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Abstract—Intrinsic motivation is a common method to fa-
cilitate exploration in reinforcement learning agents. Curiosity
is thereby supposed to aid the learning of a primary goal.
However, indulging in curiosity may also stand in conflict with
more urgent or essential objectives such as self-sustenance. This
paper addresses the problem of balancing curiosity, and correctly
prioritising other needs in a reinforcement learning context. We
demonstrate the use of the multi-objective reinforcement learning
framework C-MORE to integrate curiosity, and compare results
to a standard linear reinforcement learning integration. Results
clearly demonstrate that curiosity can be modelled with the
priority-objective reinforcement learning paradigm. In partic-
ular, C-MORE is found to explore robustly while maintaining
self-sustenance objectives, whereas the linear approach is found
to over-explore and take unnecessary risks. The findings demon-
strate a significant weakness of the common linear integration
method for intrinsic motivation, and the need to acknowledge
the potential conflicts between curiosity and other objectives in
a multi-objective framework.

I. INTRODUCTION

Artificial curiosity and intrinsic motivation (IM) are com-
monly employed methods in today’s robotics and AI research
[1], [2], [3], [4]. Intrinsic motivation facilitates an agent’s
exploration that is not immediately directed at external re-
wards, but facilitates the long-term success of the agent by
potentially exploring new, beneficial behavioral repertoires that
would not be discovered by a greedy exploration method. Suc-
cessful examples include exploration in sensorimotor spaces
for reaching [5] and touch [6], speech [7] and challenging
video game environments such as Montezuma’s Revenge [8].
Various classification methods have been proposed to capture
the enormous variety of different IM methods in use. These
focus mostly on the principles in which artificial curiosity
is calculated in the first place. For instance, some authors
have emphasized the distinction between knowledge-based
and competence-based approaches [2]. A common method of
knowledge-based IM is to focus on the distribution of states
an agent has seen, and actively seek to explore a wider range.
Others have emphasized the need for a wider view on artificial
creativity [1].

Even though some authors have argued for agents to follow
solely intrinsic motivation (e.g. novelty search [9]), the vast
majority of studies use IM in conjunction with some (or
several) primary objectives. IM in this context is supposed to
aid the success of the agent’s primary objective. The range
of methods to integrate IM into an agent that has other

goals is as wide as the range of agent architectures itself.
In developmental literature it had classically been argued
that distinct phases of exploration might precede more goal-
directed activity [10], [11]. However, it is most commonly
seen as more efficient, as well as developmentally plausible
[12], [13], to closely intertwine exploratory and goal directed
activity. This is often seen in the implementation of curiosity in
reinforcement learning. A common way to integrate curiosity
into a reinforcement learning agent is to express curiosity as
a reward and add it to the existing reward that corresponds to
the external task [14], [15]. This way, the agent is constantly
incentivised to explore alongside its external reward seeking
behavior. A drawback of this method is that the agent ends up
learning an inseparable mixture of, or compromise between,
intrinsic and extrinsic incentives. Calibrating the right compro-
mise between different scalar reward components is a known
issue in reinforcement learning, and is usually susceptible to
reward hacking behaviors and other safety issues [16]. In some
application contexts the agent also knows concrete target states
besides the reward alone. In such cases it is common to define
a more flexible integration of IM and the external task by
giving rewards when the target is either reached, or approached
better than before [17], [18]. This avoids the compromise
making, but does not generalize into RL setups without any
explicitly known target states.

The main challenge in the integration of curiosity into an
agent that behaves in the real world is that satisfying curiosity
may stand in direct conflict with the agent’s primary objective
(or objectives). This may be an externally given task which
needs to be solved, and should not be neglected at the expense
of indulging in curiosity too extensively. Other needs may be
much more urgent, and generally of a higher priority, such as
the requirements for self-sustenance and safety. When an agent
is tasked with an overall goal consisting of primary objectives
such as survival needs, the agent should be incentivised to
satisfy the primary goals first before attempting to complete
any secondary objectives such as curiosity. However, once a
survival need is met, the agent should then go out and explore
its environment further in an effort to discover more resources
that can better satisfy higher level needs. For example, when
an agent has satisfied its energy requirement, it should then be
intrinsically motivated to explore the environment in the hope
that it may stumble upon greater energy resources. This type
of exploratory behaviour is highly desirable because it allows



an agent to make optimal use of the resources present in a
given environment. This process is analogous to the intrinsic
motivation [3] in biological creatures and enables an agent
to be more opportunistic about obtaining rewards altogether.
However, this type of behaviour may not be desirable if
exploring the environment comes at the cost of the agent’s
survival, for example when a drone runs out of battery in
the pursuit of finding new charging stations. Therefore it
is essential that a developing agent prioritises its own self-
preservation over and above exploration.

The balancing of needs and orchestration of various behav-
iors has classically been the role of cognitive architectures.
For example, the subsumption architecture [19] allows urgent
behaviors to entirely block higher level or less urgent func-
tions. The downside of this design is that synergies between
tasks and objectives (if present) cannot be exploited. Models
of hormonal systems [20] take a more gradual approach and
allow specific needs to be modulated by more urgent ones.
However, these systems rely on hand-crafted hormonal dy-
namics equations that are not based on any common decision
theory and therefore very hard to generalize.

Methods in multi-objective reinforcement learning (MORL),
on the other hand, are an explicit attempt to establish a
consistent decision theory for an agent satisfying several objec-
tives [21], [22], [23], [24]. MORL approaches can broadly be
divided into two main types, namely single-policy and multi-
policy types [25], [26]. Single-policy approaches attempt to
find a unique optimal policy whilst multi-policy approaches
attempt to find a group of optimal policies from which a
user can select. Within single policy approaches, the standard
linear approach computes the weighted sum of the rewards
of a given state for each objective. Linear methods have the
same disadvantages in terms of compromise and safety as
standard reinforcement models, in that the rewards of different
objectives can be traded off for each other. While specific
safety rewards or even boundaries have been built into the
design of such agents [27], general decision rules are hard
to articulate in the linear framework. Non-linear methods that
prevent trade-offs have however been proposed: The ”Multi-
Objective Reward Exponentials” (MORE) framework [28]
uses a soft-min-like utility function to combine objectives,
which results in a balanced achievement of all objectives. This
method has also been shown to allow for targeted prioritisation
[29] of objectives by the designer where appropriate, which
results in behavior that satisfies urgent needs first, but giving
in to secondary needs when possible.

Multi-objective reinforcement learning seems uniquely well
suited to integrate intrinsic motives into an agent that learns
while behaving. It acknowledges the fact that there are distinct
objectives, rather than compounding them into one objective
in which contributions are interchangeable. Yet, very little
work to date has been conducted in this direction. One
study [30] presented preliminary results on the integration of
IM with linear multi-objective RL with variable weighting,
inheriting all the balancing problems from ordinary single-
objective reinforcement learning (see also [28]). In another

study [31], a more complex, multi-policy learning method for
the integration of intrinsic motivation was investigated. This
approach delays the actual selection of a solution and allows an
external user or supervisor of the system to select a preference
after learning. It is therefore not applicable to systems that
exhibit lifelong learning.

A. Contribution and Outline

This paper investigates how intrinsic motivation can be
integrated into an agent with the non-linear multi-objective re-
inforcement learning framework C-MORE [29]. We capitalize
on C-MORE’s ability to dynamically balance the achievement
of different needs, while allowing for a gradual prioritisa-
tion at the same time. This ability is demonstrated in two
environments in which the agent needs to fulfill one or two
immediate self-sustenance objectives before exploring further.
Experiments show that C-MORE with IM achieves highly
robust exploration results, all while maintaining a continuous
balance with self-sustenance. In contrast, linear integration of
IM in the classical fashion [14], [15] is shown to involve high
risk behaviour and a tendency towards abandoning the critical
self-sustenance goals. Our study therefore demonstrates a
critical weakness of the most common integration method of
curiosity into reinforcement learning. This in particular affects
RL agents with lifelong learning that learn while behaving as
opposed to learning through supervision. The proposed solu-
tion tackles the balancing and prioritisation of the objectives
directly within the agent’s decision making mechanism, rather
than relying on operator judgement as in the only two previous
MORL studies on IM [30], [31]. Conceptually, this can be seen
as a generalization of previous models of hormonal dynamics
with homeostatic behavior [20], which relies on handcrafted
non-linear hormonal dynamics, into a formal decision theory
with a globally consistent utility function.

II. METHODOLOGY

We analyse the performances of two different MORL
frameworks that have curiosity built into them. The first
of which is the standard linear method and the second is
the C-MORE framework. We test these frameworks in two
separate environments in the case of both 2 and 3 objectives.
The environments employed are based on the Multi-Objective
Markov Decision Process (MOMDP) model. A MOMDP can
be represented by a tuple ⟨S,A, P, r⟩ where S represents the
state space, A represents the set of actions an agent can take,
and P represents the probability of entering a state s′ from a
state s when action a is taken. Different from ordinary Markov
Decision Processes, the reward r is a vector, containing the
rewards corresponding to K objectives.

A. Standard Linear Method

In the standard linear scalarisation approach, the overall
value of a state or state-action pair is the expected sum of
future rewards over all K objectives i.e. the total value for a
given state is determined on the basis of a weighted sum of
calculated values Vk for each objective where the weighting



Fig. 1: Utility concepts for the multi-objective problem: (i) standard linear scalarization, (ii) the non-linear MORE scalarization
that corresponds to a softmin function [28], (iii) C-MORE, a MORE scalarization that is shifted by c0=2 on the first objective,
giving it higher priority [29], but also continuously weighting in the second objective when the first one becomes satisfied.

W = (W0,W1, ...,WK−1) is constant and predetermined by
a user:

V LIN
π =

K−1∑
k=0

WkV
LIN
π,k =

K−1∑
k=0

WkEπ

[∑
t

γtrk(t)

]
. (1)

In this study, we use a standard Q-learning implementation to
optimize the agent’s behavior towards this combined value.

B. The C-MORE Algorithm

The Conditional Multi-Objective Reward Exponentials (C-
MORE) framework [29] makes use of a weighted exponential
function for calculating the overall value of a given state
in accordance with a specified priority vector. Internally,
this leads to dynamic and prioritised weighting of objectives
(which can be derived analytically, see [28] for details) that
ensures that priority is given to the momentarily least satisfied
objectives. Given K objectives, the MORE value function is
defined as follows:

V MORE
π = −

K−1∑
k=0

exp(−V LIN
π,k ) (2)

The rationale for this non-linear scalarization is that it can only
be satisfied if all objectives are achieved in a balanced manner,
compared to linear scalarizations in which achievements of
different objectives are interchangeable (compare Fig. 1).
Priority-objective reinforcement learning can be implemented
in this framework by subtracting a constant ck inside the
exponential term to act as a condition for the k-th objective.
The modified function is presented as follows:

V C−MORE
π = −

K−1∑
k=0

exp(−(V LIN
π,k − ck)) (3)

Positive values of ck introduce a synthetic deficit in the value
function, that gives the objective a higher priority since the
higher values V LIN

π,k need to be reached to achieve a balanced
state after the deduction of ck (see Fig. 1). ck is chosen by
the designer to express their intention towards the agent’s
behavior. The values are intuitively related to cumulative

reward. For example, c0 = 5 means that the agent needs to
accumulate and maintain a reward of V LIN

0 = 5 on the first
objective before other objectives become equally important.
The first objective therefore has priority. Once the deficit is
equalized, MORE encourages the agent to maintain a balance
between objectives, meaning that it will avoid seeking large
values for one objective at the expense of the other and vice
versa. The MORE objective is optimized by the Q-learning-
based algorithm which is described in detail in the original
MORE paper [28]: in each step, actions are chosen that
maximize Eqn. 3, and expected future cumulative rewards
V LIN
π,k per objective are estimated with standard Q-learning.

C. Intrinsic Motivation

In order to model curiosity, we picked one of the most
simple intrinsic motivation approaches, uncertainty motivation
[2], [32]. The agent keeps track of how often ns it has visited
each state in relation to the amount t of steps so far. Higher
rewards are given on states that have been visited rarely. The
basic equation for the curiosity state novelty reward signal rc
is

rc = C
(
1− ns

t

)
, (4)

with an application-specific coefficient C [2].
We found this expression to be rather limiting in the

environments tested, as most rewards will be numerically very
close to C, while some large outliers may be closer to zero.
We therefore applied a further transformation that provides a
more stable numeric range, while also expressing more nuance
between different rarely visited states:

rc = C2 arctan
(
C1 ·

(
1− ns

t

)
+ C0

)
(5)

The use of the arctan function serves to cap the numeric range
of the rewards against extreme numeric lows and highs. This
was found necessary in order to let any of the tested algorithms
explore successfully. We chose C2 = 5 in order to scale the
IM rewards to the same general scale as the other rewards. We
further chose C1 = 6N (where N is the number of states) and
C0 = 15 for all cases. These values were manually chosen



ahead of the learning experiments with the aim of placing
the most common values on the center of the arctan’s non-
linearity.

D. Environment

For each framework, two separate multi-objective gridworld
environments are used to assess the performances of the
agent. We employ two primary objectives which are meant to
constitute an agents overall health. The first of these objectives
(extrinsic objective 1) is the energy level which is a quantity
that decreases whenever the agent moves. This objective
is modelled using a motion penalty of −0.1. The second
(extrinsic objective 2) is an agent’s physical health. This is
a value that can increase or decrease by fixed amounts. Both
primary objectives can be recharged on designated states, but
can also take extra damage on other designated perilous states.
The expectation is that the agent will balance and maintain
these two objectives as well as explore the environment in an
effort to find novelty states and ultimately satisfy its intrinsic
motivation.

The first environment is shown in Fig. 2a and consists of a 7
by 7 gridworld scenario in which the agent starts in an isolated
corner of the map with only a handful of resources within its
reach, and then makes its way out into the surrounding areas
in order to obtain further rewards. The design choice of using
obstacles was motivated in part by the challenges that come
with objectively analysing curious exploration. The reward and
penalty states have been chosen in key locations in order to
accurately assess the agent’s rational behaviour.

The second environment is shown in Fig. 2b and is a much
larger 7 by 20 gridworld MOMDP that positions resources of
varying levels of benefit at different distances from the isolated
corner where the agent initially spawns. The sporadic position-
ing of various reward and penalty states across the environment
allows for an accurate assessment of the exploratory behaviour
and intelligence of both agents using both frameworks.

In order to comprehensively demonstrate that the level of
exploration is rationed accordingly, we carry out two separate
sets of experiments. In one set of experiments, the rewards of
the two main objectives are added together. This corresponds
to the overall health of the agent which can then be assessed
with a curiosity need (an intrinsic objective) alongside it.
The purpose of this condition is to simplify the scenario for
the linear approach so that it only has to deal with IM and
one other objective, rather than immediately tackling IM and
two other objectives. In the second set, the rewards of all
the objectives are left separate and therefore correspond to
energy and physical health alongside curiosity respectively.
The algorithms are tested against each other in all 4 cases and
the performances are analysed therein.

a) First Case - First Environment with 2 Objectives: To
begin with, both frameworks are run in the first environment
with a single objective alongside the curiosity motive built into
it. The expectation here is that the agent will work its way out
of the upper corner of the environment and work its way down
in order to maximise its reward. On the majority of occasions

the framework should find all 3 attractive states but it should
not do this at the expense of taking significant penalties to the
main objective.

b) Second Case - First Environment with 3 Objectives: In
the next experiment, the two frameworks are run in the same
environment but this time with 2 main objectives alongside
IM. This setup is meant to represent a more complex and
realistic scenario in which an agent has to balance multiple
primary competing needs such as battery power and physical
health, whilst maintaining an appropriate level of curiosity and
exploration. The expectation here is not too dissimilar to that
of the first case. However, a greater level of focus on seeking
primary rewards is expected here.

c) Third Case - Second Environment with 2 Objectives:
In the following experiment, the frameworks are tested in the
second environment with just two objectives. The expectation
here is that the agent will make its way out of the enclosed
area in the upper left corner and start exploring the large
open area from left to right in a progressive fashion. In doing
so the agent is expected to find all 3 attractive states on
the majority of occasions. However, the continual exploration
of an environment in which such a large number of penalty
states is present is not always desirable. Therefore the agent
is expected to withdraw from the area to the far right of the
map when the third attractive state has been discovered.

d) Fourth Case - Second Environment with 3 Objectives:
In the final experiment, the two algorithms are tested in the
second environment with 3 objectives. This setup is meant to
represent a realistic open field environment in which the agent
needs to explore an area whilst making sure it protects itself
from physical damage as well as fuel shortages. Here again,
the expectation is that the agent will work its way out from
the corner and courageously explore the area from left to right
but in such a way that it avoids danger and stays intact whilst
doing so.

III. RESULTS

We ran each framework for 100000 time steps for 10
independent trials. For the first environment we used a reset
time of 100 and for the second 250. We measured the
number of rounds in which each of the attractive states were
discovered alongside the rewards attained for each objective.
We also set the priority constants in the C-MORE framework
to C = (5, 5, 0), corresponding to high-priority for the first
two objectives, and lower priority for the IM objective. In the
case of a single primary objective, we used the priority vector
C = (5, 0). The central evaluation metric is the total reward for
each objective. The total reward for the IM component was
capped at 10000 in all visualizations to allow for an easier
comparison with other totals.

a) First Environment - Cases 1 and 2: The results for
the first environment are shown in Fig. 3. The figure on the
left shows the reward totals over time for each objective and
all ten independent runs. The plots on the right show how
many of the ten runs have found each of the three attractive
target states (outside the initial 3x3 room) over time. We can
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Fig. 2: The two test environments are shown with their two environmental rewards components for each state. The initial state
in each environment is in the top left corner. States with positive rewards are shown in green, and negative rewards in red.
States that denote obsticles are shaded in grey. The magnitude of rewards is larger for states more distant from the initial state.

(a) Case 1 - Linear approach with IM and attractive state discoveries

(b) Case 1 - C-MORE with IM and attractive state discoveries

(c) Case 2 - Linear approach with IM and attractive state discoveries

(d) Case 2 - C-MORE with IM and attractive state discoveries

Fig. 3: Case 1 and 2 results

Case 1 Case 2
Linear C-MORE Linear C-MORE

EO-1 43.77 % 1.07 % 96.54% 1.74%
EO-2 6.82 % 1.38%
IM 22.96 % 3.38 % 3.24 % 2.00%

TABLE I: Percentage of time-steps during which each ob-
jective (extrinsic EO-1 and EO-2 and intrinsic IM) had a
significantly negative reward total in the first environment.

Case 3 Case 4
Linear C-MORE Linear C-MORE

EO-1 91.37% 2.15 % 96.75 % 9.89 %
EO-2 57.52 % 2.17 %
IM 2.40 % 2.98 % 2.54 % 2.73 %

TABLE II: Percentage of time-steps during which each ob-
jective (extrinsic EO-1 and EO-2 and intrinsic IM) had a
significantly negative reward total in the second environment.

observe that the linear approach with IM in both cases does
not appear to meet expectations. The linear approach is able to
locate the attractive states consistently, but it does not reliably
optimise all the objectives. The linear framework in this case
appears to optimize predominately the curiosity objective at
the expense of the self-sustenance rewards. The C-MORE
framework displays a faster and more consistent discovery of
all attractive target states, but also reliably maintains a positive
reward for all objectives. Table I shows in what percentage of
time steps the reward totals were negative for each approach
and objective. The linear method displays extensive periods of
negative achievement, while C-MORE only shows occasional
dips of the total which are largely caused by initial exploration.

b) Second Environment - Cases 3 and 4: The
performances of each of the algorithms in this environment
are shown in Fig. 4. Here again, we can observe that, the
linear approach with IM in both cases does not appear to
meet expectations. While the curiosity rewards accumulate
very quickly, the primary objectives are negative in many
instances. The linear approach finds the first two attractive
states reliably, but struggles to discover the third one.



(a) Case 3 - Linear approach with IM and attractive state discoveries

(b) Case 3 - C-MORE with IM and attractive state discoveries

(c) Case 4 - Linear approach with IM and attractive state discoveries

(d) Case 4 - C-MORE with IM and attractive state discoveries

Fig. 4: Case 3 and 4 results

The C-MORE framework scores very similarly in terms
of exploration and attractive state discovery. However, it
consistently manages to maintain positive reward totals for
both primary objectives at the same time. Therefore, once
again, the C-MORE framework has met expectations.

IV. DISCUSSION

From the results shown above, it appears that when IM
is incorporated into linear reinforcement learning, the level
of active exploration of a developing agent increases and the
frequency of resource discoveries appears to climb. However,
what has become apparent from this research is the risk and
potential unreliability of the standard linear approach with IM.
In all four cases, we observe how the linear RL agent goes
primarily for exploration over and above self-preservation as
the rewards for the primary objectives dip and stay below zero
on a significant proportion of time steps. On the other hand,
incorporating IM into the C-MORE framework appears to
produce stable results in simple cases and can produce reliable

performances in more realistic scenarios involving multiple
primary objectives. In all 4 cases, the C-MORE framework
has managed to locate all the attractive states in a significant
proportion of runs whilst maintaining positive rewards for both
primary objectives almost throughout the entire simulation.
Therefore, when IM is incorporated within a need balancing
framework such as C-MORE it can produce reliable results in
a range of environments. These results have so far been con-
firmed in the four demonstrated cases, and for one particular
(but very common) choice of IM implementation. In addition,
only a limited range of priority constants were tested. While
further studies should continue this investigation with different
IM implementations and environments, the results found here
were robust and so far seem to generalize.

V. CONCLUSION

In this study we incorporated a state novelty based intrin-
sic motivation system into two multi-objective reinforcement
learning frameworks. We then tested these frameworks in
two different environments involving both a single primary
objective and two primary objectives alongside a curiosity
reward. From the results we conclude that the C-MORE
framework enhanced with IM appears to deliver better per-
formance overall than the linear approach. The relatively
limited complexity of the tested environments employed in
the study was sufficient to distinguish the performances of
linear RL and C-MORE. The findings of this study confirm
clearly that when intrinsic motivation is combined with a
reward balancing framework such as C-MORE it can produce
desirable curiosity behaviour in an agent that is tasked with
exploring an unfamiliar environment. C-MORE’s ability to
balance, and also to dynamically prioritise objectives is crucial
to this positive experimental outcome. The findings therefore
underpin the need to treat intrinsic motivation as a truly
separate objective through a multi-objective lens, rather than
compounding curiosity and other needs into a single objective.
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