approach to cell death prevents damage to the surrounding cells and stops 

the immune response being triggered due to harmful molecules that may be released when 

the cells degrade in a less regulated manner, such as occurs in necrosis (Taylor et al., 2008; 

Iyer et al., 2009). 
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Figure 1-3: The caspase cascade. There are numerous ways by which apoptosis is controlled, the most 

common are: the intrinsic pathway which involves the release of cytochrome C from mitochondria and the 
extrinsic pathway which involves the activation of membrane bound death receptors. The extrinsic pathway 
is initiated by stress conditions which activate proteins of the BH3-only family. In turn, these proteins activate 
BAX and BAK which form pores in the mitochondrial membrane allowing the release of cytochrome C. Bcl-2 
proteins inhibit the formation of these pores when the levels of active BH3-only proteins are too low. Combined 
with Apaf-1 this forms the Apoptosome which cleaves procaspase-9, activating it. Caspase 9 then activates 
the effector caspases-3 and -7. In the extrinsic pathway death receptors (TNF receptor, TRAIL receptor) are 
activated and recruit death domain containing proteins (TRADD, FADD) to the membrane, which sequester 
procaspase-8 forming a complex known as the death-inducing signalling complex (DISC). Procaspase-8 is 
cleaved to active caspase 8 which in turn activates the effector caspases-3 and -7. Caspase 8 is also able to 
activate the BH3-only protein BID which can induce the intrinsic pathway by inducing BAX/BAK pore 
formation. Apoptosis is also able to be induced by the introduction of Granzyme B by immune cells. Granzyme 
B enters the cell via the endocytotic pathway and activates BID leading to the formation of BAX/BAK pores on 
mitochondria as in the intrinsic pathway. Granzyme B is also able to activate caspase-3 and -7. Caspase-3 and 
-7 then cleave numerous downstream targets such as other caspases, ROCK 1 and PARP.  
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There are two main pathways for apoptosis: Intrinsic and extrinsic. Both pathways 

seek to activate a family of cysteine proteases known as caspases. These proteins exist in 

normal conditions within the cell as procaspases and are activated by proteolysis into their 

active forms following apoptosis signalling (Rastogi et al., 2009). A brief overview of the 

main steps within the caspase cascade is shown in Figure 1-3. The extrinsic pathway occurs 

when death receptors such as the tumour necrosis factor receptor (TNFR), or TNF-related 

apoptosis inducing ligand (TRAIL) receptors are activated by a death ligand, tumour 

necrosis factor-α (TNFα) or Fas ligand (FasL) respectively. This then causes the recruitment 

of the TNFR type 1-associated Death Domain (TRADD) or the Fas-associated Death Domain 

(FADD) (Bodmer et al., 2000; Ermolaeva et al., 2008). FADD sequesters procaspase-8, 

forming the death-inducing signalling complex (DISC) and leading to the activation of 

caspase-8 (Ashkenazi 2008). Active caspase-8 targets caspase-3 and caspase-7 for 

proteolysis (Stennicke et al., 1998; Hirata et al., 1998) as well as BH3- interacting domain 

death agonist (BID) which, when truncated, activates the intrinsic pathway via the 

mitochondria (Huang et al., 2016; Martinez-Caballero et al., 2009). Caspase-3 then 

activates other caspases which then target their substrates for degradation (Slee et al., 

2001). TRADD acts by forming a complex with FADD, activating caspase-8 as above (Hsu et 

al., 1996). 

The mitochondria are also able to induce caspase activation by through the release 

of pro-apoptotic factors inducing caspase activation. (Wang & Youle 2009). Members of 

the BH3-only protein family are activated by the cells in stress conditions (Puthalakath et 

al., 2007; Naik et al., 2007). These apoptosis activators are inhibited by a subclass of the B-

cell lymphoma-2 proteins (Bcl-2), and can only activate apoptosis if they reach a level 

sufficient to overcome this inhibition (Cheng et al., 2001; Taylor et al., 2008; Dejean et al., 

2006). These proteins then induce the construction of pores called mitochondrial 

apoptosis-induced channel (MAC) within the mitochondrial membrane made from BAK-
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BAX oligomers (Martinez-Caballero et al., 2009; Zong et al., 2001; Dejean et al., 2005). 

Truncated BID from the extrinsic pathway activates formation of these channels as well. 

This allows proteins within the mitochondria to enter the cytoplasm of the cell. One such 

protein cytochrome C binds with apoptotic protease activating factor 1 (Apaf-1) forming a 

structure known as the apoptosome (Zou et al., 1999; Jiang & Wang 2000). This then 

recruits pro-caspase-9 and activates it via proteolysis (Zou et al., 1999). Caspase-9 then 

cleaves and activates caspase-3 and caspase-7 starting the same cascades as in the extrinsic 

pathways (Slee et al., 1999). Finally, a third way via which apoptosis may be induced is via 

the introduction of granzyme B into the cell by immune cells (Cao et al., 2007). This protein 

is able to activate caspase-3 and caspase-7 and cleave BID leading to the formation of BAK-

BAX pores in the mitochondrial membrane (Barry et al., 2000; Yang et al., 1998).  

Once active, the caspases begin to cleave their many target proteins, eventually 

leading to the destruction of the cell. Some of the many targets of caspases are the 

components of the cytoskeleton. The degradation of these proteins leads to a loss of 

cellular structure producing a rounded appearance (Kothakota et al., 1997; Mashima et al., 

1999). Membrane blebbing is induced when caspase-3 cleaves rho-associated coiled-coil-

containing protein kinase 1 (ROCK 1) (Coleman et al., 2001). ROCK 1 activity is also 

implicated in the fragmentation of the nucleus as it no longer occurs when ROCK 1 is 

silenced (Croft et al., 2005). DNA is broken down by the protein caspase-activated DNase 

(CAD), which is activated when the inhibitor of caspase-activated DNase (ICAD) is removed 

by caspases (Liu et al., 1997; Jänicke et al., 1998). Chromosome condensation is caused by 

the phosphorylation of histones by the mammalian sterile-20 kinase (MST1) following its 

activation by caspases (Cheung et al., 2003). 

Once the cell has completely broken down into numerous apoptotic bodies they are 

phagocytosed, both by macrophages and neighbouring cells, then broken down for 

recycling of their contents (Gregory & Devitt 2004). In order for the apoptotic cells to be 
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cleared they must recruit the phagocytes to their location. In order to do this apoptotic 

cells release “find me” signals that attract the phagocytes including various secreted and 

vesicle associated molecules (Hawkins & Devitt 2013; Segundo et al., 1999; Lauber et al., 

2003). The phagocytes then travel to the location of the apoptotic bodies and must 

correctly identify the apoptotic cells. They are aided in this with various “eat me” signals 

presented by the apoptotic cells, which induce phagocytosis (Ravichandran & Lorenz 2007). 

One key “eat me” signal is the presentation of phosphatidylserine on the outer leaflet of 

the membrane (Asano et al., 2004; Hanayama et al., 2002). Once the phagocyte has 

engulfed the apoptotic bodies they fuse with lysosomes and are subsequently broken down 

within phagolysosomes (Guo et al., 2010). 

The clearance of old or damaged cells, or simply cells that are no longer required 

needs to be carried out safely to avoid negative impacts in neighbouring cells. The highly 

controlled nature of apoptosis is beneficial as it means harmful components of the cell can 

be removed by specialised cells, not simply released into the extracellular environment 

which can occur when cells undergo necrosis. 

 



Introduction 

Findlay Bewicke-Copley Page | 17 PhD Thesis 

1.2 THE BYSTANDER EFFECT 

1.2.1 NON-TARGETED EFFECTS OF STRESS  

The classical model of stress is that only the cells directly affect by the stress exhibit 

a stress response, with the surrounding cells and tissues being unaffected. However, there 

is mounting evidence of non-targeted effects of stress in the form of the bystander effect 

(Hall 2003; Hei et al., 2008). The bystander effect is, in brief, the raising of a stress response 

in cells that have not been exposed to stress (Figure 1-4). This effect has been observed in 

many different cell types and organisms. 

The first example of the bystander effect was reported in 1992. When cells were 

treated with α-particles 30% showed sister chromatid exchange (SCE), but estimates 

suggested only 1% of nuclei should have been traversed by α-particles (Nagasawa & Little 

1992). Additional evidence of off-target effects of radiation was observed in 1994 in rat 

lung epithelium (Hickman et al., 1994). Subsequent studies found other markers of damage 

in bystander cells such as P-53 levels and apoptosis (Hickman et al., 1994; Prise et al., 1998). 

Further work on the off-target effects of α-particles suggested that some extranuclear 

target of radiation that could explain the difference between the estimated numbers of 

cells traversed by α-particles and damaged cells (Deshpande et al., 1996). It was suggested 

that some radiation target located outside of the nucleus existed that, when traversed by 

an α-particle, could then induce sister chromatid exchange. However a study targeting only 

4 individual cells with α-particles observed micronuclei formation and apoptosis in 

bystander cells. (Prise et al., 1998). As the cells were specifically targeted it could not be α-

particles traversing the cytoplasm of the bystander cells that induced these bystander 

effects. Therefore, some signal must be released from the irradiated cells that is able to 

induce damage in the bystander cells. It’s important to note, however, that there is 
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evidence of cytoplasmic irradiation leading to similar damage to nuclear irradiation and 

that this may still play a role in the bystander effect (Zhou et al 2009). 

As these experiments were often carried out in cells grown in monolayers it was 

suggested that gap junction signalling was the mechanism by which bystander cells 

received these signals. Studies showed that the gap junction signalling inhibitors lindane 

and octanol were able to reduce the levels of bystander damage, suggesting that a 

bystander signal is transferred in this manner (Zhou et al., 2000; Zhou et al., 2001; Shao et 

al., 2003). Further, when gap junction signalling was increased via treatment of cells with 

8-Br-cAMP the number of micronuclei increased (Shao et al., 2003). 

 
Figure 1-4: Damage occurs in cells that were not affected by a stressor. A Bystander cells near to 

stressed cells within a population also become damaged, despite not actually being stressed themselves. B 
When a population of cells is stressed, and the stressed cells are co-cultured with unstressed cells the 
bystander cells also show damage, despite there being no cell contact. 

Interestingly the bystander effect is still observed when the medium from irradiated 

cells is harvested and fresh cells are grown in it (Mothersill & Seymour 1997; Lyng et al., 

2000; Mothersill & Seymour 1998). There was some suggestion that the irradiation was 

affecting the culture medium in some way, which in turn was causing the effects. However, 

a 2002 study observed no bystander effect when cells were cultured with irradiated 

medium alone, whilst co-culture with irradiated cells did show the effect (Zhou et al 2002).  
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As these cells are not in direct contact these data suggest that there is some extracellular 

signal that is released by stressed cells that induce these effects. It has more recently been 

shown that bystander cells treated with extracellular vesicles (EVs) extracted from 

irradiated cells show a higher level of DNA damage, apoptosis and chromosomal aberration 

than cells treated with EVs from non-irradiated cells (Al-Mayah et al., 2012; Al-Mayah et 

al., 2015).  

1.2.1.1 IN VIVO STUDIES 

Whilst much of the work on the bystander effect has been done in cell culture models 

there has also been work in vivo showing bystander occurring within organisms, see Figure 

1-5. A study in 2008 irradiated radiosensitive Patched-1+/- mice whilst their heads were 

covered by a lead shield. There was an increase in medulloblastomas, DNA damage and 

apoptosis in the cerebellum of shielded mice compared to mice that were sham irradiated, 

or left untreated (Mancuso et al., 2008). Another study showed DNA hypomethylation in 

the spleen, when the head of the animal head was irradiated (Ilnytskyy et al., 2009). This 

work highlights that bystander can occur in whole animals and that the effect is not simply 

an artefact from cell culture systems. It also shows that the signals that induce the 

bystander effect are able to travel quite far from the original site of stress, with damage 

being observed in organs nowhere near the treatment site. This suggests a stable molecule 

is responsible for this effect, as it must travel quite a distance before reaching bystander 

cells, probably carried within the blood stream. 

There is also evidence that bystander effects can occur between organisms. Studies 

in zebrafish and rainbow trout have shown that fish grown within the same tank as 

irradiated fish, or in water that previously contained irradiated fish, showed bystander 

effects when organs were removed and examined (Mothersill et al., 2006; Mothersill et al., 

2007). There was also an effect seen between fish species (zebrafish and medaka) and even 
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when non-irradiated rainbow trout were fed with irradiated California blackworms. In both 

cases explant conditioned medium reduced clonogenic survival in the reporter cells (Smith 

et al., 2013). This data suggests that bystander is able to occur between animals of different 

species and even between an animal and its food. 

Bystander effects were originally just studied within populations of cells; however, 

these data show that bystander signals are able to travel far from the irradiated site and 

even between organisms. This suggests that this signal must be stable and resistant to 

degradation.  
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Figure 1-5: Bystander effects observed in vivo. Studies in rodents have shown that cellular damage 

and tumorigenesis can be observed following x-ray treatment in areas of the body that were shielded from 
the treatment. A) Mice were subjected to X-ray treatment whilst the head was behind a lead shield. These 
mice were found to have increased levels of DNA damage, apoptosis and medulloblastomas in their 
cerebellum. B) Mice subjected to the X-rays whilst the body was shielded showed increased hypomethylation 
in the spleen. These two examples demonstrate that bystander effects are able to occur in vivo and that 
bystander signals are able to travel large distances within the organism, head to spleen for example. C) Fish 
were placed in the same tank with fish that had previously been subjected to x-rays. Explants were removed 
from the bystander fish and cultured in medium. This medium was removed and used to culture HPV-G 
reporter cells. These cells showed lower survival than cells grown in medium conditioned by explants from fish 
not exposed to irradiated fish. Similar experiments were carried out when fish were fed irradiated California 
blackworms. Again, reporter cells showed lower survival when cultured in medium conditioned by explants 
from fish fed the irradiated worms. These examples all demonstrate that stable signals must be involved in 
the induction of bystander effects as they are able to travel within the body of irradiated organisms, between 
an organism and its food and even remain active in the water when released by the irradiated fish. 
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1.2.1.2 THERMAL BYSTANDER 

The vast majority of work on the bystander effect has been carried out using 

irradiation as the stressor, but it has also been demonstrated in different stress types (Asur 

et al., 2009; Dąbrowska et al., 2005). Several studies have shown that heat treatment 

induces bystander effects. The effect was first observed following lethal heat doses. Cells 

co-cultured with cells that had been heat shocked at 75oC showed a loss of adhesion in the 

bystander cells as well as a reduction in cell growth (Dąbrowska et al., 2005). At such high 

temperatures, it is likely that the directly shocked cells were probably dead. However, 

studies have been carried out at lower temperatures that also show bystander effects when 

the directly stressed cells were still alive (Purschke et al., 2010; Purschke et al., 2011). 

Again, bystander cells were co-cultured with directly shocked cells (37-70oC) and the levels 

of micronuclei, apoptosis and cell viability were assayed. A significant bystander effect was 

observed at 46 and 50oC that occurred even if the donor cells were washed prior to co-

culture, in order to remove any debris from dead cells (Purschke et al., 2010). These data 

demonstrate that the bystander effect seems to be an active process, not simply the result 

of factors released from degraded cells, as live cells are able to produce a signal that drives 

bystander damage. 

1.2.1.3 CHEMICAL BYSTANDER EFFECT 

The effects of chemical stresses on neighbouring cells have also been studied. As any 

chemical treatment will be added to the medium the cells are growing in it is difficult to 

accurately state that any observed effect is due to bystander signalling and not simply 

residual levels of the test chemical. An interesting paper in 2004 used co-culture of two cell 

lines, one of which could metabolise ganciclovir into its genotoxic metabolite (Chinese 

hamster) and one that could not (3T3), to demonstrate a bystander effect (Thust et al., 

2004). This system allowed the cells to share the same medium containing the test chemical 
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whilst only one cell line should have been affected by it. The 3T3 cells showed an increase 

of SCE when co-cultured with the ganciclovir sensitive cells (Thust et al., 2004). Interestingly 

increasing the number of directly stressed cells compared to the bystander cells, therefore 

potentially increasing bystander signalling, did increase the number of SCE/cell observed in 

the bystander population. The dose of ganciclovir had slightly less effect on the number of 

SCEs but the rate did increase in line with the dose (Thust et al., 2004). However, whilst the 

3T3 cells cannot metabolise ganciclovir, it’s possible that the genotoxic product of its 

metabolism could have been passed between the cells.  

Media transfer experiments have also been conducted following chemical treatment. 

It is important that no chemical residue is left within the conditioned medium when it is 

transferred, as this could cause direct damage to the bystander cells, which would then be 

recorded as bystander damage. Thorough washing of the cells after treatment has been 

shown to remove any residual chemical effect left in the medium (Asur et al., 2009; Jin et 

al., 2011). Media conditioned by cell that had been treated with chemotherapeutic agents 

like actinomycin D, mitomycin C and Vincristine were shown to induce micronuclei 

formation, chromosomal aberrations and other markers of cellular damage (Asur et al., 

2009; Asur et al., 2010b; Asur et al., 2010a; Testi et al., 2016; Jin et al., 2011). Phleomycin, 

a radiomimetic agent, has been shown to induce micronuclei formation in bystander cells 

(Asur et al., 2009; Asur et al., 2010b; Asur et al., 2010a). The method of action of these 

drugs are varied: Mitomycin C acts by forming DNA crosslinks; vincristine binds tubulin 

inhibiting chromosomal division during metaphase; actinomycin D binds DNA blocking 

translation and phleomycin damages DNA through the production of hydroxyl radicals. 

That the radically different mechanisms all induce bystander damage adds further evidence 

that BE is a general response to stress. The dose of the chemical treatment has been shown 

to have an effect on the level of the bystander damage (Asur et al., 2009; Testi et al., 2016; 

Jin et al., 2011). The effects were seen to plateau at a certain point though, suggesting that 
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bystander signalling can become saturated at sufficiently high levels of stress (Asur et al., 

2009).  

The bystander effect is observed following numerous different stresses suggesting 

that it is a generic response to stress and not only related to irradiation. Most stress 

responses are triggered based on the effects the stress has on the cell e.g. heat shock 

proteins being upregulated when there are high levels of non-native proteins. Therefore, it 

follows that the bystander effect is a response to damage within the cells, rather than the 

specific stress inducing that damage. 

1.2.1.4 THE MECHANISM OF BYSTANDER EFFECT 

The mechanism by which the bystander effect occurs is not yet fully understood, but 

there are two commonly suggested ways the cells could signal to unstressed cells and 

induce bystander effects. Either the cells are communicating with neighbouring cells via 

gap junction signalling, or cells release a signal into the external environment that is then 

taken up by the bystander cells (Hall 2003; Hei et al., 2008). Studies have shown that 

reduction or increase in the levels of gap junction signalling alter the levels of bystander 

damage accordingly (Zhou et al., 2000; Zhou et al., 2001; Shao et al., 2003) as mentioned 

above. Media transfer experiments suggest that there is also some factor secreted by 

stressed cells that is then able to be taken up by bystander cells (Mothersill & Seymour 

1997; Lyng et al., 2000; Mothersill & Seymour 1998). This is also supported by in vivo studies 

where the effects of stresses such as radiation are seen at sites distant from the area 

treated (Mancuso et al., 2008; Ilnytskyy et al., 2009), or even separate animals grown in 

the same environment (Smith et al., 2013), suggesting the signal involved here is able to 

travel quite far through the organism, which would be difficult if the effect is solely 

controlled via gap junctions. There are data showing that extracellular vesicles (EVs) 

released from the irradiated population are sufficient to drive the bystander effect in 
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unstressed cells (Al-Mayah et al., 2012; Al-Mayah et al., 2015; Jella et al., 2014; Xu et al., 

2015). Bystander cells treated with EVs extracted from medium conditioned by irradiated 

cells showed higher levels of DNA damage and chromosomal aberrations. Interestingly 

there is no such increase when the supernatant from the ultracentrifugation is used to treat 

cells, suggesting that the factor inducing the damage is found only in the EV pellet (Al-

Mayah et al., 2012). These data show that EVs are involved in the induction of the 

bystander effect in naïve cells. It seems most likely that the bystander effect is propagated 

via both gap junction signalling and secretion of soluble factors.  

1.2.1.5 THE MOLECULAR MECHANISM OF THE BYSTANDER EFFECT 

Molecular analysis of the bystander cells has found a few targets of interest for the 

bystander effect (Zhou et al 2005). Transcription of COX-2, a gene coding for 

cyclooxygenase-2, was increased 3 fold in bystander cells, and inhibition of cyclooxygenase-

2 was shown to reduce levels of the bystander effect (Zhou et al., 2005). This implicates 

COX-2 expression as a target of bystander signalling. Interestingly inhibition of NF-κB, which 

acts as a transcription factor for COX-2, was shown to reduce the levels of damage in 

bystander cells (Zhou et al., 2008). NF-κB is controlled by exogenous tumour necrosis factor 

α (TNFα) and interleukin-1β (IL-1β) and again bystander damage was reduced following 

suppression of TNFα (Zhou et al., 2008). The levels of the insulin-like growth factor binding 

protein 3 (IGFBP-3) in bystander cells was reduced 7 fold in bystander cells (Zhou et al., 

2005). IGFBP-3 is an inhibitor of insulin-like growth factor (IGF) signalling. The reduction of 

IGFBP-3 RNA in the bystander cells implicates IGF signalling in the bystander effect. 

Addition of exogenous IGFBP-3 into bystander cells did slightly abrogate the bystander 

effect, hinting that IGF repression reduces bystander damage (Zhou et al., 2005). IGF is a 

cytokine that targets the MAPK/ERK pathway, which is linked with COX-2 expression via the 

phosphorylation of ERK. Activation of the MAPK signalling cascade was demonstrated in 
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bystander cells via western blotting (Zhou et al., 2005). The phosphorylation of key proteins 

in the MAPK/ERK pathway and changes of expression in 18 MAPK/ERK gene targets has 

been demonstrated in both radiation and chemically-induced bystander cells (Asur et al., 

2010b; Asur et al., 2010a). Oxidative metabolism is also thought to play a role in the 

induction of bystander effects. There is a large amount of evidence pointing to the 

involvement of ROS in the induction of bystander effects (Chen et al., 2009; Azzam et al., 

2003; Zhou et al., 2000; Lyng et al., 2006).  

However as of yet a full model of the bystander effect has not been constructed. 

Further, most of the data presented in these studies were solely from irradiated cells grown 

together, so these pathways may only be involved in the induction of bystander effects via 

gap junction signalling. Further work is needed to know whether the mechanism of the 

bystander effect is conserved across stress types and whether medium and EV induced 

bystander uses the same mechanism to induce cell damage and death.  

1.3 CACHEXIA  

Cachexia is an unexplained loss of skeletal muscle and weight loss found in patients 

with cancer as well as other chronic disorders such as AIDS (Fearon & Moses 2002; Aoyagi 

et al., 2015). The disease is characterised by numerous symptoms; skeletal muscle wasting, 

loss of body mass, inflammation, increased catabolic metabolism (Aoyagi et al., 2015). The 

disorder often also shows wasting of adipose tissues (Bing et al., 2006; Rydén & Arner 

2007), however it is not seen necessarily as a marker of the disease (Aoyagi et al., 2015). 

The chances of a patient developing cachexia is dependent on the type of cancer that a 

patient suffers. Patients suffering lung or pancreatic cancers have a much higher incidence 

of developing cachexia than those with breast tumours (Dewys et al., 1980). However this 

distinction does appear to depend on the specific definition of cachexia being used (Fox et 

al., 2009). The term ‘cachexia’ has been used for some time with no consistent clinical 
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definition (Vanhoutte et al., 2016; Little 2003; Fox et al., 2009). Most definitions focus on 

weight loss observed in the patient, with the following definitions often used: involuntary 

weight loss of >5 %; Body Mass Index (BMI) of <20 kg/m2 with >2 % weight loss or 

sarcopenia with any weight loss (Vaughan et al., 2013). Many studies have suggested that 

the appearance of cachexia is a marker of poor long term survival for the patient 

(Vanhoutte et al., 2016; Aust et al., 2015; Deans & Wigmore 2005). Further, some evidence 

suggests it can be indicative of a poor response to chemotherapy (Dewys et al., 1980; Ross 

et al., 2004; Prado et al., 2009) with cachexic patients being more likely to show toxicity 

following treatment or fail to complete the programme of chemotherapy. However this is 

disputed, with some studies suggesting the appearance of cachexia does not mean a worse 

outcome for therapy (Evans 2010; Srdic et al., 2016). Whilst the reasons and mechanisms 

by which cachexia progress are not fully understood there are some therapies available, 

which primarily focus on reducing the symptoms. Many of these treatments attempt to 

halt further reduction in body mass via increasing appetite or calorific intake (Aoyagi et al., 

2015; Kumar et al., 2010). However as cachexic weight loss is related to both adipose mass 

loss and more predominantly skeletal muscle weight loss this will only be of limited use 

(Vaughan et al., 2013). Exercise may be suggested to patients as a method to reduce muscle 

wasting, however fatigue and respiratory difficulties are often also present with cachexia 

meaning it is difficult for patients to stick to an exercise programme (Kumar et al., 2010). 

These treatments are only palliative in nature; more work is needed on the molecular 

mechanisms of cachexia in order for curative therapies to be developed.  

Patients with tumour types associated with cachexia tend to display high levels of 

energy expenditure (Mak & Cheung 2006). This boost in catabolism is likely to be, in part, 

what is driving the muscle wasting (Aoyagi et al., 2015). There is a net loss of proteins as 

protein formation is reduced and protein breakdown is increased. Cytokines have been 

implicated in the induction of cachexia (Argilés et al., 2003; Porporato 2016). Cytokine 
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production in cancer patients appears to be hijacked by the tumour, promoting the 

production of cytokines that benefit the tumour (Quail & Joyce 2013; Smith & Kang 2014; 

Abou El Hassan et al., 2015). Some of the cytokines found in cachexic patients are thought 

to be involved in increasing the levels of muscle breakdown. For example, TNFα is able to 

induce muscle catabolism via the upregulation of NF-κB leading to increased proteolytic 

activity (Reid & Li 2001). These cytokines make an interesting anti-cachexia target, and are 

well studied as an anti-cachexia therapy (Monk et al., 2006; Penna et al., 2010). One study 

showed that muscle cells grown in medium conditioned by lung cancer cells showed 

reduced muscle differentiation (Zhang et al., 2011). It was observed that p38β, a member 

of a family of mitogen-activated protein kinases (MAPK), activates CCAAT-enhancer-

binding protein β (C/EBPβ) leading to the activation of two E3 ubiquitin ligases, UBR2 and 

atrogin 1 (Zhang & Li 2012; Zhang et al., 2013; Yuan et al., 2015). E3 ubiquitin ligases are 

part of the ubiquitin-proteasome system, which is involved in normal muscle atrophy 

related to reduced muscle use (Bonaldo & Sandri 2013).  

1.4 EXTRACELLULAR VESICLES (EV) 

Extracellular vesicles are produced constantly by all types of cells and serve a myriad 

of functions in both normal and stressed cells, often in intercellular communication (Record 

et al., 2011; Yáñez-Mó et al., 2015). They were originally observed in the late 1940s as 

particles released from platelets that had procoagulant properties (Chargaff & Randolph 

1946). In 1967 a molecule was extracted from blood samples via high speed centrifugation 

that was high in phospholipids and had the same coagulant effect (Wolf 1967). Work 

carried out separately in the early 1970s showed sac like structures within platelets that 

were released from the cells and involved in coagulation (Webber & Johnson 1970; 

Crawford 1971). The first time vesicles were seen released from tumours was 1981 when 

medium conditioned by mice and guinea pig tumour cells was ultracentrifuged (Dvorak et 
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al., 1981). In 2005 an attempt to define these microparticles was made by a sub-committee 

of the International Society on Thrombosis and Haemostasis who agreed that the particles 

were 0.1-1µm in size, that they lacked nuclei and that they had phosphotidylserine on their 

outer leaflets (Hargett & Bauer 2013). More recently this definition has been called into 

question as more has been deciphered about different EV classes and their characteristics 

(Witwer et al., 2013). 

There are three main recognised classes of extracellular vesicle: Apoptotic bodies, 

microvesicles and exosomes. These different classes of EVs are shown in Figure 1-6. EVs are 

not just released from mammalian cells but also from fungi (Oliveira et al., 2010) and even 

prokaryotic cells, which release outer membrane vesicles (Kuehn & Kesty 2005). Many EVs 

are known to act as signalling molecules, carrying protein and nucleic acids to other cells 

(Huang et al., 2013; Yáñez-Mó et al., 2015). These signals have been shown to have a wide 

variety of effects on recipient cells, from priming a pre-metastatic niche for colonisation 

(Hoshino et al., 2015) to inducing macrophages following stroke (Couch et al., 2017). The 

fact that EVs are released during resting conditions suggests that they also have some 

housekeeping effects (Yáñez-Mó et al., 2015). 

Distinguishing between the different vesicle subtypes is tricky and is currently a main 

concern of the field (Witwer et al., 2013). It used to be thought that these vesicles could all 

be separated by size and morphology, however this dogma has been called into question 

recently and the field has become much more cautious in using specific terminology to 

describe extracted particles (Witwer et al., 2013). The International Society of Extracellular 

Vesicles has published guidelines on how the nomenclature should be used in an attempt 

to standardise the usage across all EV research (Witwer et al., 2013). An overview of the 

formation and release of the different classes of vesicles is shown in Figure 1-7. 
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Figure 1-6: The biogenesis of different types of extracellular vesicles. Apoptotic bodies are formed as 

the apoptotic cell begins to degrade. Microvesicles are formed via blebbing from the plasma membrane. 
Exosomes have an endocytotic origin, and form as invaginations into late endosomes, which are then known 
as multivesicular bodies (MVB). These MVBs either fuse with the plasma membrane (as above) or are 
degraded by lysosomes. 

1.4.1.1 APOPTOTIC BODIES 

Apoptotic bodies are formed when cells undergo apoptosis. They are a highly 

heterogeneous subset of EVs thought to be around 50-5000nm in size (Kalra et al., 2016). 

Apoptotic bodies are essentially the end point of apoptosis, with cellular debris contained 

within apoptotic bodies and then targeted for phagocytosis, disassembly and recycling 

(Elmore 2007). The formation of apoptotic bodies is driven by actin-myosin contraction 

induced by ROCK 1. During apoptosis ROCK 1 is cleaved to its active form by caspase-3. 

ROCK 1 then induces several downstream processes necessary for membrane blebbing 

(Coleman et al., 2001). It aids the coupling of actin-myosin filaments to the plasma 

membrane, contraction of myosin light chain via phosphorylation and myosin ATPase 
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activity. All of this leads to the contraction of the membrane and the formation of apoptotic 

vesicles (Wickman et al., 2013).  

1.4.1.2 MICROVESICLES 

Microvesicles (occasionally also known as ectosomes) are formed by outward 

budding of the plasma membrane. They are commonly larger than exosomes, with a range 

of about 50-2000nm (Akers et al., 2013). Whist exosomes and microvesicles have often 

been differentiated by size, it's important to note that it is actually their origin that defines 

them. The two leaflets that make up the phospholipid bilayer of the plasma membrane 

have distinct lipid organisation (Hugel et al., 2005). These lipids are held in the correct 

formation via the action of two molecules known as flippases and floppases. Under resting 

conditions the flippases ensure that phosphotidylserine and other related lipids like 

phosphatidylethanolamine are sequestered on the inner leaflet of the membrane, whilst 

the floppases are switched off (Akers et al., 2013; Hugel et al., 2005; Larson et al., 2012). 

Increased Ca2+ within the cell activates the floppases which works to translocate the 

phosphotidylserine onto the outer leaflet of the membrane, as well as activating lipid 

scramblases which induce the redistribution of lipid within the bilayer (Hugel et al., 2005). 

The activation of both of these molecules lead to the inhibition of flippase activity. An 

increase of phosphotidylserine on the outer leaflet increases membrane curvature and 

induces vesicle budding (Muralidharan-Chari et al., 2010; Cocucci & Meldolesi 2015). There 

are two suggested methods of vesicle release. First ARF6 initiates a signalling cascade 

involving the phosphorylation of myosin light chain kinase which leads to the contraction 

of actomyosin (Muralidharan-Chari et al., 2009). The other suggests mechanism is TSG101 

inducing the translocation of ESCRT-III to the plasma membrane. ESCRT-III forms a spiral of 

CHMP4B around the opening of the vesicle (Chiaruttini et al., 2015; Hanson et al., 2008) 
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which is then constricted by variant-specific surface protein 4 (Vsp4) ATPase leading to 

vesicle release (Kalra et al., 2016; Muralidharan-Chari et al., 2010). 

1.4.1.3 EXOSOMES 

Exosomes are small vesicles of endosomal origin (Théry et al., 2002). Exosomes are 

formed via invagination into endosomes causes the formation of small vesicles known as 

intraluminal vesicles within the endosome. These vesicle containing endosomes are known 

as multivesicular bodies, which can either be targeted to the lysosome for destruction or 

fuse with the plasma membrane, releasing these small vesicles into the extracellular matrix 

where they are known as exosomes (Klumperman & Raposo 2014).  

Exosomes were originally described in 1987 when vesicles were found to form during 

reticulocyte maturation (Johnstone et al., 1987). When reticulocytes mature into 

erythrocytes they lose numerous functions such as transferrin binding activity. Internal 

vesicles had been seen to be involved in internalisation of the transferrin receptor (Harding 

et al., 1983; Pan et al., 1985; Pan & Johnstone 1983). Pellets extracted via 100,000 x g 

centrifugation demonstrated these functions. The surface proteins involved in these 

functions were undergoing endocytosis and forming multivesicular bodies within the cells 

that then released them as exosomes. These exosomes contained the surface proteins 

within their membranes, allowing them reticulocyte-like activity (Johnstone et al., 1987). 

Whilst they were at one time characterised as being 30-100nm there have been studies 

suggesting that they can be larger than this, and that other vesicles can, in fact, fall within 

this spectrum, suggesting size is not a sufficient way to characterise a vesicle population 

(Witwer et al., 2013). They also were thought to have a cup-shaped morphology, but this 

was found to be an artefact of their fixation for Electron Microscopy (Witwer et al., 2013).  

The fact that the protein cargo of exosomes only contains proteins found in the 

plasma membrane, the membranes of endocytic compartments and the cytosol suggests 
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that EVs are derived of an endosomal origin (Théry et al., 2002). Exosomes form as 

invaginations into endosomes that bud off into the interior of the endosome.  The system 

driving the formation of these intraluminal vesicles (ILVs) is not well understood. It is 

suggested that the either the ESCRT machinery or a ceramide dependent pathway is used 

to drive vesicle formation. The ESCRT model suggests that ESCRT-0 through ESCRT-III bind 

to the outside of the endosome. ESCRT-I and -II are thought to cause vesicle budding and 

cargo transport whilst ESCRT-III is then used to facilitate ILV scission (Hurley 2010; Nabhan 

et al., 2012; Raiborg & Stenmark 2009; Baietti et al., 2012). Exosome formation has been 

observed in cells with no ESCRT expression which suggests this is not the only method of 

exosome genesis (Stuffers et al., 2009). Another model suggests that conversion of 

sphingomyelin to ceramide within lipid rafts alters the leaflets and drives inward budding 

of the endosomal membrane (Trajkovic et al., 2008). The MVBs can then either move to 

the lysosome and undergo degradation or move to the plasma membrane and release their 

contents. This distinction is controlled by a class of proteins known as the Rab GTPases 

(Kalra et al., 2016). The Rab27s are involved with MVB trafficking. Rab27a is required for 

MVB docking with the plasma membrane and when Rab27b is silenced the vesicles were 

found to travel towards the nucleus of the cell, rather than the plasma membrane 

suggesting it is required for vesicle transport (Ostrowski et al., 2010). Other members of 

the Rab family are also implicated in exosome release (Villarroya-Beltri et al., 2014). Once 

the MVBs bind to the plasma membrane they fuse and release their exosome contents 

(Théry et al., 2002; Kowal et al., 2014). 
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Figure 1-7: The mechanisms underlying extracellular vesicle release. Apoptotic bodies are formed 

when activated caspase cleaves ROCK 1 leading to the contraction of the cytoskeleton and the formation of 
large membrane blebs. Microvesicle budding occurs when the cells move phosphatidylserine to the outer 
leaflet of their membranes. There are two potential mechanisms by which microvesicles are released from 
cells. In the first mechanism ARF6 activation leads to the activation of myosin light chain kinase and the 
contraction of the actomyosin. The other route for vesicle release is the contraction of ESCRT-III spirals by 
Vps4, which causes the vesicles to separate from the membrane. Exosomes are formed as invaginations into 
endosomes forming multivesicular bodies (MVBs). This inward budding is carried out either by the ESCRT 
machinery (0-III) or by conversion of sphingomyelin into ceramide within lipid rafts. MVBs then travel to, and 
fuse with the plasma membrane with the help of the Rab27 proteins, releasing their vesicle cargo as exosomes.  
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1.4.1.4 METHODS FOR THE UPTAKE OF EVS BY RECIPIENT CELLS 

EV uptake has been demonstrated via numerous different pathways (Feng et al., 

2010; Morelli et al., 2004). One of the most commonly observed method of EV uptake is 

endocytosis (Montecalvo et al., 2012; Morelli et al., 2004). This refers to a group of 

pathways that lead the EV invaginate at the plasma membrane (Doherty & McMahon 

2009). These endosomes are then ‘pinched off’ by enzymes such as Dynamin2 which forms 

a collar at the opening to the endosome and facilitates its release into the cell (Herskovits 

et al., 1993; Damke et al., 1994). Micropinocytosis involves the extension of the plasma 

membrane into the extracellular space which then fuse with other extensions, engulfing a 

section of the extracellular matrix along with any EVs that may be present (Costa Verdera 

et al., 2017). Phagocytosis is often carried out by specialised cells such as macrophages 

(Jersmann et al., 2003) but can occur in other types of cells (Gregory & Devitt 2004). The 

EVs bind to receptors on the cells due to their increased levels of PS in their outer leaflets 

which triggers invagination and internalisation of the bound molecule (Caron & Hall 1998). 

It is also possible for the plasma membrane of the EV to fuse to the recipient cell, leading 

to the internalisation of the EV’s cargo (Prada & Meldolesi 2016). 

1.4.2 EXTRACELLULAR VESICLES IN DISEASE 

EVs are known to act as signalling molecules and are able to travel around the body 

to carry out their functions. They have numerous  in intercellular communication during 

disease, their unique RNA and protein cargos mean they are promising as biomarkers 

(Vanni et al., 2017; An et al., 2015; Guo et al., 2017). They have been implicated in the 

pathogenesis of cancer, with EVs participating in numerous pro-cancer events. Patients 

with cancer show much higher levels of circulating EVs than healthy patients suggesting 

they are involved in the disease (Silva et al., 2012). EVs from metastatic tumours have been 

shown to increase the metastatic potential of other tumours (Tominaga et al., 2015; Becker 
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et al., 2016). Breast cancer EVs have even been shown to induce non-cancerous epithelial 

cells to form tumours in vivo (Melo et al., 2015). The pre-metastatic niche is an 

environment within the body that is primed to allow metastasis of a primary tumour 

(Peinado et al., 2017). Primary tumours are able to condition these sites via the secretion 

of certain factors from their locations that alter the environment at target sites, and EVs 

released from numerous tumour types have been shown to travel to known pre-metastatic 

niche locations in vivo (Hoshino et al., 2015).  

Despite the specificity of localisation observed here, studies on the biodistribution of 

EVs in vivo following systemic delivery show that large numbers of the EVs are found to 

localise to the liver soon after introduction to the organism, with the spleen and lungs 

commonly having the next highest EV burden (Wiklander et al., 2015). The levels of EVs 

within the liver peaked at around 30 minutes post injection (Wiklander et al., 2015). Further 

EVs levels have been shown to peak around 60-120 minutes after injection (Lai et al., 2014). 

This suggests that EVs are being removed from the organism via hepatic circulation shortly 

after their introduction. The speed with which EVs are removed could mean that they are 

able to act very quickly in vivo or that they need to be continuously secreted over a long 

period of time in order to induce changes in an organism. 

As has already been mentioned, EVs are implicated as being one of the signalling 

molecules that induce bystander effects in a non-gap junction mediated fashion (Al-Mayah 

et al., 2012). EVs extracted from irradiated cells are able to induce bystander effects in 

recipient cells (Al-Mayah et al., 2012; Al-Mayah et al., 2015; Al-Mayah et al., 2017; Jella et 

al., 2014; Xu et al., 2015). In this context, RNAse treatment abrogated the bystander effect, 

and suppression of miR-21 in the irradiated cells was also shown to reduce the levels of 

bystander damage (Al-Mayah et al., 2012; Xu et al., 2015). 

Whilst little work has been done on the roles of EVs during heat stress one study 

found that EVs were significantly enriched in HSPs following sub-lethal heat shock (Clayton 
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et al., 2005). The heat-treatment also increased the number of EVs that were released from 

the cells (Clayton et al., 2005). These data suggest that stress may induce the release of 

specialised EVs, with a different cargo to EVs produced in normal conditions. As these EVs 

carry HSPs they could potentially be involved in the stress response in their recipient cells. 

This difference in cargo in the stress-derived EVs could be related to their ability to induce 

bystander effects in bystander cells.  
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1.4.3 EXTRACELLULAR VESICLE CARGO AND LOADING 

EVs are known to carry a wide range of cargo consisting of proteins, RNA and lipids. 

It is, however, difficult to accurately characterise the content of EVs as current isolation 

methods tend to produce impure samples, possibly contaminated with other proteins, 

protein-associated RNA, liposomes or micelles, which are also found in the extracellular 

space (Abels & Breakefield 2016). 

1.4.3.1 LOADING OF EV CARGO 

The loading of EVs appears to be an active process; EVs can contain different levels 

of numerous proteins, nucleic acids and lipids to their donor cells (Villarroya-Beltri et al., 

2014). The first discovery of exosomes showed that many of the surface proteins lost during 

reticulocyte maturation were selectively endocytosed by the cells and released on 

exosomes (Johnstone et al., 1987). The mechanisms behind the loading of cargo into 

exosomes are not well understood, though there are several ways it could be controlled. 

ESCRTs 0-II are known to be involved with sorting ubiquitinated protein into MVBs heading 

to the lysosome (Raiborg & Stenmark 2009) which suggests they may be involved. In fact 

silencing certain ESCRT components alters the composition of the released exosomes 

(Colombo et al., 2013). ESCRT-independent exosome formation must also be able to 

selectively load cargo. These exosomes are formed due to a restructuring of the membrane 

to form a ceramide-rich lipid raft (Trajkovic et al., 2008). Inhibition of two other lipids 

sphinogosine-1-phosphate and diacylglycerol was shown to once again alter the cargo of 

exosomes (Kajimoto et al., 2013). Many of the proteins linked to these loading mechanisms 

are tetraspanins such as CD63 and CD81. These transmembrane proteins have also been 

implicated in protein loading, with their exposed regions interacting with other proteins 

(Mazurov et al., 2013; Perez-Hernandez et al., 2013; Verweij et al., 2011). It is therefore 

probable that the tetraspanins incorporated into the forming exosomes are able to 
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influence the protein cargo that is loaded. Microvesicles also seem to be loaded via the 

ESCRT machinery (Chiaruttini et al., 2015) and it is thought that plasma membrane anchors 

target proteins for incorporation into these vesicles (Shen et al., 2011). The miRNAs found 

in secreted vesicles appear to contain an EXOmotif at their 3’ ends that aid their sorting 

into EVs (Villarroya-Beltri et al., 2013; Villarroya-Beltri et al., 2014). Several heterogeneous 

nuclear ribonucleoproteins (hnRNPs) were also observed to bind only to exosome miRNAs 

(Villarroya-Beltri et al., 2013) implicating them in the loading of these miRNAs. 

1.4.3.2 PROTEIN 

The proteins seem to be selectively loaded into EVs, with differences in the 

proteomics of vesicles released from different types of cell (Welton et al., 2016). There are, 

however, several proteins often found within EVs that are commonly used as markers when 

characterising vesicles. These include tetraspanins, such as CD63 and molecular 

chaperones like HSP70 (Abels & Breakefield 2016). Tetraspanins are transmembrane 

proteins that are implicated in protein loading into vesicles as outlined above. The 

tetraspanins are often used as molecular markers to distinguish between different vesicle 

sub-populations. Tetraspanins CD9, CD63 and CD81 are found highly enriched within the 

membranes of exosomes (Andreu & Yáñez-Mó 2014; Kowal et al., 2016) for example. 

Discovery of markers for EV sub-populations is a very active area of research with many 

labs trying to find accurate ways to classify EVs from an unknown population. Whilst EV 

uptake by recipient cells is still poorly understood there is evidence that tetraspanins may 

play a role in cell binding and fusion (Mulcahy et al., 2014). Proteins involved with the 

formation and release of EVs are often found enriched in vesicles, such as components of 

the ESCRT machinery like TSG101 as well as cytosolic proteins such as HSP70 (Yoshioka et 

al., 2013). 
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1.4.3.3 NUCLEIC ACIDS 

EVs carry a range nucleic acids, usually small RNAs (sRNA), though long non-coding 

RNA (lncRNA) and messenger RNA (mRNA) have been found within EVs (Ekström et al., 

2012; Abels & Breakefield 2016; Valadi et al., 2007). RNA also appears to be selectively 

loaded into vesicles as numerous differences were observed in the RNA content of EVs from 

cells before and after irradiation (Yentrapalli et al., 2017). The RNA found in vesicles is a 

key area of EV study with numerous reports suggesting the functions of EVs are related to 

their RNA cargo (Al-Mayah et al., 2012; Xu et al., 2015; Pan et al., 2016). As mentioned 

above, EV associated RNA is implicated in the induction of bystander effect (Al-Mayah et 

al., 2012) and EVs enriched in miR-21 specifically have been shown to be able to induce 

damage in bystander cells (Xu et al., 2015). Long non-coding RNAs associated with EVs have 

also been shown to be able to increase the cell viability of recipient cells (Hewson et al., 

2016). The transport of the lncRNA ZFAS1 by EVs is implicated in the progression of gastric 

cancer with EVs extracted from cells with high ZFAS1 levels were able to induce 

proliferation and migration in gastric cancer cells (Pan et al., 2016). 

1.4.3.4 LIPIDS 

The lipid content of the vesicles tend to reflect that of the donor cells that released 

them, though they are often enriched in sphingomyelin, cholesterol, phosphatidylserine 

and glyco-sphingolipids when compared to parent cells (Yáñez-Mó et al., 2015; Trajkovic et 

al., 2008). Microvesicle formation occurs when the phosphatidylserine flipped from the 

inner to the outer leaflet of cells which explains its enrichment on the outer leaflet of 

vesicle membranes (Hugel et al., 2005). Similarly ceramide is implicated in ESCRT-

independent exosome formation, again explaining why it is often found in EV membranes 

(Trajkovic et al., 2008). However lipid composition seems to vary based on cell type 

(Haraszti et al., 2016). 
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1.5 AIMS 

Whilst EVs have been demonstrated to be involved with radiation-induced bystander 

effect, no such study has been done of the effects of EVs from other stresses on bystander 

cells. First the role of EVs in the propagation of the thermal bystander effect will be 

established by answering the following questions: 

 Are EVs released during heat shock able to induce stress in bystander cells? 

o EVs will be extracted from medium conditioned by heat-treated cells via 

ultracentrifugation and will be transferred onto bystander cells. The levels 

of DNA damage and cell viability in the bystander cells will then be assayed. 

 What effect does blocking EV uptake have on thermal bystander effect? 

o By treating cells with inhibitors of EV uptake it should be possible to 

abrogate the levels of bystander damage and thus test whether EVs are 

indeed the signal that induces the bystander effect. 

 Does the bystander effect occur after very high heat treatment? 

o Cells will be stressed at 70°C high temperatures for 10 seconds and then left 

to condition their medium. EVs will be extracted from the medium and used 

to treat bystander cells and the levels of DNA damage and cell viability will 

be assayed. 

 

The activity of EVs from chemically-stressed cells will also be tested. As stated above 

chemical stresses are also able to induce bystander effects. It is probable that chemically-

induced bystander effects use the same mechanisms to induce damage in bystander cells. 

Further the ability of cancer cell line EVs to induce cachexia both with and without 

treatment with the chemotherapeutic cisplatin will be assessed. 

 Can chemical bystander effects also be transferred via EVs? 
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o EVs extracted from cisplatin-treated cells will be used to treat bystander 

cells and the levels of damage assayed. 

 Do EVs released from cells treated with chemotherapeutic agents affect cancer-

associated muscle wasting (cachexia)? 

o EVs from cisplatin-treated cells will be used to treat both muscle cells and 

rodents and the levels of muscle wastage will be assayed. 

 What are the molecular changes in stress-derived EVs and are they responsible for 

the observed effects? 

o The protein cargo of cisplatin-treated cells and the EVs they release will be 

analysed via mass spectrometry and compared with control cells and EVs. 

 

This work will help to clarify the role of extracellular vesicles in the stress response 

and attempt to discover the molecular changes in vesicles that are released during stress 

conditions. 
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2  METHODS 

2.1 CELL CULTURE 

All cells were propagated in a humidified incubator maintained at 37°C and 5% CO2. 

Cells were cultured in sterile medium (MCF7, C2C12 and HeLa: DMEM, SLS; K562 and 

A2780: RPMI, Fisher) supplemented with 10% v/v FCS and 2mM L-Glutamine (MCF7 and 

HeLa, Fisher) or GlutaMAX (C2C12, Fisher). For EV extractions, cells were grown in medium 

supplemented with pre-cleared FCS when the cells were conditioning medium. This FCS 

was cleared via ultracentrifugation for 16 hours at 100,000 g.  

For experiments, unless otherwise stated, cells were seeded the day prior to 

treatment at the following concentrations: 

 K562 5x105 cells/ml of medium 

 MCF7 3.5x104 cells per cm2 of growth surface 

 HeLa 1.58x104 cells per cm2 of growth surface 

 A2780 4.21x104 cells per cm2 of growth surface 

 C2C12: 2x104 cells per cm2 of growth surface 

2.1.1 SUB-CULTURING CELLS 

Cells were split using 1x trypsin whenever the cells reached ~70% confluency. The 

medium was removed, and the cells washed with PBS. 1x trypsin was added to the cells 

and allowed to cover the apical surface of the flask or plate. The trypsin was then removed, 

and the cells were incubated at 37°C for 5 minutes to allow the trypsin to act. The flasks 

were then removed from the incubator and the cells were washed with complete medium 

forming a suspension of cells in medium. The cells were then either counted for 

experiments or split into new flasks at a low starting seeding density. 
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2.1.2 CELL LINES USED 

 MCF7: Human immortalised breast Cancer cell line  

 A2780: Human immortalised ovarian cancer cell line 

 K562: Human immortalised myelogenous leukaemia cell line 

 HeLa: Human immortalised cervical cancer cell line 

 C2C12: Mouse immortalised myoblast cell line  

2.2 EV EXTRACTION 

2.2.1 ULTRACENTRIFUGATION 

For EV extractions cells were grown in medium supplemented with EV-depleted FCS. 

Medium was removed from cells 24 hours after treatment. Medium was centrifuged at 300 

g for 5 minutes to pellet cells. The supernatant was aspirated from the pellet and then 

centrifuged again at 16,500 g for 20 minutes to pellet cell debris and larger vesicles (Tkach 

et al., 2018). The supernatant was aspirated and filtered through 0.22 µm filters that had 

been blocked with 0.01% w/v BSA. This medium was then centrifuged again at 100,000 g 

for 1 hour and 30 minutes to pellet extracellular vesicles. The supernatant was aspirated 

and discarded. The pellets were then re-suspended in PBS and centrifuged at 100,000 g. 

Once more the supernatant was discarded, the pellet re-suspended in PBS and stored on 

ice until use. 

2.2.2 MEDIA EV DEPLETION 

For EV extractions culture medium was removed from cells and fresh medium 

supplemented with EV-depleted FCS was added. FCS was depleted of EVs by 

ultracentrifugation at 100,000 x g for 16 hours at 4°C. The supernatant was saved and then 

filtered through 0.22 µm filters into 50ml centrifuge tubes and stored at -20°C until it was 

used to create EV-depleted medium. 
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2.3 CELL TREATMENTS 

Cells were seeded in 6 well plates the day before treatment as outlined above. For 

medium transfer experiments the medium was removed from cells and discarded. Medium 

from stressed cells prepared as above was added onto the cells. For EV transfer, the 

medium was removed from the bystander cells and the EVs extracted as above were 

suspended in medium and then added to the bystander cells. In both cases the cells were 

then grown for 24 hours before being assayed. 

2.4 COMET ASSAY 

The comet assay is a DNA damage assay, that uses electrophoresis to assess the levels 

of double strand breaks in individual cells. The cells are embedded in agarose on slides and 

then lysed to expose the cell’s DNA. Electrophoresis is carried out at a high pH, with small 

fragments of DNA traveling further along the slide than larger fragments or complete DNA. 

This causes cells with high levels of DSBs to for a comet like appearance with a large amount 

of DNA fragments forming a “tail” behind the “head” of the comet see Figure 2-1. There 

are numerous ways to estimate the DNA damage for each cell. One common method is the 

length of the comet tail; however, this biases the result towards cells that had the shortest 

fragments not necessarily the most damage. Here I have used tail % DNA, which is based 

on the proportion of the fluorescent dye found within the tail region compared to the head 

region. The higher the observed fluorescence in the tail, the more DNA fragments in the 

tail. 
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Figure 2-1: Representative images of comet assay slides. The cells used to create these images were 
MCF7s. On the left is a representative image of cells treated with 40µM cisplatin, a light trail is seen following 
the bright circle in the hollow left by the cell where the majority of the DNA still resides. The right shows control 
cells with little to no DNA damage. There is no trail following the cells, so very few DNA fragments have moved 
during the electrophoresis. 

20,000 cells were embedded in low melting point agarose (LMPA, Fisher Biotech: 

BP165-25) on slides pre-coated in normal melting point agarose (NMPA, Sigma: A9539-

25G). These slides were then left in Alkaline Lysis Buffer (2.5M NaCl, 100mM Na2EDTA pH 

8, 10mM Tris-HCl pH 8, 1% v/v TritonX-100, 1% v/v DMSO, adjusted to pH 10) overnight to 

lyse the cells. The slides were then transferred to Alkaline Electrophoresis Buffer (0.3M 

Sodium Hydroxide, 1mM NA2EDTA) and left for 40 minutes to allow the DNA to unwind. 

The slides were then electrophoresed at 1 V/cm for 30 minutes. Slides were then 

neutralised with neutralising buffer (0.5M Tris-HCL, pH7.5) four times, before being washed 

with distilled water a further four times. Slides were then stained with 1x Sybr Gold 

(Invitrogen: S11494). When dry, photos were taken using a ZEISS Axio Imager 2 and around 

200 comets per slide were analysed using the comet analysis software CASP (Końca et al., 

2003). This number of comets was chosen based on the number of comets that were 

commonly found sufficiently spaced on the slide to avoid measuring overlapping comets. 

2.5 MTT  ASSAY 

The MTT is a colourimetric assay that estimates the level of a population of cells by 

the metabolic ability the living cells to reduce the tetrazolium salt MTT (MTT 3-(4,5-
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dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to the purple formazan form. The 

absorbance at 565-600nm is then used to determine how much formazan has been 

produced which can be used as an estimate of cell viability.  

Cells were grown and treated in 96 well plates. When the cells were ready to be 

tested for cell viability, 100μl MTT solution at 4mg/ml (Sigma, M5655) was added to each 

well. The plates were then incubated for 3 hours (MCF7) or 2 hours (K562). After incubation 

both the MTT solution and medium were carefully removed from each well and 100μl of 

MTT solvent (4 mMHCl, 0.1% IGEPAL® CA-630) was added. The absorbance at wavelength 

595nm of each well was then recorded using a plate reader. 

2.6 PROTEIN EXTRACTIONS 

Cell and EV pellets were lysed in 1x radioimmunoprecipitation assay (RIPA) buffer via 

sonication using a probe sonicator for 10 seconds at 30% amplitude in 4°C. Debris and 

larger vesicles were removed and discarded by centrifugation at 14,000×g for 20 minutes 

at 4°C. 

2.6.1 BICINCHONINIC ACID (BCA) ASSAY 

Proteins extracted above were quantified using the BCA assay (life technologies). 

Bovine Serum Albumin (BSA) standards were made at set concentrations from the 2000 µl 

stock ampule provided in the kit. 25 µl (control for cell protein) or 5 µl (control for EV 

protein) of each standard was added to a 96-well, flat bottom, plate in triplicate. 25 µl of 

cell protein samples or 5 µl of EV protein samples were also added to the plate. Working 

reagent was made with 50 parts of BCA reagent A and 1 part BCA reagent B. 200 µl of 40 µl 

of the working reagent was then added to the cell/standard or EV protein respectively. The 

plate was the incubated at 37°C for 30 minutes and then the absorbance at 570nm was 

read on a plate reader. A standard curve was created using the samples of known 

concentration and this was used to quantify the unknown samples.
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3  THE ROLE OF EVS IN THERMALLY-INDUCED BYSTANDER EFFECT 

3.1 INTRODUCTION 

3.1.1 THE EFFECTS OF HEAT STRESS ON CELLS 

When cells become stressed they undergo numerous different biological processes 

in order to attempt to alleviate of the effects of this stress (Fulda et al., 2010). The optimum 

temperature for an organism’s survival can range widely, though the range within which 

they can survive is normally small (Feller 2010). Temperatures outside the optimum range 

for the cell will cause the cell’s proteins to operate less efficiently or stop working entirely 

(Neurath et al., 1944). The peptide structure begins to breakdown as hydrogen bonds 

holding it together break, causing the proteins to lose their function and they must either 

be repaired or replaced for the cell to survive. 

3.1.2 THE THERMAL BYSTANDER EFFECT 

Whilst the majority of work on the bystander effect has been on the radiation-

induced bystander effect, BE has been demonstrated following both lethal and sub-lethal 

levels of heat stress (Dąbrowska et al., 2005; Purschke et al., 2010). Ovarian cells were 

exposed to heat treatment of 75°C for 10 minutes followed by a cooling period of 10 

minutes in cold water, before being cultured with bystander cells. When assayed the 

bystander cells co-cultured with heat damaged cells showed increased cell detachment and 

reduced cell density (Dąbrowska et al., 2005). However, this heat treatment is very severe, 

and as such may have led to the cells undergoing necrosis. Therefore, the observed 

bystander effect could be due to some factor released from dying cells, rather than in 

response to the stress. 
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Subsequent studies have shown that the effect also occurs at sub lethal temperatures 

where a significant portion of the stressed population was shown to have survived 

(Purschke et al., 2011; Purschke et al., 2010). Fibroblasts were grown in inserts, heat 

shocked on a heating plate for 10 minutes to numerous temperatures and then co-cultured 

with bystander cells for 72 hours. Bystander cells co-cultured with cells heated from 40°C 

to around 50-55°C were found to have increased micronuclei formation and apoptosis, and 

lower cell viability (Purschke et al., 2010). Above this temperature a large number of cells 

were killed by the stress and the bystander effect was no longer observed meaning that 

the bystander signal is not released by dead cells. Interestingly there was no difference if 

the cells were washed following stress, hinting that the effect involves the cells continuing 

to secrete a bystander signal, even after the stress has been removed. Further work on the 

Active Thermal Bystander effect found dividing fibroblasts and preadipocytes were able to 

induce bystander effects whilst non-diving fibroblasts and mature adipocytes did not 

(Purschke et al., 2011). These data all suggest that following sub-lethal stress the bystander 

signal is released by living cells in response to the stress, rather than dying cells releasing 

toxic factors into the extracellular environment. 

3.1.2.1 HYPERTHERMIA: A NEW CANCER THERAPY 

Treatments for cancer, chemotherapy and radiotherapy induce stress in the patients 

cells, and, in fact, induction of stress response related genes seems to correlate with 

treatment outcome (Bøhn et al., 2012). Further, in vivo studies in rodents have found that 

irradiating one part of the body leading to damage in distant organs (Ilnytskyy et al., 2009; 

Mancuso et al., 2008). A greater understanding of how stress induces bystander effects is 

therefore very important. There is a new cancer therapy that is currently under 

investigation known as hyperthermia (Mallory et al., 2015). It involves heating the patient 

to moderate temperatures (40-45°C) in order to induce cell death and has been shown to 
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increase the effectiveness of chemo and radiotherapy (Habash et al., 2011). It is important 

to understand whether the mechanism behind thermally-induced bystander is the same as 

RIBE as it may also need to be considered from a therapeutic standpoint, should it become 

a viable cancer therapy. 

3.1.3 EVS AS BYSTANDER SIGNALS 

Previous work on the RIBE has shown that EVs are sufficient to induce damage in 

bystander cells (Al-Mayah et al., 2012; Al-Mayah et al., 2015). EVs released following 

irradiation have been shown to induce chromosomal aberration and increase DNA damage 

in bystander cells, with the effects having been observed even after 20 cell doublings after 

initial EV treatment (Al-Mayah et al., 2012; Al-Mayah et al., 2015). Interestingly when EVs 

from irradiated cells were used to treat cells shortly before irradiation they showed slightly 

higher survival than treatment with control EVs or control cells with no EV treatment 

(Mutschelknaus et al., 2016). This offers some insight into the benefits to the cell of the 

bystander effect, as the bystander cells were better able to resist subsequent stress. 

3.1.4   AIMS 

Thermal Bystander is known to be able to be transferred via a factor secreted into 

the medium as described above. EVs from Irradiated cells have been shown to be able to 

induce BE in unstressed cells. In this chapter the hypothesis that EVs released from heat-

shocked cells are able to induce the Thermal Bystander effect will be evaluated. 

 Determine whether cells treated with EVs from stressed populations show higher 

levels of damage 

 Evaluate the effect of blocking EV uptake on Thermal Bystander effect 

 Test whether bystander cells are better able to resist stress treatment 

 Assess whether bystander effects occur after very high heat treatments 
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3.2 METHODS 

3.2.1 CELL CULTURE 

Cells were cultured as in Chapter 2.1. In brief, cells were cultured in the following 

medium supplemented with 10% v/v fetal calf serum (Fisher, 10500064): MCF7 and HeLa: 

DMEM (SLS) supplemented with 2 mM L-Glutamine (Fisher); K562: RPMI, (Fisher). For 

experiments cells were seeded the day prior to treatment at 3.5x104 (MCF7) and 2.1x104 

(HeLa) cells per cm3 of growth surface or 5x105 cells/ml of medium (K562). For EV 

extractions cells were grown in medium supplemented with pre-cleared (by 

ultracentrifugation for 16 hrs at 100,000 g) FCS following treatment. 

3.2.2 HEAT TREATMENT 

Cells were seeded at the above densities 24 hours prior to heat treatment. For EV 

experiments medium was removed from cells immediately before treatment and EV-

depleted medium was added. Except where stated otherwise cells were heat shocked for 

in an incubator pre-warmed to 45°C for 1 hour (MCF7 and HeLa cells) or 3 hours (K562 

cells). The cells were then returned to 37°C for 24 hours before either being harvested for 

assays or the medium being removed and EVs extracted. Control cells were maintained at 

37°C.  

3.2.2.1 70°C HEAT TREATMENT  

For 70°C heat treatment the medium was removed from the flasks and the cells were 

placed into a water bath pre-heated to 70°C. The medium was removed to ensure the cells 

would heat and cool quickly given the high temperature and short time of the treatment. 

The cells were then removed from the water bath and allowed to cool for 10 seconds 

before fresh medium at 37°C was added to the flasks and they were returned to the 

incubator. The control flasks had their medium removed and were left at room 
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temperature for 20 seconds before fresh medium was added and the cells were returned 

to 37°C.  

3.2.3 WESTERN BLOT 

Protein was extracted from EVs and the cells as outlined in the methods section 2.6. 

Protein was quantified using bicinchoninic acid assay kit (Life Technologies). Ten 

micrograms of protein were run on 12% w/v precast acrylamide gels (BioRad) and 

transferred onto polyvinylidene difluoride membrane (BioRad). Membranes were blocked 

using 5% w/v skimmed milk powder in tris buffered saline with 0.05% v/v tween 20 

followed by overnight incubation at 4°C with rabbit or mouse anti-human primary 

antibodies (Abcam) specific to HSP70 (ab5439) (exosome marker), TSG101 (ab83) (EV 

marker), cytochrome C oxidase (ab150422) (apoptotic body/mitochondrial marker), 

GAPDH (ab128915) (cytoplasmic marker), and calnexin (ab22595) (endoplasmic reticulum 

marker). Secondary Cy3 or horseradish peroxidase (HRP) tagged antibody (Abcam) 

incubations were then performed for 60 minutes at room temperature. Membranes were 

imaged using ChemiDoc MP (BioRad).  

3.2.4 NANO PARTICLE TRACKING ANALYSIS 

The NTA was carried out using the NanoSight LM10 with a laser wavelength of 642nm 

and the NTA 2.3 build 0033 analytical software (Malvern Instruments Ltd, Malvern). The 

recording took place at room temperature which was monitored manually. The sample was 

manually added to the chamber and allowed to settle for 30 seconds before each video 

was taken. There were three 30 second videos recorded for each sample. Camera gain was 

300 and the shutter speed was 19.97 ms. For analysis the detection threshold was set to 

10 and the type to multi. The blur, min track length and min expected particle size were all 

set to auto. Calibration was carried out using 100nm silica beads diluted to a known 

concentration in PBS and then three 30 second videos were recorded. 
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3.2.5 EV UPTAKE INHIBITION 

Cells were treated with EV uptake inhibitors 30 minutes prior to treatment with EVs. 

The following dose of each inhibitor was used: Heparin 10µg/ml (Franzen et al., 2014), 

Dynasore 50µM (Newton et al., 2006), Amiloride 50µM (Kälin et al., 2010). These inhibitors 

were diluted in PBS, and control cells in these experiments were treated with an equivalent 

volume of PBS. 

3.2.6 EV STORAGE  

Unless otherwise stated EVs were used on the day of extraction. For the EV storage 

experiment the EVs were resuspended in PBS, aliquoted at the required volume and moved 

immediately to the -80°C freezer. Frozen EV samples were thawed on ice prior to use and 

any excess discarded after one freeze thaw cycle. 
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3.3 RESULTS 

3.3.1 HEAT TREATMENT REDUCES CELL VIABILITY AND INCREASES THE LEVELS OF 

DNA DAMAGE 

In order to determine whether heat shock treatment at 45°C for 1 hour (MCF7) or 3 

hours (K562) was sufficient to induce damage in directly treated cells the levels of DNA 

damage and cell viability following heat treatment were assayed. MCF7 Cells were either 

heat-treated (45°C, red) or control treated (37°C, green) for 1 hour and then incubated for 

24 hours. The levels of DNA damage and cell viability were then assayed using the Comet 

assay and the MTT assay respectively. Heat treatment increased the levels of DNA damage 

as shown by the percentage of DNA in the comet tail (Figure 3-1A). Cell viability was shown 

to have decreased after treatment at 45°C, as shown by a lower optical density following 

the MTT assay (Figure 3-1B). To further ensure a heat shock response was being triggered 

by this treatment the levels of HSP70 inside the cells was assessed via western blot (Figure 

3-1C). Western blot was performed by Priya Samuel. HSP70 was found to be highly enriched 

in the MCF7 cells following the heat treatment. K562 cells were heat shocked at 45°C for 3 

hours and the levels of DNA damage assayed using the comet assay (Figure 3-1D). Higher 

levels of damage were observed in the heat-treated cells than in the cells mock shocked at 

37°C. These results suggest that the heat treatment is sufficient to induce a stress response 

in the MCF7 and K562 cells. 
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Figure 3-1: Heat treatment reduces cell viability and increases DNA damage. MCF7 cells were either 
heat-treated (45°C, red) or control treated (37°C) for one hour then the levels of DNA damage (A) and cell 
viability (B) were assayed. C) Proteins were extracted from MCF7 cells treated as above and then a western 
blot was carried out to determine the levels of HSP70 within the heat shocked cells. D) K562 cells were heat-
treated or control treated at 45°C for 3 hours then left at 37°C for 24 hours and assayed for DNA damage. Box 
and whisker plots show percentage of DNA in the comet tail normalised to mean control (A & D) or absorbance 
(B), median, upper and lower quartiles, error bars are 1.5x interquartile range. Bars for western blot (C) show 
standard error of the mean. For comet assay at least 500 comets were scored across two biological replicates. 
For MTT absorbance was recorded from 30 biological replicates. Statistical significance in comet assay data 
was assessed using the Mann-Whitney U test, MTT data and western blot was analysed using t-test. * p<0.05, 
** p<0.01 and *** p<0.001.  
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3.3.2 MEDIA CONDITIONED BY HEAT-STRESSED CELLS IS ABLE TO DRIVE DAMAGE IN 

BYSTANDER CELLS 

Heat-induced bystander effects have been observed in co-culture systems, where 

cells are not touching but share medium, suggesting that signals able to induce the 

bystander effect are released into the medium (Purschke et al., 2010; Purschke et al., 

2011). I hypothesised that our heat stress protocol would also be able to induce a bystander 

effect in this manner. To confirm that the medium contained a bystander inducing signal, 

medium was removed from cells 24 hours after heat treatment (MCF7 and HeLa: 45oC, for 

1 hour; K562: 45oC, for 3 hours) and control treated cells (37oC) and centrifuged at 300 x g 

for 5 minutes to remove any remaining cells and then at 16,500 x g for 20 minutes to 

remove debris and larger vesicles. It was then filtered through a 0.22 µm filter to remove 

any cell debris before being added onto bystander cells. These cells were then grown in this 

conditioned medium for 24 hours before being harvested. MCF7, K562 and HeLa cells were 

treated in this fashion and then assayed using the comet assay. The DNA damage in the 

MCF7 cells was assayed by Laura Jacobs. When cells were treated with stressed cell 

conditioned medium (SCCM) MCF7, K562 and HeLa cells showed higher levels of DNA 

damage than cells treated with control cell conditioned medium (CCCM) (Figure 3-2A, C-

D).  These data suggest that SCCM is capable of inducing the bystander effect in all three 

cell lines. 

One potential explanation for the bystander effect could be that some factor within 

the media is altered during the heat treatment that causes the damage observed in the 

bystander cells. However a previous study on the bystander effect demonstrated that 

medium without cells that is irradiated does not induce bystander effects (Zhou et al., 

2002). In order to ensure that the bystander effect displayed here is also not influenced by 

the transformation of factors within the medium MCF7 cells were also treated with 

medium that had undergone heat treatment at 45oC for 1 hour and the level of cell viability 
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measured via MTT assay (Figure 3-2B). There was no difference in the level of cell viability 

in the bystander cells treated with this medium. These data suggest that it is the effects of 

the heat stress on the donor cells and not on the medium that leads to damage in the 

bystander cells. 

 

Figure 3-2: The bystander effect is induced by a soluble factor released by cells during stress. Cells 
were heat shocked (red, 45oC: HeLa - 1 hour; K562 - 3 hours) or control treated (green) and incubated for 24 
hours. The medium was then removed from the cells and used to treat bystander cells. A, C-D The level of DNA 
damage in bystander cells following treatment with stressed cell conditioned medium (SCCM) (A-MCF7, C-
HeLa, D-K562). B Medium alone was heat-treated and used to treat MCF7 cells and the level of cell viability 
were measured with the MTT assay. Box and whisker plots show percentage of DNA in the comet tail 
normalised to mean control, median, upper and lower quartiles, error bars are 1.5x interquartile range. At 
least 200 comets were scored across 2 biological replicates. For MTT absorbance was recorded in 30 biological 
replicates. Statistical significance in comet assay data was assessed using the Mann-Whitney U test, MTT data 
was analysed using t-test. * p<0.05, ** p<0.01 and *** p<0.001.  
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3.3.3 EXTRACELLULAR VESICLES RELEASED DURING HEAT STRESS ARE ABLE TO 

INDUCE THE BYSTANDER EFFECT 

Previous work has shown that the vesicles released from stressed cells into the 

medium are sufficient to drive the radiation-induced bystander effect in cell culture (Al-

Mayah et al., 2012; Al-Mayah et al., 2015). Here I tested the hypothesis that EVs released 

by heat treated cells were able to induce bystander effects in unstressed populations. To 

confirm whether these vesicles are responsible for the observed bystander effect the above 

experiment was repeated but EVs were harvested from the CCM. Cells were heat stressed 

as above (MCF7, HeLa: 45°C, for 1 hour) and control treated (37°C) and left for 24 hours to 

condition the medium, then EVs were extracted from the medium via ultracentrifugation. 

Remaining cells were pelleted, and the supernatant centrifuged at 16,000 g to pellet cell 

debris. The supernatant was then filtered and ultracentrifuged at 100,000 g to pellet EVs. 

Bystander cells were treated with these EVs and incubated for 24 hours before being 

harvested. Bystander cells were treated with EVs extracted from the same cell line. In order 

to ensure the EV treatments were comparable, the cells were all treated with the same 

volume of EVs which had been extracted from the same number of cells. Characterisation 

of these EVs was carried out by Laura Mulcahy and Naveed Akbar (Figure 3-3A). The 

presence of EV markers HSP70 (Zhan et al., 2009), TSG101 (Thery et al., 2001); the 

housekeeping gene GAPDH; Cytochrome C oxidase (CytoC Ox) a mitochondrial inner 

membrane protein and ER protein Calnexin were assayed via western blot. Both EV markers 

and GAPDH were both found in the EVs whilst CytoC ox and Calnexin were absent, 

suggesting the preparation included EVs. MCF7 cells were treated with EVs from heat or 

control treated cells. After 24 hours these cells were assayed for both DNA damage (comet 

assay) and cell viability (MTT assay). These cells showed an increase in DNA damage 

following treatment with stress EVs as well as a reduction in cell viability (Figure 3-3B, C). 

Bystander HeLa cells were also assayed for DNA damage using the comet assay. HeLa cells 
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treated with EVs from heat-treated HeLa cells showed higher levels of DNA damage than 

cells treated with control EVs (Figure 3-3D). These data demonstrate that the EVs released 

from the heat-stressed cells are sufficient to induce the bystander effect.  

 

Figure 3-3: EVs released after heat treatment induce the bystander effect. Cells were heat shocked 
(red, 45°C: HeLa, MCF7 - 1 hour) or control treated (green) and incubated for 24 hours. The medium was then 
removed from the cells and EVs were extracted via ultracentrifugation and used to treat cells. A proteomic 
analysis of heat and control treated MCF7 cells and the EVs they released. Work carried out by Laura Mulcahy, 
Naveed Akbar and myself, image reproduced from Bewicke-Copley et al 2017. B The levels of DNA damage in 
bystander MCF7 cells following treatment with EVs from heat shocked cells. C Estimated cell viability in 
bystander MCF7 cells following treatment with EVs released from heat shocked cells. D The level of DNA 
damage in bystander HeLa cells following treatment with EVs extracted from heat shocked cells. Box and 
whisker plots show percentage of DNA in the comet tail normalised to mean control (B, D) or absorbance (C), 
median, upper and lower quartiles, error bars are 1.5x interquartile range. For comets at least 250 comets 
were scored for the HeLa cells, whist at least 300 were scored for the MCF7 across two biological replicates. 
For MTT absorbance was measured from 30 biological replicates. Statistical significance in comet assay data 
was assessed using the Mann-Whitney U test, MTT data was analysed using t-test. * p<0.05, ** p<0.01 and 
*** p<0.001.  
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3.3.4 VESICLES RELEASED BY HEAT STRESSED CELLS APPEAR TO REDUCE CELL 

VIABILITY IN A DOSE-DEPENDENT FASHION. 

A previous study has shown that increasing the number of stressed cells relative to 

bystander cells can increase the severity of the observed bystander effect (Thust et al., 

2004), I hypothesised that this could be due to an increase in the quantity of bystander 

signals present in the media and therefore that treatment with an increased number of EVs 

would also increase the severity of the bystander effect. In order to see whether a dose 

response was observed, MCF7 cells were treated with two different relative concentrations 

of EVs (1x and 2x) and the levels of cell viability and DNA damage were assayed. Cells were 

treated at either 45oC or 37oC (control) for 1 hour, then incubated at 37oC for 24 hours to 

condition the medium. Then EVs were extracted from the CCM via differential 

ultracentrifugation and they were used to treat bystander cells. These cells were incubated 

for 24 hours before being harvested. The levels of DNA damage and cell viability were both 

assayed after EV treatment (Figure 3-4). Cells treated with EVs from heat stressed cells 

showed higher DNA damage and lower cell viability when compared to cells treated with 

EVs from control treated cells. The level of DNA damage in cells treated with EVs was not 

significantly different when twice as many EVs were used. However, the level of cell viability 

dropped significantly more when cells were treated with twice as many EVs. These data 

suggest that the reduction in cell viability caused as part of the bystander effect might be 

influenced by the levels of EVs available to the bystander cells. However, the level DNA 

damage is not affected by the dose.  
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Figure 3-4: The effect of increasing EV dose on damage in bystander cells. EVs were extracted from 
MCF7 cells after heat treatment (45oC for 1 hour) or control treatment. Bystander cells were treated with 1x 
and 2x the relative number of EVs and incubated for 24 hours before the levels of cell viability and DNA 
damage were assayed. A The level of DNA damage in cells following treatment with 1x or 2x EVs from heat-
treated (red) or control treated (green) cells. B The levels of cell viability following treatment with 1x or 2x EVs 
from heat-treated (red) or control treated (green) cells. Box and whisker plots show median, upper and lower 
quartiles, error bars are 1.5x interquartile range. For comets at least 500 comets were scored across 2 
biological replicates. For MTT, absorbance was measured from 10 biological replicates per treatment. 
Statistical significance in comet assay data was assessed using the Mann-Whitney U test, MTT data was 
analysed using t-test. * p<0.05, ** p<0.01 and *** p<0.001. 

3.3.5 EVS STORED AT -80OC  RETAIN THE ABILITY TO INDUCE BYSTANDER DAMAGE 

FOR AROUND 2 WEEKS. 

The best way to store vesicles is not yet known. ISEV guidelines state that EVs should 

be store at -80°C, however it has been suggested these conditions maintains EV structure 

but can cause EVs to lose their function (Witwer et al., 2013; Lőrincz et al., 2014). To assess 

the stability of EVs in the freezer, EVs extracted from heat and control treated MCF7 cells, 

resuspended in PBS and immediately frozen at -80oC. These were then thawed on ice and 

used to treat bystander cells after 0, 1, 2 and 4 weeks (Figure 3-5). Cells treated with EVs 

that had been frozen for up to 2 weeks still showed a significant increase in DNA damage 

against control. However, after 4 weeks the EVs no longer had the ability to induce 

bystander damage. These data imply that EVs are stable at -80oC for a short while after 

which they may lose their biological function. 
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Figure 3-5: The effect of freezing EVs at -80oC on their ability to induce bystander effects. EVs were 
extracted from heat-treated MCF7 cells (45oC, 1 hour) and control treated cells. A portion of these EVs were 
used to treat bystander MCF7 cells (Week 0). The remaining aliquots were then frozen at -80oC. After 1, 2 and 
4 weeks an aliquot of the EVs was defrosted and used to treat bystander MCF7 cells, which were then 
incubated for 24 hours and the cells harvested, and the levels of DNA damage were assayed. Bystander effect 
was observed at weeks 0, 1 and 2, but no difference was seen in cells treated with 4-week-old EVs. Box and 
whisker plots show percentage of DNA in the comet tail, median, upper and lower quartiles, error bars are 
1.5x interquartile range. At least 300 comets were scored across two biological replicates. Statistical 
significance was assessed using the Mann-Whitney U test. * p<0.05, ** p<0.01 and *** p<0.001. 

3.3.6 INHIBITING EV UPTAKE HAS MIXED EFFECTS ON THE BYSTANDER EFFECT 

In order to confirm that it is EVs within the pellet recovered via ultracentrifugation 

that cause the bystander effect, the effect of two known inhibitors of EV uptake, Heparin 

(Franzen et al., 2014) and Dynasore (Newton et al., 2006), on the bystander effect were 

assayed. If EVs are involved in bystander signalling then these inhibitors of EV uptake 

should abrogate the bystander effect. EVs were extracted from heat and control treated 

cells as above. Cells were then treated with the inhibitors above prior to treatment with 

the EVs. Treatment with Dynasore reduced the levels of DNA damage induced by stress-

derived EV treatment. However, treatment with heparin had no effect on the level of DNA 

damage after stress EV treatment (Figure 3-6). Therefore, Dynasore treatment is able to 

abrogate the damaging effects of HS EVs, whilst heparin treatment has no effect on the 

bystander effect. Dynasore treatment in fact seems to reduce the levels of damage below 
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control levels, suggesting it may in fact protect the cells from damage. Heparin treatment 

on the other hand seems to have no inhibitory effect on the bystander effect with heparin 

treated bystander cells showing an increased level of damage against control cells. 

 

Figure 3-6: The effect of inhibitors of EV uptake on bystander damage and cell viability after direct 
heat treatment. A EVs were extracted from Heat-treated MCF7 cells as above. These were then used to treat 
bystander MCF7 cells that had been pre-treated with inhibitors of EV uptake. These cells were incubated for 
24 hours and then harvested for the comet assay. Box and whisker plots show percentage of DNA in the comet 
tail, median, upper and lower quartiles, error bars are 1.5x interquartile range. For comets at least 450 comets 
were scored across two biological replicates. Statistical significance was assessed using the Mann-Whitney U 
test; * p<0.05, ** p<0.01 and *** p<0.001. 

3.3.7 BYSTANDER CELLS ARE BETTER ABLE TO RESIST STRESS 

Previous work on RIBE has shown that bystander cells show increased resistance to 

irradiation (Shankar et al., 2006; Tang et al., 2016; Ojima et al., 2011), I therefore 

hypothesised that stress EV treated bystander cells would be better able to survive direct 

stress. Here the ability of stress-derived EVs to confer a protective effect was assayed. Cells 

were treated with EVs from stressed and unstressed cells and then subjected to heat shock. 

First MCF7or K562 cells were heat (45°C) or control (37°C) treated (1 hour, MCF7; 3 hours, 

K562) then returned to 37°C for 24 hours. Then EVs were extracted from the medium via 

ultracentrifugation and used to treat fresh K562 cells. These cells were grown for 24 hours 

and then heat shocked at 45°C for three hours and again returned to 37°C for 24 hours. The 

cells were assayed for DNA damage using the comet assay (Figure 3-7). The MCF7 work 

shown here was carried out by Laura Jacobs. The levels of DNA damage observed in the 

cells treated with HS EVs were significantly lower than in the cells treated with control EVs. 



The role of EVs in thermally-induced Bystander Effect 

Findlay Bewicke-Copley Page | 64 PhD Thesis 

This suggests that the bystander cells were more resistant to the heat shock, further adding 

evidence to the idea that stress-derived EVs aid cells survival during stress. 

 
Figure 3-7: Treatment with EVs from heat shocked cells increases stress resistance. EVs were 

extracted from heat (45°C) and control (37°C) treated MCF7 (A) or K562 (C) cells via ultracentrifugation. Cells 
were treated with these EVs for 24 hours before being heat shocked at 45°C (1 hour, MCF7; 3 hours, K562). 24 
hours post heat shock these cells were assayed for DNA damage. A) Diagram of the experiment.  Box and 
whisker plots show percentage of DNA in the comet tail normalised to control, median, upper and lower 
quartiles, error bars are 1.5x interquartile range. For comets at least 700 comets were scored across two 
biological replicates. Statistical significance evaluated using the Mann-Whitney U test. * p<0.05, ** p<0.01 
and *** p<0.001  
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3.3.7.1 TREATMENT WITH INHIBITORS OF EV UPTAKE REDUCES THE LEVEL OF CELL VIABILITY POST 

STRESS. 

As stress-derived EVs are able to induce resistance to subsequent stress, it is possible 

that one function of stress-derived EVs is to help the population become more resistant to 

the stress. EVs may play a key role in priming cells to respond to stress. In order to check 

whether EVs released during stress also affect the population’s ability to survive this initial 

stress, MCF7 cells were treated with the EV uptake inhibitors Heparin, Dynasore or 

Amiloride (Kälin et al., 2010) prior to heat treatment (45oC, 1 hour) or control treatment. 

These cells were then incubated for 24 hours before the level of cell viability was assayed 

using the MTT assay. If stress-EVs induce an adaptive response, then blocking uptake 

should sensitise the population to the effect of the stress. Both Dynasore and amiloride 

showed a larger negative fold change in cell viability after heat treatment than in cells that 

were control treated. Heparin, however, showed no effect on the cell viability following 

heat stress. These data suggest that EV uptake during stress increases cell viability, as 

blocking it leads to a reduction in cell survival (Figure 3-8). 

 

 
Figure 3-8: Treatment with EV inhibitors reduces cell survival during stress. MCF7 cells were treated 

with Amiloride (50µM, yellow), Dynasore (50µM, blue), Heparin (0.01µg/ml, purple) or control treated (green) 
and then heat shocked as before at 45 and 37oC. The cells were then returned to 37oC and grown for a further 
24 hours before being assayed for cell viability using the MTT assay. Readings for each group were normalised 
to the average reading for the vehicle control of the appropriate treatment group, then the fold change in cell 
viability following treatment at 45oC was calculated from these data. Bars represent fold change, error bars 
are standard error of the mean. For MTT, absorbance was measured in 12 biological replicates per treatment. 
Statistical significance was assessed using an ANOVA and then tested pairwise by tukey test, which is 
displayed in the figure. * p<0.05, ** p<0.01 and *** p<0.001.  
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3.3.8 BYSTANDER EFFECTS OBSERVED AFTER TREATMENT WITH EVS RELEASED 

FOLLOWING HEAT-STRESS AT 70OC 

A previous study on thermally induced bystander effect showed effects in bystander 

cells after treatment at 75°C. Here I hypothesised that EVs released from cells treated with 

a high temperature would also release EVs capable of inducing bystander effects. 

3.3.8.1 THERE IS NO DIFFERENCE IN THE QUANTITY OF EVS PRODUCED AFTER TREATMENT AT 70OC 

In the interest of characterising the EVs extracted via ultracentrifugation following 

short, high heat, treatment the EVs were analysed using the NanoSight LM10 (Filipe et al., 

2010). Cells were treated at 70oC for 10 seconds and left for 8 hours to condition medium. 

EVs were then extracted from this medium via ultracentrifugation as outlined above. These 

EV populations were then characterised using the NanoSight (Figure 3-9A, B). There was no 

significant difference in the concentration or size of the EVs release by cells whether they 

had been heat- or control-treated. These data show that heat treatment does not seem to 

change the quantity or size of the vesicles released by the cells. 

3.3.8.2 THE BYSTANDER EFFECT OCCURS AFTER VERY SHORT TREATMENT AT 70OC 

Thermal bystander effect has been demonstrated to occur following a 10 minute heat 

treatment at 75oC (Dąbrowska et al., 2005). To test whether this effect would occur after 

very short treatments at this temperature MCF7 cells were heat shocked at 70oC for 10 

seconds or control treated and then left to condition medium for 3 hours. After this 

incubation EVs were extracted from the medium via ultracentrifugation. These EVs were 

then used to treat bystander cells which were then incubated for 3 hours before being 

assayed for cell viability. The cells treated with EVs from heat stressed cells showed a 

decline in their viability when compared with cells treated with EVs from control treated 

cells and cells that received no EVs (Figure 3-9B). These data suggest that short, high 

temperature treatments can also induce the production of EVs that are able to cause 
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bystander damage. Further as the cells were only conditioned by the EVs for 3 hours rather 

than 24 hours as in previous experiments, it also seems that the bystander effect is 

triggered soon after EV treatment. 

 

Figure 3-9: EVs from high heat are able to induce bystander effects in non-stressed cells. MCF7 Cells 
were heat-treated at 70oC for 10 seconds, or control treated, then incubated for 3 hours. The medium was 
then removed and EVs were extracted via ultracentrifugation and then vesicle diameter (B) and concentration 
(C) were assayed using the NanoSight. 3 videos were taken across two biological replicates. Bars represent 
the average modal size of vesicles and mean concentration across 2 biological replicates. C) EVs were 
extracted as above and used to treat bystander MCF7 cells which were subsequently incubated for 3 hours 
before being assayed for cell viability. Box and whisker plots show absorbance at 595nm as an estimate of cell 
viability, median, upper and lower quartiles, error bars are 1.5x interquartile range, For MTT data from one 
biological replicate, 15 separate wells of a 96 well plate. For MTT data statistical significance was assessed 
using an ANOVA and then tested pairwise by tukey test, which is displayed in the figure. * p<0.05, ** p<0.01 
and *** p<0.001.  
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3.4 DISCUSSION 

In this chapter the ability of EVs released following heat treatment to induce a 

bystander effect in nearby cells was assessed. EVs released after moderate and extreme 

heat treatments have been shown to lower cell viability and induce DNA damage in 

bystander populations. 

3.4.1 HEAT-TREATED CELLS EXHIBIT A BYSTANDER EFFECT THAT CAN BE 

TRANSFERRED VIA EXTRACELLULAR VESICLES 

One of the remaining questions surrounding the bystander effect is the mechanism 

by which stressed cells induce damage in nearby cells. There is evidence that blocking gap 

junction signalling abrogates the bystander effect, suggesting that the signal might be 

passed between cells in this fashion (Desai et al., 2014; Shao et al., 2003). However in vivo 

studies have shown bystander effects that occur far from the site of the original stress 

(Mancuso et al., 2008; Ilnytskyy et al., 2009). On top of this there have been numerous 

studies in vitro where the bystander effect has been observed either after co-culture with 

stressed cells, or after being grown in medium conditioned by stressed cells (Purschke et 

al., 2010; Mothersill & Seymour 1997). These studies suggest that, as well as gap junction 

signalling, there is an alternative mechanism by which the bystander effect can occur, 

without the need for cell to cell contact. This work confirms that that a bystander effect 

occurs following medium transfer from heat stressed cells to bystander cells in both K562 

and HeLa cell lines, with increased levels of DNA damage seen in cells after growth in stress 

cell conditioned medium. This agrees with previous findings that show bystander effects 

occurring after sub-lethal heat shock in co-culture systems (Purschke et al., 2011; Purschke 

et al., 2010).  

There is some evidence that suggests that extracellular vesicles, notably exosomes 

are able to induce the bystander effect, with EVs extracted from irradiated cells being able 
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to induce damage in bystander cells (Al-Mayah et al., 2012; Al-Mayah et al., 2015). Here, 

EVs were extracted from heat-treated cells and used to treat bystander cells. The bystander 

cells showed higher levels of DNA damage and lower levels of cell viability when treated 

with heat-induced EVs. These data further the idea that EVs released by stressed cells that 

are at least one factor released by cells that can cause bystander effects in un-stressed 

populations. It is important to note that extraction via ultracentrifugation does not provide 

a clean preparation of EVs (Witwer et al., 2013), though ultracentrifugation is the current 

gold standard for EV extraction (Gudbergsson et al., 2015). The sample could also contain 

various proteins and other cellular components and debris that pellet at the same speeds. 

It is hard to ascertain the level of protein contamination as separating EV-associated 

protein from free protein would be very difficult. New methods for EV extraction are 

available which may be able to isolate samples with higher purity (Böing et al., 2014). 

The bystander effect was observed in all three cell lines used in this chapter (MCF7, 

HeLa and K562). It is, however, important to consider that cell lines often differ in numerous 

ways from physiologically normal cells and other cell lines, and these differences could lead 

to unexpected results. For example, the MCF7 cell line is deficient in caspase-3 , which is a 

key component in the induction of apoptosis. This deficiency allows the MCF7 cells to resist 

numerous different chemotherapeutics, and this resistance is abrogated when caspase-3 

is reintroduced into the cells (Yang et al., 2001). Furthermore, whilst these cells lack the 

apoptotic changes associated with caspase-3 activation, caspase-3 independent pathways 

can lead to the cells being phagocytosed by macrophages (Turner et al., 2003). MCF7 are 

also able to utilise caspase-7 to induce cell death (Twiddy et al., 2006). It is therefore 

important to consider which cell lines to use and appropriate assays for those cell lines 

when planning bystander experiments. An apoptosis assay that measures cleaved caspase-

3, for example, would suggest that no the MCF7 cells undergo apoptosis. For this reason, it 

is also useful to use more than one assay to assess bystander damage, as if cells are 
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resistant to one factor, such as apoptosis, they may not be resistant to others, such as DNA 

damage. 

The mechanism by which these EVs induce damage has not been elucidated, however 

it is probable that it is a molecule within the cargo of the EVs that is responsible for the 

bystander effect. Previous work on BE has shown that alterations to the cargo of EVs are 

able to reduce the levels of damage in bystander cells (Xu et al., 2014; Al-Mayah et al., 

2015; Al-Mayah et al., 2012). Further there is evidence of irradiation altering the cargo of 

EVs extracted from whole blood samples (Yentrapalli et al., 2017). Interestingly in that 

study, the levels of miR-34-5p were found to be increased, a microRNA that has been 

shown to be involved in conferring resistance to the drug cisplatin (Samuel et al., 2016). 

3.4.1.1 INCREASING THE DOSE OF STRESS EVS AFFECTS THE LEVEL OF CELL VIABILITY BUT NOT DNA 

DAMAGE 

In order to establish whether the bystander effect displays dose related effect cells 

were treated with 2 relative concentrations of EVs. EVs were extracted from MCF7 cells 

and re-suspended in PBS. Cells were treated with either 20µl of the EV suspension (1x) or 

40 µl (2x) and then incubated for 24 hours before being assayed for DNA damage and cell 

viability. Cells treated with twice as many EVs from heat-treated cells showed a reduction 

in cell viability compared to cells treated with less EVs, but there was no difference seen in 

the levels of DNA damage. These data do suggest that the quantity of stress-derived EVs 

might affect the severity of the bystander effect displayed in the recipient cells. The lack of 

change in the levels of DNA damage might suggest that the cause of this damage and the 

reduction of cell viability occur via two separate pathways within the cell. It’s possible that 

the factor carried by the EVs that induce damage acts at capacity with the quantity of EVs 

used in these experiments, therefore increasing the concentration will not increase the 

level of damage. Interestingly there are conflicting accounts of the effect of the varying the 
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stress dose on the damage observed in bystander cells. Several studies have shown that 

the dose of the stress administered to the cells does affect the levels of bystander effect 

observed (Asur et al., 2009; Testi et al., 2016; Jin et al., 2011; Soleymanifard et al., 2013; 

Toossi et al., 2017; Purschke et al., 2010). However, other studies on the bystander effect 

have shown that there is no dose relationship (Ponnaiya et al., 2004; Baskar et al., 2007; 

Shao et al., 2005; Hu et al., 2006). One such study showed no effect on the number of donor 

cells damaged on the bystander cells, suggesting that there is a separation between effects 

observed in the stressed cells and the effects observed in the bystander cell (Ponnaiya et 

al., 2004). When the dose is able to affect the damage in the bystander cells it does seem 

that there is a limit at which the damage ceases to increase along with dose (Asur et al., 

2009; Purschke et al., 2010). It is possible that these cells reach a point of saturation, being 

unable to send out anymore bystander signals, or potentially that the signals they do 

release are no longer able to reach or effect the bystander cells. Alternatively, the very high 

stresses may be causing many of the donor cells to die, meaning there are less stressed 

cells releasing bystander signals. Evidence for this hypothesis was shown in thermal 

bystander experiments, where bystander damage was shown to be reduced after a certain 

temperature treatment corresponding with a reduction of cell viability (Purschke et al., 

2010). Here however, it was the level of signalling, not stress, that was increased. One study 

increased gap junction signalling and subsequently observed an increase in micronuclei 

formation (Shao et al., 2003) suggesting that increased bystander signalling would show a 

similar increase in damage. In another study, bystander effects were reduced when cell 

conditioned medium was diluted prior to being used to treat bystander cells (Baskar et al., 

2007). These data therefore, seem to suggest that increasing the levels of bystander signal 

should increase the levels of bystander effect observed. Whilst previous data have shown 

that the dose of the initial stress is linked to the levels of bystander damage, here I suggest 

that the dose of bystander signalling molecules (EVs) is also able to modulate the bystander 
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effect. Whilst the minimum level at which bystander effects will occur was not ascertained 

these data suggest that the EV induced bystander effect is not a binary response. 

The dose response of the bystander effect is currently a contentious topic and more 

work is needed to understand the effects of stress and bystander signal dose. A greater 

understanding of the signalling pathways that control the bystander effect is therefore vital 

to learn whether these pathways are more active at more damaging stress conditions and 

whether these signals are reaching their targets and affecting them. Here it is suggested 

that doubling the number of EVs used to treat bystander cells does affect some measures 

of bystander damage, but not others. A wider range of EV concentrations should be used 

to treat the bystander cells, including lower concentrations than used here, to fully assess 

whether stress EVs induce damage in a dose dependant manner. It would also be useful to 

assess the effects of different EV concentrations on more sensitive measures of cell 

damage, in case the dose response is being missed by the assays used here. Further, the 

number of EVs released at different temperatures should be assessed to ascertain whether 

the release of EV bystander signals also acts in a dose dependant manner. 

3.4.2 EVS FROZEN AT -80°C SEEM TO RETAIN BIOLOGICAL ACTIVITY FOR A FEW 

WEEKS. 

The correct way to store extracted EVs, and for how long they retain their function in 

these conditions has not been fully assessed. The best practice for EV storage laid out by 

the International Society of Extracellular Vesicles (ISEV) is to freeze EVs at -80°C (Witwer et 

al., 2013). Data from 2014 showed that EVs stored at room temperature or -4°C overnight 

reduced function and storage at -20°C structural changes were observed (Lőrincz et al., 

2014). When these EVs were stored for a month at -80°C the structure had not changed, 

however they did show loss of function (Lőrincz et al., 2014) 
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Here EVs frozen at -80°C were able to induce damage in bystander cells up to 2 weeks 

after freezing, however after 4 weeks no effect was observed. This data suggests that whilst 

EVs can be frozen, they may lose their function if stored too long. The ISEV 

recommendations suggest only testing fresh vs fresh or frozen vs frozen EVs (Witwer et al., 

2013). The data shown here supports this advice, as the length of time the EVs have been 

frozen for has been shown to potentially alter their biological effect. This fits with the 

previously published work on EVs that showed reduced function after being stored at 80°C 

for a month (Lőrincz et al., 2014). It is unclear from the data what has caused the reduction 

in activity of frozen EVs after 4 weeks. It could be that the EVs themselves have degraded 

or that their content or cargo have been damaged. The structure of the EVs could be 

checked via Electron Microscopy to ensure that their membranes have not degraded. The 

activity of the cargo would be more difficult to assess, given the difficulty of purifying only 

EV-associated protein or nucleic acids, and as the factors involved in the effect remain 

unknown. As only DNA damage in recipient cells was assayed it’s possible that other 

biological activity may be retained longer, or indeed may be lost sooner after the freezing 

process. Importantly future testing on the stability of frozen EVs should continue past the 

point at which EVs first begin to lose function in order to be certain that there are now inert 

and that it is not simply a problem with the sample thawed on that time point. 

3.4.3 EV UPTAKE INHIBITORS HAVE DIFFERING EFFECTS ON THE BYSTANDER EFFECT 

Whilst ultracentrifugation is the most commonly used method of EV extraction, the 

pellet recovered is not pure. It will contain a variety of different molecules that are also 

present in the pellet, along with the EVs (Witwer et al., 2013). In order to try and confirm 

that it is EVs that are responsible for the bystander effect seen above EV treatment was 

repeated but cells were also treated with the EV uptake inhibitors: heparin and Dynasore. 

The data showed that Dynasore not only abrogated the damage from the bystander effect 
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but that the cells treated with heat derived EVs showed lower levels of damage than cells 

treated with control EVs. This would suggest that Dynasore treatment lowers the level of 

DNA damage below the baseline level of damage found in the cells treated with control 

EVs. This is an odd finding as if Dynasore itself protects against damage the effect should 

be seen in the control EV treated cells to. There are numerous different mechanisms by 

which EVs can enter cells (Mulcahy et al., 2014). Dynasore is an inhibitor of dynamin, a 

GTPase involved in the scission of vesicles from membranes, it is thought to block EV uptake 

by the inhibition of endocytosis (Newton et al., 2006). Heparin is thought to cause the 

aggregation of EVs and block their uptake by interfering with their ability to bind to the 

plasma membrane (Atai et al., 2013).  

Conformation of uptake inhibition was not carried out here, meaning the EVs may 

still have been able to enter the cells. This might explain why Dynasore but not heparin 

affected EV induced bystander damage. It may be that the uptake of the EVs responsible 

for the effect might be blocked by Dynasore but not heparin. It would be possible to test 

this by assessing vesicle uptake in bystander cells with and without treatment with both of 

the uptake inhibitors used here. Further, as neither heparin nor dynasore are specific 

inhibitors of EV uptake, it is possible that the effects seen in these experiments are in fact 

due to non-EV related effects of these molecules. Another method to decipher whether it 

is the EVs found in the sample that induce the bystander effect would be to block EV release 

from the donor cells and see whether the effect still occurs, or to boil or otherwise 

inactivate the EVs prior to treatment. If the effect still occurs when there are no active EVs 

it would suggest there is another molecule secreted by the cells during stress which is 

inducing these effects. 
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3.4.3.1 EVS SEEM TO HAVE A PROTECTIVE EFFECT ON A DIRECTLY STRESSED POPULATION’S 

VIABILITY. 

MCF7 Cells were treated with Dynasore or amiloride, inhibitors of EV uptake, and 

then heat-treated at 45°C for 1 hour. The cells treated with Dynasore and amiloride showed 

a greater fold change in cell viability against untreated cells after heat treatment. These 

findings hint at a positive effect of the EVs within the population, as when uptake is blocked 

the cells show lower levels of survival. As stated above in relation to heparin and Dynasore, 

it’s important to note that amiloride is not a specific inhibitor of EV uptake and acts by 

blocking micropinocytosis (Koivusalo et al., 2010). As such the effects seen here could be 

due to off-target effects rather than EV uptake inhibition. It’s possible that the EVs released 

during stress conditions are actually beneficial to the survival of the population, and that 

the bystander effect is simply a symptom of this protection. In order to test if recipients of 

heat shock EVs were better able to survive heat stress K562 cells were treated with EVs 

from heat and control treated cells. When these cells were subjected to further stress cells 

treated with heat shock derived EVs showed lower levels of DNA damage than cells treated 

with control EVs. This suggests that the HS EV treatment has increased the bystander 

population’s ability to survive heat stresses. These data show that bystander cells are more 

resistant to heat treatment suggesting that the thermal bystander effect may be a way of 

reducing the effects of the heat stress on the population. This agrees with data showing 

that RIBE provides a protective effect against subsequent irradiation (Shankar et al., 2006; 

Tang et al., 2016; Ojima et al., 2011). It would be interesting to test whether EVs released 

from cells after one stress are able to protect cells from another stress; for example, can 

EVs from heat-shocked cells protect cells from radiation-induced damage. It should be 

noted that both Dynasore and amiloride can sensitise cells to apoptosis (Cho et al., 2005; 

Shen et al., 2018) which could mean that inhibitor treatment doesn’t block a protective EV 

signal but in fact simply sensitises the cells to the heat-stress. Here this effect was taken 
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into account as the data was compared to the survival in unstressed cells, however it would 

be useful to examine this effect using a method of uptake inhibition that does not affect 

cell survival. 

The mechanism for this increase in resistance remains unknown. In bacteria, stress 

treatment is thought to induce mutation in an attempt to create a new strain with an 

increased ability to resist stress, a process known as Stress Induced Mutagenesis (Foster 

2005; Foster 2007). However, bacterial populations can afford for a large percent of their 

population to die in order to increase their overall resistance to a stress, in animals this is 

not a viable strategy. It is more likely here, that some factor or factors carried by the EVs 

are able to create an environment within the bystander cells that allow them to better 

resist stress. It is already known that EVs can carry stress related proteins such as the HSPs 

(Kalra et al., 2016; Krämer-Albers et al., 2007), it could therefore be that these EVs carry 

cargo that is able to aid in stress resistance. It could also be that the EVs upregulate other 

stress resistance processes within the bystander cells. Further, it is thought that bystander 

effect is in part driven by NF-κB, which is known to be involved in the stress response and 

has been observed to have both pro- and anti-apoptotic effects in cancer cells (Hoesel & 

Schmid 2013), this could be related to the increased ability of the population to resist 

stress. It would be interesting to establish how long after EV treatment the adaptive effect 

is still present, in order to determine whether the change was short term, due to cargo 

delivered in the EVs or related to processes deregulated by that cargo, or long term, 

suggesting more permanent changes to the properties of the population.  

3.4.4 EVS RELEASED FOLLOWING VERY HIGH TEMPERATURES CAN CAUSE 

BYSTANDER EFFECTS AFTER BRIEF TREATMENTS. 

The EVs released after 70°C treatment were analysed using the nanoparticle tracking 

analysis (NTA) method, with their size and concentration being recorded. No difference 
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was found between the number of vesicles released from heat-treated cells, measured as 

particles/ml, or between the size of the vesicles released. This suggests that there is no 

morphological difference between stress and normal EVs that are involved with this effect. 

This suggests that size or concentration differences of EVs are not what cause the effect, 

further suggesting that it the effect is related to the cargo of the EVs. This agrees with other 

work from our lab which has shown that there is no significant change in the number of 

EVs released following stress (Bewicke-Copley et al., 2017; Samuel et al., 2017). However, 

one important consideration to take into account with these data is that the stress will very 

likely mean that there are fewer cells to release the EVs, meaning that whilst there is no 

overall difference, individual cells may be releasing more cells. Our previous work has 

however shown that EVs from stressed cells are smaller on average (Bewicke-Copley et al., 

2017; Samuel et al., 2017). The data presented in Figure 3-9 is only from two biological 

replicates however, so care should be taken when making drawing any conclusions from it. 

The previous experiments here have used low levels of heat, however early thermal 

bystander effects were observed following high heat treatments (Dąbrowska et al., 2005). 

Bystander effects following brief high heat treatments were also assayed. Cells were heat 

shocked at 70°C for 10 seconds and then incubated for 3 hours. EVs were extracted and 

used to treat bystander cells for three hours after which the levels of cell viability were 

measured. Cells treated with EVs released by heat stressed cells showed significantly 

reduced levels of damage when compared against cells treated with control EVs, or cells 

that were not treated. Previous experiments presented here have shown bystander effects 

occurring after relatively low heat treatment for an hour or longer. This data, however, 

suggests that EVs released after short treatments with higher temperatures are capable of 

inducing the bystander effect. Here I show that EVs released after only 10 seconds of 

treatment were able to induce bystander effects. Further these EVs  released within 3 hours 

of treatment were shown to be able to induce bystander damage, which fits with early 
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work on the RIBE which observed a medium transfer induced bystander only 1 hour post 

irradiation (Mothersill & Seymour 1997). This suggests that the stress induced changes to 

the secretome of the cell occur soon after treatment. Furthermore, the cells were only 

conditioned by the EVs for 3 hours before being assayed, suggesting that bystander effects 

may occur quite quickly following heat treatment. Care must be taken when interpreting 

these data however as the EVs were only extracted from one biological replicate. Previous 

studies on thermal bystander effect, including those presented above, have incubated 

bystander cells for 24 hours or longer before assessing the levels of damage (Purschke et 

al., 2010; Purschke et al., 2011; Dąbrowska et al., 2005). One of the early studies on RIBE 

assessed the cells relatively early at 6 hours following irradiation (Hickman et al., 1994), 

whilst another much later at 3 days (Prise et al., 1998), however in these experiments the 

bystander cells were in the same culture vessel as the stressed cells, which could alter the 

time needed for effects to be observable. The timings of the bystander effect are as yet 

unknown, here and previously short treatments have shown bystander effects whilst many 

studies show effects occurring days after stress treatment. Whether the relatively short 

length of time cells needed to be cultured with stress-derived vesicles here is due to the 

high dose of the heat shock or whether a lower temperature treatment could also induce 

BE in these conditions is unknown. Further experiments could clarify this by extracting 

vesicles at different times after treatment with a variety of doses and culturing the 

bystander cells with EVs for varying times. This would better allow us to understand the 

speed at which these signals are produced by stressed cells and how long they take to act 

in bystander cells. 

3.4.5 FURTHER WORK 

Here EVs have been shown to have a role in the induction of the thermal and chemical 

bystander effect in vitro. However, the mechanism by which EVs are able to cause 
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bystander damage is not understood. In order to better understand the how the bystander 

effect is initiated. The cargo of the EVs is an obvious target for further study as alterations 

in cargo have been shown to reduce the bystander effect (Al-Mayah et al., 2015). It would 

also be useful to know what biological processes are affected in the bystander cells 

themselves. There is evidence that COX-2 expression is linked with radiation and 

chemically-induced bystander effect and that numerous pathways targeting its expression 

are activated in bystander cells (Zhou et al., 2005; Asur et al., 2010b; Asur et al., 2010a). It 

seems likely that similar pathways would be activated in the thermal bystander effect. 

Analysis of the gene expression and protein phosphorylation in the bystander cells would 

help see what processes the HS EVs are activating. 

3.4.6 CONCLUDING REMARKS 

The bystander effect is a potentially clinically interesting phenomenon where 

stressed cells are able to induce a stress response in nearby cells. In this chapter 

extracellular vesicles released from cells during heat stress have been shown to be able to 

induce damage and reduce cell viability in bystander populations. EV uptake inhibitors 

showed various effects on bystander damage, with inhibition of endocytosis abrogating the 

bystander effect. EV uptake inhibition was also shown to reduce cell viability following heat 

stress. This points to stress EVs as a mechanism of generating stress resistant populations 

in order to mitigate the damage caused by stress. 

That cellular stress causes the release of EVs capable of inducing damage in cells could 

mean that when patients are treated with certain therapies, such as hyperthermia, their 

stressed cells release EVs that cause cellular damage. It is therefore important to consider 

the effects of these stress EVs when devising treatments. It’s possible that treating patients 

with EV uptake inhibitors may help reduce bystander damage during treatment. Though as 

the uptake inhibitor heparin actually increased the levels of damage, more work is 
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necessary to know which inhibitors if any will abrogate the effect in vivo. Further the EV 

uptake inhibitors amiloride and Dynasore reduced cell viability following direct stress, 

suggesting that EV uptake may play a beneficial role in protecting the population from 

damage. More work is necessary to truly understand the potential risks of the bystander 

effect in vivo, and which steps, if any, should be put into place to alleviate these risks
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4  CHAPTER 4 - THE EFFECTS OF CISPLATIN INDUCED EVS 

4.1 INTRODUCTION 

4.1.1 CHEMICALLY-INDUCED BYSTANDER EFFECTS 

In the previous chapter EVs were demonstrated to be involved in the initiation of 

thermal bystander effects. The bystander effect has been observed following treatment 

with chemical agents in co-culture, medium transfer and EV transfer experiments (Samuel 

et al., 2017; Asur et al., 2009; Jin et al., 2011). Bystander cells seem to be affected in 

numerous ways other than genetic damage and cell death, with bystander cells 

demonstrated to have greater invasive capacity and resistance to stress (Bewicke-Copley 

et al., 2017; Samuel et al., 2017). As EV are known to affect numerous biological processes 

including modulating disease (Tominaga et al., 2015; Becker et al., 2016; Beer & Wehman 

2017; Yáñez-Mó et al., 2015), it is possible that stress-derived vesicles might affect these 

processes differently. 

4.1.2 CANCER RELATED CACHEXIA 

Cancer-induced cachexia is unexplained weight loss, predominantly via reduction of 

muscle mass, observed in patients with cancer (Aoyagi et al., 2015). Mice implanted with 

xenografts from cachexia inducing tumour types, such as lung cancers, have been shown 

to induce a cachexic phenotype (Zhang et al., 2011; Zhang & Li 2012). Treatment of muscle 

cells with medium conditioned by cancer cells has however been demonstrated to induce 

muscle wasting (Zhang et al., 2011). It is possible that EVs released by these cancer cells 

are able to propagate this effect. 
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4.1.3 EV EXTRACTION AND CHARACTERISATION TECHNIQUES 

Ultracentrifugation is very commonly utilised as a method of EV extraction (Lötvall et 

al., 2014; Momen-Heravi et al., 2013). Cells, debris and larger vesicles are removed via 

centrifugation and then the sample filtered and centrifuged at 100,000-120,000 x g to pellet 

small EVs. Whilst this method of extraction has been and continues to be successfully used 

for this purpose, it does not provide a completely pure preparation of EVs, as other small 

molecules and complexes may be incorporated into the pellet (Gudbergsson et al., 2015; 

Witwer et al., 2013). Sucrose gradients can be used alongside ultracentrifugation in order 

to increase the purity of the preparation, however this has also been shown to reduce the 

yield of EVs (Gudbergsson et al., 2015). Impure samples make it difficult to be sure that it 

is the EVs, not some other contaminant, that is causing an observed effect. Further in order 

to study the proteome of the EVs it is necessary to extract a large quantity of EVs whilst 

removing as many contaminating proteins as possible. One method for extracting EVs that 

could increase sample purity, without reducing yield, is size exclusion chromatography. 

4.1.3.1 SIZE EXCLUSION CHROMATOGRAPHY 

Size Exclusion Chromatography (SEC) is a method of separating particles based on 

their size. Particles travel through a stationary phase that contains numerous porous 

polymer beads. Smaller particles are able to enter these pores, slowing their progress 

through the column, whilst larger molecules cannot, allowing them to travel more quickly 

through the column. The outflow from the column is collected in desired volumes known 

as fractions. As smaller particles travel more slowly through the stationary phase they are 

found in the later fractions, whilst the larger, faster particles are found in the earlier 

fractions. This is shown in Figure 4-1.  
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Figure 4-1: Size Exclusion Chromatography. 

 SEC is a method of separating particles in a heterogeneous sample by their size. The sample is run 
through a stationary phase comprised of porous beads. Smaller molecules are able to enter these pores, whilst 
the larger molecules cannot, slowing the progression of the smaller molecules through the stationary phase. 
As the larger molecules are not slowed they separate from the smaller molecules in the column. Numerous 
fractions are collected from the bottom of the column and differently sized molecules are found in different 
fractions. 

4.1.3.2 LIQUID-CHROMATOGRAPHY MASS SPECTROMETRY FOR PROTEOMICS 

Liquid-Chromatography Mass Spectrometry (LC-MS) is a technique that allows the 

identification of molecules in a mixed sample by first separating the mixture by size using 

chromatography and then the contents quantified and identified using via mass 

spectrometry. Stable isotope-based labelling is a very accurate method of protein 

quantification (Ong et al., 2002); however, it is a time-consuming and costly process. Label-

free Quantification (LFQ), whilst less accurate, is relatively quick method of studying the 

proteome of cells and vesicles (Cox et al., 2014; Asara et al., 2008). One method of label 

free quantification known as MaxLFQ uses LC-MS along with peptide sequence databases 

to identify the proteins found within the sample. The proteins are first digested into 

peptide fragments which are then separated and quantified using LC-MS (Cox et al., 2014). 
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The fingerprints of these fragments are then used to identify their parent proteins using 

the MaxQuant software (Tyanova, Temu & Cox 2016). 

4.1.4 AIMS 

In this chapter, the ability of EVs released from stress and unstressed A2780 cells to 

induce phenotypic effects in muscle cells will be assessed. In order to ensure that pure 

samples of EVs can be obtained SEC will be used to extract the EVs. 

 Assess the ability of SEC to extract EVs without protein contaminants 

 Identify differences in the proteomes in cells and EVs after cisplatin 

treatment 

 

The ability of cancer EVs to induce cachexia will be tested both in vitro and in vivo 

with EVs extracted from both cisplatin and control treated cells  

 Assess the ability of cancer EVs to alter muscle differentiation using C2C12 

(mouse myoblast) cells 

 Assess the effects of injecting cancer EVs on muscle mass and strength in 

healthy mice 

Stress EVs have been shown to induce damage in bystander cells, but here I will test 

whether they are able to induce cachexia in both in vitro and in vivo models. 
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4.2 METHODS 

4.2.1 SIZE EXCLUSION CHROMATOGRAPHY 

4.2.1.1 MEDIA PREPARATION 

Media was prepared as in the protocol for ultracentrifugation found in the methods 

chapter, section 2.1. However, after the medium was filtered it was then concentrated to 

500 µl using Vivaspin® 20 concentration columns with a 100 kDa cut off filter (Fisher, 

10774797). These tubes were centrifuged at 6000 x g or 3000 x g in fixed angle or swing 

out rotor respectively. 

4.2.1.2 COLUMN PREPARATION 

Columns were made up 2 to 24 hours prior to use. Empty chromatography columns 

(BioRad, 7321010) were filled with 14mls of sepharose (Fisher, 10217754) and 10 mls of 

cell culture grade PBS (Sigma, D8662). These columns were then left at room temperature 

to allow the sepharose to settle. Immediately prior to use an upper bed support was added 

to the column to reduce the disturbance to the sepharose during washes and sample 

addition. The column was washed through twice with PBS and then once with 0.03% v/v 

TWEEN® 20 (Fisher, BP337-500) in PBS. This detergent was added to stop particles within 

the sample from sticking to one another artificially increasing their size and therefore speed 

through the column. Column preparation is shown in Figure 4-2. 

4.2.1.3 EV EXTRACTION 

500 µl of concentrated medium was added to the column and allowed to fully enter 

the column before 10 mls of 0.03% v/v TWEEN® 20 in PBS were added. Immediately after 

the addition of the TWEEN® 20, 500 µl fractions were collected up to the desired fraction 

number. For EV extractions fractions 6-8 were pooled as the EV containing fractions. The 

protocol for EV extraction using SEC is shown in Figure 4-2.  
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Figure 4-2: Size exclusion chromatography protocol. 

 Columns were made using sepharose as the stationary phase and allowed to settle for 2 hours - 1day. 
Prior to use, a top bed support was added, and the columns were washed 3 times, twice with PBS and once 
with 0.03% v/v TWEEN® 20 in PBS. 500 µl of concentrated sample was then added to the column. Once the 
sample had completely entered the stationary phase 10 ml of PBS + TWEEN® 20 was added to the column and 
500 µl fractions were collected.  
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4.2.2 CISPLATIN TREATMENT 

Cells were treated with 40µM cisplatin (unless stated otherwise) diluted in PBS or an 

equivalent volume of pure PBS and incubated for 3 hours. Then the medium was removed 

from the cells and they were washed once with PBS to remove any residual cisplatin 

containing medium, fresh medium was added to the cells and they were returned to the 

incubator for two hours. The medium was then removed again, and the cells were washed 

with PBS to remove any cisplatin that may have remained in the mediu, or have been 

released from the cells, fresh EV-depleted medium was then added to the cells and they 

were returned to the incubator for the desired time before EV extraction. 

4.2.3 PROTEIN ANALYSIS 

4.2.3.1 LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY  

Cells were treated as outlined above and EVs were extracted from the cell 

conditioned medium 72 hours post treatment. Proteins were extracted from the cells and 

EVs as described in the methods section. The protein was sent Craig Kerr at the University 

of British Colombia who carried out the mass spectrometry. 

The samples were boiled for 5 minutes and 20µg of each sample were added to 4 

volumes of ice cold 80% Acetone and incubated for 4 hours at -20°C. The protein was 

pelleted at 16,000 rpm for 10 minutes. The pellets were washed twice with ice cold 80% 

Acetone before being heated to at 95 for 5 minutes and resuspended in 6M urea. The 

samples were then digested as follows: 2.6 µl id DTT was added to each 20µg sample and 

they were incubated at room temperature for 30 minutes. 2µl of 5.5mM iodacetamide was 

added and the sample was incubated at room temperature for a further 20 minutes. 0.2µg 

of LysC was added and incubated at room temperature for 3 hours. The samples were then 

diluted in 4 volumes of digestion buffer (50mM NH4HCO3) and 0.4 µg of trypsin were added 

and the samples were left over night at room temperature. 
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 These samples were then analysed on an EasynLC-1000 chromatography system 

(Thermo) coupled to a Bruker Impact II Q-TOF mass spectrometer. Buffers A and B were 

0.1% formic acid and 0.1% formic acid, 80% acetonitrile, respectively. Peptides were 

separated using a 165 min linear gradient of increasing Buffer B. The proteins were then 

quantified using the MaxQuant software version 1.5.5.1 and the output data was then 

processed with Perseus (Tyanova, Temu, Sinitcyn, et al., 2016). 

4.2.3.2 VOLCANO PLOT CONSTRUCTION 

Only proteins that were found in two out of three biological replicates were included 

in the fold change analysis in order for a p value to be calculated and LFQ values of 0 were 

excluded from the analysis. P values were calculated via a two tailed t-test. The fold change 

and p value were log2 and -log10 transformed respectively in R, which were then used to 

construct the volcano plots. 

4.2.3.3 GENE ONTOLOGY (GO) TERM ANALYSIS 

The gene names for all the proteins found to be up- or down-regulated by 2-fold or 

greater were uploaded to DAVID (Huang et al., 2008; Huang et al., 2009). The GO direct 

analysis for Biological Process and Molecular Function were downloaded. Bonferroni 

corrections were calculated by the DAVID software. 

4.2.4 ANIMAL WORK 

4.2.4.1 ANIMALS 

The majority of the mice work was carried out by Abi Yates from the Department of 

Pharmacology at Oxford University. I assisted with the Day 0 and Day 21 behaviour analysis 

and the dissection of the mice and carried out the sectioning and staining of the tissues. 

8.5-week-old male CD1 mice were purchased from Charles River and initial 

measurements of weight (g) and right hind limb circumference (cm) were recorded. 

Animals underwent preliminary strength tests, described below, and were arranged into 3 
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balanced groups. No significant differences between groups were observed in these tests 

when assessed using an ANOVA p > 0.05. In the control group, animals were treated with 

sterile saline (0.85% v/v). In the second group, animals were treated with EVs derived from 

A2780 cells. In the third group, animals were treated with EVs derived from A2780 cells 

that had been treated with cisplatin. The mice were randomly assigned numbers in order 

to blind the data analysis and the key was held only by the researcher who injected the 

mice. EVs were isolated by Size-Exclusion Chromatography 48 hours after treatment, 

concentration was determined using the ZetaView Nanoparticle Tracking Analyzer 

(ParticleMetrix, Germany) and normalised to 1x1010 particles/ml. Animals received 100µL 

of their respective injections intravenously every other day for 3 weeks. Weight was 

measured every 3 days and hind limb circumference was measured every week. Strength 

and motor tests were repeated after the 3 weeks were complete. 

4.2.4.2 BEHAVIOUR  

To evaluate any muscle wastage, the inverted screen and the weights test were 

performed as previously described (Deacon 2013). For the inverted screen, animals were 

placed in the centre of a 45cm2 square of wire mesh with 12mm squares of 1mm diameter. 

The screen was then inverted, and the time taken for the mouse to fall off onto a padded 

surface was recorded. Maximum experiment time was set at 60 seconds. For the weights 

test, 3 weights were used consisting of wired steel wool attached to a chain of 2, 3 and 4 

links, corresponding to 33, 46 and 59g respectively. Animals were held at the base of the 

tail and lowered onto the lowest weight to allow grasping of the wired wool. Once forepaws 

had grasped the apparatus, the mouse was raised until the weight cleared the bench. If the 

weight was held for 3 or more seconds, the test was repeated with a larger weight. If after 

3 attempts, with rest in between, the animal failed to hold the weight for the full 3 seconds, 

they were assigned the maximum weight achieved. 
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Figure 4-3: Example images of behaviour tests. The mice were assessed for functional strength using 
both the weight lifting test and the screen hang test. For the weight lifting test the mice were given three 
attempts to pick up progressively heavier weights if they succeeded in holding the weight for 3 seconds they 
were moved to the next weight. If they were unable to lift the weight after three attempts the maximum 
weight they could lift was recorded. In the screen hang test the mice were suspended upside-down for 60 
seconds on a screen. If they were unable to hold onto the screen for 60 seconds, the time that they took to 
fall was recorded. 

4.2.4.3 TISSUE COLLECTION AND SECTIONING 

Once behaviour tests were complete, mice were sacrificed via cardiac puncture then 

intracardially perfused with heparinised saline before being perfused with 

paraformaldehyde (PFA) (4% w/v, pH 7.4). Fixed liver, spleen and the right rear quadricep 

muscle were collected. Fixed tissue was left in PFA for 24 hours then they were 

cryoprotected with 30% w/v sucrose for a further 24 hours. Liver, Spleen and the muscle 

were mounted in optimal cutting temperature (OCT) compound. Transverse sections were 

taken from the belly of the muscle using a Leica CM1520 cryostat and then mounted onto 

slides and stored at -20°C. 

4.2.4.4 ETHICS STATEMENT 

Male CD-1 mice, X weeks of age, 32.6-41.5g, were housed under standard 

diurnal lighting conditions (12 hours) with ad libitum access to food and water. All 

procedures were carried out in accordance with the UK Animals (Scientific Procedures) Act, 

1986 and licenced protocols were approved by local committees (LERP and ACER, 

Screen hang testWeight lifting test
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University of Oxford) and performed under licence number 30/3076. All efforts were made 

to adhere to the ARRIVE guidelines at all times. 

4.2.5 STAINING  

4.2.5.1 IMMUNOCYTOCHEMISTRY 

C2C12 were grown in 96 well plates and treated as described. Cells were washed 

twice with PBS before being fixed in 3:1 methanol: acetic acid for 10 minutes at 4°C, washed 

once more in PBS and then stored in PBS at 4°C until staining. Cells were washed with PBS 

for three minutes with agitation then the PBS was removed and 100 µl of a 1% w/v BSA in 

PBS block solution was added to the well and incubated for 1 hour with agitation. An 

antibody cocktail was created for the primary antibodies against myosin heavy chain 

(MyHC, supplied by University of Iowa Developmental Studies Hybridoma Bank, gene 

MF20) and Ki67 (Abcam: ab15580) at a dilution of 1:500 and 1:2000 in 1% w/v BSA solution 

respectively. The block was removed from the cells and 100 µl of the antibody cocktail was 

added to each well and then incubated for 1 hr at room temperature. A secondary antibody 

cocktail was created for the secondary antibodies with Alexa Flour 488 anti-mouse 

(ThermoFisher A-11029) and tetramethylrhodamine (TRITC)-conjugated anti-rabbit 

(A16040) antibodies at a 1:1000 dilution in 1% w/v BSA solution. The primary antibody 

cocktail was removed, and the cells were wash 3 times with PBS for 5 minutes with 

agitation. 100 µl of the secondary antibody cocktail was added to each well and the cells 

were incubated for 30 minutes at room temperature in the dark. The secondary antibody 

cocktail was removed, and the nuclei were stained with 5 µl of 50 mg/ml Hoechst for 2 

minutes before being washed three times in PBS for five minutes. The PBS was removed, 

and the fluorescence was measured using a plate reader. The following excitation/emission 

wavelengths were used: Hoechst (Nuclei) 360/460 nm, Alexa Fluor 488 (MyHC) 490/525 
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nm and TRITC (Ki67) 540/590 nm. The level of fluorescence for MyHC and Ki67 were 

normalised to Hoechst to control for cell number. 

4.2.5.2 H&E STAINING 

Slides were baked for 15 minutes then washed in PBS. Then they were stained with 

Haematoxylin for 4 minutes and washed thoroughly with water prior to being stained with 

Eosin for 30 seconds and being washed once again. The slides were then dehydrated using 

increasing concentrations of ethanol (1 x 85% v/v, 1 x 90% v/v, 2 x 100% v/v) and finally 

cleared with two five-minute washes in xylene and mounted with DPX permanent 

mounting medium. Photographs were taken on a GXM-L3201 LED microscope (GT Vision) 

using a GXCAM-FLUOMAX-S camera (GT Vision) and the GX Capture software (GT Vision). 

Fibre size was measured using the ImageJ image analysis software. 

4.2.5.3 IMMUNOHISTOCHEMISTRY 

The slides were baked in the oven at 37°C then washed in PBS. Cells were blocked 

with 1% v/v H2O2 in methanol for 10 minutes with agitation to block endogenous 

peroxidase activity. They were then washed twice with PBS and placed into sequenza clips 

and washed a further two times. The slides were then blocked with 120 µl of 1:20 avidin 

for 15 minutes and washed twice again in PBS. The slides were blocked with 120 µl of 1:20 

biotin for 15 minutes and again washed twice with PBS. Slides were then blocked with 10% 

v/v serum in PBS for 1 hour to stop non-specific binding. Slides were the incubated 

overnight at 4°C with an anti-γH2AX antibody (Abcam: ab2893) diluted to 1:200 in 1% v/v 

serum in PBS. Slides were then washed 3 times with PBS before being incubated for 2 hours 

with the secondary antibody (vector laboratories: BA-1000) diluted 1:100 in 1% v/v serum 

in PBS. Slides were washed 3 times with PBS and then incubated in ABC mix (vector 

laboratories: VECTASTAIN® Elite® ABC-HRP Kit) for 1 hour at room temperature. Slides were 

washed 2 times in PBS and then placed into racks. The slides were washed in 0.1 M 
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phosphate buffer and then incubated with DAB until staining appeared. The slides were 

again washed with 0.1 M phosphate buffer and then counter stained with Haematoxylin as 

above. Photographs were taken on a GXM-L3201 LED microscope (GT Vision) using a 

GXCAM-FLUOMAX-S camera (GT Vision) and the GX Capture software (GT Vision). 
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4.3 RESULTS 

4.3.1 EVS RELEASED DURING CHEMICAL STRESS ARE ALSO ABLE TO DRIVE THE 

BYSTANDER EFFECT 

The bystander effect has been observed after many different stress conditions 

(Kadhim et al., 2013; Purschke et al., 2010; Asur et al., 2009). Here I hypothesised that EVs 

from cisplatin treated cells would induce bystander damage in unstressed populations. In 

order to ascertain whether EVs were capable of inducing the bystander effect after 

chemical stress, EVs were extracted from cisplatin-treated cells and used to treat bystander 

cells. First, in order to demonstrate that cisplatin was able to damage cells A2780s were 

treated with increasing doses of cisplatin (0,10,20,40,100 µM) for three hours. The medium 

was then removed, the cells were washed with PBS and fresh medium was added to the 

cells. Two hours later the medium was removed, the cells were washed in PBS again and 

fresh medium was added. After 24 hours the cells were assayed for cell viability via the MTT 

assay Figure 4-4A. As the concentration of cisplatin increased the level of cell viability 

decreased. Cisplatin was therefore able to kill the A2780 cells. From these data the 40 µM 

concentration of cisplatin was chosen for future experiments. 

Cells were treated with cisplatin as outlined above (A2780 cells: 40µM for 3 hours; 

HeLa cells: 40µM for 2 hours) and vesicles were extracted from the medium 24 hours post-

treatment and were subsequently used to treat fresh cells. Vesicles from A2780 cells were 

used to treat A2780 cells and EVs from HeLa cells were used to treat HeLa cells. These cells 

were then assayed for cell viability with the MTT assay (Figure 4-4B) or harvested and 

assayed for DNA damage (Figure 4-4C). Treatment with EVs from cisplatin-treated cells 

reduced cell viability in A2780 cells and increased the levels of DNA damage observed in 

HeLa cells. This provides further evidence that the EVs released during stress are, at least 
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partly, responsible for the driving the damage in bystander cells, irrespective of the stress 

type.  
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Figure 4-4: EVs released from cisplatin-treated cells are able to induce bystander damage. 

 (A) A2780 cells were treated with increasing levels of cisplatin, after 24 hours the cell viability was 
estimated using the MTT assay. Then cells were treated with cisplatin (Red, 40µM for: A2780 3 hours; HeLa 2 
hours) or control treated (green) and incubated for 24 hours. The medium was then removed from the cells, 
EVs were extracted and then used to treat bystander cells. The levels of cell viability (B – A2780s) and DNA 
damage (C – HeLa) in the bystander cells was assayed using the MTT assay or comet assay respectively. Box 
and whisker plots show median, upper and lower quartiles, error bars are 1.5x interquartile range; Differences 
were assessed with an ANOVA and post-hoc tukey test for MTT data and Mann-Whitney test for comet data, 
* p<0.05, ** p<0.01 and *** p<0.001. MTT data is from six wells of a 96 well plate (A) and ten wells of a 96 
well plate (B). For comets at least 400 comets were scored across 2 biological replicates. 

4.3.2 EV EXTRACTION VIA S IZE EXCLUSION CHROMATOGRAPHY 

Ultracentrifugation is the current gold standard for EV extraction, however the 

samples recovered from ultracentrifugation are not pure EVs and are often contaminated 

with proteins and other non-EV matter (Witwer et al., 2013). Size-exclusion 

chromatography (SEC) allows the separation of molecules based on their size, with larger 

molecules being able to travel faster through the column than smaller molecules. In order 

to assess the ability of SEC to extract a pure sample of EVs from conditioned medium 

fractions 2, 4, 6-10, 12, 14, 16, 18 and 20 were assessed with NTA and the protein level of 

each fraction was assessed via the BCA assay. A2780s were cultured in EV-depleted 

medium for 24 hours before the medium was harvested, passed through the SEC column 

and twenty 500 µl fractions were collected. These fractions were assayed for EV and 

Protein content using NTA and BCA assay respectively, shown in Figure 4-5A. EVs were 

found in fractions 6-10, with the most appearing in fraction 7. There were also some 

particles detected in fractions 12, 16 and 20. Protein began to be seen in fraction 9, after 
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which the concentration increased until fraction 17. In order to confirm the identity of the 

particles found in fractions 6-8, EVs were isolated from cisplatin (40 µM) and PBS treated 

cells 72 hours after treatment using SEC and the proteins extracted and analysed with mass 

spectrometry. Gene Ontology (GO) term enrichment was carried out on the proteins found 

in these EVs. The top 10 most enriched cellular compartments from this analysis can be 

seen in Figure 4-5B.  The top compartment enriched in the analysis was extracellular 

exosome, with the next two most highly enriched terms being cytosol and membrane. SEC 

was able to separate the majority of the EVs found in the conditioned medium from the 

protein in the medium. Whilst there was slight crossover of both EVs and protein, both 

were found at relatively low levels in these fractions. These data suggest that SEC is able to 

isolate a pure EV sample free from protein found within the cell conditioned medium. 
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Figure 4-5: Size Exclusion Chromatography allows EVs to be extracted from conditioned medium 
separate from the free protein found in the medium. EVs were extracted from medium conditioned by A2780 
cells using sepharose columns as outlined above. Twenty fractions of 500 µl were collected. (A) The fractions 
were analysed for EV content (orange) via NTA and their protein content (Green) via BCA assay. Data is from 
3 biological replicates. Bars and scatter plot show the mean value for EV and protein concentration 
respectively, error bars are standard error of the mean. (B) The top ten cellular compartments associated with 
the proteins extracted from SEC EVs. The proteins associated with SEC isolated EVs were identified by mass 
spectrometry and a GO term enrichment analysis was carried out. Fold enrichment is the number of genes 
annotated with that term divided by the number of genes expected by the software to be annotated with that 
term.  
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4.3.3 PROTEINS WERE IDENTIFIED IN OVARIAN CANCER CELLS AND THEIR EVS WITH 

AND WITHOUT CISPLATIN TREATMENT 

When cells undergo stress, numerous proteins are deregulated within the cells to 

attempt to combat it. Stress is also known to alter the cargo of EVs, and these changes can 

be linked with their function (Xu et al., 2014; Xu et al., 2015). Here the proteins were 

extracted from cells and EVs 72 hours after cisplatin or PBS treatment and the proteins 

were identified using mass spectrometry. The total number of proteins found in cisplatin 

and PBS treated cells and EVs are found in Figure 4-6(A, D), and the total number of proteins 

found in each of the three replicates for each treatment group is shown in Figure 4-6(C, F). 

The proteins found in two or more replicates of each treatment group are shown in Figure 

4-6(B, E). For non-overlapping proteins in these Venn diagrams, a read was only counted if 

it was found in two or more replicates of one treatment group and none of the replicates 

for the other treatment group. Many of the identified proteins were found in both of the 

two treatment groups in EVs and Cells, however there are also proteins that were observed 

in only one group or the other. Cisplatin treatment alters the protein content of cells and 

cargo of EVs. The average LFQ for each sample grouping (Cis cell, PBS cell, Cis EV, PBS EV) 

were plotted against one another in  Figure 4-6G. There appears to be no pattern in the 

protein levels between cisplatin and PBS treated cells, between the EVs from those cells or 

between the proteins in EVs and the protein in their parent cells. 

Whilst the majority of the cellular proteins were observed in all three replicates most 

of the EV protein was only found in one replicate, with 683 cisplatin EV proteins out of 

1,317 occurring in only one replicate and 629 PBS EV proteins out of 1165 occurring in only 

one replicate. This suggests that the protein cargo of EVs is heterologous, with relatively 

few common proteins compared to cells.  
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Figure 4-6: Proteins identified in A2780 cells and EVs after cisplatin and PBS treatment. A2780 cells 
were treated with 40 µM cisplatin (blue) or an equivalent volume of PBS (green) for three hours, washed in 
fresh medium for 2 hours and then incubated in EV-depleted medium for 72 hours. At this time EVs were 
extracted from the medium using SEC and the proteins were extracted from both cells and EVs. The proteins 
were then identified using LC-MS. A, D) All the proteins found in at least one of the replicates in cisplatin or 
PBS treated cells. B, E) Proteins found in at least two of the replicates cisplatin or PBS treated groups. For non-
overlapping proteins, a read was only counted if it was found in two or more replicates of one treatment group 
and none of the replicates for the other treatment group. C, F) All the proteins for each replicate in each 
treatment group. G) shows the relative LFQ intensity in the different treatment groups.  



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 102 PhD Thesis 

4.3.4 PROTEIN DEREGULATION IN CISPLATIN-TREATED CELLS IDENTIFIED BY MASS 

SPECTROMETRY 

I hypothesised that the proteome of stress derived vesicles might be involved in the 

induction of bystander effects. To assess what changes occur in the proteome of cisplatin-

treated A2780s, protein was extracted from cisplatin and PBS treated cells. The proteins 

within each population of cells was then identified and quantified via mass spectrometry. 

The fold change following cisplatin treatment and p value for this change was calculated 

for each protein. Figure 4-7A show a volcano plot of the identified proteins, proteins in 

orange have a 2-fold change either up or down, proteins in red had a p value of less than 

0.05 and proteins in green had both. 497 proteins were shown to have increased expression 

following cisplatin treatment whilst 464 proteins decreased. Out of these proteins only 56 

proteins that were upregulated had a p value of less than 0.05 and 44 down regulated 

proteins had a p value of less than 0.05. 1215 proteins were found to have a fold change in 

intensity less than 2-fold, with only 13 of these proteins having a p value of less than 0.05. 

The 10 most highly significanly up- and down-regulated proteins are shown in Figure 4-7B. 

Over 4.5% of the proteins identified via LC-MS were significantly deregulated in A2780s 

following treatment with cisplatin.  
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Figure 4-7: Protein deregulation in cells following cisplatin treatment. Protein was extracted from 
cells 3 days after treatment with either 40 µM cisplatin or PBS. The identities of the proteins present in the 
cells was determined using mass spectrometry. Three biological replicates of each treatment group were 
assayed. Proteins that did not appear in at least two of the three samples for each treatment were excluded 
from this analysis. The mean fold change of each protein was calculated and the means of the two samples 
were compared with a two tailed t-test. A) is a volcano plot showing the log2 of fold change of each protein 
against -log10 of the p value resulting from the t-test. Proteins with a fold change <= 0.5 or >= 2 are coloured 
orange, proteins with a p value of < 0.05 are coloured red and proteins that have both are coloured green. 
The gene names for the top ten most significantly down- and up-regulated proteins are shown in B with fold 
change, p value and a Bonferroni corrected p value. The Bonferroni value was calculated by multiplying the p 
value with the number of proteins in the two tables (20). 

4.3.5 GO TERM ANALYSIS OF PROTEINS DEREGULATED IN CELLS FOLLOWING 

CISPLATIN TREATMENT 

In order to determine what biological processes might have been altered within the 

cells, GO term analysis was carried out using DAVID. The gene names of the proteins found 

to increase or decrease by 2-fold or greater were uploaded to the DAVID analysis tool and 

the GO terms for biological processes and molecular functions were found. The top ten 

most highly significant GO terms are shown in Table 4-1‘poly(A) RNA binding’ respectively, 

whilst in the down regulated proteins the ‘viral transcription’ was the most significantly 

enriched term for biological process. The most significantly enriched term for molecule 

function was again ‘poly(A) RNA binding’ as in the upregulated proteins. KEGG pathway 

analysis was also carried out for these proteins and can be seen in Table 4-2. For all 
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significant Go terms see Appendix 7.1 & 7.2. These data suggest specific pathways that may 

become deregulated within cells following cisplatin treatment. 
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Down Regulated    
Biological Function Fold Enrichment P Value Bonferroni 
viral transcription 7.73 1.61E-13 3.15E-10 
mRNA splicing, via spliceosome 5.09 1.28E-12 2.51E-09 
translational initiation 6.60 1.46E-12 2.85E-09 
nuclear-transcribed mRNA catabolic process, nonsense-mediated 
decay 6.64 4.19E-11 8.18E-08 
translation 4.17 8.22E-10 1.61E-06 
viral process 3.65 7.61E-09 1.49E-05 
protein folding 4.60 1.33E-08 2.60E-05 
SRP-dependent cotranslational protein targeting to membrane 6.41 2.42E-08 4.73E-05 
mRNA export from nucleus 6.02 5.70E-08 1.11E-04 
rRNA processing 4.05 6.08E-08 1.19E-04 
Molecular Function Fold Enrichment P Value Bonferroni 
poly(A) RNA binding 4.13 1.29E-44 9.10E-42 
protein binding 1.39 6.95E-20 4.88E-17 
RNA binding 3.65 4.87E-16 3.12E-13 
structural constituent of ribosome 3.67 6.53E-07 4.59E-04 
nucleotide binding 2.87 2.95E-06 2.07E-03 
Ran GTPase binding 9.87 1.17E-05 8.22E-03 
protein domain specific binding 3.38 1.40E-05 9.82E-03 
protein transporter activity 5.66 2.20E-05 1.54E-02 
unfolded protein binding 4.38 4.10E-05 2.84E-02 
cadherin binding involved in cell-cell adhesion 2.81 4.18E-05 2.90E-02 

Up Regulated    
Biological Function Fold Enrichment P Value Bonferroni 
regulation of mRNA stability 6.84 7.55E-11 1.52E-07 
cell-cell adhesion 4.03 1.92E-10 3.88E-07 
mRNA splicing, via spliceosome 4.28 9.49E-10 1.92E-06 
SRP-dependent cotranslational protein targeting to membrane 6.74 1.05E-09 2.11E-06 
NIK/NF-kappaB signaling 8.00 3.59E-09 7.25E-06 
translational initiation 5.14 1.11E-08 2.24E-05 
regulation of cellular amino acid metabolic process 8.97 1.36E-08 2.75E-05 
ER to Golgi vesicle-mediated transport 4.40 1.41E-07 2.85E-04 
rRNA processing 3.78 1.96E-07 3.96E-04 
nuclear-transcribed mRNA catabolic process, nonsense-mediated 
decay 5.03 2.49E-07 5.02E-04 
Molecular Function Fold Enrichment P Value Bonferroni 
poly(A) RNA binding 3.93 3.93E-42 2.61E-39 
protein binding 1.38 5.11E-19 3.40E-16 
RNA binding 3.35 6.24E-14 4.15E-11 
cadherin binding involved in cell-cell adhesion 4.01 4.98E-11 3.31E-08 
structural constituent of ribosome 3.81 8.83E-08 5.87E-05 
nucleotide binding 2.84 2.38E-06 1.58E-03 
mRNA binding 4.23 1.22E-05 8.09E-03 
threonine-type endopeptidase activity 11.75 1.89E-05 1.25E-02 
ATP binding 1.63 6.19E-05 4.03E-02 
tRNA binding 6.22 8.51E-05 5.50E-02 

Table 4-1: GO term analysis of deregulated cellular protein following cisplatin treatment. All the 
cellular proteins that were up- or down-regulated by 2-fold or greater following cisplatin treatment were 
analysed using the DAVID tool and the GO terms from Biological Function and Molecular Function were 
recorded. P value represents EASE score. Only the top ten GO terms found are shown. Fold enrichment is the 
number of genes annotated with that term divided by the number of genes expected by the software to be 
annotated with that term.  
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Upregulated proteins 

Term Count Genes PValue Bonferroni 

hsa03050:Proteasome 12 

PSMA2, PSMB5, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMD11, PSME2, PSMD3, PSME3, 
PSMA7, PSMD8 6.68E-07 1.54E-04 

hsa03010:Ribosome 18 

RPL35A, RPL17, RPS9, RPL23A, RPS4X, 
MRPL23, RPS19, MRPL28, RPL13A, RPS14, 
RPL34, MRPL17, MRPL16, RPS15, RPL3, 
RPL5, RPS11, RPS21 2.04E-05 4.69E-03 

hsa01130:Biosynthesis 
of antibiotics 22 

LDHB, DLST, ACO2, CYP51A1, ACO1, 
SUCLG2, PGD, PSPH, ALDH3A2, GPI, NME2, 
TPI1, GOT1, NME1-NME2, ADSL, IDI1, 
BPNT1, PAICS, MDH2, HSD17B7, UGP2, 
ALDH9A1 7.84E-05 1.79E-02 

hsa03040:Spliceosome 16 

TRA2B, SNRPD3, DDX39B, ALYREF, SNRPD1, 
WBP11, HSPA1A, SF3B5, SART1, HNRNPA3, 
SRSF2, DDX23, PRPF8, PQBP1, LSM4, LSM3 2.05E-04 4.60E-02 

Downregulated proteins 

Term Count Genes PValue Bonferroni 

hsa03013:RNA 
transport 26 

XPO1, PABPC4, NUP93, NUP188, PNN, 
NDC1, EIF3D, EIF3A, RAE1, EIF1AX, EIF1AY, 
RANBP2, PABPC1, TPR, GEMIN6, EIF2B4, 
XPOT, UPF1, EIF2S3, RNPS1, NXF1, NUP155, 
EIF4A3, AAAS, UPF3B, CYFIP1 8.27E-09 1.72E-06 

hsa01130:Biosynthesis 
of antibiotics 27 

BCAT2, ADPGK, HK1, ASL, PKM, ISYNA1, 
AKR1A1, IDH2, PDHA1, SUCLA2, HADH, 
SHMT2, SUCLG1, AK3, FDPS, AK4, PFKM, 
PCK2, IDH3A, SDHA, ALDH7A1, G6PD, 
GFPT1, PCYOX1, PSAT1, CBS, PRPS1 1.45E-07 3.02E-05 

hsa03015:mRNA 
surveillance pathway 16 

PABPN1, SYMPK, UPF1, PABPC4, RNPS1, 
NXF1, PPP1CC, ETF1, PPP1CB, PNN, DAZAP1, 
EIF4A3, UPF3B, CPSF7, PABPC1, CSTF1 1.77E-06 3.68E-04 

hsa03010:Ribosome 19 

MRPS14, RPL14, RPL13, MRPL9, RPL38, 
RPL28, RPS7, MRPL11, RPS25, MRPL13, 
RPS27, RPS28, RPS17, RPL9, RPL8, RPL3, 
RPS13, RPL7A, RPS24 4.40E-06 9.16E-04 

hsa01200:Carbon 
metabolism 15 

SHMT2, ADPGK, SUCLG1, ESD, HK1, PFKM, 
IDH3A, PKM, SDHA, G6PD, IDH2, PDHA1, 
SUCLA2, PSAT1, PRPS1 1.08E-04 2.23E-02 

hsa03040:Spliceosome 16 

BCAS2, SNRPB2, SNW1, DDX5, SF3B4, 
CTNNBL1, HNRNPA3, PRPF19, EIF4A3, 
HNRNPM, SRSF5, DDX46, SRSF6, DHX16, 
HNRNPC, SNRPF 1.81E-04 3.70E-02 

Table 4-2: KEGG pathway analysis of deregulated cellular protein following cisplatin treatment. The 
KEGG pathways of the proteins analysed in Table 4-1 were also found. Only the pathways with a p values of 
under 0.05 after Bonferroni correction are shown above.   
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4.3.6 PROTEIN DEREGULATION IN EVS RELEASED FROM CISPLATIN-TREATED CELLS 

The cargo of EVs can change due to the conditions within their parent cells, such as 

stress and disease, and are able to influence their function (Xu et al., 2015; Yentrapalli et 

al., 2017; Melo et al., 2015; Jelonek et al., 2015). In order to see what changes occur in the 

protein complement of EVs from cisplatin-treated cells EVs were extracted from cisplatin 

and PBS treated cells 72 hours post treatment in order to ensure sufficient release of EV 

cargo. The proteins were extracted from these EVs and then identified and quantified via 

mass spectrometry. The fold change following cisplatin treatment and p value of this 

change was calculated for each protein. Figure 4-8A shows a volcano plot of the identified 

proteins, proteins in orange have a 2-fold change either up or down, proteins in red had a 

p value of less than 0.05 and proteins in green had both. 65 proteins were shown to have 

increased expression in EVs following cisplatin treatment whilst 46 proteins decreased. Out 

of these proteins 0 proteins that were upregulated had a p value of less than 0.05 whilst 4 

down regulated proteins had a p value of less than 0.05. 232 proteins were found to have 

changed in intensity by less than 2-fold fold in cisplatin EVs and 7 of these had a p value of 

below 0.05. The 10 most highly significanly up- and down-regulated proteins are shown in 

Figure 4-8B. Fewer proteins were identified in the EV protein samples than were observed 

in the cell protein and far fewer were significantly different betweent the cisplatin and PBS 

treatment groups.  
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Figure 4-8: Protein deregulation in EVs from cisplatin-treated cells. EVs were extracted from cells 3 
days after treatment with 40 µM cisplatin or PBS and the protein cargo of these EVs was then extracted. The 
identities of the proteins present in the EVs were estimated using mass spectrometry. Three biological 
replicates of each treatment group were assayed. Proteins that did not appear in at least two of the three 
samples for each treatment were excluded from this analysis. The mean fold change of each protein was 
calculated and the means of the two samples were compared with a two tailed t-test. A) is a volcano plot 
showing the log2 of fold change of each protein against -log10 of the p value resulting from the t-test. Proteins 
with a fold change <= 0.5 or >= 2 are coloured orange, proteins with a p value of <= 0.05 are coloured red and 
proteins that have both are coloured green. B) shows the gene names for the top ten most significantly down- 
and up- regulated proteins with fold change, p value and a Bonferroni corrected p value. The Bonferroni values 
were calculated by multiplying the p value with the number of proteins in the two tables (20). 
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4.3.7 GO TERM ANALYSIS OF PROTEINS DEREGULATED IN EVS RELEASED FROM 

CELLS FOLLOWING CISPLATIN TREATMENT 

In order to find what processes might be targeted by the protein cargo of EVs from 

cisplatin-treated cells, GO term analysis was carried out using DAVID on the deregulated 

EV proteins. The gene names of the proteins found to increase or decrease by 2-fold or 

greater were uploaded to the DAVID analysis tool and the GO terms for biological processes 

and molecular functions were found. The top ten most highly significant GO terms are 

shown in Table 4-3 As with the cellular protein the most significantly enriched term for 

molecular function is ‘poly(A) RNA binding’ in both the up- and down regulated proteins. 

The most significantly enriched term for biological processes are ‘regulation of mRNA 

stability’ and ‘SRP-dependant cotranslational protein targeting to membrane’ in the up- 

and down regulated proteins respectively. There were fewer GO terms found for the EV 

protein than were observed for the cell protein and the significance of these enrichments 

were lower with the EV proteins. KEGG pathway analysis found no terms were found to be 

significantly enriched in these proteins. For all significant Go terms see Appendix 7.3 & 7.4. 

This would suggest a more specialised role for these EVs, are their protein cargo is 

associated with fewer different pathways, than the cellular protein.  
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Down Regulated       

Biological Function Fold Enrichment P Value Bonferroni 

SRP-dependent cotranslational protein targeting to membrane 19.85 1.05E-04 3.41E-02 

viral transcription 16.66 2.07E-04 6.59E-02 

rRNA processing 8.72 2.34E-03 5.37E-01 

nuclear-transcribed mRNA catabolic process,  
Nonsense-mediated decay 12.54 3.72E-03 7.07E-01 

cell-cell adhesion 6.88 5.43E-03 8.33E-01 

translational initiation 10.90 5.51E-03 8.38E-01 

IRES-dependent viral translational initiation 106.62 1.82E-02 9.98E-01 

positive regulation of protein localization to Cajal body 93.29 2.08E-02 9.99E-01 

positive regulation of establishment of protein localization  
To telomere 82.92 2.33E-02 1.00E+00 

translation 5.90 2.84E-02 1.00E+00 

Molecular Function Fold Enrichment P Value Bonferroni 

poly(A) RNA binding 5.65 1.01E-08 1.23E-06 

ATP binding 3.01 1.25E-03 1.42E-01 

GTPase binding 43.28 2.07E-03 2.24E-01 

mRNA binding 12.00 4.21E-03 4.02E-01 

cadherin binding involved in cell-cell adhesion 6.47 6.75E-03 5.62E-01 

protein binding 1.37 1.00E-02 7.07E-01 

transferase activity, transferring phosphorus-containing groups 150.05 1.30E-02 7.97E-01 

RNA binding 4.11 1.34E-02 8.08E-01 

creatine kinase activity 125.04 1.55E-02 8.52E-01 

structural constituent of ribosome 6.76 2.00E-02 9.15E-01 

Up Regulated       

Biological Function Fold Enrichment P Value Bonferroni 

regulation of mRNA stability 20.07 1.24E-07 6.69E-05 

cell-cell adhesion 8.58 8.40E-06 4.53E-03 

translational initiation 13.20 1.34E-05 7.23E-03 

nuclear-transcribed mRNA catabolic process,  
Nonsense-mediated decay 13.03 8.97E-05 4.73E-02 

viral process 6.91 1.38E-04 7.18E-02 

translation 7.15 3.98E-04 1.93E-01 

purine nucleotide biosynthetic process 64.58 9.21E-04 3.92E-01 

regulation of cellular amino acid metabolic process 20.26 9.65E-04 4.06E-01 

positive regulation of telomerase RNA localization to  
Cajal body 51.67 1.45E-03 5.44E-01 

antigen processing and presentation of exogenous peptide  
Antigen via MHC class I, TAP-dependent 16.40 1.78E-03 6.18E-01 

Molecular Function Fold Enrichment P Value Bonferroni 

poly(A) RNA binding 6.44 1.10E-15 2.25E-13 

cadherin binding involved in cell-cell adhesion 10.75 1.06E-08 2.14E-06 

RNA binding 6.17 8.39E-07 1.70E-04 

protein binding 1.51 1.45E-05 2.95E-03 

ATP binding 3.13 2.85E-05 5.76E-03 

ATPase activity 8.52 6.44E-04 1.23E-01 

integrin binding 9.89 7.40E-03 7.79E-01 

unfolded protein binding 9.44 8.41E-03 8.20E-01 

structural constituent of ribosome 5.85 1.00E-02 8.70E-01 

mRNA binding 8.31 1.19E-02 9.12E-01 

Table 4-3: GO term analysis of EV protein deregulated following cisplatin treatment.  All the proteins 
that were up- or down-regulated by 2-fold or greater within the EVs were analysed using the DAVID tool and 
the GO terms from Biological Function and Molecular Function were recorded. P value represents EASE score. 
The top ten most significantly enriched GO terms are shown. Fold enrichment is the number of genes 
annotated with that term divided by the number of genes expected by the software to be annotated with that 
term.  
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4.3.8 GO TERM ANALYSIS OF CELL PROTEINS ONLY FOUND WITH OR WITHOUT 

CISPLATIN TREATMENT 

Numerous proteins were only found in either PBS or cisplatin-treated cells. In order 

to ascertain the functions these molecules might play in these cells the GO terms for the 

proteins that only occurred in one treatment group were found using DAVID as before. 

Only proteins that were found in 2 or more replicates were analysed. The top ten most 

significantly enriched GO terms can be seen in Table 4-4There were 362 proteins uniquely 

identified in PBS treated cells, whilst 150 were found in cisplatin-treated cells. The proteins 

only found in the PBS treated cells were linked to 86 biological process and 52 molecular 

functions whilst 29 biological processes and 9 molecular functions were identified linked to 

the proteins only found in cisplatin-treated cells. The majority of the GO terms associated 

with these proteins were not significantly enriched following a Bonferroni correction. Only 

the molecular function terms ‘protein binding’ and ‘poly(A) RNA binding’ were significantly 

enriched in the list of proteins only found in PBS treated cells. KEGG pathway analysis found 

only one significantly upregulated pathway, endocytosis, which was enriched in both sets 

of proteins. For all significant Go terms see Appendix 7.5. This suggests that the proteins 

only found in cells from one treatment group are not involved in specific pathways within 

these cells.involved in specific pathways within these cells. 
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GO terms for proteins in cisplatin-treated cells only    
Biological Function Fold Enrichment P Value Bonferroni 

glutathione metabolic process 10.71 1.18E-03 6.48E-01 

cell-cell adhesion 3.98 1.89E-03 8.12E-01 

cellular response to nerve growth factor stimulus 15.48 2.11E-03 8.44E-01 

G2/M transition of mitotic cell cycle 5.25 5.69E-03 9.93E-01 

glutathione biosynthetic process 22.49 7.57E-03 9.99E-01 

positive regulation of myoblast fusion 21.17 8.53E-03 9.99E-01 

leukotriene biosynthetic process 17.99 1.17E-02 1.00E+00 

translation 3.32 1.88E-02 1.00E+00 

endocytosis 4.31 2.86E-02 1.00E+00 

positive regulation of dopaminergic neuron differentiation 59.97 3.27E-02 1.00E+00 

Molecular Function Fold Enrichment P Value Bonferroni 

protein binding 1.29 1.93E-04 5.35E-02 

glutathione hydrolase activity 57.81 1.07E-03 2.64E-01 

structural constituent of ribosome 4.17 3.09E-03 5.86E-01 

gamma-glutamyltransferase activity 34.69 3.15E-03 5.93E-01 

cadherin binding involved in cell-cell adhesion 3.19 1.27E-02 9.74E-01 

structural constituent of cytoskeleton 5.26 1.50E-02 9.86E-01 

2 iron, 2 sulfur cluster binding 13.87 1.93E-02 9.96E-01 

transferrin receptor binding 28.91 6.67E-02 1.00E+00 

oxidoreductase activity 2.89 9.39E-02 1.00E+00 

GO terms for proteins in PBS treated cells only    
Biological Function Fold Enrichment P Value Bonferroni 

nucleosome disassembly 14.88 2.88E-04 3.69E-01 

protein transport 2.30 2.25E-03 9.73E-01 

snRNA transcription from RNA polymerase II promoter 5.06 2.55E-03 9.83E-01 

regulation of endocytosis 8.16 3.06E-03 9.93E-01 

multivesicular body assembly 8.16 3.06E-03 9.93E-01 

protein folding 3.09 3.08E-03 9.93E-01 

mitotic nuclear division 2.65 3.87E-03 9.98E-01 

autophagy 3.42 4.88E-03 1.00E+00 

viral budding via host ESCRT complex 9.20 8.85E-03 1.00E+00 

endosomal transport 4.60 9.67E-03 1.00E+00 

Molecular Function Fold Enrichment P Value Bonferroni 

protein binding 1.31 6.77E-10 3.47E-07 

poly(A) RNA binding 2.20 1.82E-07 9.29E-05 

translation initiation factor activity 5.60 1.50E-03 5.37E-01 

2 iron, 2 sulfur cluster binding 9.76 1.54E-03 5.47E-01 

core promoter proximal region sequence-specific DNA binding 8.87 9.77E-03 9.93E-01 

RNA polymerase II distal enhancer sequence-specific DNA binding 4.50 1.05E-02 9.96E-01 

transcription coactivator activity 2.36 1.33E-02 9.99E-01 

adenyl-nucleotide exchange factor activity 14.64 1.68E-02 1.00E+00 

nucleoside kinase activity 14.64 1.68E-02 1.00E+00 

m7G(5')pppN diphosphatase activity 13.31 2.03E-02 1.00E+00 

Table 4-4: GO term analysis of cell protein found only in one treatment group.  

All the proteins that were only found in one treatment group were analysed using the DAVID tool and 
the GO terms from Biological Function and Molecular Function were recorded. P value represents EASE score. 
The top ten most significantly enriched GO terms are shown. Fold enrichment is the number of genes 
annotated with that term divided by the number of genes expected by the software to be annotated with that 
term.  



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 113 PhD Thesis 

4.3.9 GO TERM ANALYSIS OF EV PROTEINS ONLY FOUND WITH OR WITHOUT 

CISPLATIN TREATMENT 

As with the cellular proteins, some proteins were only found in EVs from either PBS 

or cisplatin-treated cells. Once again, the GO terms related to these proteins were found 

using DAVID. Only proteins that were found in 2 or more replicates were analysed. The top 

ten most significantly enriched GO terms can be seen in Table 4-5There were 110 proteins 

uniquely identified in EVs from PBS treated cells, whilst 110 were found in EVs from 

cisplatin-treated cells. The proteins only found in the control EVs were linked to 16 

biological process and 8 molecular functions whilst 45 biological processes and 18 

molecular functions were identified linked to the proteins only found in EVs released from 

cisplatin-treated cells. Only 5 of the GO terms were significantly enriched following a 

Bonferroni adjustment. The biological process terms ‘nuclear-transcribed mRNA catabolic 

process, nonsense-mediated decay’, ‘translational initiation’ and ‘SRP-dependant 

cotranslational protein targeting to membrane’ were significantly enriched in the proteins 

found only in cisplatin EVs, as were the molecular function terms ‘poly(A) RNA binding’ and 

‘RNA binding’. No terms were significantly enriched in the proteins only found in the PBS 

EVs. Interestingly ‘SRP-dependant cotranslational protein targeting to membrane’ was the 

only significantly enriched term in the proteins down regulated in EVs following cisplatin 

treatment. KEGG pathway analysis found that VEGF signalling pathway was significantly 

enriched in the proteins only seen in EVs from cisplatin-treated cells. For all significant Go 

terms see Appendix 7.6. This suggests that this function may be both up and down 

regulated following cisplatin treatment.  
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GO terms for protein found in cisplatin EVs only    

Biological Function 
Fold 

Enrichment P Value Bonferroni 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 10.55 1.03E-05 7.53E-03 

translational initiation 9.16 2.57E-05 1.87E-02 

SRP-dependent cotranslational protein targeting to membrane 11.69 2.85E-05 2.08E-02 

mRNA splicing, via spliceosome 6.36 8.17E-05 5.84E-02 

rRNA processing 5.87 4.15E-04 2.64E-01 

actin filament polymerization 24.14 5.72E-04 3.44E-01 

viral transcription 8.41 7.16E-04 4.10E-01 

translation 4.96 1.11E-03 5.60E-01 

movement of cell or subcellular component 9.12 2.14E-03 7.94E-01 

positive regulation of lamellipodium assembly 29.43 4.47E-03 9.63E-01 

Molecular Function 
Fold 

Enrichment P Value Bonferroni 

poly(A) RNA binding 4.09 1.53E-10 3.69E-08 

RNA binding 4.37 7.28E-06 1.76E-03 

protein binding 1.32 4.13E-04 9.51E-02 

ATP-dependent RNA helicase activity 12.25 7.15E-04 1.59E-01 

structural constituent of ribosome 5.02 2.64E-03 4.72E-01 

GTP binding 3.73 2.73E-03 4.84E-01 

RNA helicase activity 36.75 2.86E-03 5.00E-01 

GTPase activity 4.76 3.42E-03 5.64E-01 

nucleotide binding 3.66 6.04E-03 7.69E-01 

magnesium ion binding 4.68 8.94E-03 8.86E-01 

GO terms for protein found in PBS EVs only    

Biological Function 
Fold 

Enrichment P Value Bonferroni 

cell proliferation 4.44 1.05E-02 9.81E-01 

endodermal cell fate commitment 90.28 2.16E-02 1.00E+00 

negative regulation of single stranded viral RNA replication  
via double stranded DNA intermediumte 77.38 2.52E-02 1.00E+00 

DNA cytosine deamination 77.38 2.52E-02 1.00E+00 

positive regulation by host of viral genome replication 67.71 2.87E-02 1.00E+00 

negative regulation of transposition 67.71 2.87E-02 1.00E+00 

histone H2B ubiquitination 67.71 2.87E-02 1.00E+00 

histone monoubiquitination 49.24 3.93E-02 1.00E+00 

mRNA splicing, via spliceosome 4.88 4.69E-02 1.00E+00 

positive regulation of receptor recycling 38.69 4.97E-02 1.00E+00 

Molecular Function 
Fold 

Enrichment P Value Bonferroni 

protein binding 1.41 5.34E-04 7.31E-02 

poly(A) RNA binding 3.04 8.38E-04 1.12E-01 

hydrolase activity, acting on carbon-nitrogen (but not peptide) 
 bonds, in cyclic amidines 47.96 4.03E-02 9.97E-01 

NADPH binding 35.17 5.46E-02 1.00E+00 

aminoacyl-tRNA ligase activity 31.03 6.16E-02 1.00E+00 

calcium-dependent cysteine-type endopeptidase activity 25.12 7.56E-02 1.00E+00 

cadherin binding involved in cell-cell adhesion 3.64 9.41E-02 1.00E+00 

protein heterodimerization activity 2.84 9.54E-02 1.00E+00 

Table 4-5: GO term analysis of EV protein found only in one treatment group.  All the EV proteins that 
were only found in one treatment group were analysed using the DAVID tool and the GO terms from Biological 
Function and Molecular Function were recorded. P value represents EASE score. The top ten most significantly 
enriched GO terms are shown. Fold enrichment is the number of genes annotated with that term divided by 
the number of genes expected by the software to be annotated with that term.  
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4.3.10 RELATIVE ENRICHMENT OF PROTEINS IN EVS VS CELLS 

In order to assess the differences in protein cargo enrichment between the cells and 

the EVs the fold changes of the proteins in the EVs and the cells following cisplatin 

treatment. Only Proteins found in 2 of the samples in each treatment group were included. 

Values were log 2 transformed before plotting. The fold change following cisplatin 

treatment of 319 proteins are shown in Figure 4-9. Spearman’s rank correlation coefficient 

was calculated and found to be -0.09 (2 d.p.) with a p value of 0.09 (2 d.p.). This suggests 

there is a non-significant, weak negative correlation between the two samples. This means 

that enrichment of proteins in cells had little relation to the enrichment of those proteins 

in the EVs. 

The ratio of enrichment of proteins in the EVs was found by dividing the fold change 

for EV protein by the fold change for cell protein. The GO terms for all proteins found to be 

more than 2 times more enriched in the EV samples were then found using DAVID. The top 

ten GO terms for these proteins are shown in Figure 4-9. There were 96 proteins found 

have a fold change in EVs 2 or more times higher than in cells. There were 113 GO terms 

for biological process associated with these proteins and 29 GO terms for molecular 

functions. The cellular compartment most significantly enriched in this list was the 

extracellular exosome. Therefore, the proteins with a fold change greater than 2 times 

higher in EVs than in cells are known to be associated with exosomes. The term ‘SRP-

dependant cotranslational protein targeting to membrane’ is enriched in the proteins that 

are more enriched in EVs than cells post treatment with cisplatin. This term was also 

enriched in the proteins only found in cisplatin EVs. Other terms more highly enriched in 

cisplatin EVs than cisplatin-treated cells were numerous terms related to translation and 

transcription as well as ‘NIK/NF-kappaB signalling’. KEGG pathway analysis of these 

proteins found 2 pathways were significantly enriched in these pathways: Ribosome and 

Spliceosome. Both of these KEGG pathways were also significantly enriched in the proteins 



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 116 PhD Thesis 

both up- and down regulated in cells following cisplatin treatment. For the full list of 

significantly enriched GO terms see Appendix 7.6 and KEGG pathways see Appendix 7.7. 

 

Figure 4-9: The differences in protein enrichment in EVs and Cells. All the proteins that had a fold 
change in EVs at least 2 times higher than in cells were analysed using the DAVID tool and the GO terms from 
Biological Function and Molecular Function were recorded. P value represents EASE score. The top ten most 
significantly enriched GO terms are shown. Fold enrichment is the number of genes annotated with that term 
divided by the number of genes expected by the software to be annotated with that term.  
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4.3.11 ESTABLISHING THE C2C12 DIFFERENTIATION MODEL 

C2C12 cells are mouse muscle precursor cell line that are often used to assess muscle 

differentiation in vitro. The levels of MyHC and Ki67 in differentiating cells to assess their 

levels in normal differentiation. Differentiation was induced in confluent C2C12s at day 0. 

These cells were then fixed on days 0-4 of differentiation and immunostained for MyHC, 

Ki67 and nuclear stained with Hoechst before the levels of fluorescence were read using a 

microplate reader. The level of fluorescence of MyHC and Ki67 were normalised to Hoechst 

in order to control for cell number. These data are shown in Figure 4-10. The levels of MyHC 

increased steadily from day 0 to day 4 of differentiation suggesting that the cells are 

differentiating into muscle cells. The levels of Ki67 increased on day 1 of differentiation 

before being reduced on days 2 and 3 and was highest on day 4 of the experiment. Addition 

of horse serum induces differentiation in C2C12 cells, with increasing amount of MyHC 

observed each day. The levels of proliferation were high on the first day of differentiation, 

lower the following two days before raising again on day 4.. The levels of MyHC increased 

steadily from day 0 to day 4 of differentiation suggesting that the cells are differentiating 

into muscle cells. The levels of Ki67 increased on day 1 of differentiation before being 

reduced on days 2 and 3 and was highest on day 4 of the experiment. Addition of horse 

serum induces differentiation in C2C12 cells, with increasing amount of MyHC observed 

each day. The levels of proliferation were high on the first day of differentiation, lower the 

following two days before raising again on day 4. 

4.3.11.1 EVS FROM OVARIAN CANCER CELLS REDUCE THE LEVELS OF DIFFERENTIATION AND 

PROLIFERATION IN DIFFERENTIATING MUSCLE CELLS 

Vesicles from Lewis Lung Carcinoma (LLC) tumour cells have been shown to induce 

cachexia-like symptoms in C2C12 cells (Zhang et al., 2017). Here I hypothesised that EVs 

from ovarian cancer cells would also be able to induce muscle wasting and that if the EVs 
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were extracted from cisplatin treated cells this effect would be altered. In order to assess 

the effect of EVs from Ovarian cancer cells on C2C12s and whether any effect may be 

altered during cancer treatment, EVs were extracted from A2780 cells treated with either 

PBS or Cisplatin (40 µM) and then used to treat C2C12s. Differentiating C2C12s were 

treated with these EVs or PBS on day 2 and 3 of differentiation. These cells were then fixed 

on day 4 of differentiation and immunostained for MyHC, Ki67 and nuclear stained with 

Hoechst which was then read using a microplate reader. The level of fluorescence of MyHC 

and Ki67 were normalised to Hoechst in order to control for cell number. These data are 

shown in Figure 4-10. The levels of MyHC were significantly reduced following treatment 

with EVs from cancer cells, however PBS treatment had no effect on the levels of MyHC 

and Ki67. No differences were seen between the two vesicle groups. Cancer EVs reduced 

the level of differentiation and proliferation in these C2C12 cells and this effect is not 

altered when the cells were treated with EVs derived from cisplatin-treated cells. 



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 119 PhD Thesis 

 

Figure 4-10: Cancer EVs reduce muscle cell differentiation and proliferation. Differentiation was 
induced in C2C12 cells via the addition of medium supplemented with horse serum. On the fourth day of 
differentiation the cells were immunostained for MyHC, Ki67 and nuclear stained with Hoechst. The levels of 
fluorescence were then recorded on a microplate reader. The levels of MyHC and Ki67 for each well were 
normalised to the level of Hoechst in order to control for cell number. A) The levels of MyHC and Ki67 in 
untreated cells on days 0-4 of differentiation. B) These cells were treated with EVs from both Cisplatin (40 µM; 
red) and PBS (green) treated cells or PBS (blue) alone on days 2 and 3 of differentiation. Box and whisker plots 
show median, upper and lower quartiles, error bars are 1.5x interquartile range; * p<0.05, ** p<0.01 and *** 
p<0.001 measure using students ttest. Data from at least 30 biological replicates.  
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4.3.12 INJECTION OF OVARIAN CANCER EVS HAS NO EFFECT ON THE 

FUNCTIONAL STRENGTH OF MICE 

Above I demonstrated that cancer EV treatment in vitro caused reduced MyHC 

production in differentiating C2C12 cells. Here I hypothesised that treatment of animals 

using these EVs will reduce muscle mass and therefore reduce the functional strength of 

the mice relative to control treatment. In order to test whether cancer EVs were able to 

induce cachexia in mice, EVs were extracted from A2780 cells 48 hours after treatment with 

either cisplatin or PBS. Mice were then injected with these EVs or saline every other day 

for 21 days. The strength of the mice was assessed via inverted screen and weight lifting 

tests, outlined above, prior to injections and again after all injections had been completed. 

Each mouse was weighed every 3 days and the circumference of the right rear hind limb 

was observed every week. The change from baseline of these four variables is shown in 

Figure 4-11 (p = 0.55 AVOVA). The average mass of each mouse increased in all treatment 

groups over the course of the experiment however no significant differences were 

observed after 21 days (p = 0.7 ANOVA). The mice treated with cisplatin EVs showed the 

greatest average improvement in screen hang time, however this increase was not 

significant (p = 0.11 ANOVA). Finally, all the mice performed worse on the weight lifting 

test after 21 days however there was no difference between groups in their ability to lift 

the weights (p = 0.81 ANOVA). Statistical significance was assessed via ANOVA on the data 

set for the final reading. Treatment with the EVs appears to have had no effect on the 

strength of the mice over 21 days. Treatment with the EVs appears to have had no effect 

on the strength of the mice over 21 days. These data do not support the hypothesis that 

EVs would reduce strength and muscle mass in mice as there is no difference in the 

functional strength, or muscle size in the EV treated mice. 

In order to see whether EV injection had altered the composition of immune cells in 

the animals the blood content of the mice was analysed using ABX-Pentra 60 (Horiba) after 
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they had been sacrificed. The concentration of white blood cells, red bloods cells and 

platelets were counted, and the composition of the white blood cells was assessed. Whilst 

the white blood cells do appear to have increased in mice treated with cisplatin EVs, no 

significant changes were observed in the composition of the blood cells or the relative 

levels of different white blood cells the between treatment groups (ANOVA p = 0.058, post 

hoc Tukey test p = 0.16 Cisplatin EV – PBS EV, p = 0.06 Cisplatin EV – Saline). Similarly, whilst 

the 75th percentile for the monocytes was very high in the saline treated mice this was not 

significant when assessed with ANOVA (p = 0.36). EV treatment did appear to affect the 

whole blood counts. 
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Figure 4-11: The effects of cancer EVs on the functional strength of mice.  A) Four measures of mouse 
strength and muscle were recorded before and after treatment with either saline (grey) or EVs from cisplatin 
(blue) or PBS (orange) treated ovarian cancer cells. The levels of each variable are displayed as average change 
from baseline. B) Blood was taken from the animals after sacrifice and the content was analysed. The PBS EV 
treatment group consisted of 6 mice and both the cisplatin EV and saline groups contained 8 mice. Statistical 
significance was assessed via an ANOVA carried out on the data from the final day of the experiment. Bars 
are mean change from baseline and error bars are standard deviation. Box and whisker plots show median, 
upper and lower quartiles, error bars are 1.5x interquartile range.  
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4.3.13 MUSCLE FIBRE AREA WAS NOT AFFECTED BY TREATMENT WITH 

OVARIAN CANCER CELL DERIVED EVS 

As cancer EVs were able to reduce muscle differentiation in vitro and have been 

shown to be involved in cachexia previously (Zhang et al., 2017) I hypothesised that these 

EVs should also affect the development of muscle mass in mice. To see whether cancer EVs 

affected muscle fibre size mice were treated with saline or EVs from cells treated with 

cisplatin or PBS. The mice were treated every other day with 1x109 EVs via tail vein 

injection. After 21 days the mice were sacrificed and the right rear quadricep was removed 

from the mice and transverse sections were taken from the mid-belly of the muscle. These 

sections were stained with haematoxylin and eosin. Images were taken of the muscles at 

10x magnification and the area of the fibres was assessed using ImageJ. The median muscle 

fibre size for the mice in each treatment group are shown in Figure 4-12. Whilst the muscle 

fibres from mice treated with EVs were slightly larger than those from mice treated with 

saline, there were no significant differences measured via ANOVA. Therefore, it seems that 

treatment with EVs did not affect muscle fibre cross sectional area within the time of the 

experiment. 

4.3.14 NO DNA DAMAGE WAS OBSERVED IN THE SPLEEN OF THE MICE 

Work on the radiation-induced bystander effect has shown that irradiation in the 

head of a mouse can induce bystander effects in the spleen of the organism (Ilnytskyy et 

al., 2009). As I have here demonstrated EVs are involved in the bystander effect in vitro I 

hypothesised that bystander effects should be found in mice that were treated with stress-

derived EVs. Here I tested whether the EVs released from the cisplatin treated cells were 

able to induce bystander effects when injected into an organism. In order to test whether 

EVs extracted following cisplatin treatment were able to induce the bystander effect in 

these mice the levels of DNA damage in the spleen was assessed. Sections of spleen from 
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mice treated with saline or EVs from cisplatin or PBS treated cells were assessed for DNA 

damage via immunostaining for γH2AX, a histone protein known to be a marker of DNA 

damage. The percentage of nuclei that stained positive for γH2AX is shown in Figure 4-13. 

There was an increase in the level of nuclear γH2AX in the cisplatin EV treated mice, 

however this was not significant (p = 0.435 ANOVA, p = 0.45 Cis EV – PBS EV post hoc Tukey, 

p = 0.58 Cis EV- Saline post hoc Tukey). Whilst higher levels of DNA damage were observed 

in the spleens of mice treated with cisplatin EVs, this increase was not significant. 

 

Figure 4-12: The effect of ovarian cancer EVs on muscle fibre cross sectional area in mice. Mice were 
treated with saline or EVs from cisplatin or PBS treated cells every two days for 21 days. The mice were 
sacrificed and the right rear quadricep was fixed and harvested. The muscles were frozen in OCT and sections 
were cut on a cryostat. Sections were H&E stained and muscle fibre cross sectional area was measured using 
ImageJ. The median muscle fibre csa for each mouse was calculated. Box and whisker plots show median, 
upper and lower quartiles, error bars are 1.5x interquartile range. At least 650 fibres were counted for each 
mouse. Cis EV group had 7 biological replicates, PBS EV group had 6 biological replicates and the Saline group 
had 8 biological replicates. Significance was assessed via ANOVA.  
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Figure 4-13: The effect of cisplatin EVs on the levels of DNA damage in the spleen. 

 Mice were treated with saline or EVs from cisplatin or PBS treated cells every two days for 21 days. 
The mice were sacrificed, and the spleen was fixed and harvested. The spleen was frozen in OCT and sections 
were cut on a cryostat. Sections were immunostained for γH2AX and the number of γH2AX containing nuclei 
were counted. The percentage of nuclei stained with γH2AX for each mouse was calculated. Box and whisker 
plots show median, upper and lower quartiles, error bars are 1.5x interquartile range. At least 200 cells were 
counted for each mouse. Cis EV group had 8 biological replicates, PBS EV group had 6 biological replicates and 
the Saline group had 8 biological replicates. Significance was assessed via ANOVA and post hoc tukey test. 
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4.4 DISCUSSION 

In this chapter the role of EVs in cancer induced cachexia has been assessed. Cancer 

EVs have been shown to reduce the levels of differentiation in mouse myoblast cells. 

Stressing the cells with cisplatin prior to extracting the EVs had no effect on this effect. 

However, no reduction in muscle mass was observed when these EVs were injected into 

mice. A screen of the protein cargo of these vesicles was also carried out which showed 

numerous differences in protein cargo, but functional analysis suggests the proteins in 

cisplatin and PBS treated cells and the EVs they release are involved in similar pathways. 

4.4.1 EVS FROM CISPLATIN-TREATED CELLS ARE ABLE TO INDUCE BYSTANDER 

EFFECTS IN NAÏVE POPULATIONS. 

Cisplatin is a platinum based chemotherapeutic used to treat a range of cancers, 

including ovarian carcinomas (Gómez-Ruiz et al., 2012). Previously bystander effects have 

been observed following various chemical stresses, including chemotherapeutics (Samuel 

et al., 2017; Asur et al., 2009; Jin et al., 2011). In radiation extracellular vesicles have been 

found to be involved with the induction of DNA damage in bystander cells and data in the 

previous chapter demonstrates that EVs are also involved in thermally-induced bystander 

effects. Here it has been shown that EVs released from cells treated with 40 µM Cisplatin 

were able to induce DNA damage and reduce cell viability when added to a naïve 

population. These data corroborate work in our own lab showing EVs from Cisplatin-

treated cells having a multitude of effects on unstressed cells, including bystander effects 

in the form of reduced cell viability following treatment (Samuel et al., 2017) and the 

previous work in the field suggesting that bystander effects are in part propagated via 

extracellular vesicles (Al-Mayah et al., 2012; Bewicke-Copley et al., 2017; Xu et al., 2017).  
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4.4.2 SEC IS ABLE TO EXTRACT EVS FROM CELL CULTURE MEDIUM SEPARATE FROM 

PROTEIN CONTAMINATES 

Ultracentrifugation is a technique widely used for EV extraction. However, these 

samples are likely to be contaminated with other molecules found in the medium that 

pellet at the same speed as the vesicles (Witwer et al., 2013). There are a few different 

methods of extraction that are supposed to either increase purity such as buffering the EVs 

on a sucrose gradient (Gudbergsson et al., 2015) or yield such as ExoSpin (Lane et al., 2015). 

Size Exclusion Chromatography has more recently become a popular method of extraction 

(Corso et al., 2017; Gámez-Valero et al., 2016; Böing et al., 2014; Lozano-Ramos et al., 

2015). Here EVs extracted from A2780 cells using SEC were observed by NTA in fraction 6 

through to fraction 10. Free protein was first seen in fraction 10 at a relatively low level and 

it quickly increased until it peaked in fraction 18. This demonstrates that the majority of 

the EVs in the medium were able to be separated from the free protein also found in the 

medium. There were, however, some particles observed in the fractions after the protein 

levels, in fractions 12, 16 and fraction 20. The peaks in fractions 16 and 20 were only 

observed in samples from one column and appear to be due to either scratches in the 

device or very large objects/air bubbles causing artefacts on the video, which were 

measured as particles. Particles were observed in fraction 12 in all columns and were visible 

as particles in the videos, suggesting that there may still be some small vesicles being eluted 

along with the protein. Alternatively, these particles could in fact be protein aggregates 

which can also be detected via NTA (Filipe et al., 2010). It is important to note that the 

vesicles did overlap slightly with the protein, and that only taking vesicles from fractions 

that did not contain protein may lead to potentially import vesicles being excluded. More 

work is needed to better understand the nature of the particles found after fraction 9. For 

example, an additional step to break up protein aggregates prior to analysis on the NTA.   



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 128 PhD Thesis 

The proteins found within the particles eluted in fractions 6-8 were identified via 

mass spectrometry and the GO terms for cellular compartment were found. These data 

show that the top three most significantly enriched GO terms ‘extracellular exome’, 

‘cytosol’ and ‘membrane’. This suggests that the protein cargo found within these vesicles 

is linked with proteins known to be found within exosomes as well as in the cell membrane 

and cytosol, both of which are likely to also be found within EVs. Therefore, it seems that 

the extracted particles are in fact extracellular vesicles not some other molecule or complex 

of roughly the same size. 

4.4.3 GO TERM ANALYSIS OF THE PROTEIN CHANGES IN CISPLATIN-TREATED CELLS 

SUGGESTS A REDUCTION OF PROTEIN SYNTHESIS IN CISPLATIN-TREATED 

CELLS. 

GO term analysis was carried out to determine what processes might be affected by 

the observed changes in the proteomes of the cells and EVs. Numerous GO terms were 

significantly enriched in the gene lists of the deregulated cellular proteins, however there 

is no clear pattern as to which processes were being up and down regulated. Numerous GO 

terms for biological processes and molecular functions were observed to be simultaneously 

enriched in both the up- and down-regulated protein populations such as ‘translational 

initiation’, ‘poly(A) RNA binding’ and ‘nucleotide binding’. 

Interestingly one of the biological processes up-regulated within the cells is 

‘NIK/NFkappaB signalling’. The activation of the transcription factor NFκB is known to be 

linked to resistance to chemotherapy (Godwin et al., 2013; Montagut et al., 2006) so it 

seems obvious that it would be up-regulated following chemotherapy treatment. Further 

this pathway is also known to be involved in the bystander effect, often seen to be up-

regulated in the bystander cells (Zhou et al., 2008; Prise et al., 2009). The increase of the 

proteins related to NFκB signalling could mean that these proteins will be loaded into the 
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EVs released by these cells and might be able to induce the effect in bystander cells, 

however no such increase was observed in the EVs. It also seems that protein synthesis and 

transport might also be perturbed in the cisplatin-treated cells with the biological processes 

‘mRNA transport from the nucleus’ and ‘protein folding’ both being significantly enriched 

in the down-regulated proteins along with the molecular functions ‘unfolded protein 

binding’, and ‘protein transporter activity’. Cisplatin treatment is known to reduce protein 

synthesis (Heminger et al., 1997; Sato et al., 1996; Nicholas et al., 2017) so it makes sense 

that processes related to it are down-regulated. The most highly enriched molecular 

function in the down-regulated proteins is ‘Ran GTPase binding’. Ran GTPase is utilised for 

the translocation of RNA and proteins across the nuclear envelope and is involved with 

mitosis. Therefore, the deregulation here could also be related to the reduction in protein 

synthesis. 

4.4.3.1 EVS FROM CISPLATIN-TREATED CELLS SEEM TO BE ENRICHED IN PROTEINS THAT TARGET 

MUTANT MRNA FOR DEGRADATION 

Fewer proteins were identified in the EV samples with only 1651 proteins found in all 

the EV protein samples whilst 2688 proteins were found within the cell samples. Further 

whilst 2176 proteins were found in at least two samples of both treatment groups and 512 

in two or more samples of one treatment group in cells, only 343 were found in at least 

two samples of both EV groups with only another 175 found in at least two samples of only 

one treatment group. This means that a lot of the proteins identified in the EVs were only 

seen in one of the samples tested in one or both treatment groups, suggesting that many 

of these proteins identified may not commonly be found in EVs and are only found here 

through chance. 

Only 65 proteins were up-regulated 2-fold or more in EVs released by cisplatin cells 

and 45 were down regulated 2-fold or more, none of the proteins were significantly 
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enriched in cisplatin EVs following a Bonferroni correction. This could suggest that the 

protein cargo of the EVs is not related to its function and it could be the RNA or Lipid cargo 

or a combination of all three that induces effects. This would support work on the 

bystander effect which shows non-coding RNA molecules being important bystander 

signals (Xu et al., 2014; Xu et al., 2015). As with the GO term analysis for the cellular protein 

there is a lot of cross-over between the terms enriched in the up- and down-regulated 

proteins. For example, the biological processes ‘translation’ and ‘cell-cell adhesion’ appear 

in both lists as do the molecular functions ‘mRNA binding’ and ‘poly(A) RNA binding’. Very 

few if the GO terms appear to be significantly enriched in either protein list however. Like 

in the GO terms for the cellular protein ‘poly(A) RNA binding’ is the most highly significant 

molecular function in both up- and down-regulated proteins, it is also the only significantly 

enriched downregulated molecular function in EVs. Interesting the GO terms ‘regulation of 

mRNA stability’ and ‘nuclear-transcribed mRNA catabolic process, nonsense-mediated 

decay’ were both significantly enriched in the EVs. The term ‘nuclear-transcribed mRNA 

catabolic process, nonsense-mediated decay’ refers to the pathway for preventing the 

translation of mRNA with nonsense mutations. It’s possible that these are packaged into 

EVs following genotoxic stress to halt the production of erroneous protein in neighbouring 

recipient cells that may also have been affected by the stress, or in an attempt to prime 

cells for a future stress. A further 65 proteins were only found in EVs from PBS treated cells 

whilst 110 were found in EVs isolated from cisplatin-treated cells. When the GO terms 

analysis was run for these samples very few terms were significantly enriched. The protein 

only found in PBS treated cells were enriched for the molecular functions: ‘protein binding’ 

and ‘poly(A) RNA binding’ none were significantly upregulated for protein only found in 

cisplatin-treated cells. Proteins only found in EVs from cisplatin-treated cells were enriched 

in the biological process: ‘nuclear-transcribed mRNA catabolic process, nonsense-mediated 

decay’ and the molecular functions ‘poly(A) RNA binding’ and ‘RNA binding’ and the protein 
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only found in EVs from PBS treated cells weren’t significantly enriched in any terms. These 

data suggest that the EVs may carry proteins that are involved in repressing translation in 

neighbouring cells. It is already known that numerous pathways are down regulated during 

stress, so it may be that EVs play a role in this facet of the stress response. 

The proteins found in the EVs were often found in only one or two of the samples, 

suggesting they might not be very important to the function of the EVs. This also suggests 

that the EVs are highly heterogeneous as a population. It is important to note that non-

stress-derived EVs will likely also be released following stress conditions, which will mean 

that some of the proteins observed in the cisplatin EV samples may not be related to stress. 

Further, these EVs were extracted from the cells 72 hours post stress, which may mean that 

the vesicles in these samples are from cells that have recovered from the stress. It would 

be possible to get a purer sample of stress EVs by extracting the EVs much sooner after 

stress treatment. For example, thermal bystander effects were observed above in 3.3.8.2 

with EVs extracted only 3 hours after stress. However, this would likely require medium 

from far more cells in order to have enough vesicles in the medium after only three hours. 

 In order to generate a more robust dataset it would be necessary to take protein 

from a greater number of samples in order to see which proteins are commonly found in 

the EVs suggesting active loading, and which may have only been loaded into them by 

chance during their formation. 

The relative enrichment of proteins following cisplatin treatment between cells and 

EVs was assessed to determine whether the protein changes in the EVs matched the 

changes in the cells. There was a weak negative correlation between the fold changes, 

however this was very low, and it seems likely that fold change of proteins in EVs in 

independent of the fold changes observed in the cells. Interestingly when the proteins 

whose fold change was 2 or more times higher in EVs were analysed for Go term 

enrichment analysis they were most significantly associated with the extracellular 



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 132 PhD Thesis 

exosome. This confirms that the EV proteins are more enriched in the EVs than in the cells. 

Many of the terms that were enriched in the other analyses were also found enriched in 

this protein list, such as ‘poly(A) RNA binding’ and ‘viral transcription’. One interesting 

biological process that was enriched was ‘NIK/NFkappaB signalling’, which was found to be 

upregulated in the cells, but not the EVs after cisplatin treatment. However, it appears that 

the proteins whose fold change in EVs was over twice that of in cells are related to this 

process. 

The proteomics data show a possible role of the protein cargo of cisplatin-treated cell 

derived EVs in targeting mutant mRNA for destruction. However, there is no evidence of 

any proteins that may be responsible for any effects that these EVs may cause in recipient 

cells. 

4.4.4 EVS FROM CANCER CELLS REDUCE DIFFERENTIATION AND PROLIFERATION OF 

C2C12S 

There is evidence that EVs from cancer cells are involved in the induction of cachexia 

in cancer patients (Zhang et al., 2017). C2C12s are an immortalised mouse myoblast cell 

line that is often used to model muscle maturation in vitro (Zhang et al., 2017; Bonetto et 

al., 2015; Burattini et al., 2004). There was a significant reduction in differentiation into 

muscle cells following treatment with EVs from A2780 cells. There was no difference in the 

effect of these EVs when cells were treated with cisplatin, suggesting the EVs of stressed 

cells show no difference in their ability to hinder muscle development. These data 

corroborated the findings above that showed EVs from lung cancer cells were able to 

reduce the differentiation of C2C12s (Zhang et al., 2017). These findings suggest that EVs 

released from ovarian cell lines are able to reduce the level of muscle development 

observed after four days of differentiation in mouse myoblast cells. It is possible therefore 



Chapter 4 - The effects of Cisplatin induced EVs 

Findlay Bewicke-Copley Page | 133 PhD Thesis 

that EVs released by ovarian tumours could be responsible for the induction of cachexia in 

patients. 

HSP70 and HSP90 carried within vesicles have shown to be important for the 

induction of cachexia (Zhang et al., 2017). However, these proteins were not found to be 

enriched in the proteomics data. It could be that these EVs induced a reduction in muscle 

differentiation in a different way to the vesicles extracted from lung cancer cells. After 

treatment with lung cancer cells an increase in p38 phosphorylation was observed (Zhang 

et al., 2017) and activation of p38 is known to be linked to muscle wasting (Yuan et al., 

2015; Zhang et al., 2013; Zhang & Li 2012). In order to check whether ovarian cancer EVs 

induce muscle wasting via the same pathways the levels of p-p38 could be assessed 

following EV treatment. It is also possible that HSP70 and HSP90 are present in ovarian 

cancer EVs, but that they were simply not picked up by the proteomics screen. 

4.4.5 EVS INJECTED INTO MICE SHOW NO FUNCTIONAL OR HISTOLOGICAL 

DIFFERENCES IN MUSCLE COMPARED TO MICE INJECTED WITH SALINE 

After 21 days there were no significant differences in the results of limb 

circumference body mass the strength tests. Mice injected with cancer EVs were assayed 

for mass and limb circumference as well as being subjected to two different types of 

strength test. Surprisingly mouse limb circumference increased on average over the first 

two weeks before dropping again by week 3. The mice treated with EV from cancer cells 

showed the greatest drop in limb circumference whilst the saline treated mice showed a 

smaller reduction. The mass of the mice had also increased by the end of the experiment. 

The mice treated with EVs from cisplatin-treated cells showed the lowest mass increase 

throughout the experiment, however there were no significant differences in the final 

weight changes of the mice. On average treatment with EVs from cisplatin-treated cells 

seemed to slightly increase the time the mice could hang from the screen and PBS EV and 
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saline treated mice showed no improvement, however the three groups did not show any 

statistically significant differences in ability. All three groups showed reduced ability in the 

weight lifting test after 21 days, again with no significant differences in their ability to lift 

the weights. Mouse muscle fibre size was also assayed following the experiment, however 

this also showed no significant differences between the median muscle fibre size the mice 

in each treatment group. All this suggests that the EV treatment was insufficient to cause 

the mice to develop a cachexia phenotype. There is the possibility that had the experiment 

continued past 21 days that the reduction in hind leg circumference may have continued 

suggesting a that the mice were cachexic; however, the other measures of cachexia showed 

no sign of the EVs having an effect on the muscles of the mice. 

The previous experiment showing that lung cancer EVs were able to induce cachexia 

did not inject EVs into healthy mice, but blocked EV release from the cell line that was 

implanted into the mice (Zhang et al., 2017). It could be that it was the silencing of Rab27a 

and b that is responsible for the reduced cachexia, not the lack of EV release. This could be 

checked by seeing if the cachexia phenotype can be rescued in mice with the deficient cells 

via the addition of EVs from regular lung cancer cells. Further the xenograft model allows 

the xenograft to constantly release EVs whilst injecting the mice every two days drastically 

reduces the number of these potentially cachexia inducing signals. Whilst 1x109 EVs has 

been shown previously to have an effect in vivo (Akbar et al., 2017) it is possible that here 

the number of vesicles the mice were treated with was too low for any effect to be 

observed. It would be useful to know roughly how many EVs a tumour is able to release 

over time in order to better select the concentration of EVs to inject. The EVs used here 

were also extracted weekly and stored at 4C which may have impaired their function, which 

again is not a problem that would occur with EVs released from a xenograft. As well as the 

complications of injecting EVs the two strength tests in this study are not direct measures 

of strength unlike testing the mice with a grip strength meter, which means other factors 
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may have altered the performance of the mice. The data from these tests is supported by 

the histological data however, so this may not have affected the results. 

The EVs have been shown to reduce the levels of differentiation in C2C12s, and EVs 

have been shown to be involved in cachexia (Zhang et al., 2017). It therefore seems likely 

that these vesicles should have some effect in vivo. It is possible that with the relatively low 

levels of EVs utilised in these experiments that simply too few vesicles were able to interact 

with the muscles in the mice. One important thing to ascertain would be which tissues the 

injected EVs are taken up by in the mouse. This could be assessed by labelling the vesicles 

with a fluorescent dye (such as PKH67), sectioning numerous tissues including the muscles 

and liver and seeing where the vesicles could be found, and in what quantities. If the 

vesicles are unable to make it to the muscles, they are unlikely to affect muscle 

development. 

The mice were also assessed for DNA damage in the spleen, in order to determine 

whether cisplatin EVs were able to induce bystander effects in vivo. However, there was no 

also no change in the levels of DNA damage observed across the three treatment groups. 

Whilst EVs have been implicated in the induction of bystander effect this has not been 

demonstrated in vivo (Al-Mayah et al., 2012; Bewicke-Copley et al., 2017; Xu et al., 2017). 

Again, as above the treatment here may simply have been with too few EVs to be able to 

induce these affects. Interestingly there was a non-significant increase in the level of DNA 

damage in the mice treated with cisplatin EVs. It might be that if the mice were treated 

with a more physiologically-relevant number of EVs that this difference would become 

more pronounced. Preliminary work carried out by our collaborators suggests that there 

are around 1-2x1010 circulating EVs within a mouse. Here we injected 1x109 EVs every other 

day which corresponds to around 5-10% of the total EVs in the mouse. With a mouse 

containing around 1.5 mls of blood this would correspond to a blood EV concentration of 

1.3x1010/ml which corresponds with out injection of 100µl of EVs at 1x1010/ml. Whilst the 
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concentrations of the EVs injected here are comparable to the physiological levels in mice 

the turnover of EVs is relatively quick (Feng et al., 2010) meaning that the injected EVs will 

be quickly used up or excreted by the organism, whilst EVs will be constantly released from 

a tumour, replenishing their levels as they are taken up by cells or excreted. It would be 

enlightening to know how many EVs are released by a tumour over a specific timeframe in 

order to accurately construct a dosing regimen. 

There was a non-significant increase in the levels of white blood cells and monocytes 

in the mice treated with cisplatin EVs. Whilst these data are not significantly different it 

might be an interesting avenue of further research. It would be interesting to look at the 

blood composition of the mice over the course of the experiment, particularly before and 

shortly after injection to see whether the EVs are able to stimulate the immune system.  

The data here seem to show that injection of cancer EVs is insufficient to induce 

cachexia in mice, contrary to previously published data (Zhang et al., 2017). Whilst the work 

presented here attempted to induce muscle loss through addition of vesicles into healthy 

mice, the previous study showed that blocking EV release from a xenograft stopped 

cachexia from forming. This distinction in methodology may explain the differences in 

findings as it is difficult to mimic physiological EV levels and production when injecting 

them. 

4.4.6 CONCLUDING REMARKS 

In this chapter it has been demonstrated that EVs released from cells stressed with 

cisplatin are able to induce bystander effects in naïve cells. This is supports the data in the 

previous chapter suggesting that thermally-induced bystander effects can be induced with 

EVs, as well as with other literature on the subject (Samuel et al., 2017; Al-Mayah et al., 

2015; Al-Mayah et al., 2012; Xu et al., 2015). 
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Size Exclusion Chromatography has been shown to be able to separate the EVs and 

protein components found in cell culture medium. This greater level of purity allows for 

more confidence that any observed effects are in fact due to EVs and not due to 

contaminants that are isolated alongside them. 

A proteomics screen was carried out which suggested that whilst cisplatin and PBS 

treated cells have different a protein complement, the many of the pathways associated 

with the down-regulated proteins are similarly associated with the up-regulated proteins. 

There was evidence that cisplatin cells down-regulate pathways related to protein 

synthesis. The proteomes of the EVs were smaller and the differences in protein expression 

were much smaller than with cellular protein. However, EVs from cisplatin-treated cells do 

seem to contain proteins associated with blocking the expression of mutant mRNA, which 

might be an attempt to reduce the damage from the genotoxic stress. 

 Finally, EVs from PBS and cisplatin-treated ovarian cancer cells have been shown to 

reduce muscle cell differentiation and proliferation in vitro however, no cachexia or 

bystander effect was observed following injecting these EVs into mice for 21 days. 
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5  DISCUSSION 

5.1 EVS AS BYSTANDER SIGNALS 

5.1.1 EVS CAUSE EFFECTS IN BYSTANDER CELLS 

In this thesis it has been demonstrated that EVs released following different stress 

treatments are able to induce bystander effects in unstressed populations. Previously this 

function of EVs had mostly been observed following radiation treatment. This suggests that 

EV induced bystander effects may be universal across different stress types. It has 

previously been shown that both RIBE and chemically-induced bystander effects involves 

the action of gap junction signalling (Zhou et al., 2000; Zhou et al., 2001; Shao et al., 2003). 

This allows the construction of a unified model of bystander effects for all types of stress. 

It is already known that that the stressed cells are able to induce bystander effect in their 

immediate neighbours using gap junction signalling (Zhou et al., 2000; Zhou et al., 2001; 

Shao et al., 2003) but the data presented here suggest they also secrete the EV signals, 

which will also be taken up in nearby cells, but are able to travel far from the original 

location of stress and induce bystander effects in distant tissues. This suggested model of 

bystander signalling can be observed in Figure 5-1. As EVs are known to be found in the 

circulation and that they can affect part of the body far from their origin (Hoshino et al., 

2015). It is probable, therefore, that these EVs are at least partially responsible for 

bystander effects observed far from the site of stress in vivo. 

Most of the data on the bystander effect has come from in vitro studies. However, 

the data from in vivo experiments suggest that damage can be observed not only within an 

organism but between organisms, with data from studies in fish showing co-habiting the 

same tank as an irradiated fish, or eating irradiated worms was able to induce bystander 

effects (Mothersill et al., 2006; Mothersill et al., 2007; Smith et al., 2013). This would 
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suggest that the signal responsible for inducing damage is protected in some way that 

would allow it to travel between organisms. Future work on in vivo bystander effect should 

attempt to look at the role of extracellular vesicles. Possibly trying to determine whether 

blocking the uptake of vesicles is able to reduce the levels of bystander damage. However, 

EVs are known to be involved in regular cellular processes as well, and simply blocking EV 

uptake could have off-target effects.  

5.1.2 EVS ARE INVOLVED IN INCREASING SURVIVAL IN SUBSEQUENT STRESSES 

The purpose of the bystander effect is unknown. Under most conditions cells attempt 

to either repair or remove damage cells. To respond to stressful conditions that are able to 

cause molecular damage and kill cells by releasing signals that do the same thing seems 

counter-productive. The data shown here demonstrates that stress EVs are able to increase 

the ability of cells to survive in stress. Therefore, it is possible that the bystander effect is 

an aspect of the response to stress, that induces a more resistant population of cells. This 

work has not assessed what mechanisms may be involved in the induction of the bystander 

effect in the bystander cells. Previous work has suggested a role for NF-κB signalling, which 

did show up in the proteome of cisplatin-treated cells, and was associated with protiens 

more highly enriched in EVs relative to cells (Zhou et al., 2008). However, very little is 

known about the way in which EVs can induce the bystander effect. It would be 

enlightening to view the uptake of EVs into cells to determine where the EVs localise to 

within the cell, or whether they even need to undergo uptake at all. It could be that the 

signal is found on the outer leaflet of the membrane and it interacts with a receptor on the 
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surface of the cell. This could mean that the EV is then able to disassociate from the 

bystander cell and go on to target further cells. 

 

Figure 5-1: The proposed model for bystander signalling. 

 When cells become stressed they release a subtype of EVs that are taken up by both the cell population 
that released them, and also distant bystander cells. These stress EVs, along with gap junction signals, are 
then able to induce bystander effects in those cells. This population of bystander cells is then more resistant 
to subsequent stress than naïve cells. EVs are blood soluble and it therefore seems likely that it is these signals 
that are responsible for bystander effects observed in vivo. When stressed, the it is likely that the cells of the 
stressed tissues would release vesicles which are then carried to bystander tissues via the circulatory system. 

5.1.3 THE CLINICAL IMPLICATIONS OF EV INDUCED BYSTANDER EFFECTS 

Bystander Effects are observed following treatments that are currently used in a 

clinical setting, chemotherapy and radiotherapy (Asur et al., 2009; Al-Mayah et al., 2012; 

Mancuso et al., 2008), and as demonstrated here, following heat treatment which is 

currently undergoing trials to be used in a clinical setting (Mallory et al., 2015). This means 

that the bystander effect could be relevant to the use of these treatments. If EVs released 

from tumour cells targeted by these therapies are able to induce damage and cell death in 

healthy cells in the patient this could lead to other problems arising in tissues far from the 

initial site of damage. Further, if these EVs are involved in developing more resistant 
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populations of cells they could be induce a tumour to become more resistant to therapy, 

and it has already been demonstrated that EVs released from cisplatin resistant cells are 

able to increase the resistance of other cell lines (Samuel et al., 2017). More work is needed 

to know what affect, if any, stress EVs have inside of an organism. To date in vivo studies 

of the bystander effect have sought to check whether off targeted effects of treatment 

were found in the organisms, but they have not attempted to determine the long-term 

consequences of bystander effect on treatment or survival. This could ascertain whether 

the bystander damage is noticeable from a clinical perspective. It may be that the organism 

is able to survive with little to no adverse effects related to the bystander effect. If not, 

however, it could be that these therapies induce damaging off target effects. Bystander 

cells are also more resistant to stress, so stress EVs might be reducing the therapeutic 

potential of these treatments. Therefore, it would be useful to know whether uptake of 

these EVs could be blocked in vivo with uptake inhibitors like amiloride, in order to counter 

the damage and increased resistance in bystander cells and tissues. 

5.2 EV EXTRACTIONS METHODS 

Extracellular vesicles are hard to extract from both cell culture medium and from 

biofluids without also extracting contaminating factors such as protein. Here size exclusion 

chromatography has been shown to be able to extract protein free samples of EVs from 

cell culture medium. This agrees with a number of publications that also show SEC is 

capable of separating EVs and proteins. 

However, there is still a crossover between EVs and proteins in the fractions that 

were taken from the column, with some fractions containing both EVs and free protein 

from the medium. This method could therefore lead to ignoring smaller vesicles, which 

might be still be important for the studied effect, but which are found in fractions 

contaminated with protein. The amount of EVs that co-elute with protein could be reduced 



Discussion 

Findlay Bewicke-Copley Page | 142 PhD Thesis 

by increasing the length of the column which might allow for greater separation of the 

samples. However, if the proteins eluting here are in-fact a similar size to the EVs, large 

protein aggregates for example, then this technique would not be able to separate them 

further.  

5.3 EVS TREATMENT ALONE WAS NOT SUFFICIENT TO INDUCE CACHEXIA 

Whilst EVs released by cancer cell lines were able to reduce muscle differentiation in 

vitro no effect was observed in mice. As previously stated, blocking RAB27a and b in cells 

that were used for xenograft reduced the levels of cachexia observed after transplantation 

(Zhang et al., 2017). Whilst it is possible that our data show that EV release is not related 

to cachexia, it is also possible that the EV treatment was insufficient to induce cachexia.  

The levels of EVs in the blood of the mice was not assessed here, and it is possible 

therefore that the EVs were at a low concentration within the circulation of the mice. On 

top of this whilst a tumour is continuously secreting vesicles, injections pump all the sample 

into the organism at once. It might be that sustained signalling is required to induce 

cachexia, whilst here mice were only exposed to cancer vesicles in short bursts. In vivo 

effects have been observed shortly after EV injection (Akbar et al., 2017), here it might be 

that after 21 days the mice have become desensitised to the EVs, it might be interesting to 

study the blood and levels of DNA damage 24 hours following the injection of EVs to see 

what short term effects may be observed. More information and new techniques are 

required to accurately simulate a complete tumour secretome in order to truly test the 

effects of cancer EVs in animals. Further HSP70 and HSP90 were shown to be involved in 

cancer EV induced cachexia (Zhang et al., 2017), but these proteins were not found to be 

in the EV samples in the LC-MS data. Therefore, it may be that the vesicles collected here 

are different from cachexia-inducing vesicles. 
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The biodistribution of the EVs in the mice was not established in these experiments, 

however EVs are thought to localise to the liver shortly after injection (Wiklander et al., 

2015; Lai et al., 2014). These studies suggest that EVs do not persist inside of the organism 

for a particularly long time after they are injected into the animal. Here the ability of EVs 

from cisplatin-stressed cells to induce bystander damage in the spleen was assessed, 

however the liver was not assayed for DNA damage. It has been shown previously that 

radiation-treatment can induce bystander effects in the spleen (Ilnytskyy et al., 2009), 

whilst no such effect was observed in this study. As EVs are known to mainly localise to the 

liver it may be that the EVs used in this experiment did not travel to the spleen in sufficient 

numbers to induce bystander effects, future experiments should examine whether any 

bystander damage is seen within the liver. It would also be useful to track the spread of EVs 

throughout the organism to determine where they may travel before arriving in the liver 

and being removed. 

 Whilst the in vivo effects of EVs can be assessed by blocking their release, this could 

potentially affect other biological functions, which could be the real causative factor for 

observed effects. Similarly, attempting to block EV uptake could induce changes in a model 

through off target effects. A multifaceted approach would therefore be the best way to 

examine the roles of EVs in vivo. If blocking EV release and EV uptake show similar effects, 

it would reduce the chances that the observed change is due to an off-target effect. It is 

also important to understand where the vesicles localise to in the mice. It maybe that the 

vesicles are all taken up within the tail of the mice, close to the site of their injection and 

are not able to spread further into the mouse. 

5.4 CONCLUSIONS 

EVs from heat-treated cells are able to induce bystander effects in unstressed 

populations of cells. This work corroborates findings in on both chemical and radiation-
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induced bystander effect and suggest that EV induced bystander effects are a unified 

response to stress conditions. 

Size Exclusion Chromatography has been shown to be able to separate most of the 

EVs in cell culture medium from the proteins that are also found in the medium. This 

method of extraction therefore allows a relatively pure sample to be isolated for further 

analysis. 

EVs from cancer cells have been shown to be able to slow the differentiation of 

muscle precursor cells in vitro, however no effect was observed when these EVs were 

injected into mice. It is probably that this result is due to the difficulties associated with 

simulating the secretome of a tumour. 
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7  APPENDICES 

7.1 GO TERMS ASSOCIATED WITH PROTEINS DEREGULATED IN CELLS FOLLOWING 

CISPLATIN TREATMENT. 

Downregulated cell protein 

Biological Processes 
Coun
t Genes 

PValu
e 

Bonferron
i 

GO:0019083~viral 
transcription 23 

RPL14, RPL13, NUP93, NUP188, RPL38, 
NUP155, RPL28, RPS7, NDC1, RPS25, RPS27, 
AAAS, RPS28, RPS17, RAE1, RPL9, RPL8, RPL3, 
RPS13, RANBP2, RPL7A, TPR, RPS24 

1.61E-
13 3.15E-10 

GO:0000398~mRNA 
splicing, via spliceosome 30 

SNRPB2, SART3, SF3B4, YBX1, PNN, CTNNBL1, 
HNRNPA3, PRPF19, HNRNPM, DDX46, DHX16, 
PABPC1, HNRNPC, GEMIN6, BCAS2, PABPN1, 
SF1, RNPS1, SNW1, DDX5, EIF4A3, SRSF5, 
UPF3B, SRSF6, GTF2F2, CPSF7, SNRPF, 
HNRNPH1, CSTF1, RBM15 

1.28E-
12 2.51E-09 

GO:0006413~translation
al initiation 24 

ABCF1, ABCE1, RPL14, RPL13, EIF2S3, RPL38, 
RPL28, RPS7, RPS25, EIF3D, RPS27, EIF3A, 
RPS28, RPS17, EIF1AX, RPL9, EIF1AY, RPL8, 
RPL3, RPS13, RPL7A, PABPC1, EIF2B4, RPS24 

1.46E-
12 2.85E-09 

GO:0000184~nuclear-
transcribed mRNA 
catabolic process, 
nonsense-mediated 
decay 21 

UPF1, RPL14, RPL13, RNPS1, RPL38, ETF1, 
RPL28, RPS7, RPS25, EIF4A3, RPS27, RPS28, 
UPF3B, RPS17, RPL9, RPL8, RPL3, RPS13, 
RPL7A, PABPC1, RPS24 

4.19E-
11 8.18E-08 

GO:0006412~translation 28 

ABCF1, MRPS14, RPL14, RPL13, PABPC4, 
RPL38, RPS25, MRPL11, RPS27, MRPL13, 
RPS28, RPL9, RPL8, RPL3, SLC25A2, RPL7A, 
RPS24, SLC25A4, SARS, SLC25A6, MRPS24, 
MRPL9, RPL28, GTF2H2, RPS7, RPS17, FARSB, 
RPS13 

8.22E-
10 1.61E-06 

GO:0016032~viral 
process 29 

XPO1, VIM, NUP93, NUP188, SCRIB, NDC1, 
CUL2, DYNLL1, RAE1, RANBP1, RANBP2, ZYX, 
TPR, ABCE1, MSH6, SLC25A4, UBR4, FDPS, 
SNW1, NXF1, NUP155, SGTA, AAAS, PLCG1, 
IPO7, PSMA4, IPO5, RBM15, DYNC1I2 

7.61E-
09 1.49E-05 

GO:0006457~protein 
folding 22 

TXNL1, FKBP9, GRPEL1, TXN2, CSNK2B, CCT2, 
MESDC2, PDIA4, LMAN1, CDC37, TRAP1, 
CCT5, CCT4, DNAJB11, GNB2, PPID, PFDN4, 
SIL1, HSPE1, RANBP2, DNAJB1, DNAJC1 

1.33E-
08 2.60E-05 

GO:0006614~SRP-
dependent 
cotranslational protein 
targeting to membrane 16 

RPL14, RPL13, RPL38, SRPRB, RPL28, RPS7, 
RPS25, RPS27, RPS28, RPS17, RPL9, RPL8, 
RPL3, RPS13, RPL7A, RPS24 

2.42E-
08 4.73E-05 

GO:0006406~mRNA 
export from nucleus 16 

UPF1, NUP93, EIF5A, RNPS1, NUP188, NXF1, 
NUP155, NDC1, EIF4A3, SRSF5, UPF3B, AAAS, 
SRSF6, RAE1, RANBP2, TPR 

5.70E-
08 1.11E-04 
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GO:0006364~rRNA 
processing 23 

TBL3, EXOSC6, RPL14, EMG1, RPL13, EXOSC5, 
RPL38, RPL28, RPS7, DIS3, RPS25, EIF4A3, 
SBDS, RPS27, RPS28, DKC1, RPS17, RPL9, 
RPL8, RPL3, RPS13, RPL7A, RPS24 

6.08E-
08 1.19E-04 

GO:0006409~tRNA 
export from nucleus 9 

NDC1, XPOT, AAAS, RAE1, NUP93, NUP188, 
RANBP2, NUP155, TPR 

1.37E-
06 2.68E-03 

GO:0007077~mitotic 
nuclear envelope 
disassembly 10 

NDC1, CDK1, AAAS, RAE1, NUP93, NEK9, 
NUP188, RANBP2, NUP155, TPR 

1.85E-
06 3.61E-03 

GO:0075733~intracellula
r transport of virus 10 

NDC1, XPO1, AAAS, RAE1, NUP93, NUP188, 
RANBP2, NUP155, TPR, KPNA2 

6.74E-
06 1.31E-02 

GO:0006405~RNA export 
from nucleus 10 

EIF4A3, SRSF5, UPF3B, SRSF6, NUP188, 
RNPS1, RANBP1, NXF1, NUP155, TPR 

1.28E-
05 2.47E-02 

GO:0010827~regulation 
of glucose transport 8 

NDC1, AAAS, RAE1, NUP93, NUP188, 
RANBP2, NUP155, TPR 

2.06E-
05 3.95E-02 

Downregulated cell protein 

Molecular Function 
Coun
t Genes 

PValu
e 

Bonferron
i 

GO:0044822~poly(A) 
RNA binding 126 

RPL14, ZC3HAV1, RPL13, RBM4, EIF5A, 
SART3, PNN, DDX18, TRMT1L, EIF1AX, 
TARDBP, LUC7L2, PTBP3, API5, PABPN1, 
ACTN4, EMG1, SUCLG1, MYH9, PPP1CC, 
HUWE1, RCC2, RPS17, RPS13, MYBBP1A, 
MRPL44, ADD1, HMGB1, HMGB2, MRPS14, 
PABPC4, PRRC2B, PRRC2C, KNOP1, DAZAP1, 
RPS25, HNRNPA3, PPAN, PFN1, HNRNPM, 
EIF3D, RPS27, EIF3A, RPS28, DDX46, MACF1, 
BRIX1, RPL8, RPL3, HSPE1, PABPC1, RPL7A, 
HNRNPC, SEC23IP, RPS24, HNRNPAB, TBL3, 
MRPS24, FDPS, RNPS1, SNW1, NXF1, UBE2L3, 
DDX5, RPS7, SRSF5, UPF3B, CCT4, PPIB, 
PTCD3, SRSF6, CPNE3, TRIP6, HNRNPH1, 
METTL16, CSTF1, PHF6, ABCF1, TCOF1, 
TSNAX, YLPM1, YBX3, PDIA4, YBX1, PKM, 
RBM4B, SBDS, DKC1, TRMT6, QKI, ZYX, TPR, 
LBR, KHDRBS1, EXOSC6, HIST1H1B, SLC3A2, 
SF1, CCDC47, MRPL9, HLTF, UBE2N, EIF4A3, 
TRAP1, IPO5, ARCN1, CPSF7, KPNA2, GLRX3, 
TUFM, MTDH, SF3B4, MRPL11, MRPL13, EZR, 
CCDC124, DHX16, AATF, SSRP1, UPF1, 
NUCKS1, ETF1, RPL28, ILF2, UBTF, RBM15 

1.29E-
44 9.10E-42 

GO:0005515~protein 
binding 331 

TUBB2B, VAPA, RPL14, TUBB2A, RPL13, CCT2, 
TPD52, SART3, B2M, MAP3K7, CUL2, 
GTF2H2C, DDX18, DNAJB11, AGPS, EIF1AX, 
PLOD3, EIF1AY, LUC7L2, TMEM14C, EIF2B4, 
FTL, OPA1, KIF5B, MYH1, EMG1, STRN4, 
WNK1, UBR4, EIF2S3, MAGED2, MYH9, 
DCTN4, LETM1, HUWE1, RCC2, RFC1, RAB18, 
SURF4, RPS13, NEK9, MYBBP1A, MCTS1, 
MRPL44, CPSF3L, AHCY, TXN2, PABPC4, 
HSD17B12, UBA6, DUSP12, PPT1, PRRC1, 
PRRC2B, ASL, COIL, CDC37, TIPRL, SCRIB, 
RPS25, HNRNPA3, PLAA, PFN1, RPS27, RPS28, 
MACF1, GORASP2, RAC1, AGRN, PABPC1, 
SEC23IP, TUBB4A, HNRNPAB, FAM111B, PHB, 
FDXR, NXF1, UBE2L3, OCIAD1, DDX5, VDAC2, 
RPS7, CCT5, SRSF5, CCT4, UPF3B, AIDA, RNF4, 

6.95E-
20 4.88E-17 
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PTCD3, SRSF6, AHSA1, ABCF1, RAB5C, ATP5B, 
COPS3, TSNAX, TCOF1, QARS, NFKB2, PDIA4, 
YBX1, PKM, RBM4B, MCCC2, LONP1, PBXIP1, 
DYNLL1, DNAJC13, DYNLL2, QKI, USP14, 
SYMPK, ABCE1, CCNK, SLC25A4, SLC25A6, 
EXOSC5, SF1, SLC3A2, MRPL9, NDUFA13, 
GTF2H2, TRAP1, EIF4A3, G6PD, GNB2, MED9, 
RRM1, PFDN4, FARSB, CNOT11, SIL1, EEF1D, 
DYNC1I2, TUFM, PREP, MTDH, LANCL1, HK1, 
EEA1, HDGFRP2, SF3B4, MIF, MRPL11, 
PRPF19, NUMA1, MRPL13, EZR, DHX16, 
RAB11A, AATF, TCEA1, BCL9, BCAS2, SSRP1, 
SHMT2, UPF1, NUB1, CSNK2B, ETF1, PCK2, 
CAPN2, RPL28, SGTA, SDHA, UBTF, ILF2, 
RAB34, RBM15, XPO1, ILKAP, ZC3HAV1, 
AP1G1, CRABP2, RBM4, EIF5A, CBX3, COX5B, 
CTNNBL1, PRKAR2A, GHITM, TARDBP, 
PGRMC1, PMS2, RPRD1A, DNAJC1, API5, 
CUTA, PABPN1, ACTN4, TOR1AIP1, BASP1, 
PPP1CC, PPP1CB, PSMA1, PSMA4, SIX1, PAF1, 
PDCD6IP, FLAD1, SNRPF, DYNLRB1, PRPS1, 
HMGB1, HMGB2, GNE, SNRPB2, NEDD8, 
ARPC4, LMAN1, PTRH2, EIF3D, HNRNPM, 
EIF3A, ISYNA1, GSTK1, RPL9, RPL3, HSPE1, 
RPL7A, HNRNPC, TBL3, EPB41, CCDC25, 
WDR5, AK3, ARID3B, RNPS1, SNW1, DENR, 
SUGT1, CTR9, EPS15, LAMP2, PLEKHA5, 
PLCG1, PPIB, PPID, POLD1, GTF2F2, CYFIP1, 
CPNE3, DNAJB1, TRIP6, HNRNPH1, CSTF1, 
GLYR1, FABP5, PHF6, HP1BP3, YLPM1, UCHL1, 
ESD, EDC4, PRDX3, SPRY4, HMOX2, SBDS, 
DKC1, GSN, PSMD2, ZYX, RANBP2, TPR, CSK, 
SUCLA2, CLINT1, LBR, KHDRBS1, SEC23A, 
CDK1, PRKCI, COX4I1, CCDC47, IPO9, PFKM, 
HLTF, HMGA2, MCM4, MCM5, TUT1, UBE2N, 
PPM1G, ALDH7A1, PSME1, IPO7, IPO4, IPO5, 
CPSF7, KPNA2, COPE, GLRX3, GALNT2, 
PPP4R1, NDUFB9, USP9X, VIM, NUP93, 
HCFC1, HAT1, RPA1, ANXA6, AKR1A1, TMED2, 
AP3M1, LARS, PAFAH1B3, VPS35, MYCBP, 
HSPA4, GEMIN6, NEFL, TNPO3, GPS1, MSH6, 
DNM1L, NCDN, SNX27, MAP1A, DPYSL2, 
NUP155, MEMO1, MGST3, NCSTN, DIS3, 
CLPTM1, DR1, TMEM43, SYNM, FAF1, CBS 

GO:0003723~RNA 
binding 54 

XPO1, RPL14, RPL13, RBM4, EIF5A, QARS, 
YBX1, TRMT1L, DDX18, DKC1, RAE1, TARDBP, 
QKI, PTBP3, RANBP2, PABPN1, KHDRBS1, 
EMG1, SARS, EXOSC5, SF1, TUT1, PSMA1, 
FARSB, SNRPF, PABPC4, RPL38, DAZAP1, 
HNRNPA3, RPS25, EIF3D, HNRNPM, EIF3A, 
RPS28, RPL9, RPL8, BRIX1, RPL3, PABPC1, 
RPL7A, HNRNPC, HNRNPAB, UPF1, RNPS1, 
NXF1, ETF1, RPL28, RPS7, DIS3, SRSF5, ILF2, 
SRSF6, HNRNPH1, CSTF1 

4.87E-
16 3.12E-13 

GO:0003735~structural 
constituent of ribosome 22 

MRPS14, SLC25A4, RPL14, RPL13, SLC25A6, 
MRPS24, MRPL9, RPL38, RPL28, RPS7, 
MRPL11, MRPL13, RPS27, RPS28, RPS17, 
RPL9, RPL8, RPL3, RPS13, SLC25A2, RPL7A, 
RPS24 

6.53E-
07 4.59E-04 



Appendices 

Findlay Bewicke-Copley Page | 173 PhD Thesis 

GO:0000166~nucleotide 
binding 27 

PABPN1, RBM4, SNRPB2, PABPC4, RNPS1, 
NXF1, SART3, VDAC2, SF3B4, DAZAP1, TUT1, 
HNRNPA3, HNRNPM, RBM4B, SRSF5, UPF3B, 
SRSF6, TARDBP, POLD1, CPSF7, PTBP3, 
HNRNPC, PABPC1, HNRNPH1, RBM15, 
HNRNPAB, RPS24 

2.95E-
06 2.07E-03 

GO:0008536~Ran 
GTPase binding 8 

XPOT, XPO1, IPO7, IPO4, IPO5, IPO9, RANBP1, 
RANBP2 

1.17E-
05 8.22E-03 

GO:0019904~protein 
domain specific binding 19 

XPO1, HMGB2, VAPA, CSNK2B, PRKCI, CBX3, 
BASP1, MYH9, PPP1CC, HNRNPM, LAMP2, 
EZR, AIDA, RFC1, RCC2, DYNLL1, GSN, FAF1, 
NEFL 

1.40E-
05 9.82E-03 

GO:0008565~protein 
transporter activity 11 

AP1G1, IPO7, IPO4, IPO5, TSNAX, AP3D1, 
IPO9, VPS35, TIMM13, KPNA2, TNPO3 

2.20E-
05 1.54E-02 

GO:0051082~unfolded 
protein binding 13 

TRAP1, GRPEL1, CCT5, CCT4, PPIB, DNAJB11, 
PFDN4, SIL1, CCT2, HSPE1, DNAJB1, LMAN1, 
CDC37 

4.10E-
05 2.84E-02 

GO:0098641~cadherin 
binding involved in cell-
cell adhesion 22 

ZC3HAV1, RPL14, KIF5B, VAPA, SLC3A2, 
EIF2S3, HCFC1, MYH9, SCRIB, EPS15, PKM, 
PFN1, EZR, MACF1, TMOD3, RANBP1, RPL7A, 
DNAJB1, EEF1D, AHSA1, CLINT1, ADD1 

4.18E-
05 2.90E-02 

Upregulated cell protein 

Biological Processes 
Coun
t Genes 

PValu
e 

Bonferron
i 

GO:0043488~regulation 
of mRNA stability 20 

EXOSC2, HSPA1A, PSMA7, PSMA2, EIF4G1, 
PSMB5, PSMB4, NUP214, PSMB7, PSMA6, 
PSMB1, PSMD11, PSME2, SERBP1, ANP32A, 
PSMD3, HSPB1, PSME3, TNPO1, PSMD8 

7.55E-
11 1.52E-07 

GO:0098609~cell-cell 
adhesion 31 

RTN4, CNN3, VAPB, EIF2A, EPS15L1, HSPA1A, 
CAPZB, LARP1, BZW2, BZW1, DDX3X, RPL34, 
SND1, ARHGAP1, PCMT1, NUDC, PLEC, 
ZC3H15, RPL23A, FLNB, YWHAE, VASP, 
EIF4G1, TJP1, PRDX6, SERBP1, TMPO, NOP56, 
DBN1, YKT6, PAICS 

1.92E-
10 3.88E-07 

GO:0000398~mRNA 
splicing, via spliceosome 27 

RALY, POLR2L, SNRPD3, TRA2B, SNRPD1, 
SF3B5, POLR2B, SART1, HNRNPA3, HNRNPL, 
SRRT, DDX23, CLP1, PRPF8, LSM4, LSM3, 
DDX39A, DHX9, CSTF2, DDX39B, HNRNPA2B1, 
ALYREF, SRSF2, HNRNPUL1, PSPC1, CPSF2, 
CPSF1 

9.49E-
10 1.92E-06 

GO:0006614~SRP-
dependent 
cotranslational protein 
targeting to membrane 18 

RPL35A, RPL17, SRP68, RPS9, RPL23A, RPS4X, 
SEC63, RPS19, RPL13A, RPL34, RPS14, RPS15, 
RPL3, RPL5, RPS11, RPS21, SEC61A1, SRP9 

1.05E-
09 2.11E-06 

GO:0038061~NIK/NF-
kappaB signaling 15 

PSMA7, PSMA2, PSMB5, PSMB4, PSMB7, 
PSMB1, PSMA6, PSMD11, PSME2, UBA3, 
UBE2M, PSMD3, PSME3, CUL1, PSMD8 

3.59E-
09 7.25E-06 

GO:0006413~translation
al initiation 20 

RPL35A, RPL17, RPS9, EIF2A, RPL23A, RPS4X, 
EIF2B1, LARP1, EIF4G1, EIF4G3, RPS19, 
RPL13A, RPS14, RPL34, RPS15, DDX3Y, RPL3, 
RPL5, RPS11, RPS21 

1.11E-
08 2.24E-05 

GO:0006521~regulation 
of cellular amino acid 
metabolic process 13 

PSMA7, PSMB5, PSMA2, PSMB4, PSMB7, 
PSMB1, PSMA6, PSMD11, PSME2, PSMD3, 
PSME3, NQO1, PSMD8 

1.36E-
08 2.75E-05 
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GO:0006888~ER to Golgi 
vesicle-mediated 
transport 20 

ARFGAP1, COPA, DYNC1LI2, VAPB, NAPA, 
TMED9, ERGIC1, DCTN1, BCAP31, CUL3, 
HYOU1, TMED7, COPG2, ANK3, MCFD2, ARF4, 
SEC22B, GOSR1, YKT6, GOLGB1 

1.41E-
07 2.85E-04 

GO:0006364~rRNA 
processing 23 

RPL35A, RPL17, EXOSC2, RPS9, RPL23A, 
LAS1L, WBP11, DIEXF, RPS4X, FBL, MRTO4, 
PA2G4, RPS19, RPL13A, RPS14, RPL34, RPS15, 
RPL3, NPM3, RPL5, RPS11, NOP56, RPS21 

1.96E-
07 3.96E-04 

GO:0000184~nuclear-
transcribed mRNA 
catabolic process, 
nonsense-mediated 
decay 17 

PPP2R1A, RPL35A, RPL17, RPS9, RPL23A, 
RPS4X, EIF4G1, RPS19, RPL13A, RPL34, RPS14, 
PPP2CA, RPS15, RPL3, RPL5, RPS11, RPS21 

2.49E-
07 5.02E-04 

GO:0008380~RNA 
splicing 20 

RBFOX1, PPP2R1A, RBFOX2, SNRPD3, 
RBFOX3, DDX39B, SNRPD1, WBP11, IWS1, 
RRAGC, SRSF2, C1QBP, DDX23, PPP1R8, 
PPP2CA, SFPQ, PRPF8, ZRANB2, LSM4, 
LUC7L3 

2.54E-
07 5.12E-04 

GO:0019083~viral 
transcription 16 

NUP133, RPL35A, RPL17, RPS9, RPL23A, 
RPS4X, NUP214, RPS19, RPL13A, RPL34, 
RPS14, RPS15, RPL3, RPL5, RPS11, RPS21 

6.21E-
07 1.25E-03 

GO:0006412~translation 24 

RPL35A, RPL17, RPS9, RPL23A, RPS4X, 
SLC25A12, EIF4G1, MRPL23, RPS19, MRPL28, 
SLC25A24, RPL13A, RPS14, RPL34, MRPL17, 
RPS15, MRPL16, RPL3, HARS, RPL5, DHPS, 
RPS11, RPS21, SLC25A15 

9.35E-
07 1.89E-03 

GO:0002479~antigen 
processing and 
presentation of 
exogenous peptide 
antigen via MHC class I, 
TAP-dependent 12 

PSMA2, PSMB5, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMD11, PSME2, PSMD3, PSME3, 
PSMA7, PSMD8 

1.38E-
06 2.77E-03 

GO:0051437~positive 
regulation of ubiquitin-
protein ligase activity 
involved in regulation of 
mitotic cell cycle 
transition 13 

PSMA7, PSMB5, PSMA2, PSMB4, PSMB7, 
PSMB1, PSMA6, PSMD11, PSME2, PSMD3, 
PSME3, CUL1, PSMD8 

1.40E-
06 2.82E-03 

GO:0031145~anaphase-
promoting complex-
dependent catabolic 
process 13 

PSMA7, PSMB5, CUL3, PSMA2, PSMB4, 
PSMB7, PSMB1, PSMA6, PSMD11, PSME2, 
PSMD3, PSME3, PSMD8 

2.14E-
06 4.31E-03 

GO:0006396~RNA 
processing 14 

ATXN1, HNRNPL, DHX9, HNRNPUL1, SNRPD3, 
RBM3, PNPT1, SNRPD1, LSM4, WBP11, SSB, 
HNRNPDL, RTCA, ADAR 

3.45E-
06 6.94E-03 

GO:0051436~negative 
regulation of ubiquitin-
protein ligase activity 
involved in mitotic cell 
cycle 12 

PSMA2, PSMB5, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMD11, PSME2, PSMD3, PSME3, 
PSMA7, PSMD8 

4.67E-
06 9.38E-03 

GO:0060071~Wnt 
signaling pathway, 
planar cell polarity 
pathway 13 

PSMA7, PSMB5, PSMA2, PSMB4, AP2B1, 
PSMB7, PSMB1, PSMA6, PSMD11, PSME2, 
PSMD3, PSME3, PSMD8 

1.09E-
05 2.17E-02 
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GO:0006418~tRNA 
aminoacylation for 
protein translation 9 

IARS, CARS, YARS, AARS, GARS, HARS, EPRS, 
DARS2, PPA1 

1.36E-
05 2.71E-02 

GO:0006457~protein 
folding 18 

PDIA3, AARS, TMX3, CCT3, MOGS, CALR, 
CCT7, PFDN2, ERP44, TBCA, PFDN5, TBCD, 
MPDU1, DNAJC7, QSOX2, NUDC, HSPA9, 
FKBP2 

1.49E-
05 2.96E-02 

GO:0000209~protein 
polyubiquitination 18 

UBE2V2, PSMA7, PSMA2, LNPEP, PSMB5, 
CUL3, PSMB4, PSMB7, PSMA6, PSMB1, 
PSMD11, PSME2, UBR5, PSMD3, PSME3, 
PSMD8, TRIP12, CUL1 

1.99E-
05 3.93E-02 

GO:0043161~proteasom
e-mediated ubiquitin-
dependent protein 
catabolic process 19 

CSNK1A1, NSFL1C, MTA1, PSMA7, PSMA2, 
PSMB5, CUL3, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMD11, UBE2K, PSME2, PPP2CB, 
PSMD3, PSME3, PSMD8, CUL1 

2.00E-
05 3.95E-02 

Upregulated cell protein 

Molecular Function 
Coun
t Genes 

PValu
e 

Bonferron
i 

GO:0044822~poly(A) 
RNA binding 126 

RALY, DYNC1LI1, FLYWCH2, RPL17, SNRPD3, 
RBM3, SRP68, XRCC6, SNRPD1, CCT3, SART1, 
TOP1, DDX23, SND1, TIA1, TPT1, LSM4, LSM3, 
NQO1, LUC7L3, GNL3, DDX39A, RBFOX2, 
GTPBP1, RPL35A, CHTOP, YARS, DDX39B, 
HNRNPA2B1, CTNNA1, MRTO4, PA2G4, 
RPS19, RPS14, TIAL1, SERBP1, RPS15, HSPB1, 
EDF1, RPS11, MDH2, PUS1, DIAPH1, PNPT1, 
IGF2BP2, PRRC2A, CALR, PUS7, MANF, 
HNRNPA3, HNRNPL, HIST1H4A, DDX3X, RPL3, 
BTF3, NPM3, RPL5, RPS21, DHX9, P4HB, 
ZC3H15, CSTF2, ZC3H18, LGALS1, NTPCR, 
RPS9, SSB, RPL23A, SRSF2, HDAC2, CIRBP, 
HSPD1, SMC1A, ADAR, RTN4, IBA57, PDIA3, 
DEK, LARP1, BZW1, RTF1, ANP32A, HIST1H1E, 
HIST1H1D, SSBP1, DIEXF, LAS1L, RPS4X, NCL, 
FLNB, EIF4G1, EIF4G3, TBCA, ADK, UCHL5, 
MATR3, FAM98B, TRA2B, BCCIP, WBP11, 
POLR2B, SEC63, SRRT, PRPF8, CSDE1, CEBPZ, 
TNPO1, RTCA, HSPA9, PLEC, IMMT, ALYREF, 
HNRNPDL, YWHAE, FBL, LRP1, MRPL28, 
RPL13A, HNRNPUL1, TSFM, IFIT5, SFPQ, 
PSPC1, ZRANB2, NOP56, GOLGB1 

3.93E-
42 2.61E-39 

GO:0005515~protein 
binding 343 

LDHB, SNCG, DYNC1LI1, RPL17, HM13, 
PDLIM7, VAPB, THOP1, PPP2R5D, SRP68, 
XRCC6, SNCA, CCT3, ANKLE2, WDR82, SART1, 
CUL3, ACBD3, ATP2B4, APOE, NT5C2, PQBP1, 
LSM4, LSM3, FAS, CAB39, CUL1, LUC7L3, 
PLD3, CHTOP, YARS, RAP1GDS1, CTNNA1, 
ERGIC1, DCTN1, SPAG9, NME2, PPP1CA, 
RPS19, RPS14, UBR5, SERBP1, MED17, RPS15, 
RPS11, ARL8B, MRPL48, CHORDC1, DBN1, 
TMX3, CHCHD2, ARF6, IGF2BP2, PRRC2A, 
HSPA1A, CALR, BANF1, CALU, HNRNPA3, TPI1, 
PFN2, DRAP1, WDHD1, NUDC, TIGAR, DHX9, 
UFSP2, ZC3H15, MAP2K1, ZC3H18, LGALS1, 
RPS9, EPRS, TFCP2, OXSR1, LACTB2, PTPN11, 
NCKAP1, CCT7, SRSF2, WDR61, ARF4, UBA3, 
FNBP4, PCNA, ADAR, RTN4, COPS2, PDIA3, 
NIF3L1, FAM3C, EIF2A, TERF2IP, LNPEP, 

5.11E-
19 3.40E-16 
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MTHFD1, HSPH1, AP2B1, GBAS, ANP32A, 
TICAM2, GSTZ1, RAB6A, ARHGEF4, CTBP1, 
HIST1H1E, ACO1, EXOSC2, POLR1C, DARS2, 
CYB5B, KLHDC4, FLNB, ATP6V1C1, PFDN2, 
CLIC4, PFDN5, RIPK1, MTAP, CAND1, SRP9, 
POLR2L, BCCIP, POLR2B, SUMO3, SRRT, 
NUP214, PPP2CA, PPP2CB, MPDU1, CSDE1, 
ABCD3, PCMT1, TRIP12, FEN1, AGL, PLEC, 
CSNK1A1, CAPN7, MAT2A, IMMT, NSFL1C, 
HNRNPDL, EIF2B1, YWHAE, IWS1, NAE1, 
CAPN1, MRPL23, ERP44, RPS6KA3, TJP1, 
LRP1, MRPL28, HNRNPUL1, PPP1R8, PSMD11, 
SFPQ, POLDIP2, DPM1, NOP56, UBXN7, 
PAICS, UBXN4, NCLN, DNM2, GOLGB1, RALY, 
RBM3, SNRPD3, CNOT3, SNRPD1, UBQLN4, 
UBQLN2, COX5A, VCL, TOP1, DDX23, ANK3, 
SND1, TIA1, TIMM9, TPT1, DNAJC7, RPRD1B, 
NQO1, NQO2, GNL3, DDX39A, RBFOX1, 
NUP133, RPL35A, RBFOX2, CARS, STMN2, 
DFFA, DDX39B, HNRNPA2B1, STK26, MTA1, 
TECR, POR, BCAP31, MRTO4, PSMA2, SUZ12, 
PA2G4, PSMA6, EDF1, HSPB1, VAMP3, 
VAMP2, VPS26A, PACS1, SRI, ARFGAP1, 
MYL6, DIAPH1, GLUD1, PNPT1, PTK7, 
COPS7A, UBE2V2, NAPA, PSMA7, RRAGD, 
RRAGC, PSMB5, HNRNPL, PSMB4, PSMB7, 
PSMB1, DDX3X, HIST1H4A, RPL3, BTF3, 
NPM3, RPL5, CLASP2, SEC61A1, MRPS27, 
P4HB, CSTF2, FOCAD, MYO1C, SSB, RPL23A, 
MYL12B, TSN, MYL12A, CORO1C, LAMP1, 
TXNDC12, HDAC2, PRKAR1A, RHOT1, NELFB, 
RAP1A, RHOT2, CIRBP, RAP1B, HSPD1, 
SMC1A, XPO7, PDCD6, CLTB, PRKAG1, 
EPS15L1, PIP5K1A, PTMA, TMF1, LARP1, GSS, 
RTF1, ARHGAP1, PSMD3, NDUFS3, PPP2R1A, 
IK, SSBP1, PIGT, DIEXF, STXBP3, TBCEL, RPS4X, 
MCM3, PMM2, NCL, HMGA1, VASP, ARL3, 
EIF4G1, TBCB, C1QBP, TBCA, PRDX6, UBE2K, 
PSME2, TBCD, UBE2M, UCHL5, PSME3, 
UCHL3, DHPS, KPNA3, CPSF2, CPSF1, EPN1, 
UGP2, MATR3, FKBP2, UQCRB, MYDGF, 
TRA2B, ASNS, WBP11, ESYT1, SEC63, RPA3, 
IARS, CHD1L, PRPF8, TMED1, SEC22B, PIK3R4, 
TNPO1, CHD4, HSPA9, GBA, WDFY1, NDUFA9, 
ALYREF, TMED9, ANXA5, SMC3, FBL, ATXN1, 
SCFD1, IFIT1, PSPC1, ZRANB2, APIP, CRK, 
RCN1 

GO:0003723~RNA 
binding 52 

RALY, RBM3, SNRPD1, CNP, TIA1, LSM3, 
RBFOX1, RBFOX2, ACO1, RBFOX3, 
HNRNPA2B1, EXOSC2, RPS4X, NCL, EIF4G1, 
SUZ12, EIF4G3, PSMA6, RPS14, UBR5, TIAL1, 
RPS15, CPSF2, SRP9, PUS1, SKIV2L, PNPT1, 
PUS7, HNRNPL, HNRNPA3, DDX3X, RPL34, 
PRPF8, DDX3Y, RPL3, RPL5, RTCA, CSTF2, SSB, 
TSN, FBL, ATXN1, MRPL23, IFIT1, HNRNPUL1, 
PPP1R8, IFIT5, ZRANB2, CIRBP, NOP56, 
SRBD1, ADAR 

6.24E-
14 4.15E-11 

GO:0098641~cadherin 
binding involved in cell-
cell adhesion 33 

RTN4, CNN3, VAPB, HSPA1A, EIF2A, EPS15L1, 
CAPZB, VCL, LARP1, BZW2, BZW1, DDX3X, 
RPL34, SND1, ARHGAP1, PCMT1, NUDC, PLEC, 
ZC3H15, RPL23A, CTNNA1, FLNB, YWHAE, 

4.98E-
11 3.31E-08 
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VASP, EIF4G1, TJP1, PRDX6, SERBP1, TMPO, 
NOP56, DBN1, YKT6, PAICS 

GO:0003735~structural 
constituent of ribosome 24 

RPL35A, RPL17, MRPS34, NDUFA7, RPS9, 
RPL23A, RPS4X, MRTO4, SLC25A12, MRPL23, 
RPS19, MRPL28, SLC25A24, RPL13A, RPS14, 
RPL34, MRPL17, RPS15, MRPL16, RPL3, RPL5, 
RPS11, RPS21, SLC25A15 

8.83E-
08 5.87E-05 

GO:0000166~nucleotide 
binding 28 

RALY, TRA2B, RBM3, HINT2, IGF2BP2, 
HNRNPA3, HNRNPL, SRRT, CHD1L, TIA1, 
NT5C2, RBFOX1, RBFOX2, CSTF2, RBFOX3, 
ALYREF, HNRNPA2B1, SSB, RPL23A, 
HNRNPDL, NCL, MRPL23, SRSF2, TIAL1, SFPQ, 
PSPC1, CIRBP, MATR3 

2.38E-
06 1.58E-03 

GO:0003729~mRNA 
binding 15 

RBFOX1, RBFOX2, CSTF2, TRA2B, RBFOX3, 
IGF2BP2, SSB, EIF2A, TSN, CALR, HNRNPA3, 
C1QBP, RPL13A, PPP1R8, LUC7L3 

1.22E-
05 8.09E-03 

GO:0004298~threonine-
type endopeptidase 
activity 7 

PSMA2, PSMB5, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMA7 

1.89E-
05 1.25E-02 

GO:0005524~ATP 
binding 69 

ATP5D, DYNC1LI1, DYNC1LI2, PRKAG1, 
XRCC6, DTYMK, CCT3, PIP5K1A, GSS, 
MTHFD1, HSPH1, ACTG2, ATP2B4, DDX23, 
CLP1, DDX39A, CARS, YARS, SUCLG2, ACTA2, 
STK26, AARS, DDX39B, DARS2, MCM3, 
ATP6V1A, NME2, UBE2K, ADK, RIPK1, UBE2M, 
HARS, CHORDC1, BTAF1, POMK, GLUD1, 
SKIV2L, PTK7, ASNS, HSPA1A, IARS, CHD1L, 
DDX3X, DDX3Y, ABCD3, PIK3R4, RTCA, CHD4, 
HSPA9, CSNK1A1, DHX9, MAT2A, MAP2K1, 
MYO1C, NTPCR, GARS, EPRS, OXSR1, SMC3, 
ATAD1, CCT7, HYOU1, RPS6KA3, NME2P1, 
NME1-NME2, UBA3, HSPD1, SMC1A, PAICS 

6.19E-
05 4.03E-02 

 

7.2 KEGG PATHWAY ANALYSIS OF CELLULAR PROTEINS  

Upregulated proteins 

Term 
Coun
t Genes PValue Bonferroni 

hsa03050:Proteasome 12 

PSMA2, PSMB5, PSMB4, PSMB7, PSMA6, 
PSMB1, PSMD11, PSME2, PSMD3, PSME3, 
PSMA7, PSMD8 

6.68E-
07 1.54E-04 

hsa03010:Ribosome 18 

RPL35A, RPL17, RPS9, RPL23A, RPS4X, 
MRPL23, RPS19, MRPL28, RPL13A, RPS14, 
RPL34, MRPL17, MRPL16, RPS15, RPL3, RPL5, 
RPS11, RPS21 

2.04E-
05 4.69E-03 

hsa01130:Biosynthesis 
of antibiotics 22 

LDHB, DLST, ACO2, CYP51A1, ACO1, SUCLG2, 
PGD, PSPH, ALDH3A2, GPI, NME2, TPI1, GOT1, 
NME1-NME2, ADSL, IDI1, BPNT1, PAICS, 
MDH2, HSD17B7, UGP2, ALDH9A1 

7.84E-
05 1.79E-02 
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hsa03040:Spliceosom
e 16 

TRA2B, SNRPD3, DDX39B, ALYREF, SNRPD1, 
WBP11, HSPA1A, SF3B5, SART1, HNRNPA3, 
SRSF2, DDX23, PRPF8, PQBP1, LSM4, LSM3 

2.05E-
04 4.60E-02 

Downregulated proteins 

Term 
Coun
t Genes PValue Bonferroni 

hsa03013:RNA 
transport 26 

XPO1, PABPC4, NUP93, NUP188, PNN, NDC1, 
EIF3D, EIF3A, RAE1, EIF1AX, EIF1AY, RANBP2, 
PABPC1, TPR, GEMIN6, EIF2B4, XPOT, UPF1, 
EIF2S3, RNPS1, NXF1, NUP155, EIF4A3, AAAS, 
UPF3B, CYFIP1 

8.27E-
09 1.72E-06 

hsa01130:Biosynthesis 
of antibiotics 27 

BCAT2, ADPGK, HK1, ASL, PKM, ISYNA1, 
AKR1A1, IDH2, PDHA1, SUCLA2, HADH, 
SHMT2, SUCLG1, AK3, FDPS, AK4, PFKM, 
PCK2, IDH3A, SDHA, ALDH7A1, G6PD, GFPT1, 
PCYOX1, PSAT1, CBS, PRPS1 

1.45E-
07 3.02E-05 

hsa03015:mRNA 
surveillance pathway 16 

PABPN1, SYMPK, UPF1, PABPC4, RNPS1, 
NXF1, PPP1CC, ETF1, PPP1CB, PNN, DAZAP1, 
EIF4A3, UPF3B, CPSF7, PABPC1, CSTF1 

1.77E-
06 3.68E-04 

hsa03010:Ribosome 19 

MRPS14, RPL14, RPL13, MRPL9, RPL38, RPL28, 
RPS7, MRPL11, RPS25, MRPL13, RPS27, 
RPS28, RPS17, RPL9, RPL8, RPL3, RPS13, 
RPL7A, RPS24 

4.40E-
06 9.16E-04 

hsa01200:Carbon 
metabolism 15 

SHMT2, ADPGK, SUCLG1, ESD, HK1, PFKM, 
IDH3A, PKM, SDHA, G6PD, IDH2, PDHA1, 
SUCLA2, PSAT1, PRPS1 

1.08E-
04 2.23E-02 

hsa03040:Spliceosom
e 16 

BCAS2, SNRPB2, SNW1, DDX5, SF3B4, 
CTNNBL1, HNRNPA3, PRPF19, EIF4A3, 
HNRNPM, SRSF5, DDX46, SRSF6, DHX16, 
HNRNPC, SNRPF 

1.81E-
04 3.70E-02 

Protein only in cisplatin-treated cells 

Term 
Coun
t Genes PValue Bonferroni 

hsa04144:Endocytosis 11 
CHMP3, ARPC3, CAPZA2, HSPA6, RHOA, 
RUFY1, SNX1, HLA-B, EHD1, ARFGEF2, VPS36 

2.73E-
04 3.62E-02 

Protein only in PBS treated cells 

Term 
Coun
t Genes PValue Bonferroni 

hsa04144:Endocytosis 15 

STAMBP, PARD3, CHMP4A, FAM21A, CHMP7, 
VPS37A, ARPC5, IGF2R, RBSN, ACAP2, RAB5A, 
PDGFRA, STAM, VPS28, ARAP1 

2.55E-
04 4.63E-02 

7.3 GO TERMS ASSOCIATED WITH PROTEINS DEREGULATED IN EVS FOLLOWING 

CISPLATIN TREATMENT. 

Downregulated EV protein 
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Biological Processes Count Genes PValue Bonferroni 

SRP-dependent 
cotranslational protein 
targeting to membrane 5 RPL13A, RPL8, RPL3, RPS9, SEC61A1 1.05E-04 3.41E-02 

Downregulated EV protein 

Molecular Function Count Genes PValue Bonferroni 

poly(A) RNA binding 17 

SRSF1, PDIA3, HIST1H1B, XRCC6, RPS9, 
SSB, TCERG1, HIST1H4A, UBA1, RPL13A, 
PCBP2, RPL8, RPL3, SPTBN1, TPR, NQO1, 
ENO1 1.01E-08 1.23E-06 

Upregulated EV protein 

Biological Processes Count Genes PValue Bonferroni 

regulation of mRNA 
stability 8 

EIF4G1, PSMC6, SET, PSMB1, PSMC3, 
ANP32A, HSPB1, PSMD6 1.24E-07 6.69E-05 

cell-cell adhesion 9 
ALDOA, EIF4G1, DDX3X, KIF5B, ATIC, RARS, 
SLC3A2, KTN1, RUVBL1 8.40E-06 4.53E-03 

translational initiation 7 
EIF4G1, EIF3A, RPS16, DDX3Y, RPL3, 
RPL11, RPL4 1.34E-05 7.23E-03 

nuclear-transcribed 
mRNA catabolic 
process, nonsense-
mediated decay 6 EIF4G1, RPS16, RBM8A, RPL3, RPL11, RPL4 8.97E-05 4.73E-02 

Upregulated EV protein 

Molecular Function Count Genes PValue Bonferroni 

poly(A) RNA binding 28 

GLRX3, ALDOA, FKBP4, SNRPD1, STIP1, 
CALR, TOP1, EIF3A, DDX3X, RBM8A, 
SRRM2, RPL3, DHX15, ANP32A, RPL11, 
RPL4, EEF1A1, TCP1, SLC25A5, CKAP4, 
SLC3A2, KTN1, FBL, FXR1, EIF4G1, RPS16, 
VCP, HSPB1 1.10E-15 2.25E-13 

cadherin binding 
involved in cell-cell 
adhesion 12 

ALDOA, EIF4G1, TLN1, DDX3X, KIF5B, ATIC, 
RARS, SLC3A2, KTN1, CLIC1, RUVBL1, 
ITGB1 1.06E-08 2.14E-06 

RNA binding 13 

SNRPD1, FBL, FXR1, EIF4G1, EIF3A, DDX3X, 
RPS16, RBM8A, DDX3Y, FARSB, RPL3, 
RPL11, RPL4 8.39E-07 1.70E-04 

protein binding 51 

LDHB, TLN1, SNRPD1, POSTN, MTHFD1, 
TOP1, RBM8A, ANP32A, RPL11, PSMD6, 
KIF5B, SLC25A5, SLC3A2, KTN1, CLIC1, 
EIF4G1, RPS16, RARS, SURF4, FARSB, 
HSPB1, PTGFRN, RUVBL1, GLRX3, ALDOA, 
FKBP4, STIP1, CALR, ITGB1, EIF3A, PFN2, 
SET, PSMB1, DDX3X, DNAJA1, RPL3, 
DHX15, RPL4, EEF1A1, TCP1, NASP, FBL, 
SMC3, FXR1, PSMC6, CCT5, VCP, PYGL, 
PSMC3, PCNA, H3F3A 1.45E-05 2.95E-03 

ATP binding 18 

TCP1, KIF5B, FKBP4, SMC3, PFAS, 
MTHFD1, PSMC6, CCT5, DDX3X, VCP, 
PYGL, PSMC3, RARS, DDX3Y, DNAJA1, 
FARSB, DHX15, RUVBL1 2.85E-05 5.76E-03 
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7.4 KEGG PATHWAY ANALYSIS OF EV PROTEINS  

Upregulated proteins 

Term Count Genes PValue Bonferroni 

hsa03050:Proteasome 4 PSMC6, PSMB1, PSMC3, PSMD6 2.66E-03 2.07E-01 

hsa01130:Biosynthesis 
of antibiotics 6 

ALDOA, LDHB, ATIC, GFPT1, ADH5, 
PFAS 1.06E-02 6.06E-01 

hsa03013:RNA 
transport 5 EIF4G1, EEF1A1, EIF3A, RBM8A, FXR1 2.32E-02 8.70E-01 

hsa03010:Ribosome 4 RPS16, RPL3, RPL11, RPL4 5.50E-02 9.93E-01 

hsa00010:Glycolysis / 
Gluconeogenesis 3 ALDOA, LDHB, ADH5 6.75E-02 9.98E-01 

hsa04141:Protein 
processing in 
endoplasmic reticulum 4 VCP, CKAP4, DNAJA1, CALR 9.19E-02 1.00E+00 

Downregulated proteins 

Term Count Genes PValue Bonferroni 

hsa03010:Ribosome 4 RPL13A, RPL8, RPL3, RPS9 2.05E-02 6.74E-01 

hsa03018:RNA 
degradation 3 DIS3, WDR61, ENO1 4.36E-02 9.10E-01 

Protein only in Evs from cisplatin-treated cells 

Term Count Genes PValue Bonferroni 

hsa04370:VEGF 
signaling pathway 6 

NRAS, KRAS, RAC2, PLCG1, MAPK14, 
RAC1 2.68E-04 4.10E-02 

hsa04664:Fc epsilon RI 
signaling pathway 6 

NRAS, KRAS, RAC2, PLCG1, MAPK14, 
RAC1 4.47E-04 6.73E-02 

hsa05205:Proteoglycan
s in cancer 8 

NRAS, CTTN, KRAS, PLCG1, MAPK14, 
RAC1, PPP1CC, FGF2 2.81E-03 3.55E-01 

hsa04810:Regulation of 
actin cytoskeleton 8 

NRAS, KRAS, RAC2, RAC1, ARPC4, 
PPP1CC, FGF2, NCKAP1 3.78E-03 4.47E-01 

hsa04722:Neurotrophin 
signaling pathway 6 

NRAS, KRAS, PLCG1, MAPK14, RAC1, 
ARHGDIA 5.58E-03 5.82E-01 

hsa03010:Ribosome 6 
RPL13, RPL22, RPL9, RPL26, RPL27, 
RPL38 9.38E-03 7.70E-01 

hsa03015:mRNA 
surveillance pathway 5 UPF1, GSPT1, PABPC4, ALYREF, PPP1CC 1.09E-02 8.19E-01 

hsa04015:Rap1 
signaling pathway 7 

NRAS, KRAS, RAC2, PLCG1, MAPK14, 
RAC1, FGF2 1.46E-02 9.00E-01 

hsa05231:Choline 
metabolism in cancer 5 NRAS, KRAS, RAC2, PLCG1, RAC1 1.55E-02 9.13E-01 

hsa05131:Shigellosis 4 CTTN, MAPK14, RAC1, ARPC4 2.29E-02 9.73E-01 

hsa03013:RNA 
transport 6 

EIF3B, UPF1, PABPC4, ALYREF, EIF2S3, 
GEMIN5 2.38E-02 9.76E-01 
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hsa04071:Sphingolipid 
signaling pathway 5 NRAS, KRAS, RAC2, MAPK14, RAC1 2.73E-02 9.87E-01 

hsa04662:B cell 
receptor signaling 
pathway 4 NRAS, KRAS, RAC2, RAC1 2.79E-02 9.88E-01 

hsa04650:Natural killer 
cell mediated 
cytotoxicity 5 NRAS, KRAS, RAC2, PLCG1, RAC1 2.88E-02 9.90E-01 

hsa05100:Bacterial 
invasion of epithelial 
cells 4 CTTN, SEPT1, RAC1, ARPC4 3.81E-02 9.98E-01 

hsa04666:Fc gamma R-
mediated phagocytosis 4 RAC2, PLCG1, RAC1, ARPC4 4.59E-02 9.99E-01 

hsa01130:Biosynthesis 
of antibiotics 6 PGLS, FDPS, IDI1, IDH3A, PPAT, PRPS1 5.12E-02 1.00E+00 

hsa04014:Ras signaling 
pathway 6 NRAS, KRAS, RAC2, PLCG1, RAC1, FGF2 6.40E-02 1.00E+00 

hsa04660:T cell 
receptor signaling 
pathway 4 NRAS, KRAS, PLCG1, MAPK14 7.51E-02 1.00E+00 

hsa05130:Pathogenic 
Escherichia coli 
infection 3 CTTN, TUBB6, ARPC4 8.50E-02 1.00E+00 

hsa00230:Purine 
metabolism 5 POLR2H, NUDT5, GMPS, PPAT, PRPS1 8.69E-02 1.00E+00 

hsa01200:Carbon 
metabolism 4 PGLS, ESD, IDH3A, PRPS1 9.30E-02 1.00E+00 

hsa04919:Thyroid 
hormone signaling 
pathway 4 NRAS, KRAS, ATP1B3, PLCG1 9.49E-02 1.00E+00 

hsa04010:MAPK 
signaling pathway 6 

NRAS, KRAS, RAC2, MAPK14, RAC1, 
FGF2 9.56E-02 1.00E+00 

hsa05223:Non-small 
cell lung cancer 3 NRAS, KRAS, PLCG1 9.96E-02 1.00E+00 

Protein only in Evs from PBS treated cells 

Term Count Genes PValue Bonferroni 

hsa05203:Viral 
carcinogenesis 4 

HIST1H2BM, HIST1H2BD, HIST1H2BL, 
SCRIB 5.81E-02 9.65E-01 

 

7.5 GO TERMS ASSOCIATED WITH PROTEINS FOUND IN ONLY ONE TREATMENT 

GROUP 

Protein in only Cisplatin-treated cells 
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Molecular Function Count Genes PValue 
Bonferro
ni 

GO:0005515~protein 
binding 98 

MPZL1, HMGN2, PRPF4B, CHMP3, RPS27L, 
GGT1, CBX8, ANK1, SLC25A23, FSTL5, 
MLKL, GNG5, RAB21, ARGLU1, DBNL, 
TWF2, STRN3, VTI1B, SYNJ2BP, OPTN, 
DPCD, TIMM8A, CHID1, SNRPE, MRPL43, 
CRELD2, CCDC12, MTX2, SNX1, NIFK, 
GSTCD, RRM2B, ARFGEF2, ARPC3, PROCR, 
EIF1AD, CD276, FDXR, SAP18, UBE2L6, 
PLGRKT, CDKN1A, METTL13, SARM1, 
MYH11, POP4, CYP2S1, MAX, GPC3, TPP1, 
HMOX1, CCDC43, RHOA, CEACAM1, 
RAP2B, NOL9, FLOT1, TPX2, UBE2H, SLIT2, 
GTF2H1, PPM1F, SENP3, EML1, MED8, 
CD81, RIN1, KIAA1191, IFT88, SEC23B, 
UBE2Z, FHL3, HK2, AKAP9, SFN, MRPL12, 
SAFB, TBC1D5, HSPA6, RPIA, EHD1, VPS36, 
USP32, EXOC1, RUFY1, SCOC, IFIT3, PREB, 
SON, CSNK1D, CSNK1E, MBOAT7, GOLPH3, 
TMTC3, DPM3, GDF15, AACS, RCN2 

1.93E-
04 5.35E-02 

Protein in only PBS treated cells 

Molecular Function Count Genes PValue 
Bonferro
ni 

GO:0005515~protein 
binding 236 

MEF2C, XRCC4, TMEM19, MEF2A, LSM7, 
CHMP7, VPS51, NSRP1, CIAPIN1, FAH, 
INTS7, PIK3C3, STAM, NUP37, EIF2B2, 
NSMAF, STAG2, EIF2B5, IKBKAP, ROCK1, 
TOX4, MARK2, UHRF1, NME3, PDGFRA, 
ACP1, PEA15, VRK1, KRAS, HIP1, UNC45A, 
WDR59, LAMTOR5, ZC3H14, DVL2, 
ZNF622, ZC3H13, KIF3A, SREK1, MAP2K4, 
SRA1, CREBBP, TRIO, YTHDC2, FXR2, 
PRPSAP1, PTPN12, NOTCH3, CNIH4, 
HSPA14, TMEM41A, MAB21L1, MAB21L2, 
FAM96B, SPIN1, TCOF1, CCNT1, VPS37A, 
BAG5, FXN, BAG3, PARG, FAM129A, 
COX17, TUBB3, TFIP11, STX4, HIST1H1C, 
ZC3H7B, EXOSC4, DNAJC21, PDCL3, 
ANKRD28, RRM2, NCK1, RAB5A, FKBP15, 
CAND2, PARVB, SRGAP2, TF, PARD3, 
EXOC7, PPP6R3, POLR2C, NUFIP2, NCAPH, 
RBSN, GATAD2A, WDR12, GATAD2B, 
SNAP23, USP34, KIF21A, RBM26, HSD17B8, 
EIF4ENIF1, SHMT1, TBX2, TTC17, MEF2D, 
MEOX2, COG7, PYGM, YAF2, GSK3B, 
POLDIP3, USP47, CWC22, PES1, LUC7L, 
TRMT112, GNA13, RNMT, CHMP4A, CLPB, 
TTC9C, CNOT1, LZTFL1, CNOT6, FNTB, 
TBC1D15, CISD2, NUDCD3, PACSIN3, 
SMARCD2, SMARCD1, AKR7A2, ORC2, 

6.77E-
10 3.47E-07 
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SCAMP1, ATG9A, NUDT1, BST2, NUDT4, 
PDXP, CLPX, DCUN1D1, TRIM33, IGBP1, 
MCMBP, CLIP1, MFAP1, SNRPC, SEPT6, 
PPP5C, BLM, IFITM3, ARPC5, LIN28B, 
LLGL1, CXXC1, ZFC3H1, PEF1, NIPBL, 
METTL1, GMPPA, OTUD7B, CLASP1, STRBP, 
ERCC6L, RAB8B, MRC2, INTS12, ATG3, 
ARMC1, LIN7A, C8ORF37, NOSIP, UACA, 
SALL4, SMARCC1, SALL1, POLD2, AHCYL1, 
PTPN1, AHCYL2, ABL2, EIF4E2, GPATCH8, 
DAP3, NDUFAF4, C9ORF78, ARHGAP17, 
THADA, PDCD1, DSTN, AKT1, SLC1A5, 
CASP3, GPKOW, CAMSAP2, CASP7, EDC3, 
PCBP2, CDK12, MKL2, VPS11, C11ORF68, 
ANKS1A, RING1, STXBP1, MINK1, MRPS6, 
COQ9, CDK7, RB1, UBE2C, SMU1, NCOA2, 
CRKL, MRPS9, IGF2R, CARM1, PPP4R2, 
KMT2A, ARID2, N4BP1, REL, KIF6, 
SH3GLB1, POU2F3, POU2F1, GTF3C1, 
TERF2, GEMIN4, SCO2, STAMBP, GMDS, 
DRG1, MRGBP, ZBED1, PSMG2, SP3, 
VPS28, SETD2, ARAP1 

GO:0044822~poly(A) 
RNA binding 51 

TRMT2A, TCOF1, CNOT1, NSRP1, CISD2, 
GRWD1, PCBP2, DDX24, EIF1, C11ORF68, 
BST2, HIST1H1C, ZC3H7B, STXBP1, 
DNAJC21, EIF1B, SARS2, MARK2, CRKL, 
MRPS9, LLPH, MFAP1, SNRPC, RBM33, 
LIN28B, NUFIP2, ZFC3H1, PEF1, MRPL14, 
SPATS2, STRBP, NSUN5, NMD3, RBM26, 
ZNF622, EIF4ENIF1, ZC3H14, ZC3H13, 
SREK1, YTHDC2, FXR2, TRIM56, NOSIP, 
POLDIP3, NOP16, PTPN1, PES1, GPATCH8, 
EIF4E2, REPIN1, DAP3 

1.82E-
07 9.29E-05 

Protein in only Evs from Cisplatin-treated cells 

Biological Processes Count Genes PValue 
Bonferro
ni 

GO:0000184~nuclear-
transcribed mRNA 
catabolic process, 
nonsense-mediated 
decay 8 

UPF1, GSPT1, RPL13, RPL22, RPL9, RPL26, 
RPL27, RPL38 

1.03E-
05 0.007534 

GO:0006413~translation
al initiation 8 

EIF3B, RPL13, RPL22, RPL9, RPL26, RPL27, 
EIF2S3, RPL38 

2.57E-
05 0.018748 

GO:0006614~SRP-
dependent 
cotranslational protein 
targeting to membrane 7 

RPL13, RPL22, RPL9, SRP68, RPL26, RPL27, 
RPL38 

2.85E-
05 0.020776 

Protein in only Evs from Cisplatin-treated cells 

Molecular Function Count Genes PValue 
Bonferro
ni 
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GO:0044822~poly(A) 
RNA binding 29 

HDLBP, RPL13, SRSF11, SRP68, PABPC4, 
HDGF, SKIV2L2, YBX1, NUFIP2, DDX27, 
RBM28, GEMIN5, UPF1, SUB1, ALYREF, 
RPL26, DDX1, FDPS, RPL27, PPP1CC, 
HNRNPR, DDX6, ATXN2, TRAP1, GSPT1, 
RPL22, ARCN1, SNRPA, KPNA2 

1.53E-
10 3.69E-08 

GO:0003723~RNA 
binding 15 

HDLBP, UPF1, RPL13, PABPC4, RPL26, 
RPL38, HNRNPR, YBX1, NUFIP2, ATXN2, 
TROVE2, EIF3B, RPL22, RPL9, SNRPA 

7.28E-
06 0.001761 

 

7.6 GO TERMS FOR PROTEINS WITH HIGHER RELATIVE ENRICHMENT IN EVS THAN 

IN CELLS FOLLOWING CISPLATIN TREATMENT 

Biological Processes Count Genes PValue Bonferroni 

GO:0006413~translational 
initiation 17 

RPLP2, RPL24, EIF3C, EIF3D, EIF3CL, 
EIF3A, RPS16, RPS17, EIF3H, RPL3, 
RPS12, RPL5, EIF3I, RPL11, UBA52, 
RPS23, RPS27A 1.86E-16 1.59E-13 

GO:0006614~SRP-
dependent cotranslational 
protein targeting to 
membrane 11 

RPS16, RPS17, RPS12, RPL3, RPLP2, 
RPL5, RPL24, RPL11, UBA52, RPS27A, 
RPS23 2.85E-10 2.04E-07 

GO:0019083~viral 
transcription 11 

RPS16, RPS17, RPS12, RPL3, RPLP2, 
RPL5, RPL24, RPL11, UBA52, RPS27A, 
RPS23 1.63E-09 1.17E-06 

GO:0000184~nuclear-
transcribed mRNA 
catabolic process, 
nonsense-mediated decay 11 

RPS16, RPS17, RPS12, RPL3, RPLP2, 
RPL5, RPL24, RPL11, UBA52, RPS27A, 
RPS23 2.95E-09 2.12E-06 

GO:0038061~NIK/NF-
kappaB signaling 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 6.51E-09 4.68E-06 

GO:0051436~negative 
regulation of ubiquitin-
protein ligase activity 
involved in mitotic cell 
cycle 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 1.18E-08 8.45E-06 

GO:0043488~regulation 
of mRNA stability 10 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A, 
HSPA8 1.34E-08 9.63E-06 

GO:0051437~positive 
regulation of ubiquitin-
protein ligase activity 
involved in regulation of 
mitotic cell cycle 
transition 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 2.03E-08 1.46E-05 

GO:0031145~anaphase-
promoting complex-
dependent catabolic 
process 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 2.77E-08 1.99E-05 
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GO:0006412~translation 13 

SLC25A6, RPLP2, RPL24, RPS16, RPS17, 
RPS12, FARSB, RPL3, RPL11, RPL5, 
UBA52, RPS23, RPS27A 4.79E-08 3.44E-05 

GO:0060071~Wnt 
signaling pathway, planar 
cell polarity pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 9.26E-08 6.65E-05 

GO:0000086~G2/M 
transition of mitotic cell 
cycle 10 

KHDRBS1, NES, DYNLL1, UBC, 
MAPRE1, UBB, TUBA1A, DYNC1H1, 
UBA52, RPS27A 1.61E-07 1.16E-04 

GO:0000209~protein 
polyubiquitination 11 

PSMD13, PSMC5, PSMB1, HUWE1, 
PSMC3, UBC, NPEPPS, UBB, PSMD6, 
UBA52, RPS27A 1.91E-07 1.37E-04 

GO:0001731~formation of 
translation preinitiation 
complex 6 

EIF3C, EIF3D, EIF3CL, EIF3A, EIF3H, 
EIF3I 2.43E-07 1.74E-04 

GO:0002223~stimulatory 
C-type lectin receptor 
signaling pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 2.60E-07 1.86E-04 

GO:0019068~virion 
assembly 5 PPIA, UBC, UBB, UBA52, RPS27A 6.36E-07 4.57E-04 

GO:0033209~tumor 
necrosis factor-mediated 
signaling pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 6.38E-07 4.58E-04 

GO:0090263~positive 
regulation of canonical 
Wnt signaling pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 7.26E-07 5.21E-04 

GO:0006364~rRNA 
processing 11 

RPS16, RPS17, RPS12, RPL3, RPLP2, 
RPL5, RPL24, RPL11, UBA52, RPS27A, 
RPS23 7.70E-07 5.53E-04 

GO:0006446~regulation 
of translational initiation 6 

EIF3C, EIF3D, EIF3CL, EIF3A, EIF3H, 
EIF3I 2.55E-06 1.83E-03 

GO:0007017~microtubule
-based process 6 

DYNLL1, DYNLL2, TUBA3C, TUBA1A, 
TUBA1B, TUBA1C 2.55E-06 1.83E-03 

GO:0042769~DNA 
damage response, 
detection of DNA damage 6 

RFC5, UBC, DNAJA1, UBB, UBA52, 
RPS27A 2.55E-06 1.83E-03 

GO:0050852~T cell 
receptor signaling 
pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 3.53E-06 2.53E-03 

GO:0042276~error-prone 
translesion synthesis 5 RFC5, UBC, UBB, UBA52, RPS27A 4.82E-06 3.46E-03 

GO:0070987~error-free 
translesion synthesis 5 RFC5, UBC, UBB, UBA52, RPS27A 4.82E-06 3.46E-03 

GO:0090090~negative 
regulation of canonical 
Wnt signaling pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 7.22E-06 5.17E-03 

GO:0006297~nucleotide-
excision repair, DNA gap 
filling 5 RFC5, UBC, UBB, UBA52, RPS27A 1.29E-05 9.23E-03 

GO:0038095~Fc-epsilon 
receptor signaling 
pathway 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 1.37E-05 9.82E-03 
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GO:0061418~regulation 
of transcription from RNA 
polymerase II promoter in 
response to hypoxia 5 CUL2, UBC, UBB, UBA52, RPS27A 2.44E-05 1.74E-02 

GO:0043161~proteasome
-mediated ubiquitin-
dependent protein 
catabolic process 9 

PSMD13, PSMC5, PSMB1, PSMC3, 
UBC, UBB, PSMD6, UBA52, RPS27A 3.54E-05 2.51E-02 

GO:0019058~viral life 
cycle 5 PPIA, UBC, UBB, UBA52, RPS27A 3.70E-05 2.62E-02 

GO:0010939~regulation 
of necrotic cell death 4 UBC, UBB, UBA52, RPS27A 4.74E-05 3.34E-02 

GO:0032479~regulation 
of type I interferon 
production 4 UBC, UBB, UBA52, RPS27A 6.13E-05 4.31E-02 

GO:0002756~MyD88-
independent toll-like 
receptor signaling 
pathway 4 UBC, UBB, UBA52, RPS27A 6.13E-05 4.31E-02 

GO:0000398~mRNA 
splicing, via spliceosome 9 

HNRNPM, HNRNPK, SRSF6, SRRM2, 
DHX15, HNRNPC, HNRNPA1, HSPA8, 
SF3A3 6.66E-05 4.67E-02 

GO:0019985~translesion 
synthesis 5 RFC5, UBC, UBB, UBA52, RPS27A 6.76E-05 4.74E-02 

Molecular Function Count Genes PValue Bonferroni 

GO:0044822~poly(A) RNA 
binding 47 

GLRX3, GANAB, STRAP, STIP1, 
SERPINH1, GOT2, EIF3C, HNRNPM, 
EIF3D, EIF3A, HNRNPK, EIF3H, SRRM2, 
RPL3, DHX15, RPL5, RPL11, HNRNPC, 
DYNC1H1, LBR, KPNB1, RPS27A, 
HSPA8, RBM25, RPS23, KHDRBS1, 
TCP1, ACTN4, SLC3A2, KTN1, RPL24, 
ILF3, MYH9, HNRNPA1, FLNA, SF3A3, 
RPS16, HUWE1, ARF1, RPS17, SRSF6, 
PPIA, IPO5, UBC, RPS12, MAP4, 
MAPRE1 3.85E-27 1.07E-24 

GO:0005515~protein 
binding 85 

NAMPT, TLN1, ATP5B, FERMT2, 
RPLP2, CUL2, LONP1, DYNLL1, DYNLL2, 
H2AFY, RPL11, TUBA1A, DYNC1H1, 
PSMD6, TUBA1B, KPNB1, LBR, 
RPS27A, TUBA1C, KHDRBS1, ACTN4, 
MYH1, KIF5B, SLC25A6, TOR1AIP1, 
SLC3A2, KTN1, CLIC1, MYH9, MCM5, 
FLNA, RFC5, ALDH7A1, RPS16, 
HUWE1, IPO7, IPO5, FARSB, UBC, 
SURF4, UBB, MAPRE1, UBA52, GLRX3, 
ECH1, AHCY, STRAP, STIP1, ITGB1, 
MIF, EIF3C, ANXA6, EIF3D, HNRNPM, 
EIF3A, STT3A, HNRNPK, PSMB1, EIF3H, 
DHX15, RPL3, TUBA3C, DNAJA1, 
RAB11A, RPL5, EIF3I, HNRNPC, RPS23, 
CHD4, RBM25, HSPA8, TCP1, ILF3, 
RPL24, COTL1, HNRNPA1, SF3A3, 
CCT5, PSMC5, ATP2A2, ARF1, SRSF6, 
PSMC3, PPIA, MAP4 3.72E-10 1.04E-07 
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GO:0003735~structural 
constituent of ribosome 12 

RPS16, RPS17, SLC25A6, RPS12, RPL3, 
RPLP2, RPL5, RPL24, RPL11, UBA52, 
RPS27A, RPS23 1.10E-07 3.06E-05 

GO:0003723~RNA binding 17 

HNRNPA1L2, KHDRBS1, ILF3, RPL24, 
HNRNPA1, SF3A3, EIF3D, HNRNPM, 
EIF3A, HNRNPK, RPS16, SRSF6, RPL3, 
FARSB, RPL5, RPL11, HNRNPC 1.97E-07 5.49E-05 

GO:0098641~cadherin 
binding involved in cell-
cell adhesion 13 

TLN1, TWF1, HNRNPK, KIF5B, SLC3A2, 
KTN1, RPL24, CLIC1, MAPRE1, MYH9, 
ITGB1, FLNA, HSPA8 2.00E-07 5.58E-05 

GO:0003743~translation 
initiation factor activity 6 

EIF3C, EIF3D, EIF3CL, EIF3A, EIF3H, 
EIF3I 3.48E-05 9.66E-03 
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7.7 KEGG  PATHWAYS FOR PROTEINS WITH HIGHER RELATIVE ENRICHMENT IN EVS 

THAN IN CELLS FOLLOWING CISPLATIN TREATMENT 

Term Count Genes PValue Bonferroni 

hsa03010:Ribosome 11 

RPS16, RPS17, RPS12, RPL3, 
RPLP2, RPL5, RPL24, RPL11, 
UBA52, RPS27A, RPS23 2.52E-06 2.62E-04 

hsa03040:Spliceosom
e 10 

HNRNPA1L2, HNRNPM, HNRNPK, 
SRSF6, DHX15, HNRNPC, 
HNRNPA1, RBM25, HSPA8, SF3A3 1.64E-05 1.70E-03 

hsa03050:Proteasom
e 5 

PSMD13, PSMC5, PSMB1, PSMC3, 
PSMD6 1.45E-03 1.40E-01 

hsa05130:Pathogenic 
Escherichia coli 
infection 5 

TUBA3C, TUBA1A, TUBA1B, 
ITGB1, TUBA1C 2.51E-03 2.30E-01 

hsa03013:RNA 
transport 8 

EIF3C, EIF3D, EIF3CL, EIF3A, 
STRAP, EIF3H, EIF3I, KPNB1 3.13E-03 2.78E-01 

hsa04962:Vasopressi
n-regulated water 
reabsorption 4 

DYNLL1, DYNLL2, RAB11A, 
DYNC1H1 1.31E-02 7.48E-01 

hsa04145:Phagosome 6 
TUBA3C, DYNC1H1, TUBA1A, 
TUBA1B, ITGB1, TUBA1C 2.89E-02 9.53E-01 

hsa00350:Tyrosine 
metabolism 3 GOT2, ADH5, MIF 5.89E-02 9.98E-01 
hsa04540:Gap 
junction 4 

TUBA3C, TUBA1A, TUBA1B, 
TUBA1C 7.68E-02 1.00E+00 

 


