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Abstract 

An innovative technique, called conversion, is introduced to model circumferential cracks in thin cylindrical shells. 

The semi-analytical finite element method is applied to investigate the modal deformation of the cylinder. An element 

including the crack is divided into three sub-elements with four nodes in which the stiffness matrix is enriched. The 

crack characteristics are included in the finite element method relations through conversion matrices and a rotational 

spring corresponding to the crack. Conversion matrices obtained by applying continuity conditions at the crack tip are 

used to transform displacements of the middle nodes to those of the main nodes. Moreover, another technique, called 

spring set, is represented based on a set of springs to model the crack as a separated element. Components of the 

stiffness matrix related to the separated element are incorporated while the geometric boundary conditions at the crack 

tip are satisfied. The effects of the circumferential mode number, the crack depth and the length of the cylinder on the 

critical buckling load are investigated. Experimental tests, ABAQUS modeling and results from literature are used to 

verify and validate the results and derived relations. In addition, the crack effect on the natural frequency is examined 

using the vibration analysis based on the conversion technique.  
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1. Introduction 

A number of numerical methods, including the finite element method (FEM), the extended finite element method 

(XFEM), Meshfree, etc., have been developed to analyze discontinuous structures, e.g. [1-7]. Discrete spring models 

are an alternative created based on relations between the energy release rate and the stress intensity factors [8-12]. 

This discrete spring model has been used to analyze different engineering problems of cracked beams see e.g. [13-
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15]. Alijani et al. [16-18] presented a novel technique in the finite element method to include cracks into a beam 

element. They enriched components of the stiffness matrices by using crack properties modeled as a rotational spring.   

The modal deformation of shells is important in engineering applications. The semi-analytical finite element is an 

efficient method in modal deformation analysis. Alijani et al. [19] and [20] introduced a new semi-analytical nonlinear 

finite element formulation according to a continuum-based approach to analyze the post-buckling of thin cylindrical 

shells under mechanical and thermal loads. Akrami and Erfani [21] investigated the critical buckling load for a 

circumferentially cracked cylindrical shell in which the cylinder and the crack are modeled as a beam-column on an 

elastic foundation and the rotational spring, respectively. Delale and Erdogan [22] proposed an approximate solution 

for a cylindrical shell containing a part-through surface crack assumed as circumferential or semi-elliptic. Ezzat and 

Erdogan [23] compared the experimental and theoretical results after discussing the analytical techniques used in 

modeling the problem of fatigue crack propagation of a cylindrical shell containing a circumferential flaw. Moradi 

and Tavaf [24] used the differential quadrature method combined with an evolutionary optimization algorithm to 

detect the crack position in cylindrical shell structures, where a circumferential crack is modeled by a rotational spring. 

Naschie [25] represented an initial post-buckling analysis for a simply supported concrete cylinder containing a 

circumferential crack. An eigenvalue buckling analysis [26] was carried out to investigate the effects of various 

parameters of cracked functionally graded cylindrical shells in the framework of the extended finite element method. 

Natarajan et al. [27] and [28] represented numerical solution and advanced discretization techniques in the buckling 

analysis of discontinuous thin-walled structures. In the aforementioned research works, some methods including 

analytical, approximate and numerical have been used to address the buckling problem of discontinuous structures.  

In the present paper, a semi-analytical finite element method is initially applied to involve a circumferential crack 

in a thin cylindrical shell. Two techniques are used to enrich the stiffness matrix. The first technique, which was 

already applied for the analysis of cracked beams called the conversion technique [16-18], has been originally 

implemented to formulate the finite element relations for the cracked cylindrical shell.  The second technique, called 

spring set, is applied by considering the crack as an element, whose stiffness matrix is assembled with the standard 

stiffness matrices of other elements. The analytical method to involve the crack in the structure corresponding to the 

second technique can be found in, e.g. [21]. The main motivation in this research is to investigate the results of the 

two techniques and to express the priority or the weakness of those. Furthermore, an investigation is performed to 

represent the advantages and drawbacks of the semi-analytical finite element method when different cracks are 

incorporated within the cylinder. A buckling analysis is carried out to compare the results of two techniques. Also, the 

effects of the geometry of the cylinder, the crack depth and the crack position on the critical buckling load are 

evaluated. Moreover, the vibration analysis is conducted to investigate the influence of the circumferential crack on 

the natural frequency.  

 

2. Model 

An isotropic thin cylindrical shell with a circumferential crack is considered in the analysis as shown in Fig. 1. 

The cylinder is modeled by the one-dimensional model in the framework of the semi-analytical finite element method. 
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Moreover, the crack is modeled by using a rotational spring corresponding to geometric and material characteristics 

of the crack.  

 

(a) 

 

(b) 

Fig. 1 Cracked cylindrical shell: a) geometric parameters; b) longitudinal cross-section.  

 

2.1.  Modeling of the crack 

Fig. 2 shows a cylindrical shell including the crack modeled by a rotational spring. Many research works on beams 

and cylinders have been carried out to present relations between the stiffness factor of the rotational spring and the 

crack characteristics, see e.g. [13] and [22]. The investigations show that different relations presented in the references 

to determine the stiffness factor of the rotational spring result in similar outputs. 

 

 

(a) 

  

(b) 

Fig. 2 Crack in the cylinder: a) circumferential cracked cylinder; b) rotational spring model  

Accordingly, equations presented by Yokoyama and Chen [13], which have already been used in the analysis of  

a cracked Euler-Bernoulli beam, are employed to model the crack as a circumferentially distributed rotational spring 

for the cylindrical shell by considering 𝑏 = 2𝜋𝑅 and 𝜇 =
𝑎

ℎ
. 

𝐾I =
6𝑀𝑥

𝑏ℎ2
√𝜋𝑎𝐹𝑀(𝜉)          𝑓𝑜𝑟 0 ≤ 𝜇 ≤ 0.6 (1a) 
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𝐾I =
3.99𝑀𝑥

𝑏ℎ √ℎ √(1 − 𝜇)3
       𝑓𝑜𝑟 0.6 < 𝜇 < 1.0 (1b) 

in which 𝑀𝑥 is the bending moment and 

𝐹𝑀(𝜇) = √(
2

𝜋𝜇
) tan

𝜋𝜇

2

0.923 + 0.199[1 − 𝑠𝑖𝑛 (
𝜋𝜇
2
)]4

cos (
𝜋𝜇
2
)

 (1c) 

The range of 𝜇 =
𝑎

ℎ
 for the research applications has been given in [13] and [21] . The stiffness factor of the 

spring is obtained as follows 

1

𝑘𝑠
=
2𝑏(1 − 𝑣2)

𝐸
∫ (

𝐾I
𝑀𝑥

)
2

𝑑𝑎
𝑎

0

 (2) 

 

2.2.  Modeling of cylinder 

A one-dimensional model based on the semi-analytical finite element method is used in the analysis. The semi-

analytical finite element method is formulated by one-dimensional elements in the axial direction, the first-order shear 

deformation theory in the radial direction and Fourier series in the circumferential direction [29-31].  

The modal deformation can be formulated as follows  

𝑢(𝑥, 𝜃) = 𝑢𝑒cos (𝑛𝜃) 

(3) 
𝑣(𝑥, 𝜃) = 𝑣𝑒sin (𝑛𝜃) 

𝑤(𝑥, 𝜃) = 𝑤𝑒cos (𝑛𝜃) 

𝜙(𝑥, 𝜃) = 𝜙𝑒cos (𝑛𝜃) 

The governing equations and the description of the terms in Eq. (3) can be found in Appendix A. Uncracked 

elements, so-called standard elements, are assumed to have two nodes and eight degrees of freedom as shown in Fig. 

3.  

 

Fig. 3 Degrees of freedom for an intact element  

The displacement field, shape functions and isoparametric formulation are described in Appendix B. The kinematic 

equations are established by the Kirchhoff hypotheses in the theory of cylindrical shells [32] as  



5 
 

𝜺𝐿 =

{
 
 

 
 
𝜀𝑥0
𝜀𝜃0
𝛾𝑥𝜃0
𝜅𝑥
𝜅𝜃
𝜅𝑥𝜃 }

 
 

 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢

𝜕𝑥
1

𝑅
(
𝜕𝑣

𝜕𝜃
− 𝑤)

1

𝑅

𝜕𝑢

𝜕𝜃
+
𝜕𝑣

𝜕𝑥
𝜕2𝑤

𝜕𝑥2

1

𝑅2
(
𝜕𝑣

𝜕𝜃
+
𝜕2𝑤

𝜕𝜃2
)

1

𝑅
(
𝜕𝑣

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥𝜕𝜃
)
}
 
 
 
 
 
 

 
 
 
 
 
 

 (4) 

The desired form of the strain in the finite element analysis is when derivatives of the shape functions and the 

nodal displacement are separated as 

{
 
 

 
 
𝜀𝑥0
𝜀𝜃0
𝛾𝑥𝜃0
𝜅𝑥
𝜅𝜃
𝜅𝑥𝜃 }

 
 

 
 

=

{
  
 

  
 
𝑩𝑥cos(𝑛𝜃)�⃗� 

𝑩𝜃cos(𝑛𝜃)�⃗� 

𝑩𝑥𝜃sin(𝑛𝜃)�⃗� 

𝑩𝜅𝑥cos(𝑛𝜃)�⃗� 

𝑩𝜅𝜃cos(𝑛𝜃)�⃗� 

𝑩𝜅𝑥𝜃sin(𝑛𝜃)�⃗� }
  
 

  
 

 (5) 

which components of 𝑩 can be found in Appendix C.  

The first-order shear deformation theory is utilized to relate the strains of the neutral axis and those of other points 

as 

𝜺 = {

𝜀𝑥
𝜀𝜃
𝛾𝑥𝜃

} = {

𝜀𝑥0 − 𝑧𝜅𝑥
𝜀𝜃0 − 𝑧𝜅𝜃

𝛾𝑥𝜃0 − 2𝑧𝜅𝑥𝜃
} (6) 

 The constitutive equation in a thin cylinder is given as 

𝝈 = {

𝜎𝑥
𝜎𝜃
𝜏𝑥𝜃

} =

[
 
 
 
 

𝐸

1 − 𝜈2
𝜈𝐸

1 − 𝜈2
0

𝜈𝐸

1 − 𝜈2
𝐸

1 − 𝜈2
0

0 0 𝐺]
 
 
 
 

{

𝜀𝑥
𝜀𝜃
𝛾𝑥𝜃

} (7) 

The strain energy of an element can be obtained as follows 

𝑈 =
1

2
∫𝝈 ∙ 𝜺𝑑𝑉 (8a) 

whose stiffness matrix is extracted from the strain energy in the following form   

𝑈 =
1

2
𝒖𝑇𝒌𝒖 (8b) 

in which the stiffness matrix is obtained as 

𝒌 = ∫𝑩𝑇𝑫𝑩𝜋𝑅
𝑙

2
𝑑𝜉

1

−1

 (9) 

Moreover, the kinetic energy of an element can be computed as 
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𝐾𝐸 =
1

2
𝜌∫(�̇�2 + �̇�2 + �̇�2)𝑑𝑉 (10a) 

in which 𝜌 is the density. The kinetic energy can be written in the form of 

𝐾𝐸 =
1

2
�̇�𝑻𝒎�̇� (10b) 

The mass matrix is derived using  

𝒎 =
𝜌

2
∫𝑵𝑇𝑵𝜋𝑅

𝑙

2
ℎ𝑑𝜉

1

−1

 (11) 

𝑫, 𝑩 and 𝑵 are given in Appendix D. 

 

2.3. Buckling analysis 

An eigenvalue solution is applied in the linear buckling analysis in which two main parameters are the assembled 

stiffness matrix and geometric stiffness matrix. 

|𝑲 + 𝜆𝑲𝐺| = 0 (12) 

The global geometric stiffness matrix, 𝑲𝐺, is obtained by considering the nonlinear strain and initial stress in the 

structure. The nonlinear strain is given as 

𝜺𝑁𝐿 =

{
  
 

  
 
1

2
(
𝜕𝑤

𝜕𝑥
)
2

1

2
(
𝜕𝑤

𝑅𝜕𝜃
)
2

1

𝑅

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝜃 }
  
 

  
 

 (13) 

The stress tensor corresponding to Eq. (7), which is used in the determination of the geometric stiffness matrix, is 

written as  

𝝈 = [
𝜎𝑥 𝜏𝑥𝜃
𝜏𝑥𝜃 𝜎𝜃

] (14) 

Considering Eqs. (13) and (14), the geometric stiffness matrix of an element is given by 

𝒌𝐺 = ∫𝑮
𝑇𝝈𝑮𝑑𝑉 (15) 

which 𝑮 can be found in detail by [19], [29] and [33]. 

2.4. Vibration analysis 

The vibration analysis is used to determine the natural frequency of the cylinder. An eigenvalue solution to specify 

the natural frequency is as follows 

|𝑲 −𝑴𝜔2| = 0 (16) 

in which 𝑴 is the global mass matrix. It is assumed that no change is made in components of the matrix due to the 

crack. In other words, the mass matrix is independent from the crack effect.  
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3. Description of techniques 

Two techniques are implemented to quantify the crack effects in the analysis. The first one, which is originally 

applied for a cylindrical shell, is formulated based on the conversion matrix technique. On the other side, the second 

technique is introduced based on the definition of a stiffness matrix at the crack point through a set of springs equaled 

with the crack parameters. The crack parameters are involved in the global stiffness matrix when the stiffness matrix 

of the set of springs and stiffness matrices of the standard elements of the cylinder are assembled.  

 

3.1.  Conversion technique  

This technique, which was already applied over cracked beams [16-18], is implemented by dividing a cracked 

element into three parts including two sub-elements and a rotational spring. The finite element method is used to 

obtain the enriched stiffness matrix from the strain energy of the three parts. Therefore, a cracked element as shown 

in Fig. 4 includes four nodes in which displacements of two middle nodes are obtained in terms of the two other nodes 

by considering continuity conditions.  

 

Fig. 4 Sub-elements and degrees of freedom for a cracked element in conversion matrix technique  

The boundary conditions should be satisfied at the crack point in which displacements and loads in two sides of 

the crack point are related to each other as  

𝑢2 = 𝑢3 (17a) 

𝑣2 = 𝑣3 (17b) 

𝑤2 = 𝑤3 (17c) 

𝑁𝑥𝑇(𝑥0) = 𝑁𝑥𝐵(0) (17d) 

𝑁𝑥𝜃𝑇(𝑥0) = 𝑁𝑥𝜃𝐵(0) (17e) 

𝑀𝑥𝑇(𝑥0) = 𝑀𝑥𝐵(0) (17f) 

𝜙2 + 𝜙𝑠 = 𝜙3 (17g) 

𝑄𝑥𝑇(𝑥0) = 𝑄𝑥𝐵(0) (17h) 

where forces and moments in the top and bottom sub-elements are denoted with T and B subscripts, respectively, in 

which [32] 

𝑁𝑥(𝑢(𝑥, 𝜃), 𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) =
𝐸ℎ

1 − 𝜈2
(
𝜕𝑢

𝜕𝑥
+
𝜈

𝑅
(
𝜕𝑣

𝜕𝜃
− 𝑤)) (18a) 
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𝑁𝜃(𝑢(𝑥, 𝜃), 𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) =
𝐸ℎ

1 − 𝜈2
(
1

𝑅
(
𝜕𝑣

𝜕𝜃
− 𝑤) + 𝜈

𝜕𝑢

𝜕𝑥
) 

𝑁𝑥𝜃(𝑢(𝑥, 𝜃), 𝑣(𝑥, 𝜃)) =
𝐸ℎ

2(1 + 𝜈)
(
𝜕𝑣

𝜕𝑥
+
1

𝑅

𝜕𝑢

𝜕𝜃
) 

𝑀𝑥(𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+
𝜈

𝑅2
(
𝜕𝑣

𝜕𝜃
+
𝜕2𝑤

𝜕𝜃2
)) 

𝑀𝜃(𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) = −𝐷 (
1

𝑅2
(
𝜕𝑣

𝜕𝜃
+
𝜕2𝑤

𝜕𝜃2
) + 𝜈

𝜕2𝑤

𝜕𝑥2
) 

𝑀𝑥𝜃(𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) = −𝐷
(1 − 𝜈)

𝑅
(
𝜕𝑣

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥𝜕𝜃
) 

𝑄𝑥(𝑣(𝑥, 𝜃), 𝑤(𝑥, 𝜃)) =
𝜕𝑀𝑥

𝜕𝑥
 

and 

𝐷 =
𝐸ℎ3

12(1 − 𝜈2)
 (18b) 

The relation of 𝑄𝑥 is written by neglecting the effect of the torsional moment, 𝑀𝑥𝜃 , in the shear force. Two other 

continuity equations (i.e., 𝑁𝜃𝑇(𝑥0) = 𝑁𝜃𝐵(0) and 𝑀𝜃𝑇(𝑥0) = 𝑀𝜃𝐵(0)) are dependent equations that yield similar 

relations to Eq. (17). Applying these boundary conditions gives two conversion matrices that are used to derive the 

stiffness matrix of the cracked element. Eight independent continuity conditions, Eq. (17), are applied to determine 

the displacements of the middle nodes (𝑢2, 𝑣2, 𝑤2, 𝜙2, 𝑢3, 𝑣3, 𝑤3, 𝜙3) with respect to displacements of the main 

nodes(𝑢1, 𝑣1, 𝑤1, 𝜙1, 𝑢4, 𝑣4, 𝑤4, 𝜙4).  It can be represented as follows 

�⃗� 𝑇 = 𝑪𝑇�⃗�  (19a) 

�⃗� 𝐵 = 𝑪𝐵�⃗�  (19b) 

in which �⃗� 𝑇and  �⃗� 𝐵 are denoted as the displacement vector of top and bottom sides sub-elements, respectively, and �⃗�  

is the displacement vector of the cracked element. These vectors are defined as �⃗� 𝑇 = [𝑢1, 𝑣1, 𝑤1, 𝜙1, 𝑢2, 𝑣2, 𝑤2, 𝜙2]
𝑇 , 

�⃗� 𝐵 = [𝑢3, 𝑣3, 𝑤3, 𝜙3, 𝑢4, 𝑣4, 𝑤4, 𝜙4]
𝑇and �⃗� = [𝑢1, 𝑣1, 𝑤1, 𝜙1, 𝑢4, 𝑣4, 𝑤4, 𝜙4]

𝑇. 𝑪𝑇 and 𝑪𝐵 are called conversion 

matrices related to top and bottom sides sub-elements, respectively, described in Appendix E.   

The conversion matrix technique is an energy-based technique in which the stiffness matrix of a cracked element 

is obtained by strain energies of two sub-elements and the rotational spring. This stiffness matrix is enriched through 

crack characteristics equaled in the spring. The sum of the strain energies in the cracked element is 

𝑈 = 𝑈𝑇 + 𝑈𝐵 + 𝑈𝑠𝑝 (20a) 

Considering Eq. (8b) yields 

1

2
�⃗� 𝑇𝒌𝒄𝒓�⃗� =

1

2
�⃗� 𝑇
𝑇𝒌𝑇�⃗� 𝑇 +

1

2
�⃗� 𝐵
𝑇𝒌𝐵�⃗� 𝐵 +

1

2
𝑘𝑠(𝜙3 − 𝜙2)

2 (20b) 

Rotations of 𝜙2and 𝜙3can be written in terms of displacements of main nodes as 

𝜙2 = 𝑪𝑇𝜙2�⃗�  (21a) 

𝜙3 = 𝑪𝐵𝜙3 �⃗�  (21b) 
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in which 𝑪𝑇𝜙2and 𝑪𝐵𝜙3are eighth row of the top conversion matrix and fourth row of the bottom one, respectively. 

Therefore, the stiffness matrix of a cracked element is determined by the substitution of Eqs. (19) and (21) into (20b)  

𝒌𝒄𝒓 = 𝑪𝑇
𝑇𝒌𝑇𝑪𝑇 + 𝑪𝐵

𝑇𝒌𝐵𝑪𝐵 + 𝑘𝑠(𝑪𝐵𝜙3 − 𝑪𝑇𝜙2)
𝑇
(𝑪𝐵𝜙3 − 𝑪𝑇𝜙2) (22) 

Eq. (9) is used to obtain the top and bottom stiffness matrices (i.e., 𝒌𝑇 and 𝒌𝐵). An analogous way results in the 

determination of the geometric stiffness matrix 

𝒌𝐺𝑐𝑟 = 𝑪𝑇
𝑇𝒌𝐺𝑇𝑪𝑇 + 𝑪𝐵

𝑇𝒌𝐺𝐵𝑪𝐵  (23) 

where the top and bottom geometric stiffness matrices, 𝒌𝐺𝑇 and 𝒌𝐺𝐵, are determined based on Eq. (15) in which the 

conversion matrices are applied to calculate stress tensors of top and bottom sub-elements. 

3.2.  Spring set technique  

In this technique, a separate element as a set of springs is considered to involve the crack parameters into the global 

stiffness matrix.  In other words, the global stiffness matrix of the cracked cylinder is obtained without considering 

any sub-elements, unlike the conversion matrix technique.  

 

Fig. 5 Spring set instead of crack 

Fig. 5 shows four springs to model the crack effect on the stiffness structure. Three springs represented in the axial, 

radial and circumferential directions are used to satisfy the continuity conditions in the three mentioned directions. 

The stiffness factors of the three springs are taken into account considerable amounts to apply the geometric boundary 

conditions at the crack point. The rotational spring explains the crack characteristics as obtained from Eq. (2). The 

stiffness matrix related to these four springs is given by  

𝑲crack =

[
 
 
 
 
 
 
 
 
𝑘𝑢 0 0 0 −𝑘𝑢 0 0 0
0 𝑘𝑣 0 0 0 −𝑘𝑣 0 0
0 0 𝑘𝑤 0 0 0 −𝑘𝑤 0
0 0 0 𝑘𝑠 0 0 0 −𝑘𝑠
−𝑘𝑢 0 0 0 𝑘𝑢 0 0 0
0 −𝑘𝑣 0 0 0 𝑘𝑣 0 0
0 0 −𝑘𝑤 0 0 0 𝑘𝑤 0
0 0 0 −𝑘𝑠 0 0 0 𝑘𝑠 ]

 
 
 
 
 
 
 
 

 (24) 

in which the stiffness matrix obtained at the crack point as a complete element is assembled with other elements of 

the cylinder. Fig. 6 shows three elements for a section of the cylindrical shell, which the first and third elements are 

considered as one-dimensional standard elements related to the semi-analytical finite element method, while the 

second element at the crack point has been added to the structure to represent the softness due to the crack. The 

stiffness matrix of the second element is introduced as Eq. (24).  
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Fig. 6 Schematic description of two standard elements and one cracked element 

4. Results and discussion  

The modal deformation of some case studies related to buckling and vibration analyses is examined to determine 

the results of the critical buckling load and the natural frequency using different methods including two presented 

techniques, ABAQUS modeling, and experimental test.  

4.1. The buckling of the cracked cylinder 

The validation of techniques represented for the cracked cylindrical shell is evaluated through a case study 

mentioned in [21] with geometric and material characteristics as (ℎ = 0.2𝑚,𝑚 = 1) and (𝜈 = 0.3, 𝐸 = 200GPa), 

respectively, and simply supported end conditions in which 𝑚 =
12(1−𝜈2)

𝑅2ℎ2
 and the length of the cylinder is selected 

large enough with the circumferential crack in the middle. Table 1 compares the results of the two techniques with 

[21] in which the two techniques give close outputs to each other and the reference. The critical buckling loads 

mentioned in Table 1 are related to the first circumferential mode. As it is seen from Table 1, increasing the crack 

depth results in decreasing the critical buckling load. The most drastic decrease is related to  
𝑎

ℎ
= 0.9  in which the 

critical load of the cracked cylinder is approximately half of the critical load of the intact cylinder. A nonlinear 

behavior is observed between the crack depth and the critical buckling load, as the buckling load capacity in 
𝑎

ℎ
≤ 0.5 

decreases nearly 10%, while it reduces almost 50% for 0.5 ≤
𝑎

ℎ
≤ 0.9. 

Table 1 

 Validation of the two techniques: I) Conversion technique; II) Spring set technique; III) [21] 

𝑎

ℎ
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I 2.00 2.00 1.99 1.97 1.94 1.87 1.74 1.50 1.27 1.08 

II 2.00 2.00 1.99 1.97 1.94 1.87 1.73 1.49 1.25 1.07 

III 2.00 2.00 1.99 1.98 1.95 1.88 1.73 1.50 1.26 1.07 

 

The convergence of results of the two techniques implemented into the framework of the semi-analytical finite 

element method is investigated by Figs. 7a, 7b and 7c for the conversion and set spring techniques. Fig. 7 shows that 

the discretization of the cylinder via 21 one-dimensional elements yields acceptable results. In other words, the 

comparison of the first two curves in 21 elements to 41 elements confirms that the number of 21 elements is an 

appropriate selection to analyze, However a close agreement is seen between different elements and also two 
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techniques in Fig. 7c. Material and geometric properties are considered like what were mentioned in Table 1 with 
𝑎

ℎ
=

0.5.  

 

(a) 

 

(b) 

 

(c) 

Fig. 7 Investigation of convergence: a) Critical buckling load in conversion technique; b) Critical buckling load in spring set 

technique; c) Critical strain energy in both techniques 

 

The deformed shape of the cylinder under the critical buckling load has been displayed in Fig. 8 for different 

circumferential mode numbers by inserting Matlab results into Tecplot software. The deformed shape is considered 

to be ten times of the real value for the clear visibility of mode shapes. The circumferential crack is assumed at the 

middle of the cylinder with  
𝑎

ℎ
= 0.5, whose effect is evaluated by decreasing the stiffness in the cracked element 

without any change in the appearance of geometry. 



12 
 

    
n=2 n=3 n=6 n=10 

Fig. 8 The linear buckling analysis and corresponding mode shapes of the cylinder 

 

An experimental study has been also carried out to investigate the influence of the circumferential crack in the 

critical buckling load. Fig. 9 shows a cylindrical shell under the axial compression in a uniaxial compressive test. The 

length, radius, and thickness of the cylinder are considered 100, 115 and 1 mm, respectively, with material properties 

mentioned in Table 1.  

 

(a) 

 

(b) 

Fig. 9 Cracked cylindrical shell in the uniaxial compressive test: a) 
𝑎

ℎ
= 0.4 ;b) 

𝑎

ℎ
= 0.7 

Table 2 shows a comparison between the results of the experimental test, semi-analytical finite element method 

and ABAQUS modeling in which the critical buckling load decreased due to the initial circumferential crack on the 

cylinder has been determined. 

Table 2 

Reduction of the critical buckling load. I) Experimental test; II) Conversion technique; III) ABAQUS 

 𝑃cracked
𝑃intact

 

𝑎

ℎ
 I II III 

0.4 0.84 0.98 0.98 

0.7 0.67 0.77 0.70 

 

Table 2 demonstrates the result of ABAQUS is between the conversion technique and experimental results for 

a/h=0.7 and it is equal to the value of the conversion technique for a/h=0.4. Beside the comparison of results of three 

methods in Table. 2, the main aim to apply ABAQUS in the analysis is to represent advantages of the presented finite 

element method in detailed and quantitatively. Some significant disadvantages of ABAQUS observed in this modeling 

are listed as follows: 
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ABAQUS sorts the results of the buckling analysis just in terms of eigenvalues. Moreover, it gives a mixture of 

buckling modes without the separation of the circumferential and axial modes.  

Besides the global partitioning of the cylinder in ABAQUS, the crack zone should be partitioned for each the crack 

depth, as the change of the depth leads to re-partitioning of the crack zone. 

The convergence of ABAQUS results requires much more time consuming than the convergence of the presented 

techniques results. Table 3 represents a quantitative comparison between the convergence of the two theoretical 

methods to determine the critical buckling load as  

Table 3 

Comparison of the convergence between the conversion technique and ABAQUS 

Method 
Mesh 

size(mm) 

Time 

(s) 

𝑃

𝑃𝑐𝑜𝑛𝑣
 

Mesh 

size(mm) 

Time 

(s) 

𝑃

𝑃𝑐𝑜𝑛𝑣
 

Mesh 

size(mm) 

Time 

(s) 

𝑃

𝑃𝑐𝑜𝑛𝑣
 

Mesh 

size(mm) 

Time 

(s) 

𝑃

𝑃𝑐𝑜𝑛𝑣
 

Conversion 

technique (1D) 
20 2.3 1.09 9 2.9 1.01 5 4.4 1.001 2.5 12.6 

1 

ABAQUS (3D) 10 × 10 25 2.07 8 × 8 210 1.47 2 × 2 2610 1.003 1 × 1 7318 
1 

 

The data of Table 3 produced via a usual personal computer are related to the intact cylinder with geometric and 

material properties mentioned in Table 2. It is obvious that results obtained from presented technique give faster 

convergence in comparison with ABAQUS.  The main reason of this good convergence is to combine one-dimensional 

model with the analytical method called the semi-analytical finite element method.  

Table 4 represents the influence of the crack position on the critical buckling load with the characteristics similar 

to Table 1 and (
𝑎

ℎ
= 0.5, 𝐿 = 5𝜋). Results show that if the crack sits at 

𝑥𝑐

𝐿
= 0.2 or 0.8, the softening of the structure 

due to the crack can be ignored. Also, the crack around the edge conditions (i.e. 
𝑥𝑐

𝐿
= 0.1) leads to a maximum decrease 

in the critical buckling load.  

Table 4 

Effect of the crack position on the critical buckling load 

𝑥𝑐
𝐿

 0.1 0.2 0.3 0.4 0.5 

𝑃𝑐𝑟
𝑏𝐷

 1.80 2.00 1.86 1.95 1.87 

 

The effect of the crack depth on the critical load in different circumferential mode numbers is investigated in Fig. 

10 with the characteristics considered in Table 1. Fig. 10 displays that there is a nonlinear behavior between the crack 

depth and the critical buckling load. Also, the critical buckling load is approximately constant for the circumferential 

mode number less than 9, while an increasable nonlinear behavior is seen in the critical buckling curves when the 

circumferential mode number is more than 8.  
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Fig. 10 Effect of the crack depth on the critical buckling load  

Fig. 11 demonstrates the influence of the length of the cracked cylindrical shell on the critical buckling load. The 

curves show when the length of the cylinder increases, results are converged to a permanent state. In other words, the 

critical buckling load can be considered independent of the cylinder length after a certain one, e.g. 𝐿 = 3𝜋. 

 

Fig. 11 Effect of the length on the critical buckling load  

Results and mentioned relations show that one of the main advantages of the two techniques in comparison with 

previous research works is to involve the circumferential mode in the analysis. the semi-analytical finite element in 

combination with the two techniques makes a powerful and efficient procedure in modal analyses. This procedure can 

be finely implemented in the nonlinear analysis like the nonlinear vibration or post-buckling problems. In other words, 

the procedure of the nonlinear analysis for cracked cylindrical shells can be implemented quickly and at a low cost in 

which the cost of the represented techniques is less than the cost of the general-purposes programs. On the other side, 

the represented conversion technique can be efficiently employed in the modal nonlinear analysis or circumferentially 

asymmetric cracks, where analytical methods may be incapable of the solution of such problems.  
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The essential difference between the two mentioned techniques (i.e. conversion and spring set) is related to the 

cracked element. The conversion technique introduces an enriched stiffness matrix in the cracked element without 

adding the number of degrees of freedom, while a set of springs instead of the crack used in the spring set technique 

leads to the increase of the number of degrees of freedom of the structure. Results obtained from the two techniques 

show a good agreement, however obvious differences in relations are observed. In other words, the conversion 

technique has been implemented in a more comprehensive framework than the spring set technique, while its 

established procedure is more complicated.   

4.2. The vibration of the cracked cylinder 

The validity of the derived equations of the natural frequency based on the semi-analytical finite element method 

is evaluated for an intact cylindrical shell. Fig. 12 demonstrates the effect of the circumferential mode number on the 

frequency parameter in which results show quite close to [34]. The cylinder is considered the simply supported-simply 

supported (𝑣 = 𝑤 = 𝑀𝑥 = 𝑁𝑥 = 0) with R/h=500.  

 

Fig. 12 Effect of the mode number on the frequency parameter of intact cylinder   

 

The effect of the crack is investigated by involving the enriched stiffness matrix into the eigenvalue equation of 

the vibration. The density (𝜌) is assumed to be 7850 kg/m3 with the boundary conditions similar to Fig. 12 and the 

geometric and material characteristics mentioned in Table 1. The results of Table 5 show that the effect of the 

circumferential crack in the natural frequency of the cylinder is negligible. An interesting comment that had been 

already mentioned in [35]. 
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Table 5 

Effect of the crack depth and mode number on the frequency parameter (Ω = 𝜔𝑅√
𝜌(1−𝜈2)

𝐸
) 

   𝒂/𝒉   

  0.1 0.3 0.5 0.8 

M
o

d
e 

N
u

m
b

er
 1 0.8557 0.8557 0.8557 0.8557 

3 0.5172 0.5172 0.5172 0.5169 

7 0.2899 0.2896 0.2890 0.2867 

11 0.4681 0.4672 0.4662 0.4620 

 

 

5. Conclusion 

In this paper, two techniques, called conversion and spring set, into the framework of the semi-analytical finite 

element method have been initially introduced to determine the modal deformation of the cylindrical shells including 

a circumferential crack. An experimental test has been also carried out to investigate the reduction of the buckling 

load of the cracked cylindrical shell. The effect of the circumferential mode number on the critical buckling load of 

the cracked cylinder has been originally investigated. The validity of relations of the two techniques has been evaluated 

by the results of references, the experimental test, and ABAQUS modeling. One of the essential advantages of these 

two techniques especially the conversion technique is the feasibility of the development for the nonlinear or large 

deformation or asymmetric problems. These techniques are specifically effective and problem-solving in the nonlinear 

modal analysis where the analytical solutions or the empirical study or commercial personal computer programs may 

be incapable or too costly to analyze circumferentially cracked cylindrical shells. Results show that the maximum 

crack depth can decrease half of the load-bearing capacity, and a nonlinear behavior is observed between the crack 

depth and the critical buckling load. Moreover, the influence of the circumferential crack on the natural frequency can 

be ignored.  

 

 

Appendix A 

The relatively simple Donnell type shell theory can be used to analyze the shell stability in which the differential 

equations of the equilibrium is approximately written in the following form [36] and [37] 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝜃
𝑅𝜕𝜃

= 0 (A.1) 

𝜕𝑁𝑥𝜃
𝜕𝑥

+
𝜕𝑁𝜃
𝑅𝜕𝜃

= 0 (A.2) 

𝜕2𝑀𝑥

𝜕𝑥2
+
2𝜕2𝑀𝑥𝜃

𝑅𝜕𝑥𝜕𝜃
+
𝜕2𝑀𝜃

𝑅2𝜕2𝜃
−
𝑁𝜃
𝑅
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝜃

𝜕2𝑤

𝑅𝜕𝑥𝜕𝜃
+ 𝑁𝜃

𝜕2𝑤

𝑅2𝜕2𝜃
= 0 (A.3) 

The Airy stress function 𝑓 is utilized in the analysis as 
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𝑁𝑥 =
𝜕2𝑓

𝑅2𝜕𝜃2
 , 𝑁𝜃 =

𝜕2𝑓

𝜕𝑥2
, 𝑁𝑥𝜃 = −

𝜕2𝑓

𝑅𝜕𝑥𝜕𝜃
 (A.4) 

A small perturbation is used to trace the post-buckling path via 

𝑤 ≔ 𝑤0 + 𝑤 (A.5) 

𝑓 ≔ 𝑓0 + 𝑓 (A.6) 

in which subscript 0 denotes parameters in initial state of the cylinder. Therefore, the stability equation is obtained 

by the substitution of Eqs. (18a), (A.4) and (A.5) into Eq. (A.3). The variables separable form is used in the buckling 

solution of the cylinder based on trigonometric functions of Eq. (3). 

 

Appendix B 

The displacement field in different directions for an element is obtained in terms of shape functions and the nodal 

displacements as 

𝑢𝑒 = 𝑁1𝑢1 + 𝑁2𝑢2 

(B.1) 

𝑣𝑒 = 𝑁1𝑣1 + 𝑁2𝑣2 

𝑤𝑒 = 𝐻1𝑤1 + 𝐻2𝜙1 + 𝐻3𝑤2 + 𝐻4𝜙2 

𝜙𝑒 =
𝜕𝑤𝑒
𝜕𝑥

=
𝜕𝐻1
𝜕𝑥

𝑤1 +
𝜕𝐻2
𝜕𝑥

𝜙1 +
𝜕𝐻3
𝜕𝑥

𝑤2 +
𝜕𝐻4
𝜕𝑥

𝜙2 

in which Lagrange and Hermite shape functions are utilized to interpolate (𝑢, 𝑣) and (𝑤, 𝜙), respectively 

𝑁1(𝑥) = 1 −
𝑥

𝑙
 , 𝑁2(𝑥) =

𝑥

𝑙
 

(B.2) 

𝐻1(𝑥) =
1

𝑙3
(2𝑥3 − 3𝑥2𝑙 + 𝑙3), 𝐻2(𝑥) =

1

𝑙3
(𝑥3𝐿 − 2𝑥2𝑙2 + 𝑥𝑙3) 

(B.3) 

𝐻3(𝑥) =
1

𝑙3
(−2𝑥3 + 3𝑥2𝑙), 𝐻4(𝑥) =

1

𝑙3
(𝑥3𝑙 − 𝑥2𝑙2) 

The Gauss integration is applied by using the local coordinate 𝜉 [−1 ≤ 𝜉 ≤ 1], which is defined as  

𝑥(𝜉) =
𝑙

2
(1 + 𝜉)  [

𝜉 = −1
𝑥 = 0

  [
𝜉 = 1
𝑥 = 𝑙

 (B.4) 

Therefore, the shape functions can be rewritten with respect to the local coordinate whereby the integral equations 

of the finite element method should be transformed as 

∫𝑔(𝑥)𝑑𝑥 = ∫𝑔(𝜉)
𝑑𝑥

𝑑𝜉
𝑑𝜉 = ∫𝑔(𝜉)

𝑙

2
𝑑𝜉 =∑𝑔(𝜉𝑖)

𝑙

2
𝑊𝑖

3

𝑖=1

1

−1

1

−1

𝑙

0

 (B.5) 

The one-dimensional Gauss integration with three Gauss points [38] is used in the analysis in which the weighting 

factors and the coordinate of the Gauss points are 𝑊𝑖  and 𝜉𝑖, respectively. 

 

 

 Appendix C 

𝑩𝑥 = [𝑁1 0 0 0 𝑁2 0 0 0] (C.1) 

𝑩𝜃 = [0
𝑛

𝑅
𝑁1 −

1

𝑅
𝐻1 −

1

𝑅
𝐻2 0

𝑛

𝑅
𝑁2 −

1

𝑅
𝐻3 −

1

𝑅
𝐻4] (C.2) 
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𝑩𝑥𝜃 = [−
𝑛

𝑅
𝑁1 𝑁1,𝑥 0 0 −

𝑛

𝑅
𝑁2 𝑁2,𝑥 0 0] (C.3) 

𝑩𝜅𝑥 = [0 0 𝐻1,𝑥𝑥 𝐻2,𝑥𝑥 0 0 𝐻3,𝑥𝑥 𝐻4,𝑥𝑥] (C.4) 

𝑩𝜅𝜃 = [0
𝑛

𝑅2
𝑁1 −

𝑛2

𝑅2
𝐻1 −

𝑛2

𝑅2
𝐻2 0

𝑛

𝑅2
𝑁2 −

𝑛2

𝑅2
𝐻3 −

𝑛2

𝑅2
𝐻4] (C.5) 

𝑩𝜅𝑥𝜃 = [0
1

𝑅
𝑁1,𝑥 −

𝑛

𝑅
𝐻1,𝑥 −

𝑛

𝑅
𝐻2,𝑥 0

1

𝑅
𝑁2,𝑥 −

𝑛

𝑅
𝐻3,𝑥 −

𝑛

𝑅
𝐻4,𝑥] (C.6) 

 

 

Appendix D 

𝑩 = [𝑩𝑥
𝑇 𝑩𝜃

𝑇 𝑩𝑥𝜃
𝑇 𝑩𝜅𝑥

𝑇 𝑩𝜅𝜃
𝑇 𝑩𝜅𝑥𝜃

𝑇 ] (D.1) 

𝑫 =
12𝐷

ℎ2

[
 
 
 
 
 
 
 
 
 
 
1 𝜈 0 0 0 0
𝜈 1 0 0 0 0

0 0
ℎ2

12

𝜈ℎ2

12
0 0

0 0
𝜈ℎ2

12

ℎ2

12
0 0

0 0 0 0
1 − 𝜈

2
0

0 0 0 0 0
(1 − 𝜈)ℎ2

6 ]
 
 
 
 
 
 
 
 
 
 

 (D.2) 

𝑵 = [

𝑁1 0 0 0 𝑁2 0 0 0
0 𝑁1 0 0 0 𝑁2 0 0
0 0 𝐻1 𝐻2 0 0 𝐻3 𝐻4

] (D.3) 

 

Appendix E 

𝑪𝑇 =

[
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1 −
𝑥0
𝑙

0 0 0
𝑥0
𝑙

0 0 0

0 1 −
𝑥0
𝑙

0 0 0
𝑥0
𝑙

0 0

0 𝑤𝑣1 𝑤𝑤1 𝑤𝑓1 0 𝑤𝑣4 𝑤𝑤4 𝑤𝑓4
0 𝑓2𝑣1 𝑓2𝑤1 𝑓2𝑓1 0 𝑓2𝑣4 𝑓2𝑤4 𝑓2𝑓4]

 
 
 
 
 
 
 
 
 

 

(E.1) 
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𝑪𝐵 =

[
 
 
 
 
 
 
 
 
 1 −

𝑥0
𝑙

0 0 0
𝑥0
𝑙

0 0 0

0 1 −
𝑥0
𝑙

0 0 0
𝑥0
𝑙

0 0

0 𝑤𝑣1 𝑤𝑤1 𝑤𝑓1 0 𝑤𝑣4 𝑤𝑤4 𝑤𝑓4
0 𝑓3𝑣1 𝑓3𝑤1 𝑓3𝑓1 0 𝑓3𝑣4 𝑓3𝑤4 𝑓3𝑓4
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 
 
 

 (E.2) 

in which 

𝑤𝑣1 =
1

𝜒
(𝐷𝑙4𝑛3𝜈2𝑥0

3 − 4𝐷𝑙3𝑛3𝜈2𝑥0
4 + 6𝐷𝑙2𝑛3𝜈2𝑥0

5 − 4𝐷𝑙𝑛3𝜈2𝑥0
6 + 𝐷𝑛3𝜈2𝑥0

7 − 6𝐷𝑙3𝑅2𝑛𝜈𝑥0
2

+ 18𝐷𝑙2𝑅2𝑛𝜈𝑥0
3 − 18𝐷𝑙𝑅2𝑛𝜈𝑥0

4 + 6𝐷𝑅2𝑛𝜈𝑥0
5) 

(E.3) 

𝑤𝑣4 =
1

𝜒
(𝐷𝑙3𝑛3𝜈2𝑥0

4 − 3𝐷𝑙2𝑛3𝜈2𝑥0
5 + 3𝐷𝑙𝑛3𝜈2𝑥0

6 − 𝐷𝑛3𝜈2𝑥0
7 − 6𝐷𝑙2𝑅2𝑛𝜈𝑥0

3 + 12𝐷𝑙𝑅2𝑛𝜈𝑥0
4

− 6𝐷𝑅2𝑛𝜈𝑥0
5) 

(E.4) 

𝑤𝑤1 =
1

𝜒
(6𝐷𝑙3𝑅2𝑛2𝜈𝑥0

2 − 18𝐷𝑙2𝑅2𝑛2𝜈𝑥0
3 + 18𝐷𝑙𝑅2𝑛2𝜈𝑥0

4 − 6𝐷𝑅2𝑛2𝜈𝑥0
5 + 3𝑙4𝑅4𝑘𝑠 − 9𝑙

2𝑅4𝑘𝑠𝑥0
2

+ 6𝑙𝑅4𝑘𝑠𝑥0
3 + 12𝐷𝑙3𝑅4 − 36𝐷𝑙2𝑅4𝑥0 + 36𝐷𝑙𝑅

4𝑥0
2 − 12𝐷𝑅4𝑥0

3) 

(E.5) 

𝑤𝑤4 =
1

𝜒
(6𝐷𝑙2𝑅2𝑛2𝜈𝑥0

3 − 12𝐷𝑙𝑅2𝑛2𝜈𝑥0
4 + 6𝐷𝑅2𝑛2𝜈𝑥0

5 + 9𝑙2𝑅4𝑘𝑠𝑥0
2 − 6𝑙𝑅4𝑘𝑠𝑥0

3 + 12𝐷𝑅4𝑥0
3) 

(E.6) 

𝑤𝑓1 =
1

𝜒
(2𝐷𝑙3𝑅2𝑛2𝜈𝑥0

3 − 6𝐷𝑙2𝑅2𝑛2𝜈𝑥0
4 + 6𝐷𝑙𝑅2𝑛2𝜈𝑥0

5 − 2𝐷𝑅2𝑛2𝜈𝑥0
6 + 3𝑙4𝑅4𝑘𝑠𝑥0 − 6𝑙

3𝑅4𝑘𝑠𝑥0
2

+ 3𝑙2𝑅4𝑘𝑠𝑥0
3 + 12𝐷𝑙3𝑅4𝑥0 − 36𝐷𝑙

2𝑅4𝑥0
2 + 36𝐷𝑙𝑅4𝑥0

3 − 12𝐷𝑅4𝑥0
4) 

(E.7) 

𝑤𝑓4 =
1

𝜒
(−2𝐷𝑙3𝑅2𝑛2𝜈𝑥0

3 + 6𝐷𝑙2𝑅2𝑛2𝜈𝑥0
4 − 6𝐷𝑙𝑅2𝑛2𝜈𝑥0

5 + 2𝐷𝑅2𝑛2𝜈𝑥0
6 − 3𝑙3𝑅4𝑘𝑠𝑥0

2

+ 3𝑙2𝑅4𝑘𝑠𝑥0
3 − 12𝐷𝑙𝑅4𝑥0

3 + 12𝐷𝑅4𝑥0
4) 

(E.8) 

𝑓2𝑣1 =
−1

2𝜒
(−3 𝐷𝑙4𝑛3𝜈2𝑥0

2 + 15𝐷𝑙3𝑛3𝜈2𝑥0
3 − 27𝐷𝑙2𝑛3𝜈2𝑥0

4 + 21𝐷𝑙𝑛3𝜈2𝑥0
5 − 6𝐷𝑛3𝜈2𝑥0

6

+ 24𝐷𝑙3𝑅2𝑛𝜈𝑥0 − 78𝐷𝑙
2𝑅2𝑛𝜈𝑥0

2 + 90𝐷𝑙𝑅2𝑛𝜈𝑥0
3 − 36𝐷𝑅2𝑛𝜈𝑥0

4) 

(E.9) 

𝑓2𝑣4 =
−1

2𝜒
(−3𝐷𝑙3𝑛3𝜈2𝑥0

3 + 12𝐷𝑙2𝑛3𝜈2𝑥0
4 − 15𝐷𝑙𝑛3𝜈2𝑥0

5 + 6𝐷𝑛3𝜈2𝑥0
6 + 24𝐷𝑙2𝑅2𝑛𝜈𝑥0

2

− 54𝐷𝑙𝑅2𝑛𝜈𝑥0
3 + 36𝐷𝑅2𝑛𝜈𝑥0

4) 

(E.10) 

𝑓2𝑤1 =
−1

2𝜒
(3𝐷𝑙4𝑛4𝜈2𝑥0

2 − 12𝐷𝑙3𝑛4𝜈2𝑥0
3 + 18𝐷𝑙2𝑛4𝜈2𝑥0

4 − 12𝐷𝑙𝑛4𝜈2𝑥0
5 + 3𝐷𝑛4𝜈2𝑥0

6

− 24𝐷𝑙3𝑅2𝑛2𝜈𝑥0 + 72𝐷𝑙
2𝑅2𝑛2𝜈𝑥0

2 − 72𝐷𝑙𝑅2𝑛2𝜈𝑥0
3 + 24𝐷𝑅2𝑛2𝜈𝑥0

4

+ 36𝑙2𝑅4𝑘𝑠𝑥0 − 36𝑙𝑅
4𝑘𝑠𝑥0

2 + 36𝐷𝑅4𝑥0
2) 

(E.11) 

𝑓2𝑤4 =
−1

2𝜒
(−3𝐷𝑙2𝑛4𝜈2𝑥0

4 + 6𝐷𝑙𝑛4𝜈2𝑥0
5 − 3𝐷𝑛4𝜈2𝑥0

6 − 18𝐷𝑙2𝑅2𝑛2𝜈𝑥0
2 + 36𝐷𝑙𝑅2𝑛2𝜈𝑥0

3

− 24𝐷𝑅2𝑛2𝜈𝑥0
4 − 36𝑙2𝑅4𝑘𝑠𝑥0 + 36𝑙𝑅

4𝑘𝑠𝑥0
2 − 36𝐷𝑅4𝑥0

2) 

(E.12) 
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𝑓2𝑓1 =
−1

2𝜒
(𝐷𝑙4𝑛4𝜈2𝑥0

3 − 4𝐷𝑙3𝑛4𝜈2𝑥0
4 + 6𝐷𝑙2𝑛4𝜈2𝑥0

5 − 4𝐷𝑙𝑛4𝜈2𝑥0
6 + 𝐷𝑛4𝜈2𝑥0

7 − 12𝐷𝑙3𝑅2𝑛2𝜈𝑥0
2

+ 36𝐷𝑙2𝑅2𝑛2𝜈𝑥0
3 − 36𝐷𝑙𝑅2𝑛2𝜈𝑥0

4 + 12𝐷𝑅2𝑛2𝜈𝑥0
5 − 6𝑙4𝑅4𝑘𝑠 + 24𝑙

3𝑅4𝑘𝑠𝑥0

− 18𝑙2𝑅4𝑘𝑠𝑥0
2 − 24𝐷𝑙3𝑅4 + 72𝐷𝑙2𝑅4𝑥0 − 72𝐷𝑙𝑅

4𝑥0
2 + 36𝐷𝑅4𝑥0

3) 

(E.13) 

𝑓2𝑓4 =
−1

2𝜒
(𝐷𝑙3𝑛4𝜈2𝑥0

4 − 3𝐷𝑙2𝑛4𝜈2𝑥0
5 + 3𝐷𝑙𝑛4𝜈2𝑥0

6 − 𝐷𝑛4𝜈2𝑥0
7 + 6𝐷𝑙3𝑅2𝑛2𝜈𝑥0

2

− 18𝐷𝑙2𝑅2𝑛2𝜈𝑥0
3 + 24𝐷𝑙𝑅2𝑛2𝜈𝑥0

4 − 12𝐷𝑅2𝑛2𝜈𝑥0
5 + 12𝑙3𝑅4𝑘𝑠𝑥0 − 18𝑙

2𝑅4𝑘𝑠𝑥0
2

+ 36𝐷𝑙𝑅4𝑥0
2 − 36𝐷𝑅4𝑥0

3) 

(E.14) 

𝑓3𝑣1 =
−1

2𝜒
(−3 𝐷𝑙4𝑛3𝜈2𝑥0

2 + 15𝐷𝑙3𝑛3𝜈2𝑥0
3 − 27𝐷𝑙2𝑛3𝜈2𝑥0

4 + 21𝐷𝑙𝑛3𝜈2𝑥0
5 − 6𝐷𝑛3𝜈2𝑥0

6

− 6𝐷𝑙4𝑅2𝑛𝜈 + 30𝐷𝑙3𝑅2𝑛𝜈𝑥0 − 78𝐷𝑙
2𝑅2𝑛𝜈𝑥0

2 + 90𝐷𝑙𝑅2𝑛𝜈𝑥0
3 − 36𝐷𝑅2𝑛𝜈𝑥0

4) 

(E.15) 

𝑓3𝑣4 =
−1

2𝜒
(−3𝐷𝑙3𝑛3𝜈2𝑥0

3 + 12𝐷𝑙2𝑛3𝜈2𝑥0
4 − 15𝐷𝑙𝑛3𝜈2𝑥0

5 + 6𝐷𝑛3𝜈2𝑥0
6 − 6𝐷𝑙3𝑅2𝑛𝜈𝑥0

+ 24𝐷𝑙2𝑅2𝑛𝜈𝑥0
2 − 54𝐷𝑙𝑅2𝑛𝜈𝑥0

3 + 36𝐷𝑅2𝑛𝜈𝑥0
4) 

(E.16) 

𝑓3𝑤1 =
−1

2𝜒
(3𝐷𝑙4𝑛4𝜈2𝑥0

2 − 12𝐷𝑙3𝑛4𝜈2𝑥0
3 + 18𝐷𝑙2𝑛4𝜈2𝑥0

4 − 12𝐷𝑙𝑛4𝜈2𝑥0
5 + 3𝐷𝑛4𝜈2𝑥0

6

+ 6𝐷𝑙4𝑅2𝑛2𝜈 − 24𝐷𝑙3𝑅2𝑛2𝜈𝑥0 + 54𝐷𝑙
2𝑅2𝑛2𝜈𝑥0

2 − 60𝐷𝑙𝑅2𝑛2𝜈𝑥0
3

+ 24𝐷𝑅2𝑛2𝜈𝑥0
4 + 36𝑙2𝑅4𝑘𝑠𝑥0 − 36𝑙𝑅

4𝑘𝑠𝑥0
2 + 36𝐷𝑙2𝑅4 − 72𝐷𝑙𝑅4𝑥0

+ 36𝐷𝑅4𝑥0
2) 

(E.17) 

𝑓3𝑤4 =
−1

2𝜒
(−3𝐷𝑙2𝑛4𝜈2𝑥0

4 + 6𝐷𝑙𝑛4𝜈2𝑥0
5 − 3𝐷𝑛4𝜈2𝑥0

6 + 24𝐷𝑙𝑅2𝑛2𝜈𝑥0
3 − 24𝐷𝑅2𝑛2𝜈𝑥0

4

− 36𝑙2𝑅4𝑘𝑠𝑥0 + 36𝑙𝑅
4𝑘𝑠𝑥0

2 − 36𝐷𝑙2𝑅4 + 72𝐷𝑙𝑅4𝑥0 − 36𝐷𝑅
4𝑥0

2) 

(E.18) 

𝑓3𝑓1 =
−1

2𝜒
(𝐷𝑙4𝑛4𝜈2𝑥0

3 − 4𝐷𝑙3𝑛4𝜈2𝑥0
4 + 6𝐷𝑙2𝑛4𝜈2𝑥0

5 − 4𝐷𝑙𝑛4𝜈2𝑥0
6 + 𝐷𝑛4𝜈2𝑥0

7 + 6𝐷𝑙4𝑅2𝑛2𝜈𝑥0

− 24𝐷𝑙3𝑅2𝑛2𝜈𝑥0
2 + 42𝐷𝑙2𝑅2𝑛2𝜈𝑥0

3 − 36𝐷𝑙𝑅2𝑛2𝜈𝑥0
4 + 12𝐷𝑅2𝑛2𝜈𝑥0

5 − 6𝑙4𝑅4𝑘𝑠

+ 24𝑙3𝑅4𝑘𝑠𝑥0 − 18𝑙
2𝑅4𝑘𝑠𝑥0

2 + 36𝐷𝑙2𝑅4𝑥0 − 72𝐷𝑙𝑅
4𝑥0

2 + 36𝐷𝑅4𝑥0
3) 

(E.19) 

𝑓3𝑓4 =
−1

2𝜒
(𝐷𝑙3𝑛4𝜈2𝑥0

4 − 3𝐷𝑙2𝑛4𝜈2𝑥0
5 + 3𝐷𝑙𝑛4𝜈2𝑥0

6 − 𝐷𝑛4𝜈2𝑥0
7 − 12𝐷𝑙2𝑅2𝑛2𝜈𝑥0

3

+ 24𝐷𝑙𝑅2𝑛2𝜈𝑥0
4 − 12𝐷𝑅2𝑛2𝜈𝑥0

5 + 12𝑙3𝑅4𝑘𝑠𝑥0 − 18𝑙
2𝑅4𝑘𝑠𝑥0

2 + 12𝐷𝑙3𝑅4

− 36𝐷𝑙2𝑅4𝑥0 + 36𝐷𝑙𝑅
4𝑥0

2 − 36𝐷𝑅4𝑥0
3) 

(E.20) 

 and  

𝜒 = 𝐿(𝐷𝑙3𝑛4𝜈2𝑥0
3 − 3𝐷𝑙2𝑛4𝜈2𝑥0

4 + 3𝐷𝑙𝑛4𝜈2𝑥0
5 − 𝐷𝑛4𝜈2𝑥0

6 + 3𝑙3𝑅4𝑘𝑠 + 12𝐷𝑙
2𝑅4

− 36𝐷𝐿𝑅4𝑥0 + 36𝐷𝑅
4𝑥0

2) 

(E.21) 

 

 

References 

 

1.  Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures Volume 2: ADVANCED 

TOPICS. JOHN WILEY & SONS, Chichester (1997)  



21 
 

2.  Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S., Rabczuk, T.: An adaptive singular ES-FEM for 

mechanics problems with singular field of arbitrary order. Comput Methods Appl Mech Eng. 253, 252–273 

(2013)  

3.  Khoei, A.R.: Extended Finite Element Method. John Wiley & Sons, Chichester (2015) 

4.  Surendran, M., Natarajan, S., Bordas, S.P.A., Palani, G.S.: Linear smoothed extended finite element method. 

Int J Numer Methods Eng. 112(12), 1733–1749 (2017) 

5.  Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, A., Nguyen-Dang, H.: An extended finite element library. 

Int J Numer Methods Eng. 71(6), 703–732 (2007) 

6.  Liu, G.R.: MESHFREE METHODS Moving Beyond the Finite Element Method (SECOND EDITION). 

Taylor & Francis Group, Boca Raton (2010) 

7.  Rabczuk, T., Bordas, S.P.A., Askes, H.: Meshfree Discretization Methods for Solid Mechanics. In: 

Encyclopedia of Aerospace Engineering. John Wiley & Sons, Chichester (2010)  

8.  Kienzler, R., Herrmann, G.: An Elementary Theory of Defective Beams. Acta Mech. 62, 37–46 (1986)  

9.  Ricci, P., Viola, E.: Stress intensity factors for cracked T-sections and dynamic behaviour of T-beams. Eng 

Fract Mech. 73(1), 91–111 (2006) 

10.  Okamura, H., Liu, H.W., Chu, C.S., Liebowitz, H.: A cracked column under compression. Eng Fract 

Mech.1(3), 547–564 (1969)  

11.  Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook, Third Edition. The American 

Society of Mechanical Engineers, New York (2000) 

12.  Tharp, T.M.: A finite element for edge-cracked beam columns. Int J Numer Methods Eng. 24(10), 1941–

1950 (1987) 

13.  Yokoyama, T., Chen, M.C.: Vibration analysis of edge-cracked beams using a line-spring model. Eng Fract 

Mech. 59(3), 403–409 (1998) 

14.  Attar, M., Karrech, A., Regenauer-Lieb, K.: Free vibration analysis of a cracked shear deformable beam on a 

two-parameter elastic foundation using a lattice spring model. J Sound Vib. 333(11), 2359–2377 (2014) 

15.  Skrinar, M.: Elastic beam finite element with an arbitrary number of transverse cracks. Finite Elem Anal 

Des. 45(3),181–189 (2009) 

16.  Alijani, A., Mastan Abadi, M., Darvizeh, A., Abadi, M.K.: Theoretical approaches for bending analysis of 

founded Euler–Bernoulli cracked beams. Arch Appl Mech. 88(6), 875-895 (2018) 

17.  Mottaghian, F., Darvizeh, A., Alijani, A.: A novel finite element model for large deformation analysis of 

cracked beams using classical and continuum-based approaches. Arch Appl Mech. 89(2), 195–230 (2019) 

18.  Alijani, A., Abadi, M.K., Razzaghi, J., Jamali, A.: Numerical analysis of natural frequency and stress 

intensity factor in Euler–Bernoulli cracked beam. Acta Mech. 230(12), 4391–4415 (2019) 

19.  Alijani, A., Darvizeh, M., Darvizeh, A., Ansari, R.: Development of a semi-analytical nonlinear finite 

element formulation for cylindrical shells. Proc Inst Mech Eng Part C J Mech Eng Sci. 228(2), 199–217 

(2014) 

20.  Alijani, A., Darvizeh, M., Darvizeh, A., Ansari, R.: On nonlinear thermal buckling analysis of cylindrical 



22 
 

shells. Thin-Walled Struct.95, 170–182 (2015) 

21.  Akrami, V., Erfani, S.: An analytical and numerical study on the buckling of cracked cylindrical shells. 

Thin-Walled Struct.119, 457–469 (2017) 

22.  Delale, F., Erdogan, F.: Application of the Line-Spring Model to a Cylindrical Shell Containing a 

Circumferential or Axial Part-Through Crack. J Appl Mech. 49, 97–102 (1982) 

23.  Ezzat, H., Erdogan, F.: Elastic-plastic fracture of cylindrical shells containing a part-through circumferential 

crack. J Press Vessel Technol Trans ASME. 104(4), 323–330 (1982) 

24.  Moradi, S., Tavaf, V.: Crack detection in circular cylindrical shells using differential quadrature method. Int 

J Press Vessel Pip. 111–112, 209–216 (2013) 

25.  El Naschie, M.S.: A branching solution for the local buckling of a circumferentially cracked cylindrical 

shell. Int J Mech Sci. 16(10), 689–697 (1974) 

26.  Nasirmanesh, A., Mohammadi, S.: Eigenvalue buckling analysis of cracked functionally graded cylindrical 

shells in the framework of the extended finite element method. Compos Struct. 159, 548–566 (2017) 

27.  Natarajan, S., Chakraborty, S., Ganapathi, M., Subramaniam, M.: A parametric study on the buckling of 

functionally graded material plates with internal discontinuities using the partition of unity method. Eur J 

Mech - A/Solids. 44, 136–147 (2013) 

28.  Venkatachari, A., Natarajan, S., Ganapathi, M., Haboussi, M.: Mechanical buckling of curvilinear fibre 

composite laminate with material discontinuities and environmental effects. Compos Struct. 131,790–798 

(2015)  

29.  Rajagopalan, K.: Finite element buckling analysis of stiffened cylindrical shells. A.A. Balkema, Rotterdam 

(1993) 

30.  El-Kaabazi, N., Kennedy, D.: Calculation of natural frequencies and vibration modes of variable thickness 

cylindrical shells using the Wittrick-Williams algorithm. Comput Struct. 104–105, 4–12 (2012) 

31.  Li, Y., Zhang, Y., Kennedy, D.: Random vibration analysis of axially compressed cylindrical shells under 

turbulent boundary layer in a symplectic system. J Sound Vib. 406, 161–180 (2017) 

32.  Venstel, E., Krauthammer, T.: Thin Plates and Shells; Theory, Analysis, and Application. Marcel Dekker, 

New York, (2001)  

33.  Wood, R.D., Schrefler, B.: Geometrically non‐linear analysis—A correlation of finite element notations. Int 

J Numer Methods Eng. 12(4), 635–642 (1978) 

34.  Leissa, A.W., Qatu, M.S.: Vibrations of Continuous Systems. McGraw-Hill, US (2011) 

35.  Moazzez, K., Saeidi Googarchin, H., Sharifi, S.M.H.: Natural frequency analysis of a cylindrical shell 

containing a variably oriented surface crack utilizing Line-Spring model. Thin-Walled Structures. 125, 63-75 

(2018) 

36.  Bazant, Z. P., Cedolin, L.: Stability of structures: elastic, inelastic, fracture, and damage theories. Oxford 

University, N.Y (1991)  

37.  Singer, J., Arbocz, J., Weller, T.: Buckling Experiments: Experimental Methods in Buckling of Thin-Walled 

Structures: Basic Concepts, Columns, Beams and Plates- Volume 1. John Wiley & Sons, New York (1998) 



23 
 

38.  Wriggers, P. Nonlinear Finite Element Methods. Springer, Berlin Heidelberg (2008) 

 

 

 

 


