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Abstract – The paper demonstrates for the first time a new domain-independent method for 

improving reliability and reducing risk based on two fundamental approaches of using 

algebraic inequalities: the forward approach, based on deriving algebraic inequalities from 

real systems and processes and the inverse approach, based on deriving new knowledge by 

meaningful interpretation of existing correct algebraic inequalities. The forward approach has 

been used to prove the domain-independent principle of the well-ordered systems which are 

characterised by the smallest possible risk of failure. In this respect, the paper answers an 

important question for a parallel-series system about the components that need to be 

subjected to condition monitoring so that the reliability of the system is maximised. 

The forward approach has also been used for optimal assignment of manufacturers to 

products with the purpose of minimising the overall percentage of defective products. 

The inverse approach has been used to generate new knowledge related to the relationship 

of the equivalent elastic constants of elements arranged in series and parallel and the upper 

and lower bounds of the percentage of faulty components in a batch of components obtained 

from pooling batches of components with unknown sizes. 

The paper also demonstrates the principle of non-contradiction: if the variables and the 

different parts of a correct abstract inequality can be interpreted as a system or process, in the 

real world, the system or process must exhibit properties that are consistent with the abstract 

inequality. 
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1. Introduction 

 

While reliability and risk assessment are truly domain-independent areas, this cannot be 

stated about the equally important areas of reliability improvement and risk reduction. For 

decades, the reliability and risk science failed to appreciate and emphasize that reliability 

improvement, risk and uncertainty reduction are underpinned by general principles that work 

in many unrelated domains. 

As a consequence, methods for measuring and assessing reliability, risk and uncertainty 

were developed, not domain-independent methods for improving reliability, reducing risk and 

uncertainty which could provide a direct input to the design process. Indeed, in standard 

textbooks on mechanical engineering and design of machine components (Collins, 2003; 

Norton, 2006; Pahl, 2007; Childs, 2014; Budynas, 2015; Mott et al, 2018; Gullo and Dixon, 

2018), for example, there is no mention of generic (domain-independent) methods for 

reliability improvement and risk and uncertainty reduction. 

The problem is that the current approach to reliability improvement and risk reduction 

almost solely relies on knowledge from a specific domain and is conducted exclusively by 

experts in that domain. This creates the incorrect perception that effective risk reduction can 

be delivered solely by using methods offered by the specific domain, without resorting to a 

general risk reduction methods and principles.  

This incorrect perception resulted in ineffective reliability improvement and risk reduction 

across the entire industry, the loss of valuable opportunities for reducing risk and repeated 

"reinvention of the wheel". Current technology changes so fast that the domain-specific 

knowledge related to reliability improvement and risk reduction is outdated almost as soon as 

it is generated. In contrast, the domain-independent methods for reliability improvement, risk 

and uncertainty reduction are higher-order methods that permit application in new, constantly 

changing situations and circumstances.  

To fill a gap in the domain-independent methods for risk reduction, the paper contributes a 

new domain-independent method for improving reliability and reducing risk, based on 

algebraic inequalities. 

There are a number of useful analytic inequalities such as the Arithmetic mean – 

Geometric mean (AM-GM) inequality, Cauchy-Schwartz inequality, the rearrangement 

inequality, the Chebyshev’s inequality, Jensen’s inequality, etc. Analytic inequalities have 

been discussed extensively in (Steele, 2004; Cloud et al. 1998; Engel 1998; Hardy et al., 
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1999; Kazarinoff, 1961; Pachpatte 2005; Sedrakyan and Sedrakyan 2010). A comprehensive 

overview of the use of inequalities in mathematics has been presented in (Fink, 2000). 

In probability theory (De Groot, 1989; Miller and Miller, 1999), well-known inequalities 

are the Tchebyshev’s inequality, Markov’s inequality, Boole’s inequality, Bonferroni 

inequalities and Jensen’s inequality. Some of these inequalities have been used in reliability 

theory to provide bounds on operational characteristics and system reliability calculated by 

using cut sets (Barlow and Proshan, 1965,1975; Ramakumar, 1993; Hoyland and Rausand 

1994). 

Applications of some of these inequalities have been considered in physics (Rastegin, 

2012) and engineering (Cloud et al. 1998).  

In engineering design, design inequalities have been used to express design constraints for 

a long time to guarantee that the design will perform its required function (Samuel and Weir, 

2004). This paper shows however, that the use of algebraic inequalities in engineering is far 

reaching and is not restricted to specifying design constraints.  

A formidable advantage of algebraic inequalities is that they do not require knowledge 

related to the distributions of the variables entering the inequalities. This makes a method 

based on algebraic inequalities ideal for handling deep uncertainty associated with 

components, properties and control parameters. 

Despite the existing comprehensive introductions to analytic inequalities and the presence 

of applications in physics and engineering, there is a profound lack of discussion related to 

the applications of analytic inequalities to improve reliability and reduce risk.  

There are two principal approaches of using algebraic inequalities for improving reliability 

and reducing risk: (i) a forward approach, consisting of deriving an abstract algebraic 

inequality from a real physical system or process which is subsequently tested and proved 

rigorously and (ii) an inverse approach, consisting of interpreting a correct abstract 

inequality and inferring from it unknown new properties related to a real physical system or 

process. 

The forward approach of using algebraic inequalities for improving reliability and 

reducing risk is to start with the system or process, conjecture an inequality about the 

performance of competing alternatives and prove the conjectured inequality rigorously.  

This process includes several basic steps (i) analysis of the system or process, (ii) 

conjecturing inequalities ranking the competing alternatives, (iii) testing the conjectured 

inequalities and (iv) proving the conjectured inequalities rigorously. 
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By following this approach, inequalities can be used to rank reliabilities of systems with 

unknown reliabilities of their components. This forward approach of exploiting algebraic 

inequalities has been demonstrated in (Todinov, 2016) by comparing systems with unknown 

reliabilities of their components. The generic strategy starts with building the functional 

diagram of the system, creating the reliability network for the system, deriving expressions 

for the system reliability of the competing alternatives, conjecturing inequalities involving the 

competing alternatives and finishing with a rigorous proof by using some combination of 

analytical techniques for proving inequalities. 

In this paper, the forward approach will be applied for determining a tight upper bound for 

the risk of a faulty assembly and for maximising the reliability of parallel-series systems. 

The inverse approach is based on the observation that useful quantitative knowledge is 

locked in abstract inequalities that be released by their meaningful interpretation. 

Furthermore, depending on the specific interpretation, knowledge, applicable to different 

systems from different domains can be released from the same inequality. In this sense, the 

inverse approach does not require or imply any forward analysis of pre-existing systems or 

processes. The systems or processes to which the inequality applies are solely a result of the 

meaningful interpretation of the variables in the inequality and its parts.  

The key step of the inverse approach is creating, relevant meaning for the variables 

entering a correct algebraic inequality, followed by a meaningful interpretation of the 

different parts of the inequality  

This inverse approach effectively links existing correct abstract algebraic inequalities with 

real physical systems or processes and not only opens opportunities for enhanced 

performance of systems and processes but also leads to the discovery of new fundamental 

properties of the systems and processes.  

The inverse approach always leads to new knowledge as long as a meaningful 

interpretation of the algebraic inequality is provided. This is because the inverse approach is 

firmly rooted in the principle of non-contradiction: if the variables and the different parts of a 

correct abstract inequality can be interpreted as a system or process, in the real world, the 

system or process exhibit properties that are consistent with the abstract inequality. 

In other words, the realization of the process/experiment yields results that do not 

contradict the algebraic inequality. 

 

 

2. Equivalent elastic constants of springs in series and parallel 
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This example demonstrates obtaining new knowledge from the meaningful interpretation of a 

correct algebraic inequality, which is the essence of the inverse approach in using algebraic 

inequalities. 

Consider the abstract inequality 

2
1 2

1 2

1 1 1( ... ) ...n
n

k k k n
k k k

 
+ + + + + +  

 
                                             (1) 

where 0ik  , 1,...,i n=  are positive real numbers and n is an integer number. 

This inequality is correct and can be proved by expanding the left hand side of (1) which  

gives 2n  terms of the form /i jk k , 1 ,i j n  . From these 2n  terms, n terms will be of the 

type i j=  and / 1i jk k = . The rest of the 2n n−  terms can be paired in the sums ji

j i

kk
k k

+ .  

For any two numbers ik  and jk   

            2ji

j i

kk
k k

+                                                                     (2) 

is fulfilled and this follows from the standard AM-GM inequality (Kazarinoff, 1961; Steele, 

2004):  

2i j i jk k k k+                                                                   (3) 

which follows directly from the inequality 2( ) 0i jk k−  . 

Indeed, squaring both sides of inequality (3) (which are non-negative numbers) and dividing 

by the positive number i jk k  yields inequality (2). 

According to what was proved earlier, for each of the paired sums, 2ji

j i

kk
k k

+   holds. The 

number of these sums is 2( ) / 2n n−  and the left-hand side of inequality (1) becomes 

2
2

1 2
1 2

1 1 1( ... ) ... 2
2n

n

n nk k k n n
k k k

  −
+ + + + + +  +  = 

 
 

This completes the proof of inequality (1). 

Now, a meaningful interpretation can be provided to inequality (1) if 1k , 2k ,…, nk  stand 

for the stiffness values of n elastic elements (springs). The equivalent stiffness of springs in 

series is given by the well-known relationship (Samuel and Weir, 2004): 
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1 2

1
1/ 1/ ... 1/s

n

k
k k k

=
+ + +

                                                       (4) 

For springs connected in parallel, the equivalent stiffness is 

1 2 ...p nk k k k= + + +                                                     (5) 

Inequality (1) effectively states that the ratio /p sk k  of the equivalent spring constant pk  of 

springs connected in parallel and the equivalent spring constant sk  of springs connected in 

series never falls below 2n  ( 2/p sk k n ) irrespective of the individual stiffness values 

, 1,...,ik i n= . Or, equivalently, the equivalent spring constant sk  of springs connected in 

series is at least 2n  times smaller than the equivalent spring constant of the springs connected 

in parallel, irrespective of the stiffness values , 1,...,ik i n=  of the individual springs: 

2/s pk k n                                                                      (6) 

The upper bound 2/s pk k n  is tight and equality is attained if all stiffness values are equal 

1 2 ... nk k k k= = = = .  

This is an example of generating new knowledge from the meaningful interpretation of an 

algebraic inequality.  

An application of this result can be found in the robust design of clamping devices, which 

often require a small variation of the spring force with the spring length. 

A constant clamping force P can be provided by springs arranged in parallel, with a large 

equivalent spring constant 1k  and initial deflection 1x ( 11xkP = ) or by springs arranged in 

series, with a smaller equivalent spring constant 12 kk   and larger initial deflection 12 xx   

(Figure 1). The initial spring deflection is always associated with errors (errors in cutting the 

springs to exact length, imperfections associated with machining the ends of the spring coil, 

sagging of the spring with time due to stress relaxation, variations in the length of the springs 

associated with the pre-setting operation, etc.).  

As it can be verified from Figure 1, for the springs connected in series (with equivalent 

spring constant 2k ), variations of magnitude x  in the spring deflection cause much smaller 

variations 2P  in the clamping force compared to the variations 1P  in the clamping force of 

the stiffer springs in parallel, caused by the same variations x  of the spring deflection. 

Selecting springs arranged in series results in a robust design, for which the clamping force P 

is not very sensitive to variations in the spring deflection.  
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Figure 1. Clamping force variation for springs connected in parallel and for springs connected in series. 

 

Another application of the formulated relationship can be found in the significant increase 

of the energy-absorbing potential of assemblies upon impact. By arranging the elastic 

elements in series rather than parallel, the 2n  times smaller equivalent stiffness sk  in series 

compared to the stiffness pk  in parallel will reduce significantly the maximum stress upon 

impact and with this, the risk of overstress failure will also be significantly reduced. 

It is important to note that the relationship between equivalent properties of elements 

connected in series and parallel is not the only meaningful interpretation of inequality (1). 

New knowledge related to equivalent properties from various application domains can be 

extracted if 1k , 2k ,…, nk  stand for electric resistance of elements arranged in series and 

parallel, if 1k , 2k ,…, nk  stand for thermal resistances of elements in series and parallel and 

finally, if 1k , 2k ,…, nk  stand for capacitances of capacitors arranged in parallel and series. 

As a result, by using the inverse approach new knowledge related to different application 

domains is extracted from the same algebraic inequality. 

 

 

3. Determining tight lower and upper bound for the risk of a faulty component by a 

meaningful interpretation of algebraic inequalities 
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Consider the set of ordered positive fractions 1 20 ... 1mp p p     . If the fractions ip  are 

presented as a ratio /i i ip a n=  of two integer numbers ia  and in , the following algebraic 

inequality holds: 

1 21

1 1 2

...

...
m m

m m

a a a aa
n n n n n

+ + +
 

+ + +
                                                   (7) 

where 1 1 2 2/ / ... /m ma n a n a n   . 

Inequalities (7) can be proved by a mathematical induction. For the trivial case 2n = , it can 

be shown that if 1 20 1p p   , 1 1 1/p a n=  and 2 2 2/p a n=  then 

1 1 2 2

1 1 2 2

a a a a
n n n n

+
 

+
                                                                (8) 

Indeed, from 1 2p p  it follows that 1 1 2 2/ /a n a n  which is equivalent to  

1 2 2 1a n a n                                                                       (9) 

Adding the quantity 1 1a n  to both sides of inequality (9) results in 1 2 1 1 2 1 1 1a n a n a n a n+  +  

which, after factoring 1a  from the left side and 1n  from the right side results in 

1 1 2 1 1 2( ) ( )a n n n a a+  +                                                      (10) 

Dividing both sides of inequality (10) by the positive value 1 1 2( )n n n+  does not alter the 

direction of the inequality. The result is the inequality 

1 1 2
1

1 1 2

a a ap
n n n

+
= 

+
                                                                     (11) 

which is the left inequality from inequalities (7), for 2n = . 

The right inequality from inequalities (7), for 2n = , can be proved in a similar fashion. 

Suppose now that inequalities (7) hold for the integer k where 2k  , 1 20 ... 1kp p p    

, /i i ip x n=  (induction hypothesis): 

  1 21

1 1 2

...

...
k k

k k

a a a aa
n n n n n

+ + +
 

+ + +
                                                    (12)  

Consider again the left inequality 

   1 21

1 1 2

...

...
k

k

a a aa
n n n n

+ + +


+ + +
                                                        (13) 

Multiplying both sides of inequality (13) by the positive quantity 1 1 2( ... )kn n n n+ + +  does not 

alter its direction and the equivalent inequality 

  1 1 2 1 1 2( ... ) ( ... )k ka n n n n a a a+ + +  + + +                                          (14) 
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is obtained. Without loss of generality, suppose that for the k+1st term 1
1

1

k
k

k

ap
n

+
+

+

= , the 

ranking 

1 2 10 ... 1k kp p p p +                                                      (15) 

holds. (If this is not the case, the terms can always be renumbered so that inequality (15) is 

fulfilled.). Since 11
1 1

1 1

k
k

k

aap p
n n

+
+

+

=  = , it follows that  

1 1 1 1k ka n n a+ +                                                          (16) 

If inequality (14) is added to inequality (16), the inequality 

1 1 2 1 1 1 2 1( ... ) ( ... )k k k ka n n n n n a a a a+ ++ + + +  + + + +                               (17) 

is obtained which is equivalent to 

            1 1 1 2 1 1 2 1/ ( ... ) / ( ... )k k k ka n a a a a n n n n+ + + + + + + + + +

                      
   (18) 

With the trivial case, corresponding to 2k =  and the proved induction step (18), according to 

the principle of the mathematical induction, the left inequality (7) holds for any m k .  

In a similar fashion, the right inequality (7) can also be proved. 

Inequality (7) has a useful interpretation. Suppose that ia  ( 1,...,i n= ) stands for the 

number of faulty components in the ith batch and in  ( 1,...,i n= ) stands for the total number 

of components in the ith batch and /i i ip a n=  ( 1,...,i n= ) stands for the fraction of faulty 

items in the ith batch. The number of components in  ( 1,...,i n= ) in the separate batches is 

unknown. 

The batch with the smallest fraction of faulty components will be referred to the 'best 

batch' and the batch with the largest fraction of faulty components will be referred to as the 

'worst batch'. Now, a meaningful interpretation of inequality (7) can be provided. The 

inequality effectively states that if n batches with defective components are pooled into a 

single batch, irrespective of the number of components in  in the separate batches, the 

percentage of faulty components in the pooled batch is always smaller than the percentage of 

faulty components in the worst batch and larger than the percentage of faulty components in 

the best batch. 

The fraction of faulty items in the pooled batch always remains within the tight bounds 1p  

and mp : 

1 mp p p                                                                       (19) 
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where 1 2

1 2

...

...
m

m

a a ap
n n n
+ + +

=
+ + +

. 

This example demonstrates the use of the inverse approach for determining tight lower and 

upper bound for the percentage of faulty items in the pooled batch without any knowledge 

related to the sizes of the pooled batches. 

 

 

4. Using inequalities for minimising the risk of a faulty assembly  

 

The forward approach in using algebraic inequalities for risk reduction will be illustrated with 

an example related to minimising the probability of a faulty assembly. 

Consider an assembly built with n types of components, each coming from a separate 

manufacturer. Each manufacturer can deliver any type of components, but not more than a 

single type of component. From past records, the fractions (percentage) of defective 

components characterising the separate manufacturers are 1 2,x x ,..., nx , respectively. Suppose 

that the required numbers of components from n different types are 1 2,a a ,..., na , respectively. 

The question of interest is to determine the optimal allocation of manufacturers and types of 

components so that the overall percentage of defective components in the total supplied 

components is minimised. 

The number of ways n manufacturers can be assigned to n types of components is !n , equal 

to the number of different permutations 1 2, ,...,b b bnx x x  of n elements where the indices 

1 2, ,...,b b bnx x x  stand for a particular permutation of n consecutive numbers. 

The question then reduces to determining which of the !n  sums 1 1 2 2 ...b b n bna x a x a x+ + +  

describing the total percentage of faulty components is the smallest. This corresponds to the 

optimal assignment of manufacturers which delivers the smallest percentage of faulty 

components. 

It can be shown that the sum 1 1 2 2 ...b b n bna x a x a x+ + +  is minimal if the two sequences 

1 2,a a ,... na  and 1 2, ,..., nx x x  are sorted oppositely: one is increasing and the other is 

decreasing. 

In other words, it can be shown that the following algebraic inequality holds 

1 1 2 2 1 1 2 2... ...n n b b n bna x a x a x a x a x a x+ + +  + + +                                    (20) 

where 1 2, ,...,b b bnx x x  are the assigned numbers of components to any permutation of the 
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manufacturers. 

To prove this statement, the extreme principle will be used. Suppose that there is a sum 

0 1 1 ... ... ...r r s s n nS a x a x a x a x= + + + + + +                                                 (21) 

where the sequence 1 2, ,..., nx x x  is not monotonically decreasing and which corresponds to 

the smallest possible sum 0S . The sum 0S  gives the total number of faulty components from 

all suppliers. 

 If the x-sequence is not sorted in descending order, there will certainly be values ra , rx  and 

sa , sx  ( r s ) for which r sx x  is true. If no such pair can be found, then the x-sequence is 

already decreasing. 

Suppose that r sa a  and  r sx x  is true. Now, consider the sum 1S  

1 1 1 ... ... ...r s s r n nS a x a x a x a x= + + + + + +                                        (22) 

which has been obtained from the sum 0S  by switching the positions of rx  and sx  only. 

Subtracting 1S  from 0S  gives: 

0 1 ( ) ( ) ( )( )r r s s r s s r r r s s r s r s r sS S a x a x a x a x a x x a x x a a x x− = + − − = − − − = − −  

Because r sa a  and r sx x  is true, then 0 1 ( )( ) 0r s r sS S a a b b− = − −  . Therefore, the sum 

1S  is smaller than the sum 0S , which contradicts the initial assumption that 0S  is the smallest 

sum. Consequently, the hypothesis that the smallest sum can be attained for sequences one of 

which is increasing but the other is not necessarily monotonically decreasing is incorrect and 

this completes the proof. 

 

 

5. Improving reliability and reducing risk for safety-critical systems by using 

inequalities 

 

5.1 Improving reliability and reducing risk for parallel-series safety-critical systems  

 

Often the only available information is the ranking of components in terms of their reliability, 

without being possible to attach any value to their failure frequencies. Such is the case where 

old and new components of the same type are used in the same system. Because of inevitable 

component wearout and deterioration, it is usually sensible to assume that the new 

components are more reliable than the older components. 
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Consider the system in Figure 2 which transports cooling liquid from three sources s1,s2 

and s3 to the chemical reactor t.  

The cooling system consists of identical pipeline sections (the arrows in Figure 2). Each 

pipeline section is coupled with a pump for transporting the cooling fluid through the section. 

Suppose that the pipeline sections and the pumps are old (sections ‘a’ in Figure 2) and prone 

to failure due to corrosion, fatigue, wear, deteriorated seals, etc. The cooling system fulfils its 

mission if at least one cooling line delivers cooling fluid to the chemical reactor. Suppose, for 

the sake of simplicity, that all pipeline sections are in the same state of deterioration and each 

section is characterized by the same reliability 4.0 , associated with one year of operation. 

Because of the deteriorated sections, the cooling system will benefit from risk-reduction, 

consisting of purchasing and replacing deteriorated pipeline sections with new sections 

(sections ‘b’ in Figure 2). Consequently, the replacement of any of the 9 pipeline sections is a 

possible risk-reduction option. Now suppose that the available budget is sufficient for 

purchasing and replacing exactly 3 pipeline sections ‘b’. Each new pipeline section is 

characterised by a reliability 0.9, for one year of operation. 

Because the pipeline sections work independently from one another and because all of 

them are identical (Figure 2a), it seems that any three pipeline sections can be replaced with 

new ones (Figure 2b), with the same effect. 

This impression, however, is incorrect. The total removed risk of system failure is highest 

if the available budget is spent preferentially on replacing pipeline sections forming an entire 

cooling branch (Figure 2c), as opposed to replacing randomly selected sections inside the 

system (Figure 2b). 

 

 
 

Figure 2. A safety-critical cooling system consisting of three parallel branches 
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Indeed, the reliability of the parallel-series arrangement in Figure 2b is: 
2 31 (1 0.4 0.9) 0.37bR = − −  =                                               (23) 

This is the probability that there will be at least a single branch carrying cooling fluid 

through working components from a source to the sink t. 

The reliability of the parallel-series arrangement in Figure 2c is significantly higher: 

76.0)9.01()4.01(1 323 =−−−=cR                                           (24) 

The variant presented in Figure 2c is an example of a well-ordered parallel-series system. 

A well-ordered parallel-series arrangement is obtained if the available components are used 

first to build the branch with the highest possible reliability; next, the remaining components 

are used to build the branch with the second-highest possible reliability and so on, until the 

entire parallel-series arrangement is built. 

If there are three types of components with different age: 'new', 'medium' and 'old' 

components, the maximum reliability is achieved if all new components are arranged in a 

single branch, the medium-age components in another branch and all old-age components are 

grouped in a separate branch (Figure 3). 

 

 
Figure 3. Minimising the risk of failure of a parallel-series system by permutation of interchangeable 

components 

 

Because of the absence of a method for improving reliability and reducing risk by using 

inequalities, without knowledge related to the reliability values of components, the 

opportunity to increase reliability in parallel-series systems, at no extra cost, remained hidden 

despite that parallel-series arrangements are very common. Indeed, almost any safety-critical 

system based on detectors working in parallel, for detecting a critical event (increased 

pressure, temperature, concentration, displacement, toxic gas release, etc.), is a parallel-series 

system. The parts composing each detector are normally logically arranged in series which 

means that any particular detector will only work if all building elements (blocks) of the 

detector work. In order to detect the increase of the safety-critical factor, at least one of the 
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detectors must detect the increase. Consequently, with respect to detecting the increase of the 

safety-critical factor the detectors are logically arranged in parallel. 

The domain-independent risk-reduction principle of a well-ordered system can be stated as 

follows: The well-ordered parallel-series system is characterised by the smallest possible risk 

of failure. 

Proof. This principle will be proved by making use of an inequality. Suppose that there is a 

system which is not well-ordered and which possesses the highest possible reliability. The 

branches in a parallel-series system can always be re-arranged in such a way that for any two 

branches ‘i’, ‘j’ for which ji  , the branch with index ‘i’ is equally reliable or more reliable 

than branch ‘j’ ( ji RR  ), where iR  and jR  are the reliabilities of branch i and branch j, 

respectively. If the system is not a well-ordered system, then there will be two branches a and 

b ( a b ) with reliabilities ba RR  , where there will be at least one component in branch b 

with a larger reliability than the reliability of the analogous interchangeable component in 

branch a. Suppose that naa aaaR = ...21  and nbb bbbR = ...21  are the reliabilities of 

branches a and b and na , nb  are the number of components in branches a and b, 

correspondingly. Without loss of generality, suppose that the two interchangeable 

components are the last components in the branches a and b ( nbna ba  ). 

The reliability of the initial system can be presented as 

]1[)...1)(...1(1 21211 restnbnasys RbbbaaaR −−−−=                           (25) 

where restR  is the reliability of the rest of the parallel-series arrangement (excluding branches 

a and b). 

After swapping components naa  and nbb , the reliability of the resultant system becomes 

]1[)...1)(...1(1 1211212 restnanbnbnasys RabbbbaaaR −−−−= −−                (26) 

Subtracting (26) from (25) yields: 

]1[)......)(( 12112121 restnbnanbnasyssys RbbbaaabaRR −−−=− −−                  (27) 

The inequality 

nbbnaa bbbRaaaR == ...... 2121                                             (28) 

holds because of the way the branches have been arranged in descending order according to 

their reliability ( ba RR  ). Because nbna ba   (by assumption), removing from the left-hand 
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side of (28) the positive value naa  and from the right-hand side of (28) the larger positive 

value nbb , yields the stronger inequality  

121121 ...... −−  nbna bbbaaa                                                  (29) 

which means that in equation (27)  

0...... 121121 − −− nbna bbbaaa  

holds. Since 01 − restR , and 0na nba b−  , the right-hand side of equation (27) is negative, 

which means that the resultant system (after the swap of two components of the same type) 

has a higher reliability. This contradicts the assumption that the initial system (which is not 

well ordered) possesses the highest possible reliability. It was thus demonstrated that the 

reliability of a system which is not well-ordered, can be improved by swapping components 

between parallel branches. A well-ordered system is unique and there can be no two well-

ordered systems. Because a parallel-series system can either be a well-ordered or not well-

ordered system, the well-ordered system has the highest reliability. The domain-independent 

risk-reduction principle of the well-ordered systems has been proved. 

The result which predicted that the reliability of the well-ordered parallel-series systems is 

superior to any alternative arrangement has been verified by a computer simulation. The 

computer simulation consisted of specifying the reliabilities of the interchangeable 

components in the branches and calculating the reliability of the well-ordered system. Next, a 

“random scrambling” of the interchangeable components in the branches is initiated, by 

generating random indices of components from different branches and swapping their 

reliability values. The swapping guarantees that any resultant system includes exactly the 

same set of components as the initial system. After each ‘random scrambling’, the reliability 

of the scrambled system was calculated and compared with the reliability of the well-ordered 

system. In all of the conducted simulations, the well-ordered systems were characterised by 

the largest reliability. 

The principle of the well-ordered systems provides an opportunity to remove the 

maximum amount of system risk by concentrating the available budget on renewing single 

parallel branches as opposed to randomly replacing aged components in the system. 

This result also provides the valuable opportunity to improve the reliability of common 

systems with parallel-series logical arrangement of their components without the knowledge 

of their reliabilities and without any investment. Unlike all traditional approaches, which 

invariably require resources to achieve reliability improvement and risk reduction, a system 
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risk reduction can also be achieved by appropriate permutation of the available 

interchangeable components in the parallel branches. Components of similar level of 

deterioration (reliability levels) should be placed in the same parallel branch (see the example 

from Figure 3).  

The risk reduction principle based on permutation of interchangeable components has 

wide applications reaching far beyond its initial engineering context. 

Consider a common example where three groups of people (teams) 1, 2 and 3, each of 

which includes three independently working team members. The teams work in parallel 

towards achieving the same goal (Figure 4a). The goal is achieved if at least one of the teams 

succeeds in achieving the goal. Within each team, the task of achieving the goal is divided 

into subtasks among the team members. Every single person in a team must accomplish their 

sub-task successfully, in order for the team to achieve the goal. The level of training of each 

team member is from one of the categories: Strong (S), Weak (W) and Medium (M). A 

person with strong level of training has a better chance of accomplishing a task successfully 

compared to a person with medium training or weak training. A person with medium training 

has a better chance of accomplishing the task successfully compared to a person with weak 

training. 

Separating the people in groups with a similar level of training (Figure 4b) yields the 

highest chance of achieving the goal. Note that the risk of not achieving the goal has been 

reduced at no extra cost. 

 
Figure 4. Three groups of people working towards achieving the same goal 

 

5.2 Improving reliability and availability by optimal placement of the condition monitoring 

equipment 

 

Monitoring provides an early warning of adverse network changes and is critical to the 

efficient design and operation of repairable networks and the availability of commodity 

supply.  
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Consider the system (Figure 5) which transports cooling liquid from three sources s1,s2 

and s3 to the chemical reactor t. The cooling system consists of identical old pipeline sections 

(the arrows in Figure 5). Each pipeline section is coupled with a pump for transporting the 

cooling fluid through the section. The cooling system fulfils its mission if at least one cooling 

line delivers cooling fluid to the chemical reactor. 

 

 
Figure 5. Monitoring the branches of a cooling system. 

 

Introducing condition monitoring on the old cooling sections increases the reliability of 

the section because it permits detecting problems such as lack of proper lubrication of the 

pumps, deterioration of the seals and leaks, blockages of the filters, increased current in the 

coils of the electro-motors, etc. If a problem is registered, a maintenance action is initiated 

and failure is averted.  

Because of cost limitations, it is not possible to install condition monitoring on all cooling 

sections. Suppose that, due to budget constraints, the number of condition monitoring devices 

is limited to three. The question of interest is the location of the condition monitoring 

equipment which maximises the reliability of the cooling system. For a large system 

including n possible locations for the condition monitoring equipment and k pieces of 

condition monitoring equipment, the number of possible configurations for the condition 

monitoring devices is equal to !
!( )!

k
n

nC
k n k

=
−

 - the combinations of k distinct locations for 

the condition monitoring devices out of n possible locations, which is a very large number for 

large n and 2 [ / 2]k n  . For large systems, testing the system reliability for each of all 

possible configurations of the condition monitoring equipment (Figure 5b,c) is not feasible.  
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Considering the previous discussion, to maximise the reliability of the system, the condition 

monitoring devices must all be located along a single cooling branch (Figure 5d). According 

to the principle of the well-ordered parallel-series systems, this is equivalent to building first 

a branch with the highest possible reliability. 

The optimal locations of condition monitoring equipment provides the right balance between 

cost, risk and performance which translates into low downtimes, high network availability 

and small maintenance costs.  

The optimal set of monitored components provides the right balance between cost, risk 

and performance. Optimal locations of the monitoring equipment translate into low 

downtimes, high network availability and smaller maintenance resources, smaller amount of 

consumed fossil fuels and less carbon emissions. The smaller maintenance resources also 

mean low operational costs and high profits. 

Identifying the optimal places for system monitoring is also the key to maximising the 

potential of the existing infrastructure at a minimal cost. High system reliability and 

availability translate into a high operational availability and safety and high quality of service 

to customers.  

 

 

Conclusions 
 

1. The paper demonstrates a new domain-independent method for improving reliability and 

reducing risk based on two fundamental approaches of using algebraic inequalities: the 

forward approach, based on deriving algebraic inequalities from real systems and 

processes and the inverse approach, based on deriving new knowledge by meaningful 

interpretation of existing correct algebraic inequalities. 

 

2. The forward approach has been used to prove the domain-independent risk-reduction 

principle of the well-ordered systems which states that the well-ordered parallel-series 

systems are characterised by the smallest possible risk of failure. In this respect, the paper 

also answers an important question for a parallel-series system about the components that 

need to be subjected to condition monitoring so that the reliability of the system is 

maximised. 
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3. The forward approach has also been used for optimal assignment of manufacturers to  

    products, with the purpose of minimising the overall percentage of defective products. 

 

4. The paper introduces the inverse approach to using algebraic inequalities based on 

meaningful interpretation of the variables entering the inequalities and the different parts 

of the inequalities. By using the inverse approach, it has been established that irrespective 

of the uncertainties related to the stiffness values of n springs (elastic elements), the 

equivalent stiffness of the springs connected in series is always at least 2n  times smaller 

than the equivalent stiffness of the same springs connected in parallel.  

 

5. The inverse approach has also been used to determine tight upper and lower bounds of the 

percentage of faulty components in a batch of components obtained from pooling several 

batches of components with unknown sizes. 

 

6. Finally, the paper demonstrates the principle of non-contradiction: if the variables and the 

different parts of a correct abstract inequality can be interpreted as a system or process, in 

the real world, the system or process must exhibit properties that are consistent with the 

abstract inequality. 
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