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“Our greatest glory is not in never falling, but in rising every time we 
fall”  

 Confucius  
  

  

  

Aquele uísque   
  
“Lembro-me daqueles dias,   
Em que assistíamos ao pica-pau  
E rachavamos o bico dando risada de algumas passadas.  
Lembro-me de que possuíamos aspirações e sonhos selvagens. Cada 
qual, à sua maneira, pôs-se a caçar seu horizonte.   
Sabíamos que nenhuma estrada se emenda no passado,   
Todas se amarram apenas no porvir,   
E, só com muita sorte, nos achamos novamente.   
Mas a memória, ah!   
Essa é uma cruel concubina,   
Pois nunca nos esquecemos daqueles dias.   
Eles voltam em espasmos mistos de tristeza e alegria.   
No saldo da vida,   
Parece que atingimos muito do que poderíamos, 
Mas sempre ficamos na dúvida  De uma dose 
daquele uísque:   
Velho olho vermelho.”  
  
Pablo Jamilk  
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Abstract  

One goal of evolutionary developmental biology is to understand the mechanisms that 

underlie the regulation and evolution of embryogenesis among different species. One 

approach to answer these questions is to study and compare the expression and function 

of “toolbox” genes in different lineages. Members of two conserved gene families, Hes 

and Sox, are involved in both segmentation and neurogenesis in different metazoans. 

Genes such as hairy and Dichaete are involved in the segmentation cascade in 

Drosophila melanogaster, whereas deadpan and Sox21B acts in the regulation of the 

neurogenic precursors in the same species. To broaden our understanding of the 

evolution and function of these genes, for this project, I studied them in the commonhouse 

spider P. tepidariorum: an emergent organism to studies in comparative embryology and 

genetics, and which has experienced a whole genome duplication in its evolutionary 

history. I characterized the expression of four Hes-like genes and fifteen Sox genes in this 

species. Briefly, hairy and Sox21B-1 are expressed in prosoma as well as in the posterior 

segment addition zone and forming segments. deadpan, hey, side, SoxNeuro, Sox C-1 

and Sox D-2 are expressed in the central nervous system, and Sox E-2 and Sox F-2 in 

the mechanoceptors of the walking limbs and peripheral nervous system. I also carried 

out functional analysis of Sox21b-1 and demonstrated its involvement in the gene 

regulatory network that is responsible for the posterior segment addition in the spider, as 

well as a striking relation with secondary layers formation. Finally, I generated new 

resources to help develop new functional tools in P. tepidariorum in order to make 

genomic manipulations in this species, as well as to improve techniques such as live 

imaging and in situ hybridization. Taken together my research embraced different aspects 
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of the spider embryogenesis and prove that the chelicerates are emerging research 

systems to the study of evolutionary developmental biology.  
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Introduction  

The field of evolutionary developmental biology is focused on understanding how changes 

in the ontogenetic mechanisms of different organisms give rise to phenotypic divergence 

on one hand and reconstructing ancestral features on the other (Sommer, 2009). This 

relies on comparative studies between several organisms to characterize similarities and 

differences. For example, studies of segmentation help to explain how chordates, 

annelids, and arthropods sub compartmentalize their bodies into spatiotemporally 

controlled segments. The process has similarities in a broader view, but intrinsic 

mechanisms are different in many aspects indicating that segmentation has likely evolved 

several times (Patel, 1994; Scholtz, 2002; Peel, 2005). Also, studies on neurogenesis 

have provided insights into how animals with a functional nervous system pattern their 

cells in order to form the neural precursors that will give rise to the neurons (Harteinstein, 

2015).  

This doctoral research analyzed the expression of the toolkit genes of the Hes 

(Hairy/Enhancer-of-Split) and the Sox (SRY-box) gene families specifically during 

segmentation and neurogenesis in the common house spider P. tepidariorum 

(Arthropoda, Chelicerata, Arachnida, Araneae), providing new insights into how these two 

processes are regulated during chelicerate development, compared to other animals. In 

addition, my work continued the effort to further develop state-of-the-art tools for the study 

of developmental biology in this spider.  

  

  
1 Spider studies in embryology and developmental biology  
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Arachnid embryology studies date back to 1862, when the Swiss anatomist 

ReneEdouarde Claparede started analysing embryos of spiders and mites (Claparede, 

1862). This initial research was then followed by a period of around 30 years of scarce 

studies until histological techniques started being used in different species of chelicerate 

embryos, including horseshoe crabs (Kingsley, 1892; Patten & Hazen, 1900).  

The first embryological description for P. tepidariorum (formerly Theridium and 

Acharaneae) was carried out by Montgomery (1909), who mostly focused on their 

embryology, rather than on comparative studies. In his work, the meroblastic intralecithal 

type of cleavage, in which the egg is mostly composed by yolk, was first described 

(Montgomery, 1909). After fertilization occurs at the periphery of the yolk, the first nuclei 

migrate towards the center of the egg, hence the name intralecithal (inside of the yolk) 

where the initial cleavages take place (Montgomery, 1909; Holm, 1952; Mittmann & Wolff, 

2012). The divisions occur in a syncytial environment until the 16-cell stage, when the 

cells migrate towards the periphery of the yolk-mass with every consecutive division  

(Figure 1.1) (Suzuki & Kondo, 1995; Kanayama, 2010; Pechmann, 2016).  
  

COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION 

 

Figure 1. 1. Early cleavages in P. japonica. Paraffin sections of early cleavages in the spider P. 
japonica, which belongs to the same genus as P. tepidariorum. A) 2-nucleus stage, with the yolk 
columns (oc) externally and the inner mass (im) in the centre. B) 8-nucleus stage. C) 16nucleus 
stage, when the cells starts the migration towards the periphery, and the blastocoel appears. D) 
32-nucleus stage (Suzuki & Kondo, 1995).  

  

In P. tepidariorum, the germ disc is formed by the blastoderm cells between 16 to  
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27 hours after egg laying (Figure 1.2). This is the primordial embryonic tissue in the spider. 

In the center of the disc an aggregation of cells that will form the cumulus (the 

morphological homolog of the dorsal organizer), which is the region where the gastrulation 

will occur (Figure 1.2) (Anderson, 1973; Mittmann & Wolff, 2012). What is striking about 

the gastrulation in the spiders is that the cumulus has a mesenchymal characteristic, 

which means that after the invagination of the ectodermal cells, the cells that went through 

a epithelial-to-mesenchymal process (EMT) migrate towards the rim of the germ disc 

(Akiyama-Oda & Oda, 2003; Mittmann & Wolff, 2012). Ake Holm, in his classical studies 

of spiders (Holm, 1952; Holm, 1954), discussed the potential that the dorsal organizer of 

several different species had to induce an entire axis, following what was known about 

the organizers in frogs, started experiments with transplantation of this region called the 

cumulus (Spemann & Mangold, 2001). His explants of the cumulus to different regions of 

the germ disc gave rise to spiders with a duplicated axis (e.g. two heads in one axis), and 

these were amazingly described in his studies. Sadly, at the moment there was no further 

understanding of the molecular mechanisms behind this interesting experiment (Holm, 

1952).  

50 years later Akiyama-Oda & Oda (2003) discovered that the mechanism 

controlling cumulus migration is BMP signalling. They found that the knockdown of 

decapentaplegic (the arthropod BMP-4 orthologue) causes several deffects in the 

cumulus migration, mesoderm formation and axis specification (Akiyama-Oda & Oda, 

2003). Interestingly, BMP signalling is also involved with the dorsoventral patterning in 

the organizer of frogs, which was the experiment on which Holm based his 

transplantations in the first place (Holm, 1952; Spemann & Mangold, 2001).   
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After the transition of radial to axial symmetry mediated by the cumulus prosomal 

segments are formed and opisthosomal segments are added sequentially to the 

germband of spider embryos (Figure 1.2). One of the focus of this thesis is in the 

mechanisms regulating the addition of segments. In spiders this was initially studied in 

the late ‘90s with studies of the spider Cupiennius salei and was followed by P. 

tepidariorum (Damen, 1999; Abzhanov, 2001; Damen, 2002; Akiyama-Oda & Oda, 2003; 

McGregor, 2008b). P. tepidariorum have a well-described embryonic development in 

stages, which facilitates the comparative studies with other species (Figure 1.2) (Mittmann 

& Wolff, 2012). This species also produces a high number of embryos every 2 or 3 days, 

ranging from 250 embryos per cocoon, and they are easily accessed from the females 

(Mittmann & Wolff, 2012), and is easy to culture. In addition, techniques such as in situ 

hybridization for the detection of mRNA transcripts in the embryos (Abzhanov, 1999; 

Akiyama-Oda & Oda, 2003, McGregor et al., 2008), immunohistochemistry for the 

analysis of proteins (Schwager, 2015; Paese et al., 2018), gene knockdown with RNA 

interference, injected both in to females for a systemic analysis (Akiyama-Oda & Oda, 

2003), or in the embryos for clonal analysis (Kanayama et al., 2010) exemplify the 

powerful tools available for studying the genetic regulation of the development of this 

organism and build on classic studies of arachnid development.  

 

COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION 

Figure 1. 2. P. tepidariorum development. (A) Cellularisation is complete at stage 2 and the 
germ disc including the primary thickening (pt) in the center forms at stage 4. The germ band with 
the segment addition zone (SAZ) has developed at stage 8 and elongated with the limbs 
becoming morphologically visible. Inversion occurs between stage 10 – 13, marked by the 
internalisation of yolk.  At stage 14 the embryo is fully developed with a clear constriction 
(arrowhead) between prosoma (Pro) and opisthosoma (Op). (Adapted from Hilbrant et al., 2012).  
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Indeed, the sequencing of the P. tepidariorum recently revealed that there has 

been a whole genome duplication (WGD) in the ancestor of spiders and scorpions 

(Schwager et al., 2017). Interestingly, duplicated copies of many of important 

developmental genes, including Hox genes as well as other regulatory factors such as 

microRNAs, have been retained in spiders and other arachnids since this event (Leite et 

al., 2016; Schwager et al., 2017). This obviously has interesting implication for the 

evolution of the regulation of developmental processes in these animals including 

segmentation and neurogenesis, which I studied for this thesis. Below I introduce the 

processes of segmentation and neurogenesis in different clades and compare with what 

is already known for P. tepidariorum, in order to provide a background for the results that 

will be discussed in the following chapters.  

  

2 Segmentation  
  

One characteristic of some metazoan groups is their ability to build a body from 

sequentially repeated (morphologically and/or functionally) units, commonly called 

segments (Hannibal, 2003). However, the way in which that these segments form and are 

patterned can differ amongst species.   

Primary segmentation is a process that occurs in the mesodermal pouches (hereby 

coelomic cavities), which are divided by epithelial junctions, as found in molluscs and 

echinoderms (Tautz, 2004). These animals are classified as “pseudosegmented” by 

Ballavoine (2014), who considers that there is a certain degree of segmentation in many 

extant phyla, in addition to arthropod, annelids and vertebrates. This view is not 



General Introduction 
____________________________________________________________  

18  
  

universally accepted in the field, however, where the consensus appears to be that the 

biological definition of segmentation doesn’t not applies to these species (Hannibal, 

2013).   

Secondary segmentation is a process in which clusters of cells along the axis are 

in an undifferentiated state (Peel, 2003). These cells are then patterned into segments 

after the activation of several molecular signals, usually in an anterior to posterior direction 

(Tautz; 2004; Peel, 2005; McGregor, 2008). Three extant, phylogenetically distant, clades 

exhibit this body plan feature: vertebrates, annelids, and arthropods. Vertebrate 

somitogenesis is a process that involves the division of the presomitic mesoderm into 

somites, which will give rise to the vertebrae and patterned neurons (Pourquie, 2003). 

Similarly, annelids divide their entire body into morphofunctionally similar metameres, that 

are ectodermal, mesodermal and endodermal (Balavoine, 2014), whereas arthropods 

subdivide their ectoderm in repeated segments (Hannibal, 2003).   

While there is no consensus on the evolutionary origin of how these processes 

arose in these three different clades (Davis & Patel, 1999; Tautz, 2004), there are three 

different scenarios that are debated in the field. The first view suggests that segmentation 

evolved independently in annelids, arthropods and vertebrates, which would be a clear 

example of an evolutive convergence (Figure 1.3 – green balls). The second view explains 

that segmentation arose independently in chordates and the protostome ancestor. This 

would require many losses of segmentation in the lophotrochozoans and ecdysozoans, 

which is less parsimonious than the other views (Figure 1.3 – orange). Finally, it was also 

proposed that segmentation arose in the common ancestor of all bilaterials, the termed 
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Urbilateria, and that this process was retained in arthropods, annelids and vertebrates, 

but lost in all the rest of the phyla (Figure 1.3 – Red).   

The evolution of the process of segmentation is therefore an important question in 

the evo-devo field. Intriguingly it has been found that some molecular mechanisms are 

common to segmentation in these three phyla and while this may indicate ancestral 

regulatory mechanisms for this process, this pattern could also be explained by their 

independent co-option (Chipman, 2008). However, it is important to characterize the 

regulation of segmentation to be able to understand this process and compare different 

animals. Thus, this part of the introduction will first focus on the differences between 

segmentation among vertebrates, annelids, and arthropods, and then expand in more 

detail on what is currently known regarding the control of segmentation in spiders.  
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Figure 1. 3. Possible origins of segmentation in the metazoans. Summary of the three views 
on the origins of segmentation in bilaterians (after Davis & Patel, 1999). The colored circles 
represent the gain of segmentation, whereas the colored squares the loss of the mechanism. The 
differences in the colors are explained in the text above.  

  

  

  
2.1 Segmentation in Vertebrates  
  

The formation of segments in vertebrates occurs in a zone of high cell proliferation in the 

presomitic paraxial mesoderm (PSM). The “blocks” of segments that are patterned in the 

PSM are called somites, hence the name somitogenesis (Pourquie, 2000). The somites 

are then the visible expression of segmentation in vertebrates, producing derivative 
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structures such as the vertebrae, the intervertebral disks, and the ribs (Tam and Trainor, 

1994).   

At the cellular level, the cells in the primitive streak have an ectodermal potential, 

and they acquire a mesenchymal fate after gastrulation, which allows their migration to 

differentiate into mesoderm (Tam & Trainor, 1994). These mesodermal progenitors in the 

PSM are called somitomeres (Pourquie, 2000). This is the first important difference 

between vertebrate, annelids and arthropods segmentation: in vertebrates, the segments 

are from mesodermal original, whereas in annelids they are ectodermal, mesodermal and 

endodermal, and only of ectodermal origin in arthropods (Pourquie, 2003; Peel, 2005).  

To explain somitogenesis at the molecular level, Cooke & Zeeman (1976) 

developed a model called the “clock and wavefront”. In summary, this mechanism is 

controlled by opposing gradients: FGF and Wnt emanating from the posterior and retinoic 

acid pathway from the anterior region of the embryo (Cinquin, 2007). Also, the 

undifferentiated cells in the posterior part of the PSM are highly dependent on hes7 in 

mammals and her in zebrafish, and these genes are downstream targets of the Notch 

signaling (Kageyama, 2007). These genes have a cyclic expression in the PSM (clock), 

and act together with the FGF and Wnt signalling pathways in the PSM to give rise to the 

aforementioned somites in an anterior-to-posterior manner (Figure 1.4) (Pourquie, 2007). 

n the anterior part of the PSM at the determination front, which is the point where Wnt, 

FGF and retinoic acid gradients meet to subdivide the PSM into the new somites (Figure 

1. 4) (Pourquie, 2003; Gibb, 2010).   
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COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION  

Figure 1. 4. Genetic control of somitogenesis in chick. A) Dorsal view schematic of a chick 
embryo with the position of somites and the PSM that flank the axial neural tube. B) Periodic 
waves of expression of the cHairy1 gene (successive waves shown in different colours) across 
the PSM share the same periodicity as somite formation. C) A schematic diagram integrating the 
domains of various signalling activities in the PSM – the wavefront of determination on the lefthand 
side, and the clock on the right. (Adapted from Gibb, 2010).  

  

2.2 Segmentation in Annelids  
  

The phylum Annelida is comprised of a diverse group of animals with vastly different 

morphological and ontogenetic features, most of which undergo indirect development with 

several larval stages (Balavoine, 2014). Much is now known about the embryonic 

development of these animals (Shimizu, 2001), and one of the best studied annelids in 

regard to developmental biology is the nereid worm Platynereis dumerilii, due to the 

transparency of the embryos enabling easy observation of embryogenesis (Balavoine,  

2014).  

In this species, the most anterior part of the body is non-segmented 

(protostomium), and the posterior segments are added through a budding process that 

emanates from a segment addition zone (SAZ) (Wanninger et al., 2009). In this region, 

stem-cells, called teloblasts, divide into successively smaller cells with ectodermal 

(ectoteloblasts) or mesodermal (mesoteloblasts) potential. Strikingly, during annelid 

segmentation the three cell layers develop at a similar rate, in contrast to what is seen in 

vertebrates and arthropods, in which where the endoderm is patterned only later in 

development (Weeden, 1997).  
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At a molecular level, it is known that annelid development relies much on the 

Wnt/β-Catenin and Hedgehog signaling pathways, but there is no evidence for the 

involvement of Notch like in vertebrates. (Shimizu, 2001; Dray et al., 2010). However, 

orthologues of hes/hey (annelid orthologues of the Drosophila gene hairy) are expressed 

in the SAZ in an oscillatory pattern, similar to what is observed in vertebrates (Kageyama, 

2012; de Rosa et al., 2015), suggesting that they play an important role in the SAZ.  

  

2.3 Segmentation in Arthropods  
  

Arthropods present a wide variety of segmentation modes (Hannibal, 2003) but the first 

difference in the mechanism of segment patterning relates to how the invaginating cells 

that undergo gastrulation form a germ band (Figure 1.5). In some insects, such as 

Drosophila melanogaster and Musca domestica, the blastomeres that undergo 

gastrulation forms an extended germ band that takes up the entire intervitelline space – 

and the germ band will later retract and in the space of minutes the intersegmental borders 

become visible (Sommer & Tautz, 1991). Due to this special characteristic where the 

entire embryo forms the germ band, it was given the name “long germ band” mode of 

embryogenesis (Figure 1.5) (Liu, 2005).    
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Figure 1. 5. Diagram of germ bands types in arthropods. Schematic representation which 
illustrates the difference between the modes of germ band development. A-C) The short germ 
band embryogenesis presents the cephalic region in formation, with a segment addition zone in 
the posterior region, being later differentiated. A’ – C’) The long germ band mode of 
embryogenesis shows that all the segments are patterned simultaneously soon after gastrulation 
(Based on Newman, 2005).  

  

An important question that was asked in order to understand the control of 

segmentation in arthropods was which molecular mechanisms are involved (Peel, 2005).  

In order to understand this, genetic screening of the fruit-fly Drosophila melanogaster was 

carried out in the late ‘70s and this and subsequent work identified the genes and 

pathways involved in the classic segmentation cascade of this insect (Akam, 1985; 

McDonald, 1986; Akam, 1989).  
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In summary, segmentation in D. melanogaster is regulated by a hierarchical 

cascade of genetic activation and repression, which can be subdivided into four classes 

of genes (Figure 1.6):  

- Maternal effect genes: The mRNA or proteins from these genes are deposited 

into the egg by the female via the nurse cells of the ovarioles before fertilization. 

Upon fertilization, the gene products provide the coordinates to pattern the 

anterior-posterior axis. hunchback and bicoid are good examples of maternal 

effectors that acts in the anterior and caudal in the posterior (Figure 1.6) 

(Frohnhofer, 1986; Mlodzik, 1987; Hulskamp & Tautz, 1991);  

  

- Gap determinants: After fertilization maternally supplied proteins activate the 

expression of gap genes, which were named for the phenotypes that resembles 

a gap in the segmental pattern of the embryo (e.g. lack of trunk, but formation 

of head and abdoman). Gap genes are expressed in patterns marking future 

groups of contiguous segments and subdivide the embryo into the presumptive 

head, thorax, abdomen and posterior region of the embryo. Examples of this 

class are the genes Kruppel and knirps, which contribute to determining the 

thorax and abdomen (Figure 1.6) (Knipple, 1985; Rothe, 1989);  

  
- Pair-Rule genes: Gap genes and maternal effectors that are involved in the 

trunk region of the embryo activate the expression of the pair-rule genes. These 

genes are expressed in a double segment periodicity in alternate 

parasegments, and the phenotypes caused by their knockdown show a 
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deletion of every second segment. These genes, which include even-skipped, 

hairy and runt, have an important role in segment specification (Figure 1.6)  

(Ingham, 1985; Frasch, 1987; Ingham, 1988).  

  

  

- Segment Polarity genes: The polarity of each parasegment is defined by the 

expression of the segment polarity genes. These genes are are regulated by 

gap and pair rule genes, and are expressed in either the anterior or posterior 

compartments of the parasegments. For example, engrailed set the anterior 

boundary of the parasegment and marks the posterior comparment of the 

segment, whereas the expression of wingless marks the posterior of the 

parasegment, which corresponds to approximately the middle of the segment 

(Figure 1.6). In D. melanogaster, hedgehog also acts as a posterior segment 

polarity gene in the segmentation mechanism (Kornberg, 1985; Levine, 2008;  

Peel, 2005).  
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Figure 1. 6. Molecular cascade controlling segmentation in D. melanogaster. Schematic 
representation of the molecular cascade that is initiated by maternal proteins, which activate the 
downstream expression of gap, pair-rule and segment polarity genes in dipteran species (Based 
on Sanson, 2001).  

  

However, in contrast to D. melanogaster, the majority of arthropod species, 

including most other insects, myriapods, crustaceans and chelicerates exhibit the “short 

germ band” mode (Figure 1.5). It received this name because after the invagination of the 

blastomeres, the ectodermal layer will pattern just a small part of the presumptive head 

ectoderm and form a few of the anterior segments (Liu, 2005; Shaw et al., 2007).  
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Subsequently, posterior segments are continuously added from a region of  

undifferentiated cells with both ectodermal and mesodermal potential, called the segment 

addition zone (SAZ) or growth zone (Peel, 2005; McGregor et al, 2008).   

The cells in the SAZ are thought to be maintained in an undifferentiated state until 

molecular signals are expressed and activates the rearrangement of these cells into 

segments (Scholtz, 2002; Peel, 2005; McGregor et al., 2008). However, many open 

questions remain concerning how short germ arthropods pattern their segments including 

how this is regulated and at the genetic and cellular levels. To address these questions, 

many studies have compared the Drosophila segmentation cascade to the regulation of 

segmentation in short germ arthropods.  

Interestingly, it was discovered that many of the same genes regulate 

embryogenesis in long germ band and short germ band arthropods and aspects of the 

Drosophila segmentation cascade are also involved in segmentation in short germ 

arthropods (Peel, 2005; Clark & Akam, 2017). However, short germ arthropods also use 

mechanisms that have been probably been lost in long germ insects like Drosophila 

(Patel, 1997; Levine, 2008; Clark & Peel, 2017).  

 In short germ arthropods, orthologues of the D. melanogaster gap genes such as 

hunchback, kruppel and giant were studied and it has been found that their expression is 

similar in Gryllus, Oncopeltus and Schistocerca (Patel et al., 2001; Liu & Kaufman, 2004a, 

2004b; Mito et al., 2005). RNAi experiments confirmed that the knockdown of these genes 

results in loss of segments and/or homeotic transformations (e.g Mito et al., 2005).  
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 The pair-rule gene orthologues are also involved in the segmentation in short germ 

arthropods, but their expression and function can vary from what is seen in the fruit-fly. 

For example in T. castaneum, the pair rule genes are also expressed in a double-segment 

periodicity (Patel, 1994; Choe et al., 2006) and knockdown of these genes results in 

phenotypes that resembles the fruitfly ones (Choe et al., 2007). However, in Oncopeltus, 

the orthologue of even-skipped is expressed with single-segment periodicity (Liu & 

Kaufman, 2005), which is also the case in spiders (Schönauer et al., 2016).   

 Segment polarity genes are the most conserved in regards of their expression patterns 

and functions in short germ arthropods in comparison with D. melanogaster. Functional 

studies have only been carried out in insects, but the expression patterns of engrailed and 

wingless orthologues in other arthropods including X and Y for, example, demonstrates 

their conserved expression throughout the arthropod clade (Hughes, 2002; Simmonnet, 

2004).  

It was found that orthologues of several genes that act during the canonical 

Drosophila segmentation cascade were also shown to play a role segmentation in 

chelicerates (Damen, 2000; Abhzanov, 2001; Damen, 2002; McGregor et al., 2009). 

Similarities were found in the expression of Hox genes as well as pair-rule orthologues 

like hairy, even-skipped and runt, being involved in the patterning of the segments in the 

spiders P. tepidariorum and C. salei (Damen, 2000; Abzhanov; 2001). Also, in 

chelicerates like the spiders P. tepidariorum and C. salei, the expression of segment 

polarity genes is also conserved with respect to other arthropods and as mentioned above 

while the pair rule orthologues are involved in segmentation, they appear to be expressed 

with single segment periodicity (Damen, 2007; Kanayama, 2011). Moreover, there is 
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evidence that hb and distal-less have gap gene like functions in P. tepidariorum 

(Pechmann et al., 2009; Schwager et al., 2009).  

However, it was discovered in spiders and later in a few insects that like vertebrates 

but in contrast to Drosophila that the Delta-Notch signalling pathway is involved in 

segmentation (Palmeirim; 1997; Pourquie, 2003; Pueyo, 2008; Mito et al., 2011).  (+ all 

the other relevant citations).  

  

2.3.1 The GRN for formation of the SAZ and segment addition in P.  
  

Functional analysis of Delta and Notch in P. tepidariorum demonstrated that their 

expression in the germ disc is essential for the formation of the SAZ from the caudal lobe, 

(Oda et al., 2007). It addition, was shown the dynamic expression of Delta and Notch in 

the SAZ of C. salei is required for segment formation (Stollewerk, 2003; Schoppmeier, 

2005).  

Furthermore, it appears that this dymanic expression of Delta in P. tepidariorum is 

regulated by the Wnt signalling pathway ligand, (McGregor et al., 2008). When this gene 

was knocked down using RNA interference (parental RNAi), the embryos were unable to 

differentiate the most posterior segments and displayed a truncated opisthosoma 

(McGregor et al., 2008). This finding was further investigated by Schönauer et al (2016), 

whi found that interplay between Delta-Notch and Wnt signaling is required to specify the 

SAZ and segment addition. This work also showed that other segmentation genes in the 

spider, such as caudal and even-skipped, act downstream of Wnt8 and Delta (Schönauer 

et al., 2016; McGregor). The characterization of this gene regulatory network (GRN) 



General Introduction 
____________________________________________________________  

31  
  

segment addition in spider’s segmentation is a great step towards an understanding of 

how segmentation is regulated in chelicerates compared to other arthropods but is still 

incomplete and many details remain to be added (Figure 1.7).  
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Figure 1. 7. Gene Regulatory Network of the posterior segment addition in P. tepidariorum. 
Dl-N activates Wnt8 expression to maintain a pool of undifferentiated cells in the posterior SAZ. 
Wnt8 is then required for dynamic expression of Dl, which results in the formation of a stripe of Dl 
expression in anterior SAZ cells. Wnt8 and Dl-N are also required to activate cad expression, and 
together, these factors activate eve and runt expression. In anterior SAZ cells, Dl then suppresses 
Wnt8 expression and in combination with cad, eve and runt expression leads to segment 
formation. Arrowheads and flat arrows indicate activation and repression, respectively, although 
it is not known if these interactions are direct or whether additional factors are required. (Adapted 
from Schönauer et al., 2016).  
2.3.2 The hairy/Hes genes in spiders   
  

The gene hairy is a member of a conserved gene family that is involved in embryogenesis 

in species throughout metazoan phylogeny: The Hairy and Enhancer of Split (HES) 

complex (Jennings, 1999; Gazave, 2014). These genes encode transcription factor 

proteins that have a basic helix-hoop-helix DNA binding domain (bHLH) and an Orange 

domain, which is binding a domain for the Notch signalling pathway (Baker, 2018). In 

addition, Hes genes contain the YRPW domain (or WRPW) that is present in all the bHLH 

TF’s, which binds Groucho, a downstream target of the Notch signalling pathway 

(Jennings, 2008).   

As mentioned previously, cHairy1 is a gene that is expressed in an oscillatory 

pattern during somitogenesis (in mice) (Kageyama, 2007). In annelids the expression of 
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the hey/hes genes regulates the formation of segments from the SAZ, and hairy acts as 

a pair rule gene in D. melanogaster. The spider orthologue of hairy is also expressed in 

the SAZ of both C. salei and P. tepidariorum (as well as during the patterning of prosoma) 

(Damen, 2000; Pechmann, 2009). In P. tepidariorum, like Dl, the cyclic expression of hairy 

is lost in Wnt8 pRNAi embryos (McGregor et al., 2008; Schönauer et al., 2016). However, 

despite these studies, very little is known about the role of hairy and Hes genes more 

generally during spider embryogenesis.  

The study by Dearden (2015) identified several orthologues of the Hes-like genes in 

the P. tepidariorum genome. These included the orthologues of the Drosophila genes 

Deadpan and Hey (Hairy and E(spl) related with a YRPW domain), which are involved in 

the differentiation of neural precursors (neuroblasts) in insects, Clockwork Orange (cwo) 

which is involved in the control of circadian rhythm, and Side (Similar to Deadpan) which 

control the migration of motor neurons (Ingham, 1985; Siebert, 2009; Dearden, 2015). 

Unfortunately, Dearden (2015) just did bioinformatic analysis to compare the Hes gene 

family in metazoans, thus no gene expression was further analysed for the spiders (Figure 

1.8). For this reason, one of the aims of my thesis is to characterize properly the 

orthologues for the Hes-like genes found in the P. tepidariorum genome.  

  

COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION 

Figure 1. 8. Schematic representation of the phylogenetic relationships of bHLH Orange. 
Bayesian phylogram of representative bHLH-orange domain proteins reconstructed using the 
WAG model of protein evolution. bHLH Orange domain proteins from Chelicerates (PTEP, P. 
tepidariorum; LHE, Latrodectus hesperus; ISCW, Ixodes scapularis; CSCU, Centruroides 
exilicauda; XP, Metaseiulus occidentalis) Insects (honeybee, GB; Drosophila; gene names) a 
myriapod, Strigamia maritima (smar_), and an Annelid, Platynereis (AGS identifiers) with well 
characterised HES genes (Source Dearden, 2015).  
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Interestingly, in other arthropods the Hes genes act in a similar manner to their 

counterparts in vertebrates. It has been shown by Chipman (2008) that hes-4 and hes-7 

likely have roles in segmentation in the centipede Strigamia maritima, where they are 

expressed in a posterior-to-anterior manner in the SAZ and subsequently in nascent 

segments. In the cockroach P. americana, the expression of hairy orthologs are clearly 

involved in a similar mechanism (Pueyo, 2008) because an oscillatory pattern is apparent 

visible in the posterior of the germ band (Figure 1.9). A similar pattern was also found in 

another short germ band insect, the flour beetle Tribolium castaneum (see Aranda, 2008) 

(Figure 1.9). However, no functional study of hairy was carried out in either of these 

species to fully understand the role of this gene in segment addition (Figure 1.9).  
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Figure 1. 9. hairy expression in the cockroach and in the flour beetle.  Expression of the hairy 
orthologues in P. americana and T. castaneum. It is noteworthy that the expression in the growth 
zone cycles in a posterior-to-anterior manner. Adapted from Aranda (2008) and Pueyo (2008).  

  

Therefore, one of the aims of my thesis was to better understand how hairy and 

other bHLH Hes-like genes are expressed in spider embryos to compare to their possible 

roles in segmentation in other arthropods. In addition, this provided an opportunity to 

understand if the genes involved in D. melanogaster neurogenesis (such as deadpan, 

hey and side) play a similar role during spider embryogenesis.  
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3 Neurogenesis  
  

Metazoans have the ability to sense signals from the external environment and transduce 

these stimuli into a cellular and molecular signal, which allows the organisms to respond 

in many different ways. This of course relies on the specialization of the cells in a complex 

nervous system. The comparative studies in different taxa allow us to understand how the 

ontogenetic similarities arose, especially in how these cells differentiate into ganglia and 

neurons, as well as which neurogenic genes are conserved and act in a similar way in 

different species. In the following I will focus on the two well studied groups – vertebrates 

and arthropods – and specifically highlight what is currently known in the common house 

spider.  

  

3.1 Neurogenesis in Vertebrates  
  

Neuronal differentiation in vertebrates occurs in three distinct processes (Lewis, 1996). 

The first occurs in the central dorsal neuroepithelium that contains a high number of 

postmitotic cells and undifferentiated proliferative neural cells, which will subdivide and 

differentiate into the neurons of the neural plate (Haubensak et al., 2004). The neural 

plate then folds and cells with neuroectodermal potential will form the neural tube. This 

process is dependent on Notch signaling (Lewis, 1996) and Sox proteins (Kamachi, 

2013), especially Sox2, to help maintain the pool of proliferative cells.   

The second mechanism entails the migration of neural crest cells, a subset of 

mesenchymal cells that give rise to the peripheral nervous system and annexes, both 

neuroectodermal and epithelial ectodermal (Simoes-Costa, 2015). This process is highly 
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dependent on Wnt, FGF and Notch signaling, but also relies on Sox proteins 

(SimoesCosta, 2015).   

Finally, the selection of cells from the epithelium to become neurogenic is made by 

the delamination of these cells from the epithelium and acquisition of migratory ability 

(epithelial to mesenchymal transition – EMT). This process is called cranial placode 

neurogenesis (Lassiter et al., 2014), and is also dependent on the Wnt, FGF and Notch 

signaling pathways. The first and the latter processes most resemble arthropod 

neurogenesis, for the specificity of cell-types (e.g. neural cells in the neural plate cells and 

neuroblasts in the ventral neuroectoderm) and migratory mechanism (e.g. mesenchymal 

cells with neurogenic potential) (Lewis, 1996).  

    

3.2 Neurogenesis in Arthropods  
  

Arthropods display a great variety of neurogenic patterning, which depends on the mode 

by which cells rearrange themselves to delineate the CNS. In onychophorans, insects, 

and crustaceans, a single cell with stem-cell potential delaminates from the 

neuroectoderm and can divide both symmetrically or in a stem cell manner (Figure 1.10) 

(Stollewerk, 2016). This mode of neurogenesis resembles the vertebrate placodal 

development, in which single cells acquire the potential to induce differentiation into 

neurogenic fate (Scotting, 1996). On the other hand, chelicerates and myriapods have 

clusters of postmitotic precursors in both the procephalic and ventral neuroectoderm 

(Stollewerk, 2016). This mode of neurogenesis can be compared to that of dorsal 

neuroectoderm differentiation in vertebrates, in which a group of cells acquire the ability 
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for neurogenic potential, instead of specific cells being specified to pattern the neurons 

(e.g. neuroblasts in D. melanogaster) (Stollewerk, 2001; Stollewerk, 2016).   
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Figure 1. 10. Pattern of neural precursor/progenitor specification and division. 
Onychophorans: single neural progenitors delaminate and divide symmetrically to produce 
intermediate neural precursors, which divide again. Chelicerates: most neural precursors are 
postmitotic. Insects: neuroblasts divide asymmetrically to produce GMCs, which divide again to 
produce neurons and glia. Crustaceans show the same division pattern. (Adapted from 
Stollewerk, 2016).  

    

 Like in D. melanogaster, differentiation of the neuronal progenitors in other arthropods is 

regulated by the achaete-scute homologues (ASH) and Notch signalling (Kageyama, 

2007; Stollewerk, 2016). Briefly, proneural genes of the ASH group are expressed in 

clusters of cells in the ventral neuroectoderm. By a process called lateral inhibition, 

regulated by Notch, only one cell continues to express these genes, which differentiates 

into a neuroblast, whereas all of the other cells in the clusters will have an epidermal fate 

(Stollewerk, 2003).   

  

3.3 Sox genes and its involvement in neurogenesis  
  

Another important group of genes involved in both vertebrate and insect neurogenesis is 

the Sox group. This family of genes encompasses a set of conserved metazoan 

transcriptional regulators that play critical roles in a range of important developmental 

processes (Kamachi, 2013), including stem cell maintenance and nervous system 

development (Sarkar, 2013). The Sox family is defined by a set of genes containing an  
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HMG class DNA-binding domain sharing greater than 50% sequence identity with that of 

SRY, the Y-linked sex determining factor in eutherian mammals (Sinclair, 1990). In 

chordates, the family contains approximately 20 genes, which have been subdivided into 

eight groups (A-H) based in the DNA-binding domain sequences (Bowles, 2000; Heenan, 

2016).   

Representatives of the Sox family have been identified in all metazoans examined 

to date - mainly Groups B to F, with other groups specific to particular lineages. Note that 

Sox-like sequences have been reported in the genome of the choanoflagellate Monosiga 

brevicollis (King, 2008), these are more closely related to the non-sequence specific 

HMG1/2 class of DNA binding domain and thus true Sox genes are restricted to 

metazoans (Figure 1.11) (Zhong, 2011; Schnitzler, 2014).  
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Figure 1. 11. Sox factors throughout the metazoan phylogeny. Sox-like HMG-box genes have 
been described in choanoflagellates. However, it is thought that true Sox genes arose in the 
common ancestor of the eumetazoans and SoxF genes were lost in poriferans and placozoans. 
SoxA group is a vertebrate novelty (Adapted from Schnitzler, 2014).  

  

Although vertebrate Sox genes have been intensively studied due to their critical 

roles in development (Kamachi, 2013), with the exception of the fruit fly Drosophila 

melanogaster, they have been less well characterised in other invertebrates. D. 

melanogaster contains eight Sox genes (four group B genes and one each in groups C 

to F), which is generally consistent across the insect genomes examined to date 

(Prochanukul, 2011; Wilson, 2008; Wei, 2010). Of particular interest are the Group B 



General Introduction 
____________________________________________________________  

38  
  

genes of insects, which share a common genomic organisation that has been conserved 

across all insects examined to date, with three genes closely linked in a cluster  

(Prochanukul, 2011; McKimmie, 2005). Critical roles in early segmentation and nervous 

system development have been shown for Dichaete (D) (Russell, 1996; Nambu, 1996), and 

in CNS development for SoxNeuro (SoxN), where both these group B genes exhibit partial 

redundancy (Buescher, 2002; Overton, 2002).  

The paucity of studies of Sox factors in other arthropods is one of the reasons why 

it was important to explore the expression and function of these genes further, especially 

in P. tepidariorum with the added interest that there has been a WGD in the lineage 

leading to this spider.   
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4 Aims of the thesis  

  

The Hes-like and the Sox genes represent important toolkit genes in metazoans that are 

involved in many aspects of developmental biology, from stem-cell maintenance to cell 

death control. For this reason, the proposed aims for my thesis were:  

• Description of the expression pattern of these genes in embryonic stages of 

the common house spider P. tepidariorum;  

• Analysis of the phenotype caused by knockdown of one of the Sox factors and 

detailed study on its involvement in posterior segment addition in this short 

germ arthropod;  

• Help to elucidate the phylogenetic relationships of these important genes in 

comparison to other metazoans;  

• Investigation of the expression of selected orthologues in the developing 

nervous system of the spider;  

• Development of new techniques for genomic modifications in P.  

tepidariorum.  
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Chapter 1  

        

Expression of bHLH-TF 
Encoding Genes in P. 

tepidariorum  
  

  

  

  

  

  

  

  
Introduction  

The bHLH family of transcription factors, which includes the Hes subfamily is the largest 

group of transcription factors with the ability to dimerize, and they regulate many different 



Results – Expression of bHLH-Containing Genes in P. tepidariorum 
____________________________________________________________  

42  
  

aspects of embryogenesis, such as segmentation, neurogenesis and apoptosis (Massari, 

2000).  

 To gain a chelicerate perspective and therefore a broader view of the function and 

evolution of these genes, I characterized representatives of the Hes-like genes in P. 

tepidariorum. I started with the orthologue of hairy, Pt-h, which was previously described 

in spiders to be involved in posterior segmentation, as well as deadpan, hey and side - 

genes known for their involvement in neuronal differentiation in other animals.  

 Hes genes exhibit bHLH and Orange motifs in their coding region, as well as the motif 

WRPW four amino acids upstream of the stop-codon, which is recognized by the Groucho 

protein as a binding site for dimerization of these factors. In this chapter I will detail the 

identification, characterization and expression pattern of some of the bHLHcontaining 

genes present in P. tepidariorum genome.   

  

Identification and characterization of Hairy-Related orthologues  

By conducting a tBLASTx search for conserved bHLH and Orange motifs in the genome, 

I identified several bHLH related-genes in P. tepidariorum (n> 80) 

(http://bioinf.unigreifswald.de/blast/P./blast.php). I focused on a small subset of bHLH-

containing genes, that are related to hairy and hes-like genes because they have never 

been analysed in arthropods apart from D. melanogaster. I identified four genes that all 

contain the bHLH, Orange and Groucho binding domains (WRPW), that classify them as 

mostly related to the Hes genes in vertebrates (see the first four genes in Figure 2.1).  

http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
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Figure 2. 1. bHLH-containing genes found in P. tepidariorum. Schematic representation of 
the six genes that the thesis focused on. On the left the gene name and GenBank ID, followed by 
the Augustus3 identifier and the amino acids length for these predicted proteins are given. The 
boxes represent the exons; blue colors for the bHLH domain, orange for the Orange domain, and 
light brown for the WRPW motif.  

  

 The first gene found was the previously identified orthologue of Pt-h (aug3.g4026) 

(McGregor et al., 2008; Pechmann et al., 2009). It contains three exons, with the predicted 

protein containing a bHLH domain at position 11 to 74, the Orange domain from 85 – 123, 

and the WRPW motif containing a change from a tryptophan to a phenylalanine (W to F) 

(Figure 2.1).  
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The second gene identified was the deadpan (aug3.g17723) orthologue, which 

exhibits four exons. The bHLH domain is in the same position as predicted for H (11 – 

74), the Orange domain from position 89 – 127 and the WRPW at the end of the coding 

sequence (Figure 2.1). This gene was also previously annotated as a Deadpan group 

gene (Dearden, 2015).  

 hey (aug3.g5209) also has four exons, with the bHLH domain amino acids 20 – 82, the 

Orange domain from the 96 – 135, and again a WRPW motif immediately before the stop-

codon (Figure 2.1). side (aug3.g20968) has four exons, the bHLH domain from amino 

acids 14 – 75, the Orange domain from 89 – 124 and again a WRPW motif is also present 

(Figure 2.1). As the name suggest this gene belongs to the Side group like Pt-h.   

Note that in addition, I also identified two orthologues of the achaete-scute complex 

genes (namely ash1 and ash2), known for being involved in neurogenesis in the spider 

Cupiennius salei (Stollewerk, 2001), which also encode a bHLH domain (final last genes 

in Figure 2.1). These genes don’t contain either the Orange or the WRPW motif, only have 

the bHLH conserved domain (Figure 2.1). Pt-ash1 (aug3.15679) and Pt-ash2 

(aug3.27206) just have one exon each.  

 To verify the annotation and identification of these genes predicted by BLAST, for these 

six P. tepidariorum (Pt) genes I made a maximum-likelihood tree using the software Mega, 

for 1000-bootstraps value and aminoacids comparison between the hes-like genes for the 

wandering spider C. salei (Cs), Mus musculus (Mm), D. melanogaster (Dm), the orb 

weaver spider Nephila clavipes (Nc), and the myriapod S. maritima (Sm) (Figure 2.2).  
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As predicted, there was strong support for placing Pt-dpn in the Deadpan group; Pt-h and 

Pt-hey in the Hairy group, Pt-side was grouped with the D. melanogaster side gene, and 

Pt-ash1 and Pt-ash2 had high bootstrap support for being placed in the Achaete-Scute 

complex with the C. salei orthologues.  

  

Figure 2. 2. Phylogeny of bHLH domains in selected metazoans. Phylogenetic tree showing 
the relationship between C. salei (Cs), Mus musculus (Mm), D. melanogaster (Dm), Nephila 
clavipes (Nc), P. tepidariorum (Pt) and S. maritima (Sm) based on bHLH domain sequences. The 
grouped genes are divided into different colours as highlighted outside the circle.  
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Expression of P. tepidariorum bHLH-containing genes  

To further characterise and compare the hes-like, and ash1 and ash2 genes in P. 

tepidariorum, I carried out in situ hybridizations to assay the expression of all six genes 

during embryogenesis in this spider.   

Pt-h (aug3.g4026) expression matches the findings in Pechmann (2009). This 

gene is expressed strongly at stage 5, in both the presumptive anterior region of the germ 

disc, and broad expression is also observed in the centre of the germ disc (Figure 2.3 - 

A). When the germ band is formed, the expression is strong in the SAZ, but is also 

observed in the presumptive L2-L4 segments (Figure 2.3 - B-D). Dynamic expression is 

still seen in the posterior at stage 8.1 when strong expression also appears in the 

presumptive head lobes (Figure 2.3 - E-G). Strikingly, the expression in the anterior is not 

detectable at stage 8.2, when it is observed only in a segmental pattern in the 

opisthosomal segments (Figure 2.3 - H). Finally, at stage 9.1, proneural clusters in the 

entire ventral nerve cord show strong expression of Pt-h, and expression in the SAZ is  

still visible (Figure 2.3 - I).  
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Figure 2. 3. Expression of Pt-h in P. tepidariorum. A - B) Stage 5 showing the expression at 
the rim of the germ disc and in the SAZ. C) hairy is expressed in the SAZ, forming segments and 
the most anterior region of the germ band at stage 6. D – E). At stage 7 and early stage 8, the 
expression is dynamic in the SAZ, and static in the Ch/Pp segment, and in the L2/L4 forming 
segments. F – G) The cyclic expression continues until mid-stage 8, from the SAZ and in the 
differentiated segments of the prosoma. H) At stage 8.2, the anterior expression is lost, and hairy 
is only expressed in the opisthosomal segments and the SAZ. I) The expression of this orthologue 
is now strong in the proneural clusters, and also faint expression remains in the SAZ. Ch: 
chelicerae, L1 – L4: prosomal segments 1 to 4, O1 – O4: opisthosomal segments 1 to 4, Pp: 
pedipalps; SAZ: segment addition zone.  

  

 Pt-dpn expression is first observed at mid-stage 9 in the head neurectoderm including 

the mushroom bodies, and clusters of neurogenic cells in the prosomal segments (Figure 

2.4 – A). This gene is also expressed in stripes in the opisthosomal segments and SAZ 

(Figure 2.4 - A). This pattern is also visible at later stages when there is strong expression 

in the proneural clusters, although expression disappears from the  

SAZ at stage 10.1 (Figure 2.4 – B, C).   
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Figure 2. 4. Expression of a deadpan orthologue in P. tepidariorum. A) In situ hybridization 
showing the expression of this orthologue in the spider CNS at stage 9.1, in clusters of 
differentiating neurons (white arrows). Expression is also observed in the segments of the 
opisthosoma and SAZ. B and C) Pt-dpn is highly expressed in the CNS in stages 9.2 and 10.1, 
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but weaker in the opisthosomal segments. Ch: chelicerae, L1 – L4: prosomal segments 1 to 4, 
O1 – O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment addition zone.  
  

 For Pt-hey (aug3.g5209) strong expression was observed in the CNS at stage 9.2, 

specifically in the mushroom bodies and in internal clusters of the PNS throughout the 

entire ventral nerve cord (Figure 2.5 – A). Pt-side (aug3.g20968) exhibits expression in 

both the anterior neurectoderm, near the future mouthparts, and is weakly expressed in 

all the segments from the prosoma to the opisthosoma in a stripped pattern (Figure 2.5 – 

B).   

  

Figure 2. 5. Expression of Pt-hey and Pt-side orthologues in P. tepidariorum. A) At stage  
9.2, hey shows strong expression in the mushroom bodies and in some clusters of the ventral nerve 
cord, as indicated by white arrows. The arrow in the SAZ highlights some fragments of yolk that 
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couldn’t be removed prior to the flat mounting. B) side is expressed in the brain neuroectoderm at 
stage 9.1, as well as in mouthparts and all the segments in the ventral nerve cord. The apparent 
expression in the limbs is background. Ch: chelicerae, L1 – L4: prosomal segments 1 to 4, O1 – O4: 
opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment addition zone.  

  

  For the orthologues of Pt-ash1 and Pt-ash2, no transcripts were detected with the 

set of RNA probes I designed. This might have been due to a probe synthesis that didn’t 

work correctly, but I did not have the time to repeat the in situs for these two orthologues 

before finishing the thesis.  

  

Functional analysis of the bHLH genes  

As mentioned in the introduction, the Hes-like genes are direct downstream targets of the  

Notch signaling in the segmentation process in both D. melanogaster and vertebrates. 

Thus, to better understand the role of this major pathway in the spider embryogenesis, I 

conducted functional analysis for the Pt-Dl knockdown embryos and evaluated the Pt-h 

expression. At stage 6 (n= 30) it was possible to observe a complete decrease of Pt-h in 

Pt-Dl RNAi embryos (Figure 2.6 – A and B). This suggest that in spiders, Pt-h is also 

dependent of the Delta-Notch pathway to activate its expression.  
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Figure 2. 6. Expression of Pt-h in Pt-Dl knockdowns. A and B) Pt-h in situ hybridization in 
embryos of stage 6, demonstrates the loss of this transcripts in the entire embryo. White arrows 
show an accumulation of cells in the SAZ, characteristic of Pt-Dl knockdowns. SAZ: segment 
addition zone.  
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Discussion  

  

Conservation of bHLH-containing Hes-like genes in the common house spider  
  

bHLH transcription factors (TFs) are DNA-binding proteins involved with several aspects 

of development (Murre et al., 1994). One of the most studied genes belonging to this 

complex is the D. melanogaster gene hairy (Carroll, 1988). This gene, that contains a 

bHLH domain in its coding sequence, is a member of a conserved gene family that is 

involved in various processes of embryogenesis in vertebrates and insects: The Hairy and 

Enhancer of Split (HES) family (Jennings, 1999). These genes encode proteins that have, 

apart from the basic helix-loop-helix binding site (bHLH), an Orange domain and are 

involved in the activation of the intracellular domain of the Notch signalling pathway.  

As previously stated in Dearden (2015), chelicerates don’t appear to have an 

enhancer-of-split complex, which has been shown to be a pancrustacean novelty 

amongst arthropods. In my thesis I corroborate the lack of the EoS complex, but my 

findings are not completely consistent with Dearden’s analysis (2015). First, the author 

placed Hairy and Deadpan in the same group. In my analysis, I found that Deadpan is a 

single group containing the Drosophila and spiders’ deadpan orthologues, whereas Hairy 

is grouped with Hey (Figure 2.2). Second, Dearden (2015) grouped side with hey, while I 

found the former to fall into a specific Side group with the orthologues from various other 

species (Dearden, 2015).  

 The evolution of the metazoans depended much in the plasticity seen for sets of genes 

arose by duplications. This was shown for the bHLH group in crustaceans in a genomic-

wide study (Chang & Lai, 2018), different species of vertebrates (Ledent, 2001) and 
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lophotrocozoans (Bao, 2017). For this reason, I focused my thesis in the identification of 

Hes-like genes of the common house spider, and further analyse if these genes show any 

aspect of neo or subfunctionalization, that would be an indicative of genes acquiring 

different functions as a result of the WGD.  

  

hairy is expressed in a segmental pattern   
  

I first analysed the expression of Pt-h, the orthologue of the pair-rule gene involved in 

segmentation in Drosophila (Ingham, 1985). As mentioned in the introduction, in spiders 

hairy has the same pattern of expression in both C. salei (Damen, 2000) and P. 

tepidariorum (Pechmann, 2009; this study), which indicates that it is likely to be involved 

in head patterning and segment addition. What was shown for P. tepidariorum is the 

strong early expression of this gene in center of the germ disc, and then in a dynamic 

mode in the SAZ and the differentiating segments. This expression is similar to the h 

orthologues in other short-germ arthropods such as the cockroach Periplaneta americana 

(Pueyo, 2008) and the flour beetle Tribolium castaneum (see Aranda, 2008). In these two 

species, hairy is expressed in the differentiating growth zone, in a cyclic mode towards 

the anterior segments.   

In the centipede Strigamia maritima it was seen a similar pattern as the one seen 

for hairy in Tribolium and Periplaneta (Chipman, 2008). Two hes-like genes, namely 

StmHES1 and Stm-HES4, are expressed in a posterior-to-anterior manner in the SAZ and 

nascent segments (Chipman, 2008). In the maximum likelihood tree in Figure 2.2, 

StmHES4 is grouped in the Hairy clade, exactly as in the cited work. My analysis was not 
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conclusive for the Stm-HES1 orthologue, because this gene was normally grouped as an 

outgroup of all of the hes-like genes. This might be because of the incomplete sequence 

of this gene in the GenBank.  

The regulation of Pt-h by Wnt signaling was shown by McGregor (2008): the 

dynamic expression of hairy is lost in Wnt8 pRNAi embryos. Schönauer et al (2016) 

demonstrated that Wnt8 and the Delta-Notch pathway acts in a feedback loop in the 

posterior segment addition zone and controls the differentiation of new segments via 

caudal and even-skipped. Therefore, I knocked down Dl via parental RNAi to analyse 

what happen to the Pt-h orthologue. Strikingly, there was no detectable expression of this 

gene in embryos of stage 6 (Figure 2.6 – A and B). This was somehow expected if one 

considers that Pt-h is a direct downstream target of the Notch pathway in different 

metazoans (Cui, 2005; Kageyama, 2007).  

The involvement of Delta-Notch pathway was also shown to play an important role 

in segmentation in the spider C. salei (Stollewerk, 2003). Cs-delta have two copies 

(Csdelta1 and Cs-delta2), and the knockdown of the two copies in separated via 

embryonic RNAi leads to the perturbance of the dynamic expression of Cs-hairy in the 

posterior, but not to the depletion of its transcripts. Thus, there is a certain degree of 

functional redundancy in the Delta duplicates in C. salei, that acts in the activation of Cs-

hairy in the absence of the other copy.  

In vertebrates, the closest orthologues of the hairy gene, namely Hes genes in 

mouse and humans and Her genes in zebrafish, have in segmentation (hes and her 1 and 

7) and neurogenesis, and are also dependent on the Notch (Kageyama, 2007). They play 

a role with the Wnt and FGF signaling in the somitogenesis mechanism in these 
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vertebrates (Pourquie, 2007). Indeed, it is interesting that Pt-h also exhibits dynamic 

expression from the posterior, when compared to the orthologues of zebrafish and mice 

and is regulated by the same signaling pathways (Muller et al., 1996; Patel, 2003; Peel, 

2003; Pourquie; 2007), and is also involved in the GRN that involves the Dl and Wnt8 

genes in the spider (McGregor et al., 2008; Schonauer et al., 2016).  

  

deadpan, hey and side are expressed in clusters of neurogenic cells  
  

deadpan and hey (Hairy and E(spl) related with a YRPW domain) are involved in the 

differentiation of neural precursors (neuroblasts) during insect neurogenesis (Bier, 1992; 

Leimeister, 1999), whereas side (Similar to Deadpan) function is to control the migration 

of motor neurons (Siebert, 2009; Dearden, 2015). Only studies in D. melanogaster are 

available for these three genes, and just a few of these have functional data available 

(Leimeister, 1999).   

deadpan has a role in neurogenic differentiation but is also shown to have a gap 

expression pattern in earlier stages in Drosophila, that clears and become restricted to 

the neuroblasts (Bier, 1992). The closest orthologue of this gene in the annelid Capitella 

teleta, Cte-hes2 is expressed in the brain, in the chaetal sacs and in the elongating part 

of the trunk, suggesting a role for this orthologue in neurogenesis and segmentation 

(Thamm, 2008).  

In vertebrates, the closest orthologue of deadpan is hes2 and for example in mice, 

this gene is expressed in the CNS and PNS, as well in some stripes in the vertebrae, but 

no functional studies have been carried out (Nishimura et al., 1998).   
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I showed that the spider orthologue of deadpan (Pt-dpn) has a similar later stages 

expression to the one seen for Pt-h in the spider as well as a stripped pattern in the 

opisthosoma and SAZ that becomes weaker at stage 10.1. The expression of Pt-dpn in 

the proneural clusters becomes progressively higher from stage 9.1 to 10.1. In the 

absence of functional data, it is difficult to be certain of its role, but I suggest from the 

expression pattern that this gene is involved with both the segmentation and 

neurogenesis during embryogenesis in this spider.  

As mentioned in the introduction chapter, hey and side both have functions in 

differentiation of neural clusters in Drosophila (Leimeister, 1999; Siebert, 2009; Dearden, 

2015), and also appear to be involved with neuronal differentiation and axonal migration, 

acting as CNS and PNS regulators, which likely corresponds to the ancestral role for the 

Hes genes in vertebrates (Sagner et al., 2018).  

The expression pattern of the spider hey and side genes seems to be conserved 

compared to what is seen in Drosophila with expressed observed in the CNS and PNS. 

These two genes spider genes grouped with the hes7 gene from mice, which has a role 

specifically in the posterior part of the pre-somitic mesoderm and is involved in 

segmentation (Kageyama, 2007). However, neither of these genes appears to be involved 

in the spider segmentation, instead, I suggest that their role is restricted to neuronal 

differentiation.  

It is clear that to better understand the function of the bHLH-containing genes in 

spider embryogenesis functional experiments are needed. However, these experiments 

should aim to knock-out of the specific genes together and in combination because it is 

known that the bHLH-containing genes have a compensatory mechanism in retinal 
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development of vertebrates (Cho, 2007), and that they also have a high level of functional 

redundancy (Kageyama, 2007).  
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Chapter 2  

       

Expression of Sox Genes in 
P. tepidariorum  

  

  

  

  

  

  

  

  

  

  
Introduction  

The Sox family of transcription factors is an important part of the genetic ‘toolbox’ of all 

metazoans examined to date and has been shown to play a range of developmental roles 

in vertebrates and insects. In Drosophila, these genes are involved with many different 

aspects of embryogenesis, from stem cell maintenance, cell proliferation and neural 

tissue specification (Kamachi, 2013; Sarkar, 2013; Reiprich, 2015). However, outside 
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Drosophila little is known about the extent or conservation of the Sox family in other 

arthropod species.   

 Chelicerates (e.g. spiders, horseshoe crabs and scorpions) are the sister group to 

mandibulates among arthropods and can therefore be informative about ancestral 

features of these animals. Furthermore, it is known that some of these animals, including 

spiders, have undergone a round of genome duplication in their evolutionary history, 

which offers an interesting perspective on the evolution of their genetic toolkit (Schwager 

et al., 2017). Therefore, to expand the current knowledge of the evolution and expression 

of the Sox genes in arthropods, Professor Steve Russell (University of Cambridge) and I 

isolated, and I characterised the expression of these genes in the common house spider 

P. tepidariorum. The results presented in this chapter are included in a manuscript entitled  

“Duplication and divergence of Sox genes in spiders”, submitted in bioRxiv (Paese et al., 2017) 

in November of 2017 and for review to the journal BMC Evolutionary Biology.  

  

  

  
Isolation of Sox genes in spiders  

In order to characterise the Sox gene complement of spiders, Professor Russell 

conducted TBLASTN searches of the genomes of P. tepidariorum (Paese et al., 2017; 

Schwager et al., 2017) and S. mimosarum (Sanggaard et al., 2014) using the HMG 

domain of the mouse Sox2 protein, recovering 16 and 15 sequences respectively.   

Phylogenetic reconstruction of the spider Sox genes was generated with MUSCLE 

sequence alignments and PhyML maximum likelihood phylogenies using the HMG 
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domains recovered from the BLAST searches, along with those from the eight D. 

melanogaster Sox genes and representatives of each subgroup from mouse. These 

analyses resulted in a clear classification into groups B-F as found in other invertebrate 

genomes (Figure 3.1). Note that Group A only contains the SRY gene specific to eutherian 

mammals and there are no Group G, H or I Sox genes found outside the vertebrates. 

Supporting this classification, phylogenetic trees constructed with the full-length 

sequences of the predicted spider Sox proteins and those from Drosophila yielded  

virtually identical results (Figure 3.1).  

  
Figure 3. 1. Phylogeny of Sox HMG domains in selected metazoans. Phylogenetic tree 
showing the relationship between M. musculus (Mm), D. melanogaster (Dm), P. tepidariorum (Pt) 
and S. mimosarum (Sm) Sox genes based on HMG domain sequences. The grouped genes are 
divided into different colours as highlighted outside the circle.  
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All but three of these contained the highly conserved RPMNAFMVW motif that is 

characteristic of Sox proteins and three (ptSoxC-2, ptSoxB-like and ptSox21b-2) only 

show minor conservative substitutions. 14 of the P. tepidariorum sequences 

corresponded to annotated gene models (Paese et al., 2017). Two sequences were 

identical (ptSox21b-1, aug3.24914.t1 and aug3.g24896.t1), since the latter maps to a 

genomic scaffold of only ~7 kb it was presumed that this represents an assembly error 

and is thus considered  as a single gene. One genomic scaffold encoding a Sox domain 

(ptSoxB-like, Scaffold3643:28071..28299) is in a region of poor sequence quality and one 

cannot be sure it represents a bona fide gene but we have nevertheless included it in the 

subsequent analysis (Paese et al., 2017).    

In common with many other gene families in spiders (Schwager et al., 2017), the 

Sox genes are mostly represented by two or more copies in each group (Figure 3.2). In 

other arthropods examined to date, as well as the onychophoran Euperipatoides 

kanangrensi, there is usually only a single copy of each gene, although there is a recent 

report of two Group E genes in the millipede G. marginata (Janssen et al., 2018). In the 

case of spider Groups D and E, the duplications likely predate the divergence of spiders 

as Professor Russell also show that for Stegodyphus mimosarum (Figure 3.1) (Paese et 

al., 2017). With Group F, there is only one gene identified in S. mimosarum but two in P. 

tepidariorum. In the case of group C, there appears to have been additional duplication 

events in S. mimosarum (Paese et al., 2017).  
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Figure 3. 2. Repertoire of Sox genes in selected arthropods. Diagrammatic representation of the 
complement of Sox genes in insects (D. melanogaster, T. castaneum and A. mellifera), the spiders 
(P. tepidariorum and S. mimosarum), the myriapod (G. marginata) and an onychophoran (E. 
kanangrensis). Each coloured circle represents a gene.  

  

 I also aligned the amino acid sequences of the HMG domain of the duplicated Sox genes 

found in P. tepidariorum. (Figure 3.3). This showed a high similarity of amino acid 

sequences for group D, E and F duplicates, whereas in contrast the duplicated SoxB and 

SoxC proteins show a high number of amino acid changes in their sequences. This 

suggest that these aminoacid changes could have lead to binding differences in the 

orthologues, thus a difference in expression patterns in genes that belongs to the same 

Sox group.  
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Figure 3. 3. Alignment of the Sox orthologues aminoacids by ClustalW. SoxB group genes 
were divided in the duplicated orthologues for PtSox21a, while Dichaete was aligned together 
with duplicated versions of PtSox21b genes. SoxC group is the one that shows the higher amino 
acid changes in their sequences, whereas the SoxD group is the most conserved in their protein 
sequence.  

  

  

  
Sox Gene Expression during P. tepidariorum embryogenesis  

I next studied the expression of Sox genes during embryogenesis in P. tepidariorum and will 

present these results in alphabetical order of the groups below.  

  

SoxB group  
  

For the SoxB family genes ptSox21a-1, ptSox21a-2, ptSox21b-2 and Dichaete, no 

expression was detected during embryogenesis. This indicates that they might only be 

expressed at very low levels or in a few cells or that these genes are used during 

postembryonic development.  
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SoxN  
  

pt-SoxN was first isolated by Akiyama-Oda & Oda (2016). This gene was annotated in 

their paper as sox2, and only the expression at stage 9 in the nervous system was 

mentioned. Therefore, I aimed to characterize the expression of SoxN more fully. I found 

that expression of pt-SoxN commences at mid-stage 7 in the most anterior part of the 

germ band, a region corresponding to the presumptive head (Figure 3.4 - A). ptSoxN is 

subsequently expressed broadly in the developing head and follows neurogenesis in a 

progressive anterior-to-posterior pattern as new segments are added (Figure 3.4 - B). By 

mid-stage 9, ptSoxN is strongly expressed in the head lobes and in the ventral nerve cord  

(Figure 3.4 - C), however, after this stage no further expression was detected.  
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Figure 3. 4. Expression of ptSoxN. Flat-mounted embryos at different stages of development 
after RNA in situ hybridization. A) ptSoxN expression is restricted to the presumptive 
neuroectoderm in the most anterior region of the germ band at stage 7 (arrow). B) At stage 8.2, 
broad expression can be observed in the most anterior part of the embryo (black arrowhead) and 
in the ventral nerve cord appearing sequentially from anterior to posterior: white arrows indicate 
expression in clusters that will subsequently broaden, while expression in the posterior region 
adjacent to the SAZ is also observed (black arrowhead). C) At stage 9.2 expression is observed 
throughout the ventral nerve cord, with differentiating cell clusters indicated by arrows. Ch: 
chelicerae, L1 – L4: prosomal segments 1 to 4, O1 – O4: opisthosomal segments 1 to 4, Pp: 
pedipalps; SAZ: segment addition zone. Ventral views are shown for all embryos with the anterior 
to the left.   

Sox21b-1  
  

Another member of the SoxB group, Sox21b-1, is expressed maternally and localized to 

in the Balbiani’s body of pre-vitellogenic P. tepidariorum oocytes (Jędrzejowska, 2005) 

(Figure 3.5 - A). However, after fertilization Sox21b-1 is not zygotically expressed until 

early stage 5, when weak expression is detected throughout the germ disc, with stronger 

expression in more central cells (Figure 3.5 - B). At late stage 5, expression becomes 

more restricted to the centre of the germ disc (Figure 3.5 - C). During stages 5 and 6, the 

cumulus migrates to the rim of the germ disc, opening the dorsal field and giving rise to 

an axially symmetric germ band (Figure 3.5 - D) (Mittmann & Wolff, 2012). In early stage 

6 embryos, Sox21b-1 can be observed in the middle of the presumptive prosoma in a 

broad stripe (Figure 3.5 - D), which develops further during stage 7 in the region where 

the leg bearing segments will form (Figure 3.5 - E). During these and subsequent stages, 

dynamic expression of Sox21b-1 is observed in the SAZ and the most anterior region of 

the germ band that will give rise to the head segments (Figure 3.5 - F-H).  
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Figure 3. 5. Expression of Sox21b-1 in P. tepidariorum oocytes and embryos. A) Dorsal (left) 
and lateral (right) views of pre-vitellogenic oocytes showing Sox21b-1 mRNA in the Balbiani’s 
body (red dashed circle and white arrows). The sperm implantation groove is indicated by a black 
dashed circle and grey arrow. B) At early stage 5, the expression of Sox21b-1 appears in a salt 
and pepper pattern in the germ disc. C) Expression in the cumulus becomes stronger at late stage 
5, with lower expression at the periphery of the germ disc (dashed red circle). D) At stage 6, 
Sox21b-1 is expressed in a broad stripe in the anterior (between the red dashed lines). E) At stage 
7, there is expression in the region of the presumptive leg bearing segments and in the SAZ (both 
indicated by red dashed lines). F) At stage 8.1, Sox21b-1 is still expressed in the SAZ and the 
presumptive leg bearing segments, but nascent expression is observed at the anterior of the germ 
band (indicated by the white arrows and black brackets). G) At stage 9.1, when the limb buds are 
visible expression of Sox21b-1 becomes restricted to the ventral nerve cord (anterior white arrow) 
and can be observed in the SAZ (posterior grey arrows). H) At stage 10.1, Sox21b1 expression 
is restricted to the ventral nerve cord and the head lobes. Ch: Chelicerae; HL: Head lobes; L1 to 
L4: Prosomal leg bearing segments 1 to 4; O1 to O6: Opisthosomal segments 1 to 6; SAZ: 
Segment addition zone. Ventral views are shown with anterior to the left, except as described for 
oocytes.  
  

The widespread expression of both SoxN and Sox21b-1 throughout the 

neuroectoderm strongly suggest that, as has been shown in vertebrates and flies, many 

cells in the developing CNS co-express these two related Sox genes. To confirm if their 

expression overlaps in the CNS, but not in the SAZ, I performed dual colour fluorescent 
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in situ hybridisations with SoxN and Sox21b-1 probes (Figure 3.6 - A-C). While expression 

of both genes clearly shows extensive overlap throughout the developing CNS, I was 

interested to note that at the very lateral regions of the neuroectoderm, Sox21b-1 is 

expressed exclusively. As shown by the single gene in situs, only Sox-21b-1 is expressed 

in the SAZ (Figure 3.6 – A and B).  

  

Figure 3. 6. Double fluorescent in situ hybridization for PtSox21b-1 and PtSoxN. Dual colour 
in situ hybridization with (A) digoxigenin-labelled PtSox21b-1 in red and (B) fluorescein Pt-SoxN 
in green. C) Merged figures A and B shows the overlap of these orthologues in the CNS, but 
lateral expression of only PtSox21b-1, and no expression of PtSoxN in the SAZ.  
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SoxC group  

For the Sox C group genes, I did not detect any expression for ptSoxC-2. However, ptSoxC-1 

expression was detected at mid-stage 6, in a pattern similar to that of ptSoxN in the presumptive 

head and anterior segments (Figure 3.7 - A). By stage 8.2, expression is apparent in 

neuroectodermal progenitors along the germ band and at the anterior region of the SAZ (Figure 3.7 

- B), however by stage 9.1 (Figure 3.7 - C) expression is lost from the SAZ. Interestingly, from stage 

9.1 onward, ptSoxC-1 is expressed in the ventral nerve cord, from the head to the SAZ, however 

unlike the uniform expression of ptSoxN, ptSoxC-1 is observed in clusters of cells, presumably 

undergoing neurogenic differentiation, progressively from the head through to opisthosomal 

segments as they differentiate in an anterior to posterior manner (Figure 3.7 - C).  
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Figure 3. 7. Expression of ptSoxC-1. Flat-mounted embryos at different stages of development 
after RNA in situ hybridization. A) ptSoxC-1 is strongly expressed in the presumptive 
neuroectoderm at stage 6 as indicated by the white arrow. B) At stage 8.2, strong expression is 
observed in the ventral nerve cord (white arrows) with the exception of the most posterior part of 
the SAZ (black arrowhead) C) At stage 9.1, expression is apparent in clusters of cells in the head 
and each anterior segment up to the third opisthosomal segment (O3): white arrows indicate 
localized expression. The signal in the limb buds is background and staining at the most posterior 
part of the O5 segment is an artefact of incomplete chorion removal. Ch: chelicerae, L1 – L4: 
prosomal segments 1 to 4, O1 – O4: opisthosomal segments 1 to 4, Pp: pedipalps; SAZ: segment 
addition zone. Ventral views are shown for all embryos with the anterior to the left.  

  

SoxD, E and F groups  

Two genes in each of the SoxD, E and F families were identified.  However, I did not 

detect any expression of SoxD-2, SoxE-2 or SoxF-1 during the P. tepidariorum embryonic 

stages examined. For ptSoxD-2 I found no expression prior to stage 10, when I observed 
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expression in the ventral nerve cord from the head to the most posterior part of the 

opisthosoma (Figure 3.8 - A).   

ptSoxE-1 is expressed in the developing limbs from stage 9 in small dots in the 

chelicerae, pedipalps and L1 buds, broader expression in L2 and L3, and in two dots in 

the L4 limb pairs, presumably corresponding to the differentiating peripheral nervous 

system (PNS) (Figure 3.8 - B).   

Finally, the expression of ptSoxF-2 is only detected at stage 9, in small domains at 

the tips of the L1 segment limb buds, but not in any other limb buds (Figure 3.8 - C).  
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Figure 3. 8. Expression of Sox D, E and F group orthologues. In situ hybridization on 
flatmounted embryos at different stages of development. A) ptSoxD-1 expression is observed 
throughout the ventral nerve cord in stage 10 embryos as indicated by the arrows. B) ptSoxE-1 
expression at stage 9 is visible as single dots in the forming chelicerae, broader expression in the 
pedipalps and L1 to L3 (white arrows), and as two dots in the L4 limb bud as indicated by the 
black arrowhead. C) The expression of ptSoxF-2 is only visible in the L1 limb buds at stage 9 
(arrows). Ch: chelicerae, L1 – L4: prosomal segments 1 to 4, O1 – O4: opisthosomal segments 1 
to 4, Pp: pedipalps; SAZ: segment addition zone. Ventral views are shown for all embryos with 
the anterior to the left.  
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Discussion  

  

Conservation and divergence of Sox Gene Expression  
  

In this chapter I outlined the identification and expression analysis of Sox genes in the 

common house spider P. tepidariorum. This gene family is conserved throughout 

metazoans as shown in cnidarians (Magie, 2005), molluscs (Focareta, 2016), different 

species of arthropod (Wilson & Dearden, 2008; Janssen et al, 2017) and vertebrates 

(Lefebvre, 2010).  

 First, it was shown by our group work that the genes which belong to the Sox family can 

be grouped accordingly to the HMG domain (Kamachi, 2013). The amino acid alignment 

of the HMG domain of the paralogs from the different groups suggests that the duplicated 

copies for each group have both high (groups B and C) and also low divergence (groups 

D, E and F). This might explain the differences in expression patterns of the duplicated 

orthologues, that these aminoacid changes could lead to the binding of different set of 

proteins, and this can be a strong argument in support of the WGD event that P. 

tepidariorum undergo during its evolutionary story (Schwager et al., 2017). Since the Sox 

group A is vertebrate specific, I will discuss the expression of the orthologues from groups 

B to F hereafter.  

ptSoxN is expressed from the beginning of the germ band stage in the anteriormost 

region of the embryo, in a prominent stripe where the future head will develop (Figure 

3.4). This head-specific expression in P. tepidariorum is similar to early expression of 

SoxN observed in D. melanogaster (Cremazy, 2000) and in A. mellifera, where SoxB1 is 

expressed in the gastrulation fold and the anterior part of the presumptive neuroectoderm 
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(Wilson & Dearden, 2008). The anterior-to-posterior pattern of expression found for this 

orthologue might reflect the differences in ectodermal potential at the germ band stage. 

The ectoderm at this stage can be divided in epithelial and neuroectodermal, and the 

gradient of ptSoxN expression towards the posterior might reflect this conserved feature 

seen in both D. melanogaster and A. mellifera. In summary, epithelial cells are patterned 

to become neuronal after the activation of SoxN expression, in the waves from the anterior 

to the posterior, and not all at the same time (Buescher, 2002; Overton, 2002; Wilson & 

Dearden, 2008).   

In chelicerates, neurogenic progenitors have been shown to delaminate in clusters 

of cells rather than single neuroblast-like cells found in dipterans and some 

hymenopterans (Stollewerk, 2006). However, even given these different modes of 

neurogenic differentiation, the expression of SoxN orthologues suggest this gene 

performs the same function in chelicerates and insects. Indeed, the recent study by 

Janssen et al (2018), of T. castaneum, E. kanangrensis and G. marginata also shows that 

the SoxN orthologues in these species have widespread and early neuroectodermal 

expression. Taken together these data clearly support the view that throughout the  

Bilateria a SoxN class protein is a marker of the earliest stages of neural specification. 

The lack of expression of SoxN after stage 9 in P. tepidariorum is probably because after 

the ventral nerve cord is specified for neural fate, ptSoxN expression is reduced and other 

Sox factors acts patterning the specific neuronal clusters.  

  

  
A SoxB1 orthologue has segmentation expression pattern  
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The second gene that I analysed the expression of was an orthologue of D. melanogaster 

Sox21B. P. tepidariorum has two orthologues of this gene, Sox21b-1 and Sox21b-2. This 

gene is expressed in the oocytes, then reappears in the germ disc at stage 5 as scattered 

dots in the center (Figure 3.5 – A – C). The expression then localizes in the nascent 

prosomal segments and in the posterior segment addition zone (SAZ) from stage 6 

(Figure 3.5 – D and E). At stage 8.2 expression is observed in the most anterior part of 

the germ band, which corresponds to the presumptive neuroectoderm in the future head 

and prosomal segments (Figure 3.5 - F). At stages 9 and 10, strong expression is 

apparent throughout the ventral nerve cord, similar to ptSoxN. Comparing expression in 

the SAZ at different stages in these fixed preparations suggest that Sox21b-1 may be 

dynamic in this region (Figure 3.5 – G and H).  

In T. castaneum, Sox21b shows similar expression to D early in the SAZ and then 

in the developing CNS (Janssen et al., 2018). In E. kanangrensis and G. marginata, there 

is no early Sox21b expression during embryogenesis (Janssen et al., 2018), however in 

these species, D is expressed during segmentation and then later in the CNS. This 

suggests that the role of D in segmentation in D. melanogaster and T. castaneum (Clark 

& Peel, 2018) could extend to E. kanangrensis and G. marginata while Sox21b has a 

different role later in development or in adults of these animals. However, in spiders the 

closely related Sox21b-1 gene may play the role of early segmentation and late 

neurogenesis.  

Later in development, the expression of Sox21b-1 in spiders resembles that of  

SoxN in D. melanogaster (Niwa, 2016). The expression pattern is similar to that of both SoxN and 

Dichaete in D. melanogaster, which are expressed in neuroblasts of the neuroectoderm and then 
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differentiating neurons in the ventral nerve cord (Aleksic, 2013) (Figure 17 – G-H). This spider SoxB 

gene overlaps in expression with ptSoxN, as I showed with the double fluorescent in situ 

hybridization (Figure 3.6). In Drosophila, SoxN shows a unique lateral expression domain 

(Buescher, 2002), whereas in the spider, ptSox21b-1 is more broadly expressed in the lateral part 

of the ventral nerve cord compared to ptSoxN. This might suggest that this orthologue is maintaining 

the undifferentiated state of the cells, while ptSoxN is involved in the patterning of the neuronal 

ectoderm.  

  

SoxC to F groups have divergent expression patterns  
  

I found that the gene annotated as Pt-SoxC-1 has an interesting expression pattern during 

head development, that becomes restricted to the proneural clusters at stage 9. In D. 

melanogaster the single SoxC gene has been shown to play a role in the response to 

ecdysone at the onset of metamorphosis and has no known role in the embryonic CNS 

(Ritter, 2013). In contrast, the vertebrate SoxC genes (Sox4, 11 and 12) play critical roles 

in the differentiation of post-mitotic neurons, acting like Group B genes, which specify 

neural progenitors (Tanaka, 2004). In A. mellifera, late expression of the SoxC gene was 

observed in the embryonic cephalic lobes and in the mushroom bodies (Wilson & 

Dearden, 2008). Interestingly, the expression of SoxC orthologues was observed in the 

embryonic CNS of other invertebrates (Janssen et al., 2018). Taken together my results 

and those of others suggest SoxC genes may play a conserved role in aspects of neuronal 

differentiation, which has been lost in D. melanogaster. Interestingly, a comparison of 

target genes bound by Sox11 (a SoxC orthologue) in differentiating mouse neurons and 

SoxN in the D. melanogaster embryo shows a conserved set of neural differentiation 
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genes, suggesting that in D. melanogaster the role of SoxC in neurogenesis has been 

taken over by SoxN (Bergsland, 2011).  

In the SoxD group, I found similarities to what has been observed for the 

Drosophila SoxD gene, which is also expressed during later stages of embryonic CNS 

development (Cremazy, 2001) and has been shown to play roles in neurogenesis in the 

larval CNS (Li et al., 2017). While SoxD is reported to be ubiquitously expressed in A. 

mellifera embryos, it is also expressed in the mushroom bodies of the adult brain (Wilson 

& Dearden, 2008). Embryonic brain expression of SoxD orthologues in beetles, 

myriapods and velvet worms (Janssen et al., 2018), as well as a known role for SoxD 

genes in aspects of vertebrate neurogenesis (Cremazy, 2001; Tanaka, 2004; Lefevbre, 

2010: Bergsland, 2011) again suggests conserved roles for SoxD during metazoan 

evolution.  

The expression pattern seen for Pt-SoxE-1 (Figure 3.8 - B) suggests that it is 

restricted to mechanoreceptors in the limbs of the spider. These receptors are distributed 

all over the body, but the trichobothria only appear on the extremities of the limbs 

(Stollewerk, 2001) where they differentiate from PNS progenitors. This is somewhat 

similar to what is seen in vertebrates, where Group E genes are required in neural crest 

cells that contribute to the PNS (Bell et al., 1997; Stolt, 2010; Kamachi, 2013). The pattern 

seen in the spider has a striking difference for that is seen in D. melanogaster, in which 

SoxE is associated with both endodermal and mesodermal differentiation, with expression 

observed in the embryonic gut, malpighian tubules and gonad (Loh, 2000), and it has 

been shown to be required for testis differentiation during metamorphosis  
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(Nanda et al., 2009). Both the A. mellifera SoxE genes are also expressed in the testis 

(Wilson & Dearden, 2008). Janssen and colleagues (2018), observed expression of SoxE 

genes in other invertebrates, associated with limb buds like the spider, but they also 

detected posterior expression associated with gonadogenesis. These observations are 

particularly intriguing since the vertebrate Sox9 gene has a crucial function in testis 

development (Vidal, 2001).   

It is thought that the germ line in P. tepidariorum arises during late stage 9, in the 

opisthosomal segments 2 to 6 in clusters of cells expressing Pt-vasa (Schwager, 2015). 

While I did not observe SoxE expression associated with early gonadogenesis in this 

spider, it remains possible that the spider genes are used later in this process, after the 

hatching of the juveniles. I suggest this because, while the fly SoxE gene is expressed 

from the earliest stages of gonadogenesis, null mutant phenotypes are not apparent until 

the onset of metamorphosis (Nanda et al., 2009).  

Finally, the expression of ptSoxF-2 is only detected at stage 9, in single foci at the 

tips of the L1 segment limb buds (Figure 3.8 - C). SoxF is a gene expressed in the 

embryonic PNS (Cremazy, 2001) and plays a role in the differentiation of sensory organ 

precursors in the fruit-fly (Miller et al., 2009), whereas in A. mellifera the SoxF orthologue 

is expressed ubiquitously throughout the embryo (Wilson & Dearden, 2008). In T. 

castaneum, E. kanangrensis and G. marginata (Janssen et al., 2018). SoxF expression 

is also associated with the embryonic limbs, again suggesting that this was an ancestral 

function of this Sox family in the Euarthropoda.   

Taken together, these results broaden the understanding of a highly conserved 

family of transcriptional regulators that play important roles in in metazoan development. 
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Our analysis indicates that the classification of Sox genes in invertebrates appears to be 

robust and that genes in all groups have aspects of their expression patterns that suggest 

evolutionary conservation across the Bilateria.   
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Introduction  

In the previous chapter I showed the expression patterns for the Sox genes in P. 

tepidariorum. One of the SoxB genes, Sox21b-1, in particular has interesting expression 

from the germ disc stage up until late stage 11, which suggests it is involved in the process 

of segmentation (Figure 3.5), while the expression of others implies they are involved 

mainly in neurogenesis (Figures 3.4; 3.6; 3.7).  

  

Sox21b-1 regulates prosomal and opisthosomal segmentation  

To understand the function of the Sox genes during the spider embryogenesis, I designed 

double-stranded RNA from fragments for all fifteen Sox genes found in the P. tepidariorum 

genome. Four spiders were injected for each fragment (n= 60), and after careful analysis 

of their embryonic development, I noticed that only the orthologue of D. melanogaster 

Sox21B, namely Sox21b-1 showed a visible phenotype, so I pursued the analysis of this 

gene further.  

After the injections with one dsRNA fragment against Sox21b-1, I observed a 

phenotype in the late germ disc/early germ band stage in which the cumulus did not 

migrate properly, and in older embryos there was clearly a truncation of the germband as 

well as perturbed prosomal segmentation. To analyze that phenotype in more detail, I 

designed and re-injected two non-overlapping fragments for this gene, one corresponding 

to the HMG domain and the other corresponding to a region further 3’ (Figure 4.1 - A).  

Both fragments were injected in to seven spiders and the phenotypes I observed were 

consistent between the two non-overlapping Sox21b-1 fragments I used for the first trial of 

RNAi injections, as well as the original single dsRNA fragment (Figure 4.1 - B).   
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Figure 4. 1. dsRNA design and phenotypic class frequencies for each Sox21b-1 fragment 
and GFP control injections. A) Two non-overlapping fragments were designed for the Sox21b1 
coding sequence. Fragment 1 corresponds to the HMG conserved domain (549 bp) and fragment 
2 has no conserved domains (550 bp). B) Frequencies for each fragment, cocoon number and 
phenotype class. Seven spiders were injected for each Pt-Sox21b-1 fragment and two spiders for 
the GFP dsRNA controls. For the phenotype class frequencies, 30 embryos per spider per cocoon 
were pooled, DAPI stained and analysed (total n = 210 for each).  

  

 The embryos produced by female spiders injected with dsRNA fragments of 

Sox21b-1 exhibited a range of abnormal phenotypes that I subdivided them into three 

classes. Note that the range and number of phenotypes observed was similar for the two 

dsRNA fragments and these effects were never observed in cocoons from the dsGFP  

control injections.   

Class I embryos developed a presumptive head region (Figure 4.2 - A-C), as well 

as normal cheliceral, pedipalpal and first leg bearing (L1) segments in stage 9 (Figure 4.2  

- C). However, in Class I embryos the other three leg bearing segments, L2 - L4, as well 

as all the opisthosomal segments were missing (Figure 4.2 – C). These embryos exhibited 

a truncated germ band, terminating in disorganised tissue in the region of the SAZ (Figure 

4.2 - C). In the case of Class II phenotypes, embryos only differentiated the head region 
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and the cheliceral and pedipalpal segments (Figure 4.2 - D). All leg bearing segments of 

the prosoma and all opisthosomal segments produced from the SAZ were missing in stage 

9 embryos (Figure 4.2 - D). In Class III embryos, the germ band did not form properly from 

the germ disc at stage 5 (Figure 4.2 - E) and I therefore looked earlier in development to 

understand how this severe phenotype arose and could affect the posterior stages of 

development.  

I observed that the formation of the primary thickening occurs normally at stage 4 

(Akiyama-Oda & Oda, 2006; Pechmann et al., 2017). Subsequently the cumulus, the 

group of mesenchymal cells that arises as the primary thickening at the centre of the germ 

disc, fails to migrate properly to the rim of the germ disc during stage 5 in Class III 

phenotype embryos (Figure 4.2 - D). Since migration of the cumulus is required for the 

transition from germ disc to germ band, this observation, at least in part, explains the 

subsequent Class III phenotype. In some embryos, I did observe the opening of the dorsal 

field in stage 6 embryos: therefore, I suggest these embryos later develop Class I and II 

phenotypes (Figure 4.2 - B-C).   
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Figure 4. 2. Embryo phenotypes after Sox21b-1 parental RNAi knockdown. Whole mount (A) 
and flat mount (B) control embryos at stage 9 stained with DAPI. Stage 9, Class I (C), Class II (D) 
and Class III (E) phenotypes from Sox21b-1 knockdown. In the control embryos (A and B), the 
head, cheliceral (Ch), pedipalpal (Pp), prosomal walking limbs (L1 to L4), opisthosomal segments 
(O1 to O6) and a posterior SAZ are all clearly visible as indicated. C) Class I phenotype embryos 
show a morphologically normal head, pairs of chelicerae, pedipalps and first walking limbs (Ch, 
Pp, L1), but a disorganised cluster of cells in the posterior where L2-L4, opisthosomal segments 
and the SAZ should be. D) Class II phenotype embryos consist of fewer cells, but still form a head, 
chelicerae, pedipalps (Ch, Pp) and a structure resembling the SAZ in the posterior. E) Class III 
embryos exhibit the most severe phenotype, where, after the germ disc stage, the embryo fails to 
form an organised germ band. Anterior is to the top, scale bars: 150 µm.  
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Figure 4. 3. Snapshots from live imaging of control and Sox21b-1 knockdown embryos.  
Ventral view of the germ disc in A) GFP dsRNA control embryos, showing the cumulus formation 
(red dotted lines), cumulus migration (red dotted arrow) and dorsal field opening (red dotted line 
and arrows). B) Class I Sox21b-1 knockdown embryos showing cumulus formation, the partial 
migration of mesenchymal cells and limited dorsal field opening, which is also seen but more 
severely disrupted in Class II embryos (C), and absent in class III (D). Anterior is to the left, 
opposite to the direction of cumulus migration.  
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The identity of the segments that differentiated in the knockdown embryos was 

confirmed by expression of labial (lab) in the pedipalps and L1 and Deformed-A (Dfd-A) 

in L1 (Figure 4.4 – A and B).  

  

  

Figure 4. 4. Homeotic gene expression at stage 9 in Sox21b-1 pRNAi embryos. A) Ventral 
view showing Pt-Dfd-A expression in the limb buds of L1 to L4 segments in the control embryos 
(white arrows). B) Expression of Pt-Dfd-A is also observed in L1 in Sox21b-1 pRNAi embryos (n 
= 9) (white arrow in B). C) Pt-lab is expressed in the pedipalpal segment and faintly in L1 segment 
in control embryos (white arrow in D). In Sox21b-1 pRNAi embryos, Pt-lab expression can still be 
observed in the pedipalpal and L1 segments (n = 10) (white arrows in D). DAPI stained nuclei are 
shown in cyan and the membrane marker alpha-Tubulin in red. Anterior is to the left in all panels.  

  

Sox21B-1 is involved in cell maintenance during spider embryogenesis  

I next examined the effect of Sox21b-1 depletion on cell death and proliferation at stages  

5 and 9 in knockdown and control embryos using antibodies against Caspase-3 and 

phosphorylated Histone 3 (PHH3) (Figure 4.5). At the germ disc stage there is no 
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detectable cell death in control embryos (n = 10), but I observed some small clusters of 

apoptotic cells in the Sox21b-1 knockdown embryos (n = 10) (Figure 4.5 – A and B). At 

stage 9, a few cells expressed Caspase-3 in the posterior-most part of the SAZ (Figure  

4.5 - C), but I did not observe cell death in this region of Sox21b-1 knockdown embryos 

(Figure 4.5 - D). However, I did observe pronounced cell death in the head extraembryonic 

layer of the same embryos (n = 10) (Figure 4.5 - D).   

Expression of PHH3 at stages 5 and 9, indicated that Sox21b-1 knockdown 

embryos show decreased cell proliferation compared to controls (n = 10 for each) (Figure 

4.5 - E-H). Interestingly the cells were also clearly larger in Sox21b-1 knockdown embryos 

compared to controls, which may reflect perturbed cell proliferation (Figure 4.5 - E-H). 

Thus, my functional analysis shows that Sox21b-1 regulates cell proliferation and the 

transition from radial to axial symmetry. Moreover, Sox21b-1 is involved in two different 

segmentation mechanisms in spiders: it seems to be required for the correct differentiation 

of the head and trunk segments, but also for the formation of the SAZ and subsequent 

production of opisthosomal segments.  
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Figure 4. 5. Cell death and cell proliferation in Sox21b-1 knockdown embryos. Ventral view 
of stage 5 control embryos stained for Cleaved-Caspase3 (A) and PHH3 (E). Cell death is not 
detectable in control embryos, but a high level of proliferation can be seen. In Sox21b-1 
knockdown embryos, clusters of cells undergoing cell death can be found (B), as well as a 
decrease in proliferation in the knockdown embryos compared to controls (n = 15 for each 
staining) (F). Embryos at stage 9 stained for Cleaved-Caspase 3 (C) and PHH3 (G) show that 
only a small amount of cell death occurs in the SAZ, and that there is proliferation detectable 
throughout the entire embryo. Cell death is visible in the head extraembryonic layer in Sox21b-1 
pRNAi embryos (D), and less proliferation is detected in stage 9 knockdown embryos (n = 15 for 
each staining). Anterior is to the top. Magnifications are 100X and 400x respectively.  

  

Effects of Sox21b-1 knockdown on the germ disc and mesoderm formation  

In P. tepidariorum, decapentaplegic (dpp) and Ets4 are required for cumulus formation 

(Akiyama-Oda & Oda, 2006; Pechmann et al., 2017). To investigate if Sox21b-1 is 

involved in the formation of this cluster of cells I assayed the expression of dpp and Ets4 
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in Sox21b-1 RNAi knockdown embryos. However, I observed that both genes were 

expressed normally, and cumulus formation was unaffected in the embryos analysed. 

Note that in this experiment the embryos for the three classes were pooled (Figure 4.6 – 

E and F).   

The rim of the spider germ disc develops into the head structures and is regulated 

in part by hh, while the mesodermal and endodermal layers of the head are specified by 

the mesendodermal gene forkhead (fkh) (Akiyama-Oda & Oda, 2006; Feitosa, 2017). To 

investigate if anterior expression of Sox21b-1 is involved in the formation of the head 

rudiment and differentiation of the mesodermal and endodermal layers, I assayed the 

expression of fkh and hh in class I and II Sox21b-1 knockdown embryos.   

hh is expressed in the ectoderm at the rim of the germ disc (Figure 4.6 - D) 

(Kanayama, 2011) and remains unaffected by Sox21b-1 knockdown (Figure 4.6 - H). fkh 

is also expressed in cells around the rim, as well as in the centre of the germ disc in 

mesendodermal cells (Figure 4.6 - C). In Sox21b-1 knockdown embryos both fkh 

expression domains are lost (Figure 4.6 - G) and it therefore appears that Sox21b-1 is 

required for the specification of mesodermal cells in the germ disc of spider embryos.   

In both spiders and flies, twist (twi) is involved in mesoderm specification 

(Yamasaki, 2005) and I therefore examined the expression of this gene after Sox21b-1 

knockdown. To investigate if the loss of fkh in stage 5 embryos leads to defects in the 

formation of the secondary internal layers, I evaluated the late expression of twi in both 

control and stage 9 Sox21b-1 knockdown embryos.  

twi is expressed in the visceral mesoderm of the limb buds from L1 to L4, in the 

opisthosomal segments O1 to O4, and in an anterior mesodermal patch in the central part 
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of the developing head in control embryos (Figure 4.6 - I) (Yamazaki, 2005). While the 

head expression persists in Sox21b-1 class I embryos, strikingly, expression in all the 

limb and opisthosomal segments appears to be lower or absent (Figure 4.6 - J).   

This apparent loss of fkh expression in stage 5 could be explained by a reduction 

of the endomesodermal layers in the older stages, but twi expression is still normal in the 

head region. Therefore, I analysed orthogonal projections of control and Sox21b-1 

knockdown embryos to evaluate if in the cellular level there was a decrease in the layer 

formation. In the germ disc of stage 5, when fkh expression commences, I observed 

invaginating cells forming a second layer (Figure 4.6 - K), however, in Sox21b-1 

knockdown embryos I found a lower number of invaginating cells, which exhibit bigger 

nuclei compared to the controls (Figure 4.6 - L).   

A similar effect was observed at stage 9. In the anterior-most region of the embryo 

three layers of cells can be identified in control embryos (Figure 4.6 - M), but in Sox21b1 

knockdown embryos the formation of these layers is perturbed, and number of cells 

seems to be reduced in secondary layers (Figure 4.6 - N). These data suggest that the 

segmentation in the prosomal region is ectodermal and occurs even upon a reduction of 

the internal most layers of the embryo. This maintenance of the ectodermal layer by 

PtSox21b-1 could be another important role for this gene in the segment formation of the 

spider.  
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Figure 4. 6. Gene expression in control and Sox21b-1 knockdowns at the germ disc stage 
and during mesoderm formation. Pt-dpp (A) and Pt-Ets4 (B) are expressed in the forming 
cumulus (CM) in the centre of the germ disc at stage 4 (grey arrow and dotted circle). This 
expression is unaffected by knockdown of Sox21b-1 (E and F) (n= 30 for each gene). C) Pt-fkh is 
expressed at the rim and centre of the germ disc at late stage 5 (grey arrow and dotted circle in 
C), but expression is lost in Sox21b-1 embryos (n= 30) (G). Pt-hh expression at the rim of the 
germ disc (D) is normal in Sox21b-1 knockdown embryos (H) (grey arrows). I) The mesodermal 
marker Pt-twi is expressed in the anterior-most medial region of the head, limb buds of L1 to L4, 
and with a striped pattern in the O1 to O4 segments. J) In Sox21b-1 knockdown embryos, only 
the head expression is maintained (n= 14) (white arrow in J). K-L show orthogonal projections of 
the cumulus (stage 5) and the head (stage 9) at 40x magnification of whole mount control embryos 
(left panels) and Sox21b-1 knockdown embryos (right panels), respectively. In control embryos 
the formation of subectodermal layers are visible, which are lost in the knockdown embryos. Ch: 
Chelicerae; HL: Head Lobes; L1 to L4: Prosomal leg bearing segments; O1 to O5: Opisthosomal 
segments; SAZ: Segment Addition Zone. Anterior is to the left in stage 9 embryos.  
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Effects of Sox21b-1 knockdown on segmentation  

In P. tepidariorum, formation of the SAZ and production of posterior segments requires 

the Wnt8 and Delta-Notch signalling pathways (McGregor, 2008; Schönauer et al., 2016). 

Interactions between these pathways regulate hairy (h) and, via caudal (cad), the 

expression of pair-rule gene orthologues including even skipped (eve) (McGregor, 2008; 

Schönauer et al., 2016). To better understand the loss of opisthosomal segments I 

observed in Sox21b-1 knockdown embryos, I analysed the expression of Dl, Wnt8, h and 

cad in these embryos compared to controls.   

Dl is expressed at stages 5 and 6 in the forming SAZ, in the region of the L4 

primordia, and in the presumptive head (Figure 4.7 - A). Subsequently at stage 9, Dl 

expression is visible in clusters of differentiating neuronal cells and oscillates in the SAZ 

- an expression pattern associated with the sequential addition of new segments (Figure 

4.7 - B) (Oda et al., 2007). In Sox21b-1 knockdown embryos, Dl expression is not detected 

at stage 5 (Figure 4.7 - C) and is absent in the posterior at stage 9 (Figure 4.7 - D). 

However, expression in the anterior neuroectoderm appears to be normal up to the 

pedipalpal segment, although neurogenesis is apparently perturbed in the presumptive 

L1 segment (Figure 4.7 - D) (Oda et al., 2007). This suggests that the ectoderm up to the 

L1 segment differentiates normally, but the formation of the SAZ and posterior segment 

addition controlled by Dl is lost upon Sox21b-1 knockdown.   

As mentioned in results chapter 1, Pt-h seems to be involved in the regulation of 

segment addition in P. tepidariorum (McGregor et al., 2008A; Pechmann et al., 2009). At 

stage 9, h expression resembles Dl in the ventral neuroectoderm up to the opisthosomal 

segment 2 (O2), as well as in the SAZ (Figure 4.7 - G). Similar to what is seen to Dl 
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expression in late stage 5 Sox21b-1 knockdown embryos, the expression of Pt-h is also 

lost throughout the entire germ disc (Figure 4.7 - F). In addition, in Class I phenotype 

embryos at stage 9, the expression of h is completely absent in the tissue posterior to the 

pedipalpal segment (Figure 4.7 - H). Pt-h is a downstream regulator of Notch signaling, 

thus the similarity with the Pt-Dl expression in So21b-1 knockdown embryos might have 

been expected.  

Wnt8 is initially expressed at stage 5 in the centre and at the rim of the germ disc 

(Figure 4.7 - I). At stage 9, striped expression of Wnt8 is seen from the head to the 

posterior segments and in the posterior cells of the SAZ (Figure 4.7 - K). Knockdown of  

Sox21b-1 results in the loss of Wnt8 expression in late stage 5 embryos (Figure 4.7 - J). 

At stage 9, Wnt8 expression is observed in the cheliceral, pedipalpal and first walking limb 

segments of Sox21b-1 knockdown embryos, but no expression is detected in the 

remaining posterior cells (Figure 4.7 - L). Consistent with the loss of Dl and Wnt8, cad 

expression is also lost in stage 5 and stage 9 Sox21b-1 knockdown embryos (Figure 4.7 

- O-P).  

To look at the effect of Sox21b-1 knockdown on segmentation in more detail I 

examined the expression of engrailed (en) and hh. At stage 9, en is expressed 

segmentally from the cheliceral to the O3 segment in wild type embryos (Figure 4.7 - Q). 

However, in Sox21b-1 knockdown embryos, expression of en was only observed in the 

cheliceral, pedipalpal and L1 segments, consistent with the loss of all the more posterior 

segments (Figure 4.7 - R). hh has a similar expression pattern to en at stage 9, except it 

exhibits an anterior splitting wave in the cheliceral segment and is also expressed earlier 

in opisthosomal segments and in the SAZ (Figure 4.7 - S). Upon Sox21b-1 knockdown, 
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hh is only detected in shortened stripes in the cheliceral and pedipalpal segments (Figure 

4.7 - T).   

  
Figure 4. 7. Expression of segmentation genes in Sox21b-1 pRNAi embryos. A and B) Pt-Dl 
expression at late stage 6/early stage 7 appears to be dynamic in the SAZ and is also observed 
in the presumptive head region and prosoma of the embryo (red dotted lines and grey arrows).  
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B) At stage 9, Pt-Dl expression is seen in the SAZ (white arrow) but is restricted to the clusters of 
proneural differentiation in the anterior region of the embryo (grey arrow in the head lobes). C) In 
Sox21b-1 knockdown embryos, Pt-Dl expression is not detectable in late stage 5/early stage 6 
embryos (grey arrow) but can still be observed in the anterior ventral neuroectoderm at stage 9 
up to the pedipalpal segment (n = 17 and n = 14 for stage 5 and 9, respectively) (D). Pt-h 
expression at stage 5 in control embryos is seen at the rim and in the centre of the germ disc 
(black dotted circle in E), which is lost in Sox21b-1 knockdown embryos (F). At stage 9, Pt-h 
expression resembles Pt-Dl, both in the control and Sox21b-1 knockdown embryos (G and H) (n 
= 15 for both stages). Pt-Wnt8 expression is similar to Pt-h in stage 5 control embryos (black 
dotted circle in the centre, grey arrow to the rim) and is also lost in Sox21b-1 knockdown embryos 
(n = 11) (I and J). Control embryos at stage 9 show the expression of Pt-Wnt8 in the medial region 
of the head (grey arrow), and in distal parts of each segment up to the SAZ (white arrow) (K). In 
Sox21b-1 knockdown embryos at the same stage, the brain (grey arrow), cheliceral and 
pedipalpal expression is still present, but the posterior expression is lost (n = 17 for each stage) 
(L). Pt-cad is expressed in the SAZ at late stage 5/early stage 6 embryos (M), which persists 
throughout to stage 9 control embryos (N). However, Pt-cad expression is lost upon Sox21b-1 
knockdown (n= 20 for each stage) (O and P). Pt-en expression is present in the posterior of each 
segment (black lines in Q), and in cheliceral, pedipalpal and L1 segments in Sox21b-1 knockdown 
embryos at stage 9 (n = 10) (S). Pt-hh expression in control embryos at stage 9 is seen in the 
posterior of each segment and in the SAZ (R). When Sox21b-1 is knocked-down, Pt-hh embryos 
show expression in the middle posterior of the cheliceral and pedipalpal segments (n = 8) (T). Ch: 
Chelicerae; HL: Head Lobes; L1 to L4: Prosomal leg bearing segments; O1 to O5: Opisthosomal 
segments; SAZ: Segment Addition Zone. Anterior is to the left in stage 9 embryos.  

  

These observations indicate that Sox21b-1 is required for the formation of the 

prosomal L1 – L4 segments and acts upstream of Wnt8 and Delta-Notch signalling to 

regulate the formation of the SAZ and the subsequent production of posterior segments. 

In support of this regulatory hierarchy, I observed that Sox21b-1 expression is still 

detected in the posterior regions of the truncated embryos produced by RNAi knockdown 

of either Dl or Wnt8 (Figure 4.8).  
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Figure 4. 8. Expression of Sox21b-1 in Dl and Wnt8 pRNAi embryos. Ventral view of stage 7 
and 9 knockdown embryos for Pt-Dl (A and B) and Pt-Wnt8 (C and D). In knockdown embryos 
for both Pt-Dl and Pt-Wnt8, Sox21b-1 is still expressed at the germ band stage (A and C), in a 
dynamic pattern in the remaining SAZ cells, and in the forming segments in the presumptive 
prosoma of the embryo (white arrows). In stage 9 Pt-Wnt8 knockdown embryos, Sox21b-1 
remains highly expressed in the ventral nerve cord (D). Pt-Dl knockdown embryos lack the 
posterior L4 segment (white arrow), but brain formation appears normal (grey arrow) (B). Pt-Wnt8 
embryos show a fusion of the L4 limb buds, and Sox21b-1 is still expressed in the remaining SAZ 
cells (D). Anterior is to the left in all panels.  

  

Taken together, my analysis of P. tepidariorum Sox21b-1 parental RNAi depleted 

embryos reveals an important role for this Group B Sox gene in both the gap-like 

segmentation of the prosoma, as well as posterior segment formation from the SAZ.  
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These experiments further emphasise the critical role this class of transcription factors play 

in arthropod segmentation.  

The results presented in this chapter are included in a manuscript entitled “A SoxB 

gene acts as an anterior gap gene and regulates posterior segment addition in the spider 

P. tepidariorum”, that was submitted in April 2018.  

  

  

  

  

  

  

  

  

  

  

  

  

  
Discussion  
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A SoxB gene is required for two different mechanisms of spider segmentation  
  

The Sox (Sry-Related High-Mobility Group box) gene family encodes transcription factors 

that regulate many important processes underlying embryonic development of metazoans 

(Sinclair, 1990; Lefevbre, 2010). One such gene, D, is expressed in a gap gene-like 

pattern and is involved in regulating the segmentation cascade in D. melanogaster 

(Russell, 1996; Clark & Peel, 2018). Recently, the analysis of the expression of D in the 

flour beetle T. castaneum strongly suggests it also plays a role in short germ 

segmentation, further supported by knockdown of the D orthologue in Bombyx mori, which 

resulted in the loss of posterior segmentation (Nakao, 2018).  

I injected dsRNA specifically for each orthologue out of the 15 Sox genes in P. 

tepidariorum, but the only gene that resulted in a phenotype was Pt-Sox21b-1. One 

cannot be sure of the exact reasons why only one out of fifteen knockdowns presented a 

phenotype – all the primary dsRNAs were designed outside the HMG domain, and so it 

is possible the redundancy of the Sox genes (Reiprich, 2015) may underlie these apparent 

lacks of effects in the knockdown assays. In D. melanogaster, knockdown of D and SoxN 

were only achieved when a combination of targets for these two Sox genes were mixed 

before the injections (Steven Russell, personal communication).  

Here I show that, while D is very likely not to be involved in spider segmentation 

(Chapter 2 of this thesis - Paese et al., 2018), the closely related SoxB gene, Sox21b-1, 

regulates formation of both prosomal and opisthosomal segments. In the prosoma  

Sox21b-1 has a gap gene like role and is required for the specification of L1-L4 segments 
(Figure 3.5), resembling the roles of hb and Dll in prosomal segmentation in this spider  
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(Schwager, 2009; Pechmann, 2011) and, at least superficially, gap gene function in 

Drosophila.  

In Drosophila the gap genes regulate pair-rule gene expression, and while the 

orthologues of eve and runt are not expressed in the prosoma of spiders (Damen, 2000; 

Schönauer et al., 2016), our results indicate that Sox21b-1 is required for the expression 

of h and the generation of leg bearing prosomal segments (Figure 4.7 - E).  

In the posterior, Sox21b-1 knockdown perturbs SAZ formation and consequently 

results in truncated embryos, lacking all opisthosomal segments. Therefore, Sox21b-1 

regulates development of the SAZ, and our observations indicate this is at least in part 

through roles in organising the germ layers and specification of mesoendodermal cells 

during stages 5 and 6. This is supported by the loss of fkh expression upon Sox21b-1 

knockdown, which is required for mesoderm and endoderm formation in both spiders and 

insects (Holmberg, 2008; Kormish, 2010). Moreover, the subsequent dynamic expression 

of Sox21b-1 in the SAZ after stage 6 is suggestive of a role in segment addition.   

These findings about Sox21b-1 provide an important new insight into the gene 

regulatory network (GRN) underlying the formation of the SAZ and the sequential addition 

of segments from this tissue. I have shown that Sox21b-1 acts upstream of Wnt8 and 

Delta-Notch signalling in this GRN and is required for the activation of these important 

signalling pathways during posterior development (Figure 4.9). Further work is needed to 

determine if Group B Sox genes, such as D and Sox21b-1, occupy a similar position in 

the regulatory hierarchy for posterior segmentation in other short-germ arthropods. This 

could provide important new insights into the evolution of the regulation of segmentation 

in arthropods since a Wnt-Delta-Notch-Cad regulatory cassette was probably used 
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ancestrally in arthropods to regulate posterior development (Janssen, 2004; McGregor, 

2009; Brena, 2012). Interestingly, SoxB genes also cooperate with Wnt and Delta-Notch 

signalling in various aspects of vertebrate development including the patterning of neural 

progenitors and maintenance of the stem state in the neuroepithelium (Kormish, 2010; 

Koch, 2017).   

  

Figure 4. 9. Summary of the updated Gene Regulatory Network. The interaction of Sox21b-1 
is presented in relation to genes involved in spider embryogenesis. I found that fkh expression 
requires Sox21b-1 in the most anterior part of the head (OC, Ch, Pp segments). Distal-less, 
hunchback and hairy, involved in prosomal limb differentiation (L1-L4) are also positively 
regulated by Sox21b-1. Our results suggest that Sox 21b-1 controls the expression of hairy in 
segments L2 to L4. The molecular control of segmentation in the SAZ involves a feedback loop 
between Dl and Wnt8, which acts upstream of cad and also controls the dynamic expression of 
hairy. I can infer from our results that Sox21b-1 acts upstream of these genes in the SAZ.  

  

Sox21b-1  exhibits  highly  pleiotropic  phenotypes  during  early 

 spider embryogenesis  

My results show that Sox21b-1 is not only involved in segmentation but is maternally 

supplied and regulates cell division in the early germ disc, as well as probably the 

transition from radial to axial symmetry during germ band formation. Further experiments 

with Sox21b-1 are required to fully elucidate the mechanisms by which it affects these 

early functions. Furthermore, while spider head development is less affected than trunk 
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segmentation by knockdown of Sox21b-1, it is clear from my experiment that Sox21b-1 

regulates cell fate in this region. Interestingly, Sox2 is involved with the neuromesodermal 

fate choice in mice and Dichaete has a role in embryonic brain development in Drosophila 

(Sanchez-Soriano, 1998): consequently, SoxB genes may play an ancestral role in the 

patterning of the head ectoderm and mesoderm in metazoans (Zhong, 2011).   

  

The evolution of Sox21b-1  
  

The evolution and diversification of Group B Sox genes in insects is not fully resolved due 

to difficulties in clearly assigning orthologues based on the highly conserved HMG domain 

sequence (Wegner, 1999; Overton, 2002). However, despite these ambiguities it is clear 

that the Dichaete and Sox21b class genes in all arthropods examined to date are closely 

related and likely arose from a duplication in the common ancestor of this phylum [see 

Zhong et al. (2011) for discussion]. Note that in insects Dichaete, Sox21a and Sox21b 

are clustered (Wegner, 1999), however, while Dichaete and Sox21a are clustered in P. 

tepidariorum, the Sox21b paralogs are dispersed in the genome of this spider (Paese et 

al., 2018).   

I believe it is highly significant that two very closely related SoxB genes are 

involved in segmentation in both the spider P. tepidariorum and in insects, 

indicating/suggesting an ancient role for this subfamily of Sox genes in invertebrates. 

Given the close similarity between the HMG domains of Sox21b and Dichaete, it is 

possible that in some lineages the D orthologue assumed the segmentation role, whereas 

in others it was Sox21b. In spiders, Wnt8 is involved in posterior development while in 
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other arthropods this role is played by Wnt1/wg (McGregor et al., 2008A), and therefore 

the evolution of Sox21b-1 via WGD may have led to the co-option to different genes and 

developmental systems drift of the GRN for posterior development.   

As mentioned before, the spider contains an additional related SoxB gene, 

Sox21b-2, that possibly arose as part of the whole genome duplication event in the 

ancestor of arachnopulmonates over 400 million years ago (Schwager et al., 2017). When 

compared the HMG aminoacidic sequences, Sox21b-1 and Sox21b-2 have a total of 12 

mismatches in a 59 aa sequence (Figure 3.2). I therefore suggest that while Sox21b-1 

may have been co-opted to acquire the D function in P. tepidariorum, Sox21b-2 might 

have no function in the control of segmentation, but perhaps a later function in the 

maintenance of different processes. Thus, it will be interesting to examine the roles of Sox 

genes in other chelicerates, including those that did not undergo a genome duplication, 

to have a broader comparison in the evolution of segmentation in arthropods.  
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Identification of Putative 
Regulatory Regions for 
Spider Manipulation  

  

  

  

  

  

  

  

  
Introduction  

The ability to achieve mRNA knockdown with the RNA interference technique was a great 

breakthrough for the studies of gene function in biological systems, and it has been widely 

applied in developmental biology in a range of organisms (Weiss, 1999; Kim, 2009). In 

summary, synthesized double-stranded RNA is injected into females or early embryos, 

which triggers the RNA III endonuclease Dicer, which in turn recognizes the target mRNA 

and will therefore start a complex of degradation of this transcript (Thumecke, 2018). This 

technique was used successfully in many studies in the spider with both embryonic and 

parental delivery (injection in the female opisthosoma) (Schoppmeier, 2001; AkiyamaOda 

& Oda, 2003; McGregor et al., 2008; Pechmann et al., 2009; Schwager et al., 2009; 

Schönauer et al., 2016).  
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 However, this technique only allows transient knockdown of the mRNA. After a few hours, 

all the RNAi levels will be lower, and the transcription of genes whose levels were 

decreased by the Dicer enzyme will now come back to a normal state (Boultros, 2008).  

This might explain why some genes in P. tepidariorum don’t show any phenotype when 

knocked-down with parental RNAi (e.g. pair-rule and segment polarity orthologues) or the 

effect wears off. Therefore, it is important to establish approaches whereby gene function 

analysis can also be made with the endogenous targeting of the organisms’ DNA directly 

(Gilles, 2015).  

 Such targeting was made possible by techniques such as Zinc-finger nucleases (ZFNs), 

Transcription activator–like effector nucleases (TALENs) and most recently with the 

CRISPR/Cas RNA-guided nucleases (RGNs) (Kim, 2009). Using pathways intrinsic to the 

cell, these techniques allow the specific locus to be mutated by either nonhomologous 

end-joining (NHEJ), which creates small indels at the site of repair, or by the 

insertion/translocation of a construct, by the homologous-directed recombination (HDR) 

pathway, that copies a template that was inserted by complementary homology, (Szostak, 

1983; Moore & Haber, 1996). These genomic modifications are now used routinely in 

established model organisms, such as mouse (Capechi, 2005; Burgio, 2018), the 

roundworm Caenorhabditis elegans (Rieckher et al., 2009) and the dipteran insect D. 

melanogaster (Ringrose, 2009; Bassett, 2014). Furthermore, these techniques have been 

adapted to a few other research organisms, such as Bombyx mori (Thomas et al., 2002), 

Aedes aegypti (Pinkerton et al., 2000), Tribolium (Gilles, 2015) and others.  

  The CRISPR/Cas9 nuclease is a system derived from the bacterium  
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Streptococcus pyogenes (Jinek et al., 2012) and consists of both protein and RNA. The 

Cas9 endonuclease recognizes a 19 to 22 nucleotide-long guide-RNA (gRNA) that 

contains the protospacer adjacent motif (PAM) at its 5’ end (Gilles, 2015) (summarized in 

Figure 5.1).  

  
COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION  

Figure 5. 1. Schematic representation of the CRISPR/Cas9 system. The Cas9 endonuclease 
recognizes the PAM in the gRNA sequence and creates a protein-RNA complex that cleaves the 
DNA in a complementary way, creating indels that are both repaired by NHEJ or HDR. Adapted 
from Jinek et al., 2012.  

  

The CRISPR injection mix must consist of the Cas9 (delivered as protein or mRNA), the 

gRNAs that is designed directed to the region of interest in the host genome, and a 

tracRNA that contains the S. pyogenes sequence that will make the Cas9 complex (Jinek 

et al 2012). The efficiency of genomic modifications that can be achieved by 

CRISPR/Cas9 depends on the delivery method used and the ease of screening. For 

example, in mice oocytes injected with the CRISPR-mix and a GFP tracer oocytes can 

then be selected for the fluorescence and surgically implanted into the ovaries (Burgio, 

2018). Similarly, in the crustacean Parhyale hawaiensis, the synthetic gRNA is injected 

with the Cas9 protein into 1 or 2 cell stage blastoderm, enabling germ line transformation 

(Martin et al., 2016). D. melanogaster embryos contain a yolk-rich blastoderm that will 

cellularize after 1h post fertilization. The Cas9 protein, guide RNA and donor DNA are 

injected in the posterior part of the embryo, and due to the syncytial nature of the early 

blastoderm, the injection mix efficiently is spread throughout all the blastomeres leading 

to modification of somatic cells as well as the germline (Bassett et al., 2014).   
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However, it has been shown in Drosophila, T. castaneum and other arthropod 

species exhibiting centrolecithal eggs, that the efficiency of the CRISPR/Cas9 technique 

increases when the Cas9 protein and the gRNAs are transcribed endogenously with the 

aid of a species-specific promoter (Gilles, 2015; Huang et al., 2017).  

There are three types of RNA polymerase (RNApol) classified by which products 

they transcribe (Figure 5.2). In the following I focus on RNApols II and III. The main 

difference between these two enzymes is that RNA polymerase II catalyses the 

DNAdirected transcription of mRNA, which will then be translated into protein (Cramer, 

2004), whereas RNA polymerase III transcribes DNA that encodes for small-RNAs, such 

as small-hairpin RNAs, microRNAs and gRNAs (Figure 5.2) (Ma et al., 2014; Huang et 

al., 2017).   

Examples of promoters used for transcription with RNApol II are usually genes that 

are expressed ubiquitously, such as the beta-actin (Ng, 1989), heat-shock proteins (hsp) 

(Pavlopoulos et al., 2009) and tubulins (Gloster et al., 1994). The functionality of these 

promoters was confirmed by the expression of endogenous GFP and mCherry in the 

embryonic cells (Gilles, 2015). For the transcription of small RNAs with the RNApol III 

enzyme, promoters such as H1 and U6 are the most commonly used (Ma et al., 2014; 

Gilles, 2015), and the functionality of these is evaluated by the level of genomic 

modification efficiency.  

COPYRIGHTED IMAGE REMOVED FROM ELECTRONIC VERSION 

Figure 5. 2. Table showing the differences amongst the types of RNA polymerases. In 
eukaryotes, three types of RNA polymerases are responsible for the transcription of different types 
of RNA. Briefly, the nucleolar RNApol I transcribe ribosomal RNAs, whereas the nucleuslocalized 
RNApol II and III transcribes both pre-mRNA and small RNAs, respectively (adapted from Ma et 
al., 2014).  
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Establishing tools for genome editing and other applications in P. tepidariorum  

Injection of synthetic gRNAs together with Cas9 mRNA or protein respectively has been 

tried in our laboratory previously but was unsuccessful (Schönauer, unpublished data). 

Therefore, with the aim of producing the Cas9 and guide RNAs at high levels  

endogenously in spider embryos, I will outline the results of the identification and isolation 

of putative regulatory regions of various genes in this chapter. Identification of promoter 

regions is laborious work (Pavlopoulos, 2009) and requires transcriptomic and genomic 

resources, which were fortunately already available for P. tepidariorum (Posnien et al., 

2014; Schwager et al., 2017).   

  
Characterization and isolation of RNApol II-associated promoters  

I started the identification of promoters that could be used to drive gene expression in 

spider embryos by targeting known ubiquitously expressed genes that have been used 

successfully to drive gene expression in other organsisms. For this, I carried out a 

tBLASTn search in the P. tepidariorum genome browser for D. melanogaster orthologues 

of the following genes: beta-actin (NP_727048), elongation-factor-1 (NP_477375), 

heatshock protein 70 (NP_731651) and poly-ubiquitin (AEW12073). Due to the ancestral 

genome duplication in this spider (Schwager et al., 2017), some of the orthologues have 

three or more copies of each gene. Therefore, I only followed-up the genes that exbited 

an expression read-count higher than 5.000 for the embryonic stages 1 to 5 (Figure 5.3). 

This data was obtained from the publically available P. tepidariorum transcriptome 

(Iwasaki-Yokosama, 2018). This allowed me to identify highly expressed orthologues of 
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beta-actin, elongation-factor-1, heat-shock protein 70 and poly-ubiquitin in the spider 

genome, which I present individually below.  

Note that I also identified a 16 kb 5’ untranslated region (UTR) for vasa that 

potentially contains promoters for this gene (aug3.g5162), but I experienced technical 

difficulties with in the isolation of fragments over 10 kb by PCR. For this reason, I focused 

on the promoters of the other genes, but future analysis will need to be made in order to 

characterize this regulatory region of this gene because it has great potential for germ line 

transformations (Krøvel, 2002; Tilgner et al., 2010).  

  

Figure 5. 3. Table with the genes ID and read counts for embryonic stages 1 to 10. 
Transcriptomic read counts for beta-Actin, ef-1, hsp70 and polyUbiquitin. The read-counts are per 
million. The data was collected from the BRH Data Resources.  

    

Beta-actin  
  

The scaffold containing the beta-actin gene (aug3.g27982, scaffold 247) annotated in P. 

tepidariorum has 2818 nucleotides upstream of the transcription start codon, in which 183 

bp of these was annotated as 5’ UTR from transcriptomic data (yellow highlighted 
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nucleotides in figure 5.4). This entire sequence was then analyzed in the software Neural 

Network Promoter Prediction (BDGP - Berkeley), a program that r identifies putative 

promoter regions. The only sequence match was a 50 bp sequence from the nucleotide 

2710 to the nucleotide 2760 has a prediction of 0.99 (Figure 5.4). Since this putative 

promoter region is close to the start of the coding sequence there are potential enhancer 

sequences upstream of this position. Therefore, I chose to isolate the entire 2818 bp 

region from genomic DNA of the spider with oligonucleotides specifically designed to 

terminate one nucleotide before the start codon of the beta-actin CDS and cloned it 

upstream of the reporter gene GFP in plasmid pCR4-TopoII with restriction-directed 

cloning.  

  This generated plasmid pCR4_Actin_eGFP_SV40PolyA that is now ready to be  

injected in embryos of different stages and to determine if it is able to drive ubiquitous GFP 

expression.  
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Figure 5. 4. Sequence of the 5’ UTR from P. tepidariorum beta-actin. The 2818 nucleotides 
that comprise the region upstream of the beta-actin CDS. Marked in yellow are the nucleotides 
annotated as 5’UTR, in between those are intronic regions that can contain regulatory sequences 
(underlined in black). Marked in purple is the methionine (first codon that is translated), followed 
by the first nucleotides that belongs to the beta-actin coding sequence (marked in orange).  
  

Elongation Factor-1  
  

In the scaffold containing the annotated EF-1 gene of P. tepidariorum (aug3.g27264, 

scaffold 207), I identified a 725 bp region upstream of the start codon, with two regions 
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annotated as 5’ UTR that span a total of 123 bp. Note that the BLAST search was used 

only for the identification of the orthologue, and not for the analysis of the putative 

promoter region. A 50 bp promoter was predicted in the intron using the BDGP program 

with a score of 0.76 (Figure 5.5). This fragment was isolated in the same way as beta- 

actin, and cloned upstream of the GFP fragment, in a plasmid named pCR4_EF1_eGFP_SV40PolyA.  

  

  

Figure 5. 5. Sequence of the 5’ UTR from P. tepidariorum elongation factor-1. A 725 bp 
region upstream of the start codon (marked in purple) was isolated from the scaffold that contains 
the elongation factor-1 gene. In blue are marked the 5’ UTR regions of the scaffold, followed by 
an intron. The CDS is marked in orange after the start codon (ATG). Below is the predicted 
promoter region (50 bp underlined in black), that contains the highlighted T as the putative TSS.  

  
Heat-shock protein 70  
  

One of the heat-shock proteins found by BLAST in the P. tepidariorum genome 

(aug3.g27068, scaffold 191) is predicted to have a small 5’ UTR 159 nucleotides, and the 

promoter prediction showed a single but specific sequence (Figure 5.6). I also found six 

predicted Heat Shock Elements (HSE) in this small sequence (GAA – nn – TCC repeats), 

and a robust TATA-box 30 bp upstream of the start codon (Figure 5.6). The fragment was 
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cloned upstream of the GFP as for the other genes, in a plasmid named 

pCR4_Hsp70_eGFP_SV40PolyA.  

  

  
Figure 5. 6. Sequence of the 5’ UTR from P. tepidariorum heat shock protein 70. In light 
brown is marked the 5’ UTR of the hsp70 gene. The HSE are underlined in black (GAA – NN – 
TTC), and the TATA-box underlined in red. The start codon is marked in green, and the CDS in 
orange.  

  

PolyUbiquitin  
  

The BLAST search for the spider polyUbiquitin gene identifed a scaffold (aug3.g26922, 

scaffold 180) containing 1985 bp upstream of the start codon of this gene (Figure 5.7). 

The BGDP promoter search suggests that there is a putative promoter located in the 

intronic region between nucleotides -1050 and -1100 (Figure 5.7). An A-T rich region was 

also identified around 30 bp upstream of the start codon that could be a TATA-box (Figure  

5.7). The 1985 bp fragment was isolated and cloned upstream of the GFP coding sequence, in a 

plasmid named pCR4_pUb_eGFP_SV40PolyA.  
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Figure 5. 7. Sequence of the 5’ UTR from P. tepidariorum polyUbiquitin. The 5’ UTR 
annotated sequence is marked in dark green, with a big intronic region in between the two 
fragments. Purple marked is the start codon, followed by the orange marked CDS. The putative 
promoter sequence contains the highlighted A as the TSS (underlined in black).  

  

Characterization and isolation of RNApol III-associated promoters  

Nucleotide BLAST search for the U6 snRNA in P. tepidariorum was carried out with the 

D. melanogaster U6-1 (NR_002081), U6-2 (NR_002082) and U6-3 (NR_002083) 

promoter sequences. These three U6 snRNA’s are each 107 bp, and three regions were 

found in the spider genome that show more than 99% similarity with the Drosophila 

sequences (Figure 5.8). I thus annotated these regions as Pt_U6-1 (scaffold 1617), 

Pt_U6-2 (scaffold 523) and Pt_U6-3 (scaffold 687).  
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Figure 5. 8. Alignment of the D. melanogaster and P. tepidariorum predicted U6 snRNAs.  
Alignment of the 107 bp region of the snRNAs. There is an A to T change at nucleotide 2, a T to 
A at nucleotide 15 in the three U6s in P. tepidariorum, and a G to A at nucleotide 98 in the spider 
U6-3 compared to D. melanogaster.  

  

 I then focused my analysis on the region upstream of the putative TSS (the G marked 

with the arrow in figure 5.9) for these three sequences. Strikingly, U6-1 and U62 have a 

conserved TATA-box 32 bp upstream of the TSS (underlined in black in figure  

5.9), which is completely absent in the U6-3. Therefore, I focused on the isolation of the  

U6 1 and 2. I designed specific primers than spanned a 650 bp region upstream of the 

TSS and amplified this fragment from the genomic DNA of P. tepidariorum. This was 

based in other studies, where the isolation of the U6 promoters never spanned regions 

larger than 600 bp (Bassett, 2014; Gilles, 2015).  

  

  
Figure 5. 9. Alignment of the P. tepidariorum predicted U6 regulatory regions. Alignment of 
the three putative U6 snRNA’s of the spider. Underlined in black is the region identified as the 
TATA-box, 32 bp upstream of the TSS (black arrow in the G). The putative regulatory regions for 
the U6-1 and 2 have a striking high homology.  
  

 To generate a plasmid that can drive the endogenous expression of the gRNAs, I then cloned 

the 650 bp fragments from U6-1 and U6-2 upstream of the tracRNA complex.  

This region contains a BbsI overhang (for insertion of the specific guide with a single 

Gibson assembly cloning), a 76 bp S. pyogenes specific tracRNA (which will complex with 

the Cas9 enzyme) and 6 T’s that are the RNApol III transcription stop signal (Figure  

5.10).  The  plasmids  were  named  pSFD1-U6:1_BbsI_gRNA  and  pSFD1- 
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U6:2_BbsI_gRNA, respectively.  

  

  

Figure 5. 10. Sequence of the pSFD1-U6:1_BbsI_gRNA promoter and tracRNA region. The 
650 bp putative promoter region for the U6-1 of the spider was cloned upstream an overhang that 
contains the BbsI restriction enzyme site, a gRNA scaffold that will transcribe the tracRNA, and 6 
repeated T nucleotides, that are the RNApol III transcription stop signal.  

  

Micro-injection of spider embryos  

As a proof of principle that spider embryos can be inhjeced with genetic material to 

facilitate gene expression and potentially germ line transformation, following the protocol 

of the Oda group (Kanayama et al., 2010), I injected a capped mRNA corresponding to 

the coding sequence of GFP into1, 2 and 4-nuclei stage P. tepidariorum embryos (without 

chorion removal). This resulted in all of the blastomeres expressing of GFP in stage 5 

embryos (e.g. Figure 5.11). How many died? – i.e. give some idea of the efficiency.  
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Figure 5. 11. Injection of eGFP mRNA in early stage spider embryos. 2-cell stage embryos 
were injected with capped mRNA for the eGFP coding sequence, and it is visible the strong 
expression of this construct in late stage 5 embryos.  
  

This result was confirmed later by Pechmann in his 2016 paper on germ disc 

development in P. tepidariorum, in which the injections of FITC and Lyn-GFP at earlier 

stages gave rise to the expression of these throughout the embryos. This success means 

that there is great potential for new technologies like CRISPR/Cas9 to be efficiently 

delivered into the embryos.  

I also injected embryos at a range of early stages with another marker – a dsRED 

that contains a nuclear localization signal (NLS) at the N-terminal. The injections into 4, 8 
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and 16 cell stage embryos (Figure 5.12) demonstrated the ability of the constructs to be 

transcribed in daughter cells of the injected blastomeres.   

  

  
Figure 5. 12. Embryos injected with fluorescent mRNA. From left to right on top: Bright-field 
pictures of stage 5 and 7 embryos that were injected at 4, 8 and 16 cell stages. Lower pictures 
show the dsRed expression of the RNA that was injected at each stage.  
  

 I next asked if embryos injected prior to the 16 cells stage could give drive ubiquitous 

expression in the embryo. Note that Kanayama (2010) states that embryos before the 4-

cell stage are unable to drive expression – or don’t survive the injection (see figure 5.11).  

 Figure 5.13 shows an embryo that was injected at 1 cell stage with the same invitro 

transcribed RNA (dsRed) at nearly 128-cells stage. Therefore, it is possible to inject early 

embryos to give rise to expression in all blastomeres at later stages.  
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Figure 5. 13. Embryos injected with dsRed mRNA. Fluorescent (red channel) snap picture of 
an embryo injected at 1 cell stage with in-vitro transcribed mRNA for the dsRed with nuclear 
localization. The embryo is at 128 cell stage, and all the cells in the blastoderm are expressing 
the injected capped-mRNA.  

  

  

  

  

  
Discussion  

  

It has been a standard protocol for spider studies to use RNA interference both 

embryonically and parentally to assay the function of specific genes during embryonic 
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development (Schoppmeier, 2001; Akiyama-Oda & Oda, 2003). However, this approach 

has its pros and cons, depending on the gene to be studied, and it is not fully understood 

why some RNAi mediated gene knockdowns are not efficient in the spider, whether 

injected parentally or embryonically. For example, in my experience with parental RNAi, I 

found that it was very efficient for Sox21b-1, but I also injected the Hes-like and Sox both 

parentally and embryonically, and I never observed a phenotype. Boutros & Ahringer 

(2008) discussed the use of RNAi for screening in different organisms, and they clearly 

state that there are disadvantages such as off-target effects, incomplete penetrance and 

variability caused by the decrease of the dsRNA over developmental time. However, we 

don’t really understand why it works for some genes bit not others in P. tepidariorum.  

 P. tepidariorum embryogenesis starts with intralecithal cleavages until around the 16-cell 

stage (Kondo, 1969; Anderson, 1973; Kanayama, 2010), which means that there are no 

membranes in between the single syncytial nuclei. This allows the injection of different 

RNA’s in the embryo that will be processed during the development. The embryos at early 

stages of development are very delicate, with the chorionic membrane still being formed, 

so if there is a dehydration caused by the injection procedure, the survival rate will be low 

(Suzuki, 1995; Kanayama, 2010). Therefore, injections at slightly later stages (8 or 16 cell 

stages) that will produce a clonal cell inheritance of the dsRNA and mRNA more efficiently 

is now common in P. tepidariorum (Kanayama, 2010; Schönauer et al., 2016; Pechmann, 

2016; Pechmann, 2017). However, as I showed in the results, injections in early stages, 

when there are only 1 or 2 nuclei, successfully gave rise to cells expressing GFP, which 

is a proof of principle that germ line transformations can be achieved in this organism.  



Results – Identification of Putative Regulatory Regions for Spider Manipulation 
____________________________________________________________  

123  
  

However, to generate a transgenic line and better understand the function of a 

complete knockout of a specific gene, it would be desirable to be able to generate 

complete knock out of the gene of interest – even to compare to RNAi results. Thus, I 

focused my efforts on trying to continue Anna Schonauer’s work in establishing the 

CRISPR/Cas9 technique in the common house spider. Several efforts were previously 

made with synthetically transcribed gRNAs, with the Cas9 delivered as mRNA or protein 

at different concentrations, but with no success.  

 For this reason, I followed the approach that has been used for several other arthropod 

species to implement the CRISPR technique with a high efficiency: plasmid engineering 

that allows the expression of the Cas9 endonuclease from an endogenous RNAPol II and 

gRNAs from RNAPol III promoters (Gilles, 2015; Sun et al., 2017).  

 Starting with RNAPol II putative regulatory regions, I isolated the region upstream of the 

start codon (ATG) for the beta-actin gene (aug3.g27982) comprising 2818 bp and with 

putative regions of transcriptional initiation and promoter. This is an orthologue of the D. 

melanogaster cytoskeletal actin gene, that is ubiquitously expressed from early stages of 

development, which is consistent with the high expression levels that I identified in the 

transcriptome of the spider for this gene in early stages of embryogenesis (Chung & 

Keller, 1990; Quitschke et al., 1990). In the fruit fly, this gene has a proximal and a distal 

promoter (Chung & Keller, 1990), but analysis of the sequences of introns 2 and 3 did not 

show any putative regulatory regions that could be homologous to the distal promoter 

seen in Drosophila.  

 Elongation-Factor-1 belongs to an enzymatic complex that delivers tRNAs to the 

ribosomes, transcribed from when fertilization occurs. It has a strong promoter used in 
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cell lines and mammalian studies and is considered to be stronger than the 

cytomegalovirus promoter (CMV) (Tokushige et al, 1997; Teschendorf et al., 2002).   

 Heat-shock proteins contain the most studied inducible promoters amongst both animals 

and plants (Amin, 1988). The constructs that untilise heat shock promoters have the ability 

of inducing the expression of transcripts at a specific time of the development (Shogi, 

2008; Pavlopoulos, 2009). Also, these regulatory regions are relatively easy to identify by 

the fact that they contain HSE – specific nucleotides (GAA – nn – TTC)  

(Pavlopoulos, 2009; Schinko, 2012). Recap what you identified as well here – very briefly.  

 The polyubiquitin protein is one of the many ubiquitin-complex genes, responsible for 

different aspects of organelle and membrane production. Thus, it has the characteristic of 

being expressed at high levels throughout the entire life of an organism (Maekawa et al., 

2008; Anderson et al., 2010). It’s been used as a constitutive promoter in different 

research organisms (Garbarino, 1995; Maekawa et al., 2008).   

The fragments that I isolated for the putative regulatory regions of the genes 

discussed above were cloned upstream of an eGFP coding sequence and the SV40 

RNAPol II transcription stop signal (poly A). If these putative promoters are suitable for 

driving the expression of the GFP, the technology can then be modified to drive the 

expression of the Cas9 protein endogenously, and also of different types of constructs 

(e.g. live imaging for the SAZ morphology or neurogenical progenitors differentiation).   

 In regard to the identification and isolation of RNAPol III putative regulatory regions, I 

focused my efforts on the U6 snRNAs, instead of trying to find orthologues for the H1 and 

7SK in P. tepidariorum, because U6s are the most widely used and most strongly 

expressed amongst them all (Cummins, 2011; Gao et al., 2017).  
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 The use of the U6 promoters for gRNAs transcription has been used in different 

organisms, especially in arthropods such as Bombyx mori (Ma et al., 2013), D. 

melanogaster (Ren et al., 2013), Plutella xylostella (Huang et al., 2017), Tribolium 

castaneum (Gilles, 2015), and others. Most arthropods where this technique has been 

established exhibit a great amount of yolk in their eggs (see Anderson, 1973 for a 

summary of egg types), and the improvement of the CRISPR technique was helped with 

the use of endogenously-transcribed Cas9 and gRNAs. Strikingly, there is still currently 

no study in chelicerates evidencing CRISPR/Cas9 working even with minimal efficiency. 

This might be due to a response from the cell-cycle proteins against the Cas9 protein, in 

order to protect the correct development of the embryo in chelicerates. For example, it 

was seen recently in human cell lines that the p53 protein acts against the Cas9, and 

when this protein was knocked-out, the efficiency of the CRISPR technique was increased 

to 80% (Ihry, 2018). Therefore, intrinsic mechanisms might have evolved in order to 

defend the cells from external factors. The other explanation might be that the Cas9 

protein is not responsive in the chelicerates cells, and a codon optimization is needed 

before the injection of this protein in the embryos (Weninger et al., 2016).  

However, it is likely that CRISPR/Cas9 should work in spiders and my efforts in 

identifying putative promoters for endogenous expression in the spider embryos will 

provide new powerful tools for genomic editing in spiders. Assay for Transposase-  

 Although I generated all the plasmids, I did not have the time for the injections. My hope 

is that the current members of the lab, who are interest in functional studies in spiders 

can pursue this work with the aid of the plasmids that I designed, and possible 

CRISPR/Cas9 a routine tool to understand the development of chelicerates.  
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Results Summary  

In this thesis, I focused my efforts on the further characterization of two conserved 

metazoan gene families: Hes and Sox. I started with the isolation of four hes-like genes 

and analysis of their expression in the embryos of the spider P. tepidariorum (Chapter 1). 

This contributed to a better understanding of the similarities and differences in the 

expression of these genes among species with segmented bodies. To further extend my 

studies of genes involved in embryogenesis, I expanded my analysis to the fifteen Sox 

factors present in the spider genome (Chapter 2). This investigation provided insights into 

how such genes are expressed in the embryonic development of the spider in particular 

during segmentation and neurogenesis, but functional essays were needed. Thus, I tried 

to knockdown all 15 genes with RNAi. However, I only observed a phenotype for a SoxB 

gene, Sox21b-1, which probably arose via WGD. This gene is expressed in the prosoma, 

SAZ and neuroectoderm. I therefore, focused my analysis on the regulation of Sox21b-1, 

in order to better understand its role in the spider development (Chapter 3). I found that 

this gene regulates a range of processes including segmentation. The experiments I have 

done in my PhD also led me to pursue a more efficient method for functional analysis in 

spiders, and in particular to generate better tools to apply CRISPR/Cas9 which is growing 

in use in developmental biology studies in a wide range of organisms (Gilles, 2015). 

Therefore. in Chapter 4 I described the characterization of putative regulatory regions that 

can be used to drive endogenous expression of different factors, particularly Cas9 protein. 

I also explored the injecting markers into very early embryos. Finally, here in this general 

discussion chapter I will highlight the main findings of my work and propose future 

directions for the study of developmental biology in organisms such as the chelicerates.  
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Spider Hes-like and Sox orthologues and WGD  

My characterisation of the Hes-like and Sox orthologues in the P. tepidariorum genome, 

and their expression demonstrates the visible consequences of a WGD, which was 

recently described for this species (Schwager et al., 2017). Many genes encoding 

transcription factors have been retained as duplicates in spiders (and scorpions) following 

this WGD. For example, a high rate of retention of duplicated orthologues of homeobox 

genes was shown by Leite et al (2018). This study also showed that several of the 

duplicated genes acquired new expression patterns (neofunctionalization) and or had 

been subject to subfunctionalization when compared the expression of their single copy 

orthologues in another chelicerate that did not have an ancestral WGD, the harvestmen 

Phalangium opilio.  

For the gene families I studied, I found that some of the duplicated Sox factors 

such as PtSox21a-1, PtSox21a-2, PtSoxC-2, PtSoxD-1, PtSoxE-1 and PtSoxF-1, and the 

single-copy Pt-D of show no detectable expression in the stages that were analysed. The 

lack of expression in the embryos means that they are likely to be expressed at other 

developmental stages or in adults and therefore this may represent subfunctionalization 

and/or neofunctionalisation after the WGD. Indeed, in comparison, the expression of 

PtSoxC-1, PtSoxD-2 and PtSoxF-2 appears to be conserved because it resembles what 

is seen for the SoxC, D and F orthologues in other insects, which the expression is solely 

in the ventral nerve cord (Sox C and D) or in the mechanoreceptors in the limbs (SoxF), 

(Janssen et al., 2018; Paese et al., 2018). However, the expression of PtSoxE-2 appears 

to have diverged when compared to insects (Janssen et al., 2018). While G. marginata 

and T. castaneum have genes of the SoxE group expressed in the undifferentiated 
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gonadal tissue, the counterpart in the spider is shown to be expressed in the PNS, similar 

to what is seen for sox9 in vertebrates (Paese et al., 2018).  

Interestingly, while I observed a high rate of retention of duplicated Sox genes 

consistent with homeobox genes and other regulatory factors like microRNAs (ref), I found 

that the hes-like genes were only present as single copies. Therefore, it appears that 

either by chance or because of their specific functions and perhaps dosage, duplicated 

copies of these genes have been lost since WGD. It would be interesting to study if this 

is also the case in other spiders and scorpions more generally.  

     

A Sox factor regulates segmentation with Delta-Notch and Wnt signalling  

I described the involvement of a SoxB group orthologue (PtSox21b-1) during 

segmentation in P. tepidariorum. In other arthropods (long and short germ band) that have 

not undergone a WGD, there seems to be a similar role for the SoxB gene D (Russell et 

al., 1996; Clark & Peel, 2018), and the expression patterns seen for other insects and the 

onychophoran E. kanagrensis suggests that D and Sox21B are involved with  

segmentation in these species (Janssen et al., 2018). Strikingly, the gene that I identified 

as Pt-D shows no detectable expression in the stages observed and the RNAi 

experiments did not result in a phenotype. This is an indication that after WGD PtSox21b1 

may have acquired an ancestral D function in segmentation in spiders, and this analysis 

could be much improved if other arachnids were studied in this regard, especially those 

that have not gone a WGD, like the harvestmen (Leite et al., 2018).  
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 The novelty in my work is not only in characterizing another gene that belongs to the 

gene regulatory network underlying this process, but in demonstrating that this 

transcription factor acts upstream of both Notch and Wnt signalling. It has been 

demonstrated that these signallings have important roles in spider segmentation (Oda et 

al, 2007; McGregor et al., 2008) furthermore, these two pathways are upstream of the 

factor caudal, and thus trigger the pair-rule gene orthologues even-skipped and runt in 

the mechanism of sequential addition of segments (McGregor et al., 2009; Schonauer et 

al., 2016). My work shows that a Sox gene likely activates the expression of this GRN.   

The involvement of Delta-Notch and Wnt signalling has been demonstrated for the 

cockroach P. americana (Chesebro, 2013), and the expression pattern of the delta 

orthologues in T. castaneum and S. maritima are a tantalizing suggestion that these 

genes also regulate segment addition in other short germ arthropods (Aranda, 2008; 

Chipman, 2008). Therefore, it will be interesting in the future to see if a SoxB genes plays 

a similar role upstream of Delta-Notch and Wnt signalling in these and other arthropod 

species.  

A gap-gene like function for Sox21b-1?  

Loss of L2-L4 upon knockdown of Sox21b-1 in P. tepidariorum also resembled a gap like 

phenotype. And while previous studies have demonstrated that there are major 

differences in the regulation of the prosoma versus segment addition from the 

opisthosoma in spiders, I have found that Sox21b-1 is involved in segmentation of both 

tagma (McGregor et al., 2008; Pechmann et al., 2009; Schwager et al., 2009; Schonauer 

et al., 2016).   
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In the anterior of the prosoma, it is known that orthodenticle and hedgehog are 

important regulators of the head patterning in P. tepidariorum, a process that involves the 

splitting wave of Pt-hh from the pedipalpal segment (Pechmann et al., 2009; Kanayama, 

2011). In PtSox21b-1 RNAi embryos, the expression of Pt-otd is completely lost from 

stage 5 embryos (data not shown), but Pt-hh is still expressed at the rim of the germ disc 

in stage 5, and in the L1 segment at stage 9. In D. melanogaster and S. maritima, genes 

such as orthodenticle and hedgehog are essential for head patterning, but the 

involvement of Sox factors has not yet been described (Hunnekuhl, 2017). Therefore, it 

would be interesting to determine if the interplay between these factors and the regulation 

by a SoxB gene is a conserved feature in arthropod head development.  

I also suggest that would be interesting to further analyse the apparent gap-like 

function of PtSox21b-1 in the spider. The genes ldistal-less and hunchback have been 

shown to give rise to a gap-like phenotype after knockdown by RNAi in P. tepidariorum 

(Schwager et al., 2009; Pechmann et al., 2011). Pt-Dll knockdown embryos lose the L1 

segment, while Pt-hb knockdown removes the L1 and L2 segments. Since knockdown of 

PtSox21b-1 leads to the loss of segments from either L1 (Class I phenotype) or the 

pedipalpal segment (Class II phenotype), this suggests this Sox factor may regulate the 

two aforementioned gap genes as well as the prosomal expression of hairy in segments 

L2-L4. It will be interesting to test this further in the future to better understand prosomal 

segmentation.  

Secondary layers formation is decreased in Sox21b-1 knockdowns  

Another interesting effect of the Sox21b-1 knockdown in P. tepidariorum regards germ 

layer formation. In mammalians, sox2, a SoxB group gene, is responsible for the 
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maintenance of the ectodermal and neural progenitors (Zhang, 2014). Furthermore, sox2 

is dependent on tbx6 in order to induce the epiblast to form the caudal neural plate and 

the paraxial mesoderm (Takemoto et al., 2011), having thus a role in the differentiation of 

ectodermal progenitors to the EMT process, and then a control in the 

mesodermdifferentiating genes.  

I suggest that PtSox21b-1 is also upstream of mesodermal and endodermal 

differentiating genes in P. tepidariorum. This was shown by the loss of Pt-fkh expression 

in stage 5 embryos, and also apparent loss of Pt-twi in several regions of the embryo with 

the exception of anterior regions (Figure 4.6). Indeed, orthogonal projections show 

perturbation of secondary layers in stage 9 embryos (Figure 4.6 – K-N). At the cellular 

level, it was shown that the cells have a bigger nucleus and there is less cell division. So 

far in the literature, this is the first description of a SoxB gene regulating various aspects 

of segmentation in arthropods, and also that this control might be due to the intrinsic 

potential that this Sox group have in undifferentiated cells. Thus, functional analysis of 

SoxB orthologues in other species should be carried out to increase our knowledge of 

how these processes evolved in the different clades, and how they might have been 

coopted to control the process of layer formation in arthropods.  

Future Directions  

Chelicerates have been used for different aspects of research for a long time, and for 

embryology in particular (Montgomery, 1909; Holm, 1954; Abzhanov, 2001; McGregor et 

al., 2009; Hilbrant, 2012). Nowadays, studies of the common house spider P. tepidariorum 

are facilitated by the availability of genomic and transcriptomic resources  
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(Posnien et al., 2014; Schwager et al., 2017), and it was shown that the lineage leading 

to this species was subject to a WGD. There is much still to be learned about the 

development of this spider and how this compares to other animals as well as the 

consequences of WGD. While excellent tools already exist to study gene expression and 

function in this spider, including the ability to deliver in-vitro transcribed constructs like 

dsRNA and mRNA into the eggs (Schonauer et al., 2016; Pechmann, 2016), new tools 

need to be developed to utilise this organism further.  

 CRISPR/Cas9 has already proven to be a key breakthrough in functional genetics that 

has been applied to a range of different species in to tackle questions in the field of 

developmental biology (Gilles, 2015; Sun et al., 2017). The efficiency of this procedure is 

improved when the Cas9 protein and the sgRNAs expression is driven from endogenous 

promoters. I focused on the identification of a series of different promoters to produce 

constructs with the potential to drive the expression in spider embryos. Once this 

technique can be applied in P. tepidariorum, the understanding of regulation of duplicated 

genes (e.g. Sox family members) can be investigated further because it will be possible 

to tag the endogenous locus with fluorescent proteins, and thus evaluate their roles in the 

spider embryogenesis as well as to study their cis-regulatory regions.  

 This thesis further evidences that the WGD in chelicerates led to ontogenetic changes. 

However, this can only be understood if there are further studies of different species of 

this clade. Therefore, sequencing and analysing species such as the harvestmen and 

other arachnids that have not undergone a round of genomic duplication will provide 

important insights in the regulation of segmentation and neurogenesis, as well as many 

other features of embryogenesis in these animals.  



 

136  
  

   



    Materials and Methods  

____________________________________________________________  

137  
  

  

  

  

  

  

Material and Methods  
  

  

  

  

  

  

  

  

  

  

  

  

   

  



    Materials and Methods  

____________________________________________________________  

138  
  

2.1 Embryological Procedures   

  

If not stated otherwise, all procedures were carried out according to the manufacturer's guidelines.  

  

Spider Culture, Husbandry and Embryology  

The P. tepidariorum culture is kept in a temperature and humidity-controlled room (25°C and 50%, 

respectively) at Oxford Brookes University. Spiderlings (after their first moults) were kept in Petri 

dishes that contained a piece of moist Whatman paper to maintain the humidity and fed with D. 

melanogaster vestigial mutants. After a few weeks, when the sex can be morphologically 

determined, the juvenile spiders were transferred into individual containers capped with foam 

plugs (Greiner Bio-One), which contain wet coconut substrate (acquired from local pet shops) to 

maintain the humidity and temperature. At this stage the female spiders were fed with small 

crickets (Achaeta domestica – band 2 – Livefoods direct), whereas males were still fed with flies. 

Once the spiders reach sexual maturity, the female was transferred to a new vial, together with a 

male to enable mating. Fertilized P. tepidariorum females can produce up to two cocoons per 

week for at least two months. However, to produce high quality embryos, we only collected the 

first five cocoons of each female.   

 To visualise and stage embryos, a few embryos from each cocoon were transferred to Terasaki 

plates (Greiner Bio-One) under Halocarbon Oil 700 (Sigma-Aldrich – H8998), which results in the 

otherwise opaque embryos becoming transparent. Embryos were staged according to Mittmann 

and Wolff (2012).  

  

  
Fixation of Embryos and Ovaries  
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Embryos ranging from 1 nuclei blastoderm up to stage 12 were fixed as described in AkiyamaOda 

and Oda (2016), with minor modifications. Embryos before stage 5 were dechorionated with 

commercial bleach and fixed for 2 h in a two-layer fixative mix (1 ml 37% formaldehyde + 1 ml 2 

x PEMS buffer ((0.1 M PIPES, 2 mM EGTA, 1 mM MgSO4, pH 6.9)) and 2 ml heptane) in 20 ml 

scintillation vials. Embryos from stage 5 up to stage 12, were dechorionated in the same way, but 

were then covered with a shallow layer of Halocarbon Oil 700 and their vitelline membranes 

pierced with tungsten needles in the order to speed up the penetration of the fixative. This allows 

a decrease in the fixation time to 35 min, which helps to minimise autofluorescence that causes 

background signal in the stainings, and for easy removal of the yolk granules upon flat mounting 

in older stage embryos.   

For the dissection of ovaries, virgin females or mated spiders which have produced a 

cocoon in the last 2 days, were anesthetized with CO2 and the ovaries dissected in dishes 

containing PBS-t. The ovaries were fixed in 4% formaldehyde in PBS for 2 h.   

To stop fixations, embryos and ovaries were washed in 0.1% PBS-t (PBS supplemented 

with 0.1% Tween-20) three times, and depending on the subsequent usage, gradually transferred 

to 100% MeOH (chromogenic in situ hybridization) or 100% EtOH (fluorescent in situ hybridization 

and immunohistochemistry).  

  

  

  

  
2.2 Molecular Biology Procedures  
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Identification and annotation of P. tepidariorum Hes, Sox and other genes tBLASTN 

searches of the P. tepidariorum genome were performed with the bHLH domain of D. 

melanogaster for the HES genes (UniProtKB – P14003) and the HMG domain of mouse Sox2  

(UniProtKB - P48432) at http://bioinf.uni-greifswald.de/blast/P./blast.php. Four members of the 

HES gene family, namely HES-1 (formerly annotated as hairy in McGregor et al, 2008A), HES-2, 

HES-4 and HES-7 and fourteen Sox family genes were identified in the spider transcriptome. In 

addition, two bHLH-containing genes annotated as acute-scute-lethal complex (Ash1 and Ash2) 

were identified.  

To identify the phylogenetic relationships of P. tepidariorum Sox genes, the HMG domains 

of Anopheles gambiae, Mus musculus, D. melanogaster, P. tepidariorum and S. mimosarum Sox 

genes were aligned with ClustalW (Paese et al., 2018). Phylogenetic analysis was performed in 

RAxML, with support levels estimated by implementing the rapid bootstrap algorithm (1000 

replicates) (Stamatakis et al., 2008), under the PROTGAMMALG model of amino acid  

substitution, which was identified as best fitting using a custom Perl script from the Exelixis Lab 

website (https://sco.h-its.org/exelixis/web/software/raxml/hands_on.html).  

Putative regulatory regions of ubiquitously expressed genes were retrieved with the Neural  

Network  Promoter  Prediction  (BDGP  –  University  of  California  Berkeley  -  

http://www.fruitfly.org/seq_tools/promoter.html) using a minimal promoter score of 0.9 (scores are 

from 0 to 1, with higher being more reliable), and the Genomatix Gene2Promoter software 

(http://www.genomatix.de).  

  

  
Genomic DNA, Total RNA Extraction and cDNA synthesis  

http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
http://bioinf.uni-greifswald.de/blast/parasteatoda/blast.php
https://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
https://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
https://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
https://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
http://www.fruitfly.org/seq_tools/promoter.html
http://www.fruitfly.org/seq_tools/promoter.html
http://www.genomatix.de/
http://www.genomatix.de/
http://www.genomatix.de/
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Embryos ranging from stage 1 to stage 12 were carefully placed in 1.5 ml Eppendorf tubes, and 

both genomic DNA or total RNA was extracted with the RecoverAll Total Nucleic Acid Isolation kit 

(ThermoFisher Scientific) and eluted in 20 µl of dH2O. 1 µg of the eluted total RNA was used to 

synthesize the complementary DNA with the QuantiTech Reverse Transcription kit (Qiagen).  

  

Gene Isolation from cDNA and genomic DNA  

Fragments of genes were isolated with PCR for in situ hybridization probe synthesis or 

doublestranded RNA synthesis (all oligonucleotide sequences used are listed in Table 1). 

Genomic DNA was used for the isolation of putative regulatory regions. The underlined sequences 

for dsRNA synthesis correspond to the T7 promoter sequence, which enables in-vitro transcription 

of PCR fragments without the need for molecular cloning. The underlined sequences for the 

putative promoters are the overhangs used for Gibson Assembly cloning.  

Table 1. List of primers used in this research.  
Oligonucleotide name  Sequence (5’ to 3’)  

 In situ Hybridization probes - Cloning  

Ash1_fw  

Ash1_rv  

Ash2_fw  

Ash2_rv  

  

Caudal_fw  

ATG ACG ACG CTA ACA GTC TTA GAA AAT TTA  

TTA AGA AAG CCA CGT TGT GAA GTC GA  

ATG GCT TCC TTG ACG CTT CTG AAT  

TCA AAA CCA ATT GGC GAA ATC CAT CAA AT  

  

CCC ATG CGG AGT TAT GGA CA  
Caudal_rv  GTC CTG GTT CTG CCT GGA TT  

Dfd_A_fw  CCC CTG TAA GTT ATG GCC C  

Dfd_A_rv  AGC ACT GGG TTG CTG TTT CT  
Dpp_fw  ATG CGC CAG CGC ATT TGG GCT  

 
Dpp_rv  ACG GCA ACC ACA TCC TTC AAC AAC  
Delta_fw  CTG TCG TTT GGG TTG GCA AG  
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Delta_rv  CCC CAT TGA GGC ATG GTT CT  

Engrailed_fw  ATG ATA CCA ATG AGA ACT CGA  

Engrailed_rv  CCA TTA ATT GCA ATG CCA GT  

Ets4_fw  AGG TCC ACC TCC CTA TGT  

Ets4_rv  ACG CTC AAC GTC ACA GGA  

Fkh_fw  CAT GCC CAT GTC CCT CAA C  

Fkh_rv  AAG CGT TTT TGG CGC CTT AG  

Hairy_fw  AAA TAC GGC CAC AGT CAG GG  

Hairy_rv  ATC CGA GCT TAT GCT CAC CG  

Hedgehog_fw  GTG CCT GGC CGC ATT AGT G  

Hedgehog_rv  TGA GTC ACC ATC GAA ACA TC  

Labial_fw  GGA CAA CTA CGT GCA GGA CA  
Dichaete_fw  

Dichaete_rv  

Sox21a_fw  

Sox21a_rv  

Sox21b_fw  

Sox21b_rv  

SoxN_fw  

SoxN_rv  

SoxB1_fw  

SoxB1_rv  

SoxC1_fw  

SoxC1_rv  

SoxC2_fw  

SoxC2_rv  

SoxD1_fw  

SoxD1_rv  

AGC TGA AAC AGA CGC TCC TC  

AAG AAAGAC GCC GAA CGA GT  

CTT GGA GGC ACA GGT TTT GC  

TTT TCA GCA GGA TCC ACC CC  

GCA TAT GCT GCA CCC TCA ATC  

ACC TGC AAT TAA TGA AGC GCC  

AAA GCA GCA GGA TGA GCT AC  

GCT GAG AGG CTA AGG TGC AA  

CGT ATT GGT GGT GAG GTG CT  

TAT GGT TTG GGC TCA GGC AG  

CAC TGT TCG TCC ATG AGG CT  

GGT TGT TAC AGT GGG AGC GA  

TTG CAG TGG TAG GTT GAG GC TGG 

GGG AGC TCT TCG ACA TA  

GTG GAC GGG GCT TTA GTC AA  

CGT CCC CGA CGA AAA CCT AA  
SoxD2_fw  CGG GGA ACA CTG ATG TTG GA  
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SoxD2_rv  GCG CTG CAC ATG AAA GAA CA SoxE1_fw  CGG ACT 

CTG TGG TAC CG  

SoxE2_rv  AAG CAG AAC GTC TCC GAC AG  

SoxF1_fw  TTG AAG CAG CAG AGA GAG CC  
SoxF1_rv  

SoxF2_fw  TGG CGA TCA CGT TAA GAG GC  

SoxF2_rv  GTG GGA AAG TAC GTC GGA GG  

Sox21b1_fw  AGG CCT TCA AAT CAA CGA GAC T  

AGC GCA GAA GTA ACT GAT GGA  

Sox21b1_rv  ATG CAA GCT CCG CAA ATC GTA CAA AA  

Twist_fw  TTA CAT CTG TAA TGG CAT GCC ACG  

Twist_rv  ACG TTA GGA CGA ATC CAC TG  

Wnt8_fw  CTG GGC TCT CTG AAC CTG  

Wnt8_rv  CTA TGC AGA CAG CGT TGC TAT TG  

Hairy (HES-1)_fw  AAA CGT CGA AGG GCT CGA A  

Hairy (HES-1)_rv  GGT CAC TTG ATG CAG GAC T  

HES_2_fw  AAA ACG AAG ACG AGC ACG C  

HES_2_rv  GAA TTC ACC GTT CGG CAA C  

HES_4_fw GCG CAC GTG AAG TTG ATC TC HES_4_rv CAA CTC GCT 

GCT GAC AAT GG  

HES_7_fw  TCG GCT AAA CCG ACA CCT ATG  

HES_7_rv  GGC TGT TGA AGA GTC TGG CT  

  

dsRNA Synthesis  

    

Dl_dsRNA_fw  TAATACGACTCACTATAGG ATGTAAGCGAGTTCTGGACTCAAGACA  

Dl_dsRNA_rv  TAATACGACTCACTATAGG CACGTTCCTCCATTAGAGCACGGCTTG  

GFP_dsRNA_fw  TAATACGACTCACTATAGG CGTGTCCGGCGAGGGCGAGGG  

GFP_dsRNA_rv  TAATACGACTCACTATAGG AGGACCATGTGATCGCGCT  
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Sox21b1_dsRNA_F1_fw TAATACGACTCACTATAGG ATGCAAGCTCCGCAAATCGTAC 
Sox21b1_dsRNA_F1_rv  TAATACGACTCACTATAGG AGAAGAGGCAGGATAGCCGC  

Sox21b1_dsRNA_F2_fw TAATACGACTCACTATAGG TCAAGTGTCTGGATCAGCAGC  

Sox21b1_dsRNA_F2_rv  TAATACGACTCACTATAGG TTACATCTGTAATGGCATGCCAC  

Wnt8_dsRNA_fw  TAATACGACTCACTATAGG CTATGCAGACAGCGTTGCTATTG  

Wnt8_dsRNA_rv  TAATACGACTCACTATAGG GGTGAAATTTCATTGTAGATTAGCTGG  

  

Putative Regulatory Region Isolation  
  

Act5_eGFP_fw  

Act5_eGFP_rv  

Pub_eGFP_fw  

Pub_eGFP_rv  

Tub_eGFP_fw  

Tub_eGFP_rv  

Hsp_eGFP_fw  

Hsp_eGFP_rv  

Vasa_eGFP_fw  

Vasa_eGFP_rv  

  

TTGCTGGTTCTAGTAGTGGT ATGGTGAGCAAGGGCGAGG  

TATTAAATTTTTAAAGTCAT  TTACTTGTACAGCTCGTCCATGC  

AAAATTTGATTTTTTTACACAGGGC  ATGGTGAGCAAGGGCGAGG  

CTTTACTGATTCATTTTGGTCAGCC TTACTTGTACAGCTCGTCCATGC  

AAGAAAACTCTATTTCAAATCAACT  ATGGTGAGCAAGGGCGAGG  

TATGAACAAGACATCTTTTTGAAAA  TTACTTGTACAGCTCGTCCATGC  

AAAAAATTATCTAATATACATTAAA  ATGGTGAGCAAGGGCGAGG  

TCACAAAGCATAGTTCGGAATGATC TTACTTGTACAGCTCGTCCATGC  

CTTAGTTTCTCATCAATCACCTAAA  ATGGTGAGCAAGGGCGAGG  

TTTTTATAGTCAATAAACAGTATCT  TTACTTGTACAGCTCGTCCATGC  
 

  

    

For the Polymerase Chain Reaction (PCR) a HiFi Polymerase (PCR Biosystems) was used in the 

following mixture:  

 
5 x PCRBio Buffer      - 10 µl  

10 µM Forward Primer     - 2 µl  

10 µM Reverse Primer    - 2 µl  

Template DNA (100 to 500 ng)  - x  
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HiFi Polymerase       - 0,5 µl  

dH2O          - to 50 µl   

PCR program:  

  

  

1x  

95 °C        
  1 min        Initial denaturation  

25 to 35x      

95 °C         15 sec       Denaturation  

55 °C to 65°C     15 sec       Annealing  

72 °C         30 sec/kb      Extension  

4 °C          indefinite      Cool down  

  

 The final product was loaded on a 1% agarose gel, the specific band extracted and purified with 

the NucleoSpin Gel and PCR cleanup kit (Machery-Nagel).  

  

Molecular Cloning and Gibson Assembly  

The purified PCR product was used for molecular cloning with the pCR4-TOPO kit (Invitrogen, 

Life Technologies), transformed into OneShot TOP10 chemically competent cells (Invitrogen) and 

plated on Luria-Bertani (LB) plates supplemented with both Kanamycin or Ampicillin. For rapid 

ligation into the vector without the need to use a ligase enzyme, Gibson Assembly (New England 

Biolabs) was used instead. An equimolar mixture of the PCR product and the digested vector in 
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the Gibson assembly mix was incubated for 60 min at 50 °C and subsequently transformed into 

OneShot TOP10 cells, according to the manufacturer’s protocol.   

  
Colony-Check PCR and Overnight Cultures  

8 to 10 colonies were picked with a 10 µl pipette tip and placed into PCR tubes containing a 10 µl 

OneTaq 2 x PCR MasterMix (New England Biolabs) and the products were loaded in a 1% 

agarose gel. Positive colonies were grown in liquid LB medium (100 µg/ml), substituted with the 

required antibiotic, overnight at 37 °C. Mini or Midi preparations of the plasmid were made with 

EZNA Plasmid Mini Kit I (VWR) following the manufacturer’s protocol and sent for Sanger 

sequencing (Eurofins Genomics). The sequences were later analysed with both ClustalW or in 

the Benchling platform.  

  

Antisense Labelled RNA Probe Synthesis  

RNA probes were labelled with Digoxigenin (Roche) or Fluorescein (Roche) and synthesised 

using either T7 or T3 polymerases following the manufacturer’s protocol (Roche). The RNA 

probes were cleaned up using lithium chloride precipitation and resuspended in 25 µl of dH2O.  

  

Whole Mount in situ Hybridization  

To visualise transcript expression in P. tepidariorum whole mount embryos, in situ hybridization 

was performed with previously described protocols with minor modifications (Akiyama-Oda & 

Oda, 2003; Schönauer, 2016). Minor modifications for to the fixation process is described above, 

but the post-fixations and proteinase K treatment were also omitted, and antibody incubation was 

limited to 2 h. Fluorescent in situ hybridization was performed following Oda (2016). However, 

Tyramide Signal Amplification (TSA) was performed with TSA kits from PerkinElmer (TSA 
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Fluorescein and TSA Cyanine). Poly-L-lysine (Sigma-Aldrich) coated coverslips were used for 

flat-mounting embryos. Nuclei were stained by incubating embryos in 1 μg/ml 4-6-diamidino-

2phenylindol (DAPI) in PBS with 0.1% Tween-20 for 15 min.  

Immunohistochemistry  

Immunostaining was carried out following Schwager et al. (2015) with minor modifications: 

antibodies were not pre-absorbed prior to incubation and the concentration of Triton was 

increased to 0.1%. The following primary antibodies were used: mouse anti-α-Tubulin DM1a  

(Sigma) (1:50), rabbit α cleaved caspase 3 (Cell Signaling - 9661) (1:200) and rabbit Antiphospho-

Histone H3 (Ser10) (Merck Millipore - 06-570). For detection the following secondary antibodies 

were used: donkey anti-mouse IgG Alexa Fluor 555 (Invitrogen) and goat anti-rabbit  

Alexa Fluor 647 (Invitrogen). The counterstaining was carried out by incubation in 1 μg/ml 4-

6diamidino-2-phenylindol (DAPI) in PBS + Triton 0,1% for 20 minutes.  

  

dsRNA synthesis and Parental RNA interference  

Double stranded RNA (dsRNA) for parental RNA interference was synthesized according to  

Akiyama-Oda & Oda (2003) and injected following the standard protocol from Schönauer et al. 

(2016). Two non-overlapping fragments of P. tepidariorum Sox21b-1 were isolated from the 1134 

bp coding sequence of the gene: fragment 1 spanning 549 bp and fragment 2 covering 550 bp. 

Double stranded RNA for P. tepidariorum Dl (853 bp), Wnt8 (714 bp) and the coding sequence of 

GFP (720 bp) as used previously (Akiyama-Oda & Oda, 2006), were transcribed using the same 

method. Synthesis of double stranded RNA was performed using the MegaScript T7 transcription 

kit (Invitrogen). After purification the dsRNA transcripts were annealed in a water bath starting at 

95°C and slowly cooled down to room temperature.  dsRNA was injected at 2.0 μg/μl in the 

opisthosoma of adult females every two days, with a total of five injections (n = 7 for each dsRNA; 
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n= 2 for GFP controls). The injected spiders were mated after the second injection and embryos 

from injected spiders were fixed for gene expression and phenotypic analyses at three different 

time points: stage 4 (cumulus formation), stage 5 late (germ disc with migrating cumulus) and 

stage 9 (head and limbs bud formation).  

Imaging, Live Imaging and Image Analysis  

For imaging of flat-mounted embryos after in situ hybridisation an AxioZoom V16 

stereomicroscope (Zeiss) equipped with an Axiocam 506-Mono and a colour digital camera were 

used. Immunostained embryos were imaged with Zeiss LSM 800 or 880 with Airyscan confocal 

microscopes. For live imaging, embryos were aligned on heptane glue coated coverslips and 

submersed in a thin layer of halocarbon oil. Bright-field live imaging was performed using an 

AxioZoom V16 stereomicroscope, while fluorescence live imaging was performed with confocal 

microscopes. Image stacks were processed in Fiji (Schindelin et al., 2012) and Helicon Focus 

(HeliconSoft). Image brightness and intensity was adjusted in Corel PhotoPaint X5 (CorelDraw)  

and Fiji.  
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