
 
 

 
 

RADAR 

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r 

 

Oxford Brookes University – Research Archive and 
Digital Asset Repository (RADAR) 

 

 

 
 
 
 
 
 
 
 

Directorate of Learning Resources  

 
 

 
 
Pilling, M 
 
Auditory event‐related potentials (ERPs) in audiovisual speech perception. 
 
Pilling, M (2009) Auditory event‐related potentials (ERPs) in audiovisual speech perception. Journal of speech, 
language, and hearing research, 52 (4). pp. 1073‐1081. 
  
Doi: 10.1044/1092‐4388(2009/07‐0276) 
 
 
This version is available: http://radar.brookes.ac.uk/radar/items/98c53250‐30e0‐afc8‐f0eb‐3f39c08815af/1/ 
 
Available in the RADAR: February 2012 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be 
downloaded for personal non‐commercial research or study, without prior permission or charge. This item cannot 
be reproduced or quoted extensively from without first obtaining permission in writing from the copyright 
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the 
formal permission of the copyright holders.  
 
This document is the postprint version of the journal article. Some differences between the published version and 
this version may remain and you are advised to consult the published version if you wish to cite from it.  
 
 



Auditory Event Related Potentials (ERPs) in audiovisual speech perception 

Michael Pilling 

MRC Institute of Hearing Research, Science Road,   
Nottingham, NG7 2RB. United Kingdom  

Email: mpilling@brookes.ac.uk 

 

 

Published in Journal of Speech, Language & Hearing Research, (2009), 52, 1073-1081. 

Abstract 

Purpose: It has recently been reported (e.g. Wassenhove et al., 2005) that audiovisual (AV) 

presented speech is associated with an N1/P2 auditory ERP response that is lower in peak 

amplitude compared to the responses associated with auditory only (AO) speech. This effect is 

replicated. Further comparisons are made between ERP responses to AV speech in which the 

visual and auditory components were in or out of synchrony, to test whether the effect is associated 

with the operation of integration mechanisms, as has been claimed, or occurs because of other 

factors such as attention.  

Method: ERPs were recorded from participants presented with recordings of unimodal or 

AV speech syllables in a detection task. 

Results: Comparisons were made between AO and AV speech, and between synchronous 

and asynchronous AV speech. Synchronous AV speech produced an N1/P2 with lower peak 

amplitudes than with AO speech, unaccounted for by linear superposition of visually-evoked 

responses onto auditory-evoked responses. Asynchronous AV speech produced no amplitude 

reduction.  



Conclusion: The dependence of N1/P2 amplitude reduction on AV synchrony is consistent 

with the effect resulting from the operation of integration mechanisms and validates it as an 

electrophysiological marker of AV integration.  

Keywords: speech, ERP, audiovisual integration 

 

Apart from by ear, speech information can also be obtained by the eye, from the visibly 

perceptible movements of the face that accompany speech production. When such visual speech as 

well as auditory speech information is present, the brain tends to integrate the two sources into a 

single unified percept (see Summerfield, 1987). The unity of visual and auditory speech is revealed 

in a number of behavioral markers of integration. Possibly the most notorious of these is the 

McGurk illusion (McGurk & MacDonald, 1975). In the McGurk illusion, an auditory CV syllable 

(e.g. /ba/) is presented concurrently with phonetically incongruous visual speech (e.g. a face 

articulating /ga/); observers typically report hearing a fusion of the two signals (e.g. /da/), 

illustrating the unity of auditory and visual speech perception. Other markers of the audiovisual 

integration of speech include the audiovisual (AV) speech-detection advantage (Bernstein et al. 

2004); auditory speech-in-noise is easier to detect when presentation is AV than when auditory 

only (AO). AV presented speech is also usually found to be more intelligible than AO speech; such 

effects are particularly apparent with the auditory speech presented in noise (Erber, 1975), this 

advantage for AV speech intelligibility is greater than would be expected on the basis of the 

information from the auditory and visual modalities being processed independently (see Grant & 

Walden, 1996).  

What these above effects demonstrate is that our perception of auditory speech operates 

from a representation that is an integration of information derived from both the auditory and 

visual modalities. However there is some debate about the processing stage at which this 



integration process occurs (see Schwartz et al., 1998). Some models, so-called early integration 

models, place the integration of speech fairly early in the processing stream before phonetic 

categorization has occurred (e.g. Braida’s  ‘pre-labeling model’; Braida, 1991). Other models have 

placed AV integration at a relatively late stage, after the information in each modality has been 

independently evaluated (e.g. Massaro, 1987, 1998).  

Some behavioral evidence has been found to support early-integration models of AV 

speech perception. For instance, visual speech has been shown to influence the perception of 

voicing in an auditory speech stimulus (Green, 1998), consistent with visual speech interacting 

with auditory speech prior to phonetic categorization. Recently more direct evidence for early 

interactions in AV speech has been suggested by studies looking at auditory event-releted 

potentials (AERPs) Two studies (Besle et al., 2004; Wassenhove et al., 2005) found that the N1/P2 

complex of the AERP associated with AV speech presentation was lower in amplitude compared 

against the responses evoked by AO speech presentation. Such a finding is important because it 

suggests that visual speech information may be interacting with auditory speech processing at an 

early (pre-categorical) processing stage. The N1/P2 wave is associated with the processing of the 

physical attributes of an auditory stimulus prior to its categorization (Näätänen & Winkler, 1999). 

It occurs within a time window of 100-200 ms after the onset of an auditory stimulus and is 

typically maximal around the scalp vertex. It is assumed to have multiple neural generators located 

in the dorsal surface and superior temporal plane of both temporal lobes (Scherg  & Von Cramon, 

1986; Näätänen & Picton, 1987).  

Importantly Besle et al. (2004) and Wassenhove et al. (2005) found that lower amplitudes 

associated with AV presentation were not simply a result of the linear superposition of visual and 

auditory activity: N1/P2 amplitudes associated with AV speech were lower even when compared 

against the aggregate of the unimodal responses for auditory and visual speech. This demonstrated 

that it was the underlying AERP waveform itself that was being modulated by the AV presentation 



of the speech. The effect of AV speech presentation on AERP amplitudes is consistent with visual 

speech producing a ‘deactivation’ (Wassenhove et al.) or ‘depression’ (Besle et al.) in the auditory 

cortex. The finding draws some parallels with ERP studies of binaural auditory integration. Similar 

amplitude reductions have been shown in the N1/P2 (along with earlier latency components) 

response to sounds presented binaurally compared against aggregate monaural ERP responses (e.g. 

McPherson & Starr, 1993), suggesting that reduced amplitudes may be a general aspect of 

integration processes in the auditory modality.  

AV speech thus seems to be reliably associated with N1/P2 amplitude reductions compared 

with AO speech. However further validation is needed before the effect can be accepted as an 

electrophysiological correlate of an AV integration process as opposed to the result of some other 

factor.  

An alternative explanation of the effect is that it reflects general top-down inhibition of the 

auditory cortex occurring in the AV condition but not in the AO condition because of the two 

conditions’ differing task demands. Shulman et al (1997) found that auditory cortex activity was 

significantly reduced (as measured by Positron Emission Tomography) when participants where 

actively engaged with a visual stimulus compared to when passively viewing the same visual 

stimulus. It is possible that the presence of the talking face in the AV condition induces such top-

down inhibition in the auditory cortex as a consequence of participants actively processing the 

visual stimulus, It is further possible that this top-down inhibition is absent with a static fixation 

cross or static face because, in this case, active processing does not occur. If such top-down 

inhibition was being induced it might well result in reduced AERP amplitudes. However, the 

conditions under which Shulman et al. found these modulations are quite different to those in 

which AV speech is presented. In Shulman et al.’s task the auditory modality was task-irrelevant: 

the only auditory stimulation came from ambient background noise rather than from a relevant 

auditory stimulus as in AV speech.  



A more plausible alternative explanation of the amplitude reduction effect in AV speech is 

that it is related to shifts in attention across modalities between the AO and AV conditions. It is 

possible that with AV stimulus presentation attention is shifted further towards the visual modality 

and away from the auditory modality, leading to lower responses in the auditory cortex. Indeed, the 

N1/P2 response is known to be modulated by attentional shifts: reduced attention to the auditory 

modality has been shown to result in smaller amplitudes in this response (Hanson & Hillyard, 

1980). Wassenhove et al. (2005) rejected such an explanation because with AV speech instructing 

participants to attend just to the visual modality did not result in any additional amplitude reduction 

in the auditory responses. However, this may just mean that on top of the ‘automatic’ shifts to the 

visual information in AV speech presentation, further attentional shifts towards the visual modality 

have no further effect on AERPs. It does not necessarily rule out attention being responsible. Besle 

et al. (2004) also rejected an attentional explanation of the amplitude reduction effect. They argued 

that in their study the attentional demands were balanced across the AO and AV conditions 

because in both conditions the task they gave (a speeded auditory detection task) only required 

attention to the auditory modality. However, this may still not fully balance attention across the AO 

and AV conditions. Participants may still have been actively attending to the onset of the facial 

movements in the AV condition which provides a salient and task-relevant alerting cue for the 

onset of the auditory speech signal. This would mean that attention was still different to the AO 

condition because in the AO condition no such visual cue was present.  

Thus further evidence is needed to test if the amplitude reduction in the N1/P2 is in fact 

associated with integration mechanisms, rather than some other process.  The experiments 

presented here try to provide such evidence by observing the effect of synchrony between the 

visual and auditory streams with AV speech on the N1/P2 amplitude reduction effect. It has been 

demonstrated that AV speech integration mechanisms operate only within a a particular temporal 

window, outside of which the effects of visual speech on auditory speech perception are largely 



absent. This temporal window is usually found to be asymmetric:  A discrepancy of ~100 ms from 

the recorded position of auditory speech is usually perceptible when auditory speech leads from its 

recorded position with visual speech, while a discrepancy greater than ~250 ms is needed when 

auditory speech lags from its recorded position with visual speech (Dixon & Spitz, 1980). Outside 

this temporal window the earlier described behavioral effects of integration tend to be either absent 

or greatly weakened, suggesting that the auditory and visual speech signals are no longer producing 

a unified percept (e.g. McGurk effect: Munhall et al., 1996; AV speech- in-noise advantage: Grant 

& Greenberg, 2003).   

If the amplitude reduction effect is a consequence of integration mechanisms then the effect 

should be significantly weakened, or even abolished, for AV speech in which the auditory 

component is outside the temporal window of perceived synchrony with the visual signal. If, 

however, the amplitude reduction effect is a consequence of a process other than integration (e.g. 

attention) then manipulations of asynchrony should have little consequences for the AERPs: N1/P2 

amplitude reduction should remain even with perceptibly asynchronous AV speech because any 

attention diverted towards the visual component of speech should be equal in the synchronous and 

asynchronous AV conditions. The experiments reported in this paper test this possibility.  

A task was given in which participants detected infrequent phoneme syllables (targets) 

presented in a stream of standard syllables. Experiment A compared recorded ERPs to these 

standard syllables in unimodal auditory (AO), unimodal visual (VO) and synchronous AV 

conditions (AV). Experiment B recorded ERP responses to these syllables in synchronous AV 

(AV), asynchronous AV (AVasynch) and AO conditions. 

Method 

Twelve participants were used in Experiments A and twelve different participants in 

Experiment B, (age range 18 to 30). All had normal hearing (assessed by pure-tone audiogram), 



normal or corrected-to-normal visual acuity (assessed by Snellen chart). Stimuli consisted of high 

quality audiovisual recordings of a male talker articulating the CV syllables /pa/ and /ta/ from an 

initial neutral expression. Four examples of each syllable were used for the experiments. 

Recordings were normalized and calibrated to be approximately 60 dB SPL. Video recordings were 

edited to start from just before the initial visible articulation to the end of the articulation and 

converted into a sequence of still bitmap images (160 × 210 mm) presented on a 15” LCD screen. 

The screen was viewed at a distance of approx. 400 mm. The first frame of each recording was 

presented for 1000 ms as a still frame. After 1000 ms the first moving frame (the visible beginning 

of the articulation) and subsequent moving frames were presented at a rate of 25 frames-per-

second. Corresponding digitized audio files were presented binaurally via Sennheiser headphones. 

In the AV condition the video frames of the talker were presented in synchrony with the auditory 

stimulus as they were naturally recorded. The duration between the onset of the first moving frame 

and the onset of the auditory speech was different for the four exemplars of /ta/ (range 210-296 ms) 

and /pa/ (range 239-401 ms) due to natural variations in the articulation of the talker. In the 

AVasynch condition the auditory stimulus was presented 200 ms ahead of its recorded position. 

This asynchrony was noted by all participants as being clearly perceptible. In this condition the 

duration between the first moving frame of the video and the onset of the auditory speech varied 

between a range of 10-96 ms for /ta/, and 39-201 for /pa/ for the different exemplars of the tokens. 

In the AO condition the moving frames of the talker were replaced with a static fixation cross 

present for the same duration. In the VO condition the moving frames of the talker were presented 

silently. A 34 electrode EEG cap arranged using the 10/20 system was used with the ground at AFz 

and Cz used for online referencing. EEG was recorded at an analogue-to-digital conversion rate of 

1000 Hz (subsequently downsampled to 500 Hz to speed analysis). The target syllable (/pa/) was 

presented 40 times randomly in a sequence of 180 standards (/ta/) per block. Figure 1 shows a 

schematic diagram of a single AV standard trial. A 3500~4000 ms inter-trial interval was given in 



which a blank screen was presented. Participants were instructed to listen to the speech while 

looking at the screen and to press a response key each time a target was presented. In Experiment A 

blocks were presented in the AO, VO and AV conditions. In Experiment B blocks were presented 

in AO, AV and AVasynch conditions. Two blocks of each condition were presented in a 

randomized order. 

***Figure 1 about here*** 

Analysis and Results 

Offline processing of EEGs was performed using Brain Vision Analyzer (V 1.05). 

Recordings were manually screened for artifacts and a Butterworth filter (1 - 30 Hz) applied. Data 

was then re-referenced using all 34 channels and channel Cz reconstructed. Ocular correction was 

applied using FP1 as the EOG channel using the procedure developed by Gratton et al. (1983). 

Response averaging was done only for the standards to avoid contamination of the AERPs from 

oddball and response related activity. The onset of the auditory stimulus marked the start of each 

epoch for averaging purposes (for the VO condition the epoch was marked at a point were the 

auditory stimulus would have onset had one been presented). The N1/P2 was evoked in every 

condition except VO and was largest around the central electrode cites (FC1, FC2, Cz, C3, C4, 

CP1, CP2).1 Grand average responses on these electrode sites are shown in Figure 2 for 

Experiment A and Figure 3 for Experiment B. 

***Figures 2 and 3 about here*** 

Peak-to-peak measures of the N1/P2 were computed for the 7 central electrodes for the 

averaged responses. The N1 peak was specified as the largest negative local maximum between 60-

140 ms and the P2 peak as the largest positive local maximum between 130-300 ms after onset. 

                                                                 
 
1 No reliable P50 wave was observed in the grand average or in the individual waveforms. P50 responses are typically small in 
amplitude and more variable than later auditory components. Its absence in this study may be due to one of several factors, such as 



The peak-to-peak was also calculated on the computed sum of the unimodal responses (AO+VO) 

to verify whether differences between the AO and AV conditions were genuine interactivity rather 

than linear superposition. Averaged peak-to-peak measures for the different conditions are given in 

Table 1 for Experiment A and Table 2 for Experiment B.  

***Tables 1 and 2 about here*** 

Measures on the central electrodes were subjected to two-way ANOVAs with Condition 

(AO vs. AV; AO vs. AO+AV) and Electrode (seven levels) as repeated measures factors. 

Comparison between AO and AV showed that response amplitudes were significantly lower in the 

AV condition, F(1, 11) = 49.49, MSE = 1.77, p < .0001. Peak amplitudes were also significantly 

lower when AV speech was compared with the sum of the unimodal responses (AO+VO), F(1, 11) 

= 80.84, MSE = 1.39, p < .0001.2 This shows that the reduction in N1/P2 peak amplitudes in the 

AV condition relative to the AO condition was not explained by linear superposition. This same 

amplitude reduction between the AV and AO conditions was replicated in Experiment B (F(1, 11) 

= 49.05, MSE = 0.99, p < .0001), demonstrating its reliability. In both Experiments the difference 

between the AO and AV conditions was found to be maximal at Cz. Critically, in the AVasynch 

condition amplitude reduction was not found for any electrode. In fact peak amplitudes were 

overall slightly larger than they were in the AO condition, though the effect was not significant 

(F(1, 11) = 2.88, MSE = 1.84,  p > .05). 

                                                                                                                                                                                                                   
 
the large inter-trial intervals or due to attention being partly directed towards the visual modality (even the AO condition 
participants were instructed to look at the fixation cross present during each trial). 
 
2 There was also a small peak latency effect: Latencies of the N1 and P2 peaks occurred earlier in the AV condition compared 
against the AO condition on some of the central electrodes, an effect also reported by Wassenhove et al. (2005). However the 
latency effect found here was statistically small where it occurred and the effect not reliably significant across Experiments A and B 
for the two peaks with AV speech. As a result the paper confines the discussion to the more robust amplitude reduction effect 
 



Discussion 

When AV speech was presented the resulting N1/P2 wave was significantly smaller in its 

peak amplitude than when auditory speech was presented (Experiment A). Furthermore the 

responses to AV speech were also significantly lower in amplitude when compared against the sum 

of unimodal responses, demonstrating that the effect associated with AV speech was not just linear 

superposition. This result corroborates the findings of Besle et al. (2004) and Wassenhove et al. 

(2005) in demonstrating a nonlinear effect on the amplitudes of AERPs. Furthermore, this 

amplitude reduction effect was dependent on AV synchrony (Experiment B). The responses to 

asynchronous AV speech exhibited no such effect. Thus, like the behavioral markers of AV 

integration, such as the McGurk illusion (Munhall et al. 1996), the electrophysiological amplitude 

reduction effect is also sensitive to synchrony between the auditory and visual modalities.  

Therefore, these results are consistent with the notion that the amplitude reduction effect is 

associated with the operation of integration mechanisms. The results therefore provide further 

support for early integration models of AV speech in showing that at least some aspects of the 

integration of auditory and visual information occur at an early, pre-categorical stage. 

 The results are inconsistent with a top-down inhibition (Shulman et al., 1997) account of 

the amplitude reduction effect, in which the effect occurs as a consequence of active processing of 

the visual stimulus. The moving face was present in both the synchronous and asynchronous AV 

conditions so if active processing of the visual stimulus is the relevant factor then this should have 

occurred in both the synchronous and asynchronous AV conditions. However, the amplitude 

reduction effect occurred only in the synchronous condition. The results are also inconsistent with 

an attentional account in which attention is partly diverted away from the auditory modality by the 

onset of the moving face in AV conditions. Although the auditory speech was shifted from its 

natural recorded position, this shifted position was always later than the first moving frame of the 



visual stimulus, meaning that the visual stimulus still provided an effective alerting cue to the onset 

of the auditory speech even in the asynchronous AV condition. Nevertheless, no amplitude 

reduction was observed in this condition relative to the AO condition.  

What do these results tell us about the neural mechanisms of integration? Besle et al. 

(2004), on the basis of source analysis, suggested that the modulation of AERPs occurs at least 

partly in the supratemporal auditory cortex. They further suggested that the superior temporal 

sulcus (STS), a multisensory region receiving feedforward input from both the auditory and visual 

corteces, and a site that several imaging studies have implicated as a likely site of AV speech 

integration (e.g. Sekiyama et al., 2003), could be the source of the inhibitory effects in the auditory 

cortex via inhibitory reentrant pathways. The results presented in this paper, together with findings 

from a study by Macaluso et al. (2004) are consistent with this interpretation. Macaluso et al. found 

that the STS exhibits a greater haemodynamic response to synchronous than perceptibly 

asynchronous AV speech. It is possible that this greater activity in the STS with synchronous AV 

speech is reflected in greater inhibition of the auditory cortical regions, resulting in a smaller 

N1/P2; with asynchronous AV speech the lower STS activity may mean that this structure no 

longer inhibits the auditory cortex. More direct support for this physiological model of the 

integration effect could be made if recordings from haemodynamic and ERP imaging techniques 

were combined in the same experiment, allowing direct comparison between activity in the STS 

region and N1/P2 modulation, and finer temporal synchrony-asynchrony manipulations of AV 

speech were made.  If STS activity and ERP amplitudes were found to have similar tolerances of 

asynchrony it would provide further support of the involvement of this structure in producing the 

inhibitory effect in the auditory cortex.  

Although this study demonstrates the importance of the temporal synchrony of the visual 

stimulus with auditory speech, it does not tell us what the critical features of the visual stimulus 

are. Two possible candidates are the pictorial content of the facial features and the dynamic 



characteristics of the visual signal (Vitkovitch & Barber, 1994; 1996; Rosenblum, & Saldaña, 

1996). If the dynamic characteristics of the face are the more important factor, video frame rate 

will be a more important factor in the modulation of AERPs than the pictorial information within 

the frames. Further research is needed to determine the critical aspects of the visual stimulus in AV 

speech presentation that lead to modulation of AERPs.  

A related and unresolved question concerns the aspects of AV integration processes that are 

being reflected in the modulations of the AERPs? Wassenhove et al. (2005) argued that the 

amplitude reduction reflects an aspect of processing relating to the merging of syllabic information 

between the visual and auditory speech signals in the auditory cortex by a depression mechanism. 

They argued that when AV speech is presented information about place-of-articulation can be 

obtained from the visual signal, making redundant the processing of certain speech formant 

frequencies in the auditory signal. Similarly, Besle et al. (2004) proposed that the amplitude 

reduction reflects the facilitation of syllable feature analysis in the auditory cortex in the form of 

suppressive modulation. However, another possibility is that the modulations are reflecting the 

more basic structural spatiotemporal correspondence of the auditory and visual events (see Spence, 

2007). Indeed consistent with this, Stekelenburg & Vroomen (2007) have recently shown that 

similar amplitude reductions in AERPs can be found in the perception of ecologically-valid non-

speech AV events such as hand-claps.  

In conclusion the sensitivity of the reduction in N1/P2 amplitude associated with AV 

speech is a genuine electrophysiological marker of AV integration mechanisms. Further work will 

determine the precise aspects of the visual stimulus that are needed for N1/P2 amplitude reduction 

to occur. 
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Tables 

 

Table 1. Mean N1/P2 peak-to-peak amplitudes (in µV) across participants for AO, AV and AO+VO in 
Experiment A. Standard errors are given in brackets. 

  
FC1 FC2 Cz CP1 CP2 C3 C4 

AO 6.36 (0.50) 6.44 (0.57) 7.90 (0.67) 5.10 (0.43) 4.63 (0.49) 4.84 (0.37) 4.83 (0.48) 

AV 4.74 (0.42) 4.74 (0.44) 5.65 (0.53) 3.79 (0.47) 3.63 (0.48) 3.80 (0.34) 3.65 (0.37) 

AO+VO 6.68 (0.42) 6.72 (0.46) 7.84 (0.63) 5.04 (0.43) 4.67 (0.44) 5.20 (0.47) 5.29 (0.46) 

 

 

Table 2. Mean N1/P2 peak-to-peak amplitudes (in µV) across participants for AO, AV and AVasynch in 
Experiment B. Standard errors are given in brackets. 

  
FC1 FC2 Cz CP1 CP2 C3 C4 

AO 5.06 (0.39) 4.97 (0.30) 5.83 (0.40) 3.78 (0.31) 3.40 (0.22) 3.88 (0.31) 3.43 (0.19) 

AV 3.62 (0.30) 3.55 (0.27) 4.18 (0.36) 2.95 (0.27) 2.76 (0.27) 2.95 (0.26) 2.81 (0.22) 

AVasynch 5.36 (0.48) 5.12 (0.41) 6.30 (0.60) 4.24 (0.45) 3.74 (0.42) 4.35 (0.38) 3.72 (0.26) 

 



Figure headings 

 

Figure 1. Schematic diagram of a standard AV trial. The first moving frame occurs after a 1000 ms 

still frame of the talkers face in a neutral position. An example frame of the talkers face at 

the apex of the articulation is shown. Note that the ERP trigger is set to the onset of the 

auditory speech stimulus which, for the standards, occurs between a range of 210 and 296 

ms after the first moving frame depending on the particular exemplar of the recorded 

speech being presented (on AVasynch trials the onset of the auditory speech occurred 

between a range of 10 and 96 ms after the first moving frame). In AO trials the video 

frames are replaced by a static fixation cross.  

 

Figure 2. Grand average ERP responses in Experiment A for the seven central electrodes (FC1, 

FC2, Cz, C3, C4, CP1, CP2) in AO (black line), AV (darker grey line) and VO (lighter grey 

line) speech conditions. Response amplitudes are corrected by a -100 ms pre-stimulus 

baseline. Negative deflections are downwards on the ordinate. The N1/P2 wave (present in 

the AO and AV conditions has a negative peak at ~100 ms and a positive peak at ~200 ms. 

Note that the peak amplitude of the N1/P2 wave associated with the AV condition is lower 

to that associated with the AO condition. This effect is most apparent at Cz.  

 

Figure 3. Grand average ERP responses in Experiment B for the seven central electrodes in AO 

(black line), AV (darker grey line) and AVasynch (lighter grey line) conditions, corrected 

by a -100 ms pre-stimulus baseline. Notice that, as in Figure 2, the AV condition is 

associated with lower peak amplitude responses than the AO condition (particularly at Cz) 

in the N1/P2. Note that this is not the case for the AVasynch condition, where the 

associated peak amplitudes are slightly higher than with the AO condition.



 



 



 


