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Abstract 

Finite element analysis of linear-elastic structures with spatially varying uncertain properties 

is addressed within the framework of the interval model of uncertainty. Resorting to a recent-

ly proposed interval field model, the uncertain properties are expressed as the superposition of 

deterministic basis functions weighted by particular unitary intervals. An Interval Finite Ele-

ment Method (IFEM) incorporating the interval field representation of uncertainties is formu-

lated by applying an interval extension in conjunction with the standard energy approach. 

Uncertainty propagation analysis is performed by adopting a response surface approach 

which provides approximate explicit expressions of response bounds requiring only a few 

deterministic analyses. Then, the whole procedure is implemented in ABAQUS’ environment 

by coding User Subroutines and Python scripts.  

2D plane stress and bending problems involving uncertain Young’s modulus of the materi-

al are analyzed. The accuracy of the proposed IFEM as well as response variability under spa-

tially dependent uncertainty are investigated. 

Keywords: finite element method, interval field, response surface approach, lower bound and 

upper bound, ABAQUS 
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1. INTRODUCTION 

Uncertainty assessment of structural systems is attracting growing interest in various engi-

neering and industrial fields. Indeed, it is widely recognized that uncertainties affecting model 

parameters, such as material or geometrical properties, may have a significant influence on 

the performance of engineering systems [1],[2]. One of the most urgent challenges in the con-

text of non-deterministic analysis is to develop efficient and robust algorithms for predicting 

the influence of uncertain parameters on the response of real world large-scale systems. Over 

the last decades, much research effort has been devoted to incorporating uncertainties into the 

standard finite element method (FEM) in order to exploit all capabilities of deterministic FE 

solvers as well as the increasing power of available computational resources.  

The extension of the classical FEM to problems involving uncertainties modeled as ran-

dom variables or random fields led to the well-known Stochastic Finite Element Method 

(SFEM), which may be viewed nowadays as the most powerful tool in the field of computa-

tional stochastic mechanics (see e.g., [3],[4]). Many variants of the SFEM have been proposed 

in the literature, while much less attention has been devoted to the development of specialized 

software for the analysis of large-scale stochastic problems. To address the need for probabil-

istic FE analysis in practical engineering, ANSYS Inc. released two tools, namely the ANSYS 

Probabilistic Design System and the ANSYS DesignXplorer [5]. Such tools enable random 

input variables to be accounted for, such as material properties, boundary conditions, loads 

and geometry, and to handle several types of analysis. However, the description of uncertain-

ties is limited to the use of random variables. A random field [6] representation is required to 

take into account the inherent spatial dependency of non-deterministic properties which may 

significantly affect the reliability of a design. A stochastic FE library (StoFEL) has also been 

coupled with ANSYS for predicting response variability [7]. Among specialized software for 

SFE analysis, it is worth mentioning computational stochastic structural analysis (COSSAN) 
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[8], numerical evaluation of stochastic structures under stress (NESSUS) [9], and finite ele-

ment reliability using MATLAB (FERUM) [10]. To the extent of the author’s knowledge, 

only Shang et al. [11] faced the challenging task of incorporating uncertain mechanical prop-

erties modeled as homogeneous random fields into commercial finite element programmes 

such as ABAQUS by coding a User Element subroutine (UEL). Though well-established, the 

concept of a random field has not yet been implemented in commercial FE software. 

Since the mid-1990s, non-probabilistic models of uncertainty have been used in the context 

of FE analysis which are complementary rather than competitive to the traditional probabilis-

tic description, leading to the formulation of the so-called Interval FEM (IFEM) and Fuzzy 

FEM (FFEM) [12],[13] approaches. The IFEM and FFEM describe the uncertain input pa-

rameters as interval variables [14]-[16] and fuzzy sets [17], respectively. Interval variables are 

characterized by assigned lower bounds and upper bounds, while the fuzzy set concept also 

provides information about the level of membership of a certain value to the range of possible 

input values. The main feature of these models is that they do not require a complete probabil-

istic characterization of uncertainties which implies the availability of a large amount of data. 

Furthermore, propagation of uncertainty through numerical algorithms is usually less time 

consuming. Currently, research activities mainly focus on IFEMs since, based on the   lev-

el technique, the fuzzy analysis reduces to the consecutive solution of a number of interval 

problems [13]. The IFEM may be viewed as a useful computational tool in early design stages 

when available information is generally insufficient to perform a probabilistic analysis [12]. 

While the SFEM is well-established and accepted by the scientific community, much research 

efforts are still needed to further enhance the development and dissemination of the IFEM in 

practical engineering. Several versions of the IFEM have been proposed in the literature (see 

e.g., [18]-[24]) with the purpose of addressing the following three key issues: i) the overesti-

mation of the interval solution range due to the so-called dependency phenomenon, which 
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typically affects methods based on the Classical Interval Analysis (CIA) [16]; ii) the inherent 

spatial character of uncertainties, like material or geometric properties, which is not taken into 

account by traditional IFEMs ([18]-[24]); iii) the need for computationally efficient propaga-

tion procedures. 

Among the approaches proposed in the literature to limit the effects of the dependency 

phenomenon, the so-called improved interval analysis via extra unitary interval (IIA via EUI) 

[25] has proved to be an effective remedy to reduce conservatism in the context of interval 

structural analysis. This approach relies on the use of a particular unitary interval, called EUI, 

which does not follow the rules of the CIA. 

To describe the spatial character of interval uncertainties, the interval field model [26],[27] 

has been recently introduced as the natural extension of the random field concept to the non-

probabilistic framework. The interval field description of an uncertain property basically con-

sists of a superposition of deterministic basis functions representing the spatial character, 

weighted by independent interval coefficients representing the uncertainty. Different defini-

tions of the interval field have been introduced in the literature, such as those based on the 

Inverse Distance Weighting interpolation (IDW) or the Local Interval Field Decomposition 

method (LIFD) [28]. Recently, an interval field model based on the IIA via EUI [29] has been 

proposed with the purpose of handling both overestimation and spatial dependency issues. 

This model expresses the generic uncertain property as superposition of deterministic func-

tions and EUIs. To date, applications of the interval field model based on the IIA via EUI are 

limited to the static analysis of one-dimensional problems involving spatially varying uncer-

tain Young’s modulus [29]-[31]. Faes and Moens [32] presented a novel methodology for the 

identification and quantification of spatial uncertainty modelled as an interval field, based on 
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a large set of measurement data, by extending a recently proposed method to identify interval 

scalars [33]. 

So far, very few studies have been devoted to the incorporation of the interval field model 

into the standard FEM (see e.g., [27], [34]-[36]). Furthermore, the development of specialized 

software, able to interact with powerful third-party software for the analysis of large-scale 

problems with uncertain properties modeled either as interval variables or interval fields, has 

not been addressed in the scientific literature. 

To fill this gap, the present paper deals with the formulation and implementation of an 

IFEM for the analysis of structures made of linear-elastic isotropic materials with spatially 

varying uncertainties described using the interval field model based on the IIA via EUI. With-

out loss of generality, only Young’s modulus of the material is assumed to be uncertain. The 

key idea is to incorporate the interval field representation of the uncertain material property 

into the standard FEM by defining the pertinent interval element constitutive matrix which 

depends on the spatial coordinates as well as on a certain number of EUIs. Then, interval ex-

tension of the standard energy approach and the conventional assembly procedure yield the 

set of linear interval equations governing the interval global displacements of the FE model. 

Within the interval framework, the solution of such equations is pursued by evaluating the 

bounds of the interval displacement vector. To achieve this aim, an efficient procedure based 

on the application of a ratio of polynomial response surface in conjunction with the IIA via 

EUI is adopted. The challenging task of evaluating the bounds of the interval stress compo-

nents is also addressed by exploiting the response surface approximation combined either 

with a sensitivity or a combinatorial approach. The proposed response surface strategy for 

propagating the interval field requires only a certain number of deterministic analyses, thus 
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allowing a significant reduction of the computational burden compared to the classical com-

binatorial procedure, known as the vertex method [37]. 

The main feature of the described IFEM, incorporating the interval field model of Young’s 

modulus, lies in its capability of interacting non-intrusively with a commercial FE code thus 

providing a powerful tool for the analysis of real engineering problems. Indeed, the basic 

steps of the IFEM formulation are the same as those of the standard FEM, and the proposed 

uncertainty propagation strategy requires repeated deterministic analyses which can be effi-

ciently performed by a FE solver. In view of these observations, one of the main purposes of 

the present study is to integrate the proposed IFEM into the commercial FE software 

ABAQUS. This challenging task is pursued by implementing User MATerial (UMAT) or 

USerDefinedFieLD (USDFLD) subroutines [38] in the FORTRAN 77 language and Python 

scripts which enable the interval Young’s modulus field to be incorporated into the constitu-

tive behaviour of any type of FE available in ABAQUS’ library. To the best of the authors’ 

knowledge, this is the first attempt to integrate the interval field model of uncertainty into 

commercial FE software. The approach adopted here can be readily employed to develop sim-

ilar routines for other commercial FE packages. 

Numerical results concerning 2D plane stress and bending problems with uncertain 

Young’s modulus are presented. The accuracy and efficiency of the proposed IFEM are 

demonstrated by suitable comparisons with the bounds of the response provided by the vertex 

method. 

The paper is organized as follows: Section 2 outlines the formulation of the IFEM incorpo-

rating the uncertain Young’s modulus described as an interval field based on the IIA via EUI; 

Section 3 is devoted to the development of response surface based strategies for evaluating 

the bounds of the interval displacements and stresses; Section 4 focuses on the implementa-
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tion of the IFEM into the commercial FE software ABAQUS; finally, in Section 5, two nu-

merical applications are presented. 

 

2. INTERVAL FINITE ELEMENT METHOD INCORPORATING SPATIALLY 

VARYING UNCERTAINTIES 

The underlying idea of the interval model, originally developed from the interval analysis 

[14],[16], is to describe the generic uncertain parameter as an interval variable with given 

lower bound (LB) and upper bound (UB). This model is very useful when only the range of 

variability of the uncertain parameters is known, while available information is insufficient to 

define the type of distribution within the range, as often happens in the early stages of design. 

The so-called Interval Finite Element Method (IFEM) has been developed as an extension 

of the traditional FEM by incorporating uncertain input parameters modeled as interval varia-

bles (see e.g., [12],[13]). The standard formulation of the IFEM relies on the extreme assump-

tion of total spatial independency (TSI) of uncertainties. Specifically, a spatially varying 

uncertain property, such as Young’s modulus of the material, is represented as a set of inter-

val variables, one for each FE. This assumption may lead to serious shortcomings such as 

overestimation of the actual uncertainty, mesh-dependency of the solution and increase of the 

computational effort [23]. Furthermore, interval variables are by definition unable to account 

for mutual dependency between the values of spatially varying properties at different loca-

tions. Alternatively, relying on the opposite extreme hypothesis of total spatial dependency 

(TSD), the uncertain property can be described as a single interval variable over the entire 

model.  

A more realistic and computationally efficient description of spatially varying interval un-

certainties can be obtained by resorting to the interval field model [26],[27], which is able to 
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quantify the dependency between adjacent values of an interval quantity that cannot differ as 

much as values that are further apart. The key idea is to represent the spatial character and the 

uncertainty separately by expressing an uncertain property as a superposition of deterministic 

basis functions weighted by independent interval coefficients. In the context of a FE formula-

tion, the interval field model enables the spatial dependency of the uncertainty properties to 

be taken into account as well as to drastically reduce the dimensionality of the uncertainty. 

Indeed, the latter is not related to the number of FEs of the selected mesh, as in the standard 

IFEM, but it is given by the number of series terms retained in the interval field representa-

tion.  

High dimensionality of uncertainty may have negative effects on both the computational 

efficiency and accuracy of IFE procedures. Indeed, one of the main drawbacks of IFEMs 

based on the Classical Interval Analysis (CIA) [14] is the overestimation of the interval solu-

tion range due to the so-called dependency phenomenon [16], which increases tremendously 

with the number of interval variables involved and the number of interval computations. 

Hence, within the interval framework, it is highly desirable to reduce the dimensionality of 

uncertainty. 

To overcome the main limitations arising from the use of discrete interval variables in the 

context of FE analysis, in the present study, a novel IFEM incorporating the interval field de-

scription of spatially varying uncertainties is developed.  

 

2.1 Uncertain Young’s modulus modeled as an interval field 

Let us consider a continuous body made of a linear-elastic isotropic material which occupies 

the volume V  bounded by the surface S  in its undeformed state. The body is subjected to 

volume forces ( )b x  in V  and surface forces ( )t x  on the free portion tS  of the boundary sur-

face S , with x  denoting the position vector of a generic point referred to a Cartesian coordi-
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nate system ( , , )O x y z ; the displacements ( )uu x  are imposed on the constrained portion uS  of

S . The loads act by hypothesis in a quasi-static manner and infinitesimal displacements are 

considered. Without loss of generality, all input parameters are assumed to be deterministic, 

except Young’s modulus of the material which is treated as an uncertain property in the con-

text of the interval model of uncertainty. In order to take into account the inherent spatial de-

pendency of continuous material properties, the uncertain Young’s modulus is described 

resorting to a recently proposed interval field model [29] based on the Improved Interval 

Analysis (IIA via EUI) [25]. The main features of the assumed interval field model are herein 

briefly summarized. Let Young’s modulus be represented by the following interval function: 

0( ) ( ), ( ) 1 ( ) ,      
I I

E E E E B Vx x x x x          (1) 

with midpoint and deviation amplitude given, respectively, by: 

  0 0

( ) ( ) ( ) ( )
mid ( ) ;        ( ) ( ), .

2 2

I E E E E
E E E E B V

 
      

x x x x
x x x x  (2a,b) 

In the previous equations, the superscript I denotes interval quantities; ( )E x  and ( )E x  are 

the lower bound (LB) and upper bound (UB) functions; the operator  mid  yields the mid-

point of the interval quantity between curly brackets; ( ) ( ), ( )IB B B   x x x  is a dimensionless 

interval function with zero midpoint and deviation amplitude ( ) 1B x , so as to ensure val-

ues of the uncertain material property are always positive. Notice that the midpoint value of 

( )
I

E x , herein assumed constant over the volume V , coincides with the nominal value of the 

uncertain Young’s modulus 0E R  (see Eq. (2a)). 
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The key idea behind the interval field model based on the IIA via EUI is to describe the 

spatial dependency of the uncertain property by introducing the following real, deterministic, 

symmetric, non-negative function: 

 
 
 

2

0

mid ( ) ( )
( , ) mid ( ) ( ) 1,    ,

I I

I I

B

E E
B B V

E


x ξ
x ξ x ξ x ξ     (3) 

called spatial dependency function. This function is intended to provide information on how 

similar the values of ( )
I

B x  at nearby locations of the domain are. If the  mid  operator is 

regarded as the analogue of the stochastic average operator [29], the function ( , )B x ξ  may 

be viewed as the non-probabilistic counterpart to the autocorrelation function characterizing 

random fields [6]. Specifically, the spatial dependency function provides a measure of the 

dependency between the values of the dimensionless interval function 
I

B  at different loca-

tions x  and ξ . It may also be viewed as the relative difference between the midpoint of the 

product of Young’s modulus at different locations, x  and ξ , and the squared midpoint of the 

interval field 0E  (see Eq. (3)) assumed constant over the whole domain. The analytical ex-

pression of the spatial dependency function has to be postulated in a physically consistent 

way. For instance, an exponential or squared exponential form can be assumed. So far no 

measurement-based functions have been defined. Based on Eq. (3), experimental tests should 

be designed in such a way that the value of Young’s modulus at different pairs of locations 

can be measured.  

In the context of finite element (FE) formulations, it is useful to represent the continuous 

interval function ( )
I

E x  in terms of a set of independent interval coefficients. To this aim, the 

following spectral decomposition of the spatial dependency function is adopted: 
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2

2

1 1

( , ) ( ) ( ) ( , ) mid ( ) ( )I

B i i i B i i

i i

B      
 

 

    x ξ x ξ x x x x  (4) 

where i  and ( )i x , ( 1,2, )i  , are the eigenvalues and associated eigenfunctions of 

( , )B x ξ , which are solutions of the following homogeneous Fredholm integral equation of 

the second kind: 

( , ) ( )d ( ).B i i i

V

    x x x   (5) 

By introducing the so-called EUI [25], ˆ [ 1, 1]I

ie    , and truncating the decomposition (4) 

to the first M terms, the following Karhunen-Loève (KL)-like expansion of the dimensionless 

interval function ( )IB x  (see Eq. (1)) is obtained: 

1

ˆ( ) ( ) ,     .
M

I I

i i i

i

B e V x x x


   (6) 

Then, substituting Eq. (6) into Eq. (1), the interval field representation of the uncertain 

Young’s modulus ( )
I

E x  based on the IIA via EUI is obtained [29]: 

0

1

ˆ( ) 1 ( ) ,     
M

I I

i i i

i

E E e V x x x


 
   

 
  (7) 

where the deterministic functions ( )i i  x  describe the spatial character, while the associ-

ated EUIs, ˆ
I

ie , represent the uncertainty. 

The LB and UB of the interval Young’s modulus (7) are spatially dependent functions giv-

en by the following relationships: 

   0 0( ) 1 ( ) ; ( ) 1 ( ) ,    E E B E E B V x x x x x      (8a,b) 

where 

http://en.wikipedia.org/wiki/Integral_equation
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( )
( ) ( ) ,    

M

i i

i

E
B V

E
 




x
x x x



    (9) 

with   denoting the absolute value of  . 

It is worth remarking that the interval field model based on the IIA via EUI in Eq. (7) de-

scribes the spatial dependency and the uncertainty of Young’s modulus separately by means 

of the deterministic functions ( )i i  x  and the associated EUIs, ˆ
I

ie , respectively. This is a 

highly desirable feature in the framework of interval field representation (see e.g., [33]) which 

enables propagation techniques commonly used for discrete input interval variables to be ap-

plied.  

Taking into account Eq. (7), the interval constitutive matrix ( )
I

D x  for the continuous body 

with interval Young’s modulus can be expressed as follows: 

0 0

1 1

( ) ˆ ˆ1 ( ) ( )
M M

I I I

i i i i i

i i

e e 
 


 
   

 
 D x D D Dx x  (10) 

where 0D  is the nominal constitutive matrix and 0( ) ( )i i i D Dx x  is the deviation matrix 

associated with the i -th EUI. 

It is worth mentioning that the random field model remains the most valuable representa-

tion of spatially varying uncertainties when objective information on non-determinism is 

available and a probabilistic description of the output is desired. As known, the characteriza-

tion of a random field requires a large amount of experimental data to define the probability 

density function and the correlation structure. Often, the lack of sufficient information leads 

to strong assumptions on the probabilistic characterization of the random field. Even small 

deviations from the true probabilistic model may have a high impact on reliability estimates. 
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In these cases, the interval field model represents a suitable alternative since it does not re-

quire a complete probabilistic description of the uncertain property.  

 

2.2 Interval finite element formulation 

Let the body be subdivided into N  FEs of volume hV  ( 1,2, ,h N ). According to the 

standard displacement-based FE formulation, the interval displacement field within the thh   

FE can be approximated as follows: 

( ) ( ) ( )( ) ( ) ,     ( 1,2, , )h I h h I h N u x N x d  (11) 

where ( )
( )

h
N x  is the matrix collecting the deterministic shape functions; 

( )h I
d  is the interval 

vector listing the element nodal displacements.  

Replacing Eq.(11) into the strain-displacement and linear-elastic constitutive equations 

yield, respectively, the following expressions of the interval strain and stress fields within the 

thh   FE: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ;     

( ) ( ) ( )

h I h h I

h I h h II





ε x B x d  

σ x D x B x d

 (12a,b) 

where ( )
( )

h
B x  is the strain-displacement matrix and ( )I

D x  denotes the interval constitutive 

matrix defined in Eq. (10). Notice that the interval stress field is affected by uncertainties both 

through the interval nodal displacements and the interval constitutive matrix. Multiple occur-

rences of the same interval variable in Eq. (12b) makes the stress field more sensitive to the 

dependency phenomenon than the displacement field [23]. 
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By virtue of the interval extension [16] and taking into account Eqs. (11) and (12), the fol-

lowing discretized form of the Interval Total Potential Energy (ITPE) functional of the body 

is obtained: 

 

 

( )

( ) ( )

T
( ) ( ) ( )T ( ) ( ) ( )

1

T
( ) ( )T ( ) ( )T ( )

1

1
( ) ( ) ( )d

2

                ( ) ( )d ( ) ( )d

h

h h
f

N
h I I I h I h I h h h I

e

h V

N
h I h h h h

h V S

L V

V S





      

 
  
 
 

 

  

d d B x D x B x d

d N x b x N x t x

 (13) 

where 
I  is the interval elastic strain energy stored in the deformed body, while 

I

eL  is the 

interval work done by the external loads, expressed as sum of the contributions associated to 

each FE. Equation (13) can be rewritten as follows: 

   ( ) ( ) ( )

1 1

T T
( ) ( ) ( )1

[ ]
2

N N
h I h I h

h h

h I h I h I

 

   d k fd d d  (14) 

where 

( )

( ) ( )T ( ) ( )( ) ( ) ( )d
h

h I h I h h

V

V k B x D x B x  (15) 

is the interval element stiffness matrix, formally analogous to the one pertaining to the deter-

ministic FE, and 

( ) ( )

( ) ( )T ( ) ( )T ( )( ) ( )d ( ) ( )d
h h

t

h h h h h

V S

V S  f N x b x N x t x  (16) 

denotes the element force vector, which is not affected by uncertainty. 

By substituting expression (10) for the constitutive matrix ( )I
D x  in Eq. (15), the interval 

element stiffness matrix can be recast as: 

( ) ( ) ( )

0

1

ˆ
M

h I h h I

i i

i

e


 k k k  (17) 

where  

( )

( ) ( )T ( ) ( )

0 0 ( ) ( )d
h

h h h h

V

Vk B x D B x   (18) 
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denotes the element nominal stiffness matrix, while  

( )

( ) ( )T ( ) ( )

0( ) ( ) ( )d
h

h h h h

i i i

V

V k x B x D B x   (19) 

represents the deviation matrix associated to the thi   term of the KL-like decomposition. It 

is worth remarking that the interval element stiffness matrix in Eq. (17) is affected simultane-

ously by all the EUIs describing the uncertainty of the spatially dependent Young’s modulus 

over the body domain. 

Like in the standard FEM, the interval nodal displacement vector of the h -th FE, 
( )h I

d , is 

related to the global nodal displacements, collected into the interval vector 
I

U , by the follow-

ing relationship:  

( ) ( )h I h Id L U  (20) 

where ( )h
L  is the connectivity matrix.  

Substituting Eq. (20) in Eq. (14) and imposing the stationarity conditions of the ITPE, the 

following set of linear interval equations governing the equilibrium of the FE model is ob-

tained: 

.I I K U F  (21) 

In the previous equation, 
I

K  is the interval global stiffness matrix, defined as: 

0

1

ˆ
M

I I

i i

i

eK K K


   (22) 

where 0K  denotes the global nominal stiffness matrix and iK  is the global deviation stiff-

ness matrix associated with the thi   term of the KL-like decomposition of the uncertain 

Young’s modulus (7), given, respectively, by: 
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( )T ( ) ( )

0 0

1

( )T ( ) ( )

1

;

.

N
h h h

h

N
h h h

i i

h

K L k L

K L k L













 (23a,b) 

By inspection of Eq. (22), it is observed that the deviation of the interval global stiffness 

matrix from the nominal one is given by the superposition of the deviation matrices, iK , 

weighted by the corresponding EUIs, ˆ I

ie .  

Finally, in Eq. (21) F  is the global nodal force vector defined as follows: 

( )T ( )

1

.
N

h h

h

F L f  (24) 

It is worth remarking that Eq. (21) is formally analogous to the set of linear interval equa-

tions governing the equilibrium of FE modelled structures with uncertain properties described 

by a number of discrete interval variables (see e.g., [23],[24]). Such a notable feature allows 

us to apply the same propagation strategies to deal either with interval field or discrete inter-

val variable descriptions of the uncertain input. In this regard, however, it is observed that the 

number of independent interval variables of the model (see Eq.(22)), say M, is not related to 

the number of FEs of the selected mesh, as is customary in classical IFEMs, but it is always 

given by the truncation order M  of the KL-like decomposition. This property generally im-

plies a considerable reduction of the computational burden of the subsequent uncertainty 

propagation analysis. In view of the analogy between the spatial dependency function and the 

autocorrelation function, the optimal truncation order M  may be chosen relying on the large 

number of studies devoted to the convergence of the KL expansion of random fields (see e.g., 

[39]).  
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3. APPROXIMATE EXPLICIT BOUNDS OF THE RESPONSE  

The exact solution of the linear interval global equilibrium equations (21) proves to be a non-

trivial task. Indeed, the set containing all the solutions of Eq. (21), obtained when the EUIs 

range independently between 1  and 1 , may be very complicated and its exact computation 

is challenging. Such a solution set can be formally defined as: 

 ˆ ˆ,  [ 1, 1]n I

i ie e       U KU FR  (25) 

where n  is the number of degrees-of-freedom (DOFs) of the FE model;  S P  means “the set 

of quantities S  such that the proposition P  holds”. The square interval matrix 
I

K  is regular, 

that is each matrix I
K K  is non-singular [46]; this implies that the solution 

I
U  of Eq. (21) 

exists for all I
K K . In the literature, several attempts have been made to develop interval 

versions of classical direct or iterative algorithms [16], such as Gaussian elimination or the 

Gauss-Seidel method. Due to the large number of interval computations involved, however, 

such algorithms are strongly affected by the dependency phenomenon [16], which leads to 

extremely conservative solutions for real FE models. Over the last decades, much research 

effort has been devoted to develop alternative solution strategies able to limit the overestima-

tion of the interval output range, so as to enhance the application of the interval model of un-

certainty in the field of engineering. In this context, some approaches, such as the ones based 

on Interval Rational Series Expansion (IRSE) [23] or the response surface method [24],[35], 

focus on the derivation of approximate explicit expressions of the solution of Eq. (21) as a 

function of the interval parameters. The knowledge of such expressions allows a straightfor-

ward computation of the approximate LB and UB of the interval displacement vector 
I

U , 

containing the solution set   in Eq. (25), which has the narrowest interval components. 
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3.1 Bounds of the interval displacements 

In the present study, the bounds of the interval displacement vector 
I

U  are evaluated by 

applying a response surface approach recently proposed by one of the authors for the analysis 

of Euler-Bernoulli beams with interval Young’s modulus [35]. 

Let us assume that the thj   interval displacement component, 
I

jU , can be approximated 

as the sum of the nominal value, 0, jU , plus a deviation due to the M  terms of the KL-like 

decomposition of the uncertain Young’s modulus (7), say to the EUIs ˆ I

ie  ( 1,2, ,i M ), 

separately taken, i.e.: 

0, ,

1

.
M

I I

j j i j

i

U U U


   (26) 

Further, let the deviation, ,

I

i jU , associated with the thi   EUI be approximated by a rational 

function of ˆ I

ie , so that Eq. (26) can be recast as: 

0, , 0,

1 1 , ,

ˆ
ˆ( )

ˆ

IM M
I I Ii
j j i j j jI

i i i j i j i

e
U U U U U

A B e
e

 

    


   (27) 

where 1 2
ˆ ˆ ˆ ˆ

T
I I I I

Me e ee      is the interval vector collecting the M  EUIs; 
,i jA  and 

,i jB  are 

2M  unknown coefficients. Such coefficients can be evaluated by fitting the approximate re-

sponse (27) to the exact implicit one at 2M  selected sampling points which define an appro-

priate design of experiment [47]. Within the interval framework, an effective selection of the 

sampling points consists of setting all the EUIs equal to zero except the thi   interval which 

is set either to the UB or to the LB, i.e.: ˆ 1
I

ie   , ˆ 0
I

je  , 1,2, ,i j M  ; ˆ 1
I

ie   , ˆ 0
I

je  , 

1,2, ,i j M  . Thus, the evaluation of the coefficients 
,i jA  and 

,i jB  requires the solution 

of the following 2 1M   sets of linear algebraic equations: 
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1

0 0

( ) 1

0

( ) 1

0

;

( ) ;

( ) ,    1,2, ,

i

i

i

i i M

U K F

U K K F

U K K F



 

 



 

  

 (28a-c) 

where 0U  denotes the nominal displacement vector; 
( )i

U

 and 

( )i
U


 are the deterministic dis-

placement vectors obtained by setting all the EUIs equal to zero except the thi   interval 

which is set to ˆ 1
I

ie    and ˆ 1
I

ie   , respectively.  

Once the coefficients 
,i jA  and 

,i jB  are known, Eq. (27) provides an approximate explicit 

expression of the response in terms of the EUIs, which can be exploited to evaluate the 

bounds of the interval displacement vector 
I

U . For this purpose, different strategies can be 

applied, such as classical optimization procedures or combinatorial approaches, whose com-

putational efficiency would be significantly enhanced by virtue of Eq. (27). In the present 

paper, a more efficient approach, able to provide analytical expressions of the bounds of the 

interval displacements, is adopted. To this aim, Eq. (27) is rewritten in the following affine 

form: 

 0, 0 , ,

1

ˆ
M

I I

j j i j i j i

i

U U a a e


    (29) 

where  

, ,

0 ,

, ,

,

;
2

2

i j i j

i j

i j i j

i j

U U
a

U U
a







 (30a,b) 

are the midpoint and deviation amplitude of the thi   interval deviation ,

I

i jU  in Eq. (27), 

whose LB and UB, ,i jU  and 
,i jU , are given, respectively by: 
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,

, , , ,

,

, , , ,

1 1
min , ;

1 1
max , .

i j

i j i j i j i j

i j

i j i j i j i j

U
A B A B

U
A B A B

  
  

   

  
  

   

 (31a,b) 

Based on the affine form (29) and applying the rules of the IIA via EUI, the following approx-

imate explicit expressions of the LB and UB of the thj   interval displacement component 

are obtained: 

 

 

,

1

,

1

mid ;    

mid

M
I

j j i j

i

M
I

j j i j

i

U U a

U U a









 

 





 (32a,b) 

where  

  0, 0 ,

1

mid
M

I

j j i j

i

U U a


   (33) 

is the midpoint value. 

It is worth remarking that the proposed approach is much more computationally efficient 

than the vertex method [37]. Indeed, the latter evaluates the exact bounds of the response as 

the minimum and maximum among the solutions pertaining to all possible combinations of 

the endpoints of the EUIs, say 2M
, if M  terms are retained in the KL-like expansion of the 

uncertain Young’s modulus. This implies that the vertex method requires 2M
 deterministic FE 

analyses against the 2 1M   analyses (see Eqs (28a-c)) needed to define the proposed ratio of 

polynomial response surface. 
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3.2 Bounds for the interval stress 

Substituting the interval constitutive matrix ( )I
D x  given by Eq. (10) and the proposed re-

sponse surface approximation of the interval displacements (27) into Eq. (12b), the following 

explicit relationship between the interval stress field within the h -th FE and the EUIs is ob-

tained: 

( ) ( ) ( ) ( )

0

1

ˆ ˆˆ( ) ( ) ( ) ( ) ( ; )
M

h I I h h I h I

i i

i

e


 
   
 

D D σ x x B x L U e  σ x e  (34) 

where ˆ( )I IU e U  is the vector collecting the interval displacements defined in Eq. (27). 

As already observed, the interval stress is affected by uncertainty both through the interval 

constitutive matrix and the interval global displacements. In particular, it is noted that each 

EUI appears more than once in the approximate explicit expression (34) of the interval stress 

vector. This circumstance may lead to high overestimation of the interval stress range unless 

suitable approaches are adopted to predict sharp bounds. Based on the knowledge of the ap-

proximate functional dependence (34) of the stress components on the EUIs, two main strate-

gies are herein proposed to address this issue: the first one relies on a sensitivity analysis, 

while the second approach is conceived as an enhancement of the classical combinatorial pro-

cedure. It is worth remarking that, when applying these strategies, the use of the IIA [25] al-

lows us to keep track of uncertainties throughout calculations by means of the EUIs and thus 

reduce the overestimation due to the dependency phenomenon. 

The proposed sensitivity-based procedure relies on the observation that, at a given position 

x , the stress components are monotonic functions of the EUIs. The key idea is to perform a 

preliminary sensitivity analysis to predict the monotonic increasing or decreasing behaviour 

of the stress components as functions of each EUI. The vector collecting the sensitivities of 
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the interval stress  within the h  th FE with respect to the i  th EUI 

ˆ ˆ [ 1, 1]I

i ie e     can be evaluated analytically by direct differentiation of Eq. (34), i.e.:  

( )

( )
( ) ( ) ( ) ( )

0 0,

ˆ

ˆ( ; )
( ) ( ) ( ) ( ) ,   ( 1,2, )

ˆ
h

h
h h h h

i ii
i

i M
e




    

σ

e 0

D D
σ x e

 s x x B x L U B x L A  (35) 

where ˆ ˆ Ie e ; iA  denotes a n  component vector whose j  th component is ,1 / i jA . Eq. (35

) provides information on the change of the stress at a prescribed position x  within the h  th 

FE due to a change of the thi   EUI, ˆ I

ie , over the range [ 1, 1]  . Specifically, the k  th 

interval stress component, 
( ) σ ( )h I

k x , is an increasing or decreasing function of ˆ I

ie  depending 

on whether ( ) ,
( ) 0h

k i
s


x  or ( ) ,
( ) 0h

k i
s


x , respectively. Based on this observation, the combi-

nations of the endpoints of the EUIs which give the LB and UB of the k  th interval stress 

component, 
( ) σ ( )h I

k x , denoted by (LB)

, ,
ˆ

h k ie  and (UB)

, ,
ˆ

h k ie  ( 1,2, , )i M , respectively, can be deter-

mined as follows: 

( )

( )

(UB) (LB)

, , , ,,

(UB) (LB)

, , , ,,

ˆ ˆif   ( ) 0,    then   1,    1;

ˆ ˆif   ( ) 0,    then   1,    1,    ( 1,2, , ).

h
k

h
k

h k i h k ii

h k i h k ii

s e e

s e e i M





    

     

x

x

 (36a,b) 

The combinations (LB)

, ,
ˆ

h k ie  and (UB)

, ,
ˆ

h k ie  of the EUIs provided by the sensitivity analysis can be col-

lected into the following vectors: 

T
(UB) (UB) (UB) (UB)

, , ,1 , ,2 , ,

T
(LB) (LB) (LB) (LB)

, , ,1 , ,2 , ,

ˆ ˆ ˆ ˆ ;     

ˆ ˆ ˆ ˆ .

h k h k h k h k M

h k h k h k h k M

e e e

e e e

   

   

e

e

 (37a,b) 

Then, approximate explicit expressions of the LB and UB of the k  th interval stress com-

ponent, 
( ) σ ( )h I

k x , can be readily obtained by substituting the vectors (LB)

,
ˆ

h ke  and (UB)

,
ˆ

h ke , respec-

tively, into Eq. (34), i.e.: 

( ) ˆ( ; )h I
σ x e
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( ) ( ) (LB)

,

( ) ( ) (UB)

,

ˆ  ( ) ( ; );    

ˆ( ) ( ; ).

h h

k k h k

h h

k k h k

 

 





x  x e  

x x e
 (38a,b) 

Alternatively, instead of using Eq. (34), two separate deterministic FE analyses can be run 

for the two combinations of the EUIs specified in Eqs. (37a,b), at the expense of higher com-

putational time.  

It is worth mentioning that the sensitivity-based approach may be time-consuming since 

the combinations of the endpoints of the EUIs (37a,b) need to be computed for each stress 

component. However, in practical engineering, often a knowledge of the extreme values of 

stress components at a few critical points is of interest for design purposes.  

The alternative approach herein proposed for evaluating the bounds of stress components 

relies on the use of the ratio of polynomial response surface (34) in conjunction with the ver-

tex method. The key idea is to evaluate the stress components pertaining to all possible com-

binations of the bounds of the EUIs, say 2M , by simply substituting such combinations into 

Eq. (34) rather than repeating the solution of the equilibrium equations (21). Then, following 

the classical combinatorial procedure, the LB and UB of each stress component are identified 

as the minimum and maximum among the 2M  computed stresses, respectively. The computa-

tional times are drastically reduced compared to the crude vertex method which, as already 

mentioned, requires 2M  deterministic analyses to be performed with the associated inversions 

of the global stiffness matrix (see Eq.(21)).  

 

4. IMPLEMENTATION 

The proposed IFEM, which relies on the use of the interval field model, enables the spatial 

dependency of uncertainties to be taken into account, leading to tremendous computational 

savings compared to standard IFEMs. The formulation of the method (see Section 2) retains 
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the main steps of the deterministic FEM, such as the standard assembly procedure which 

yields the interval global equilibrium equations governing the discretized model. Furthermore, 

the proposed response surface approach for propagating the interval field exhibits a non-

intrusive nature, since it just involves a sequence of deterministic FE analyses. These desira-

ble features allow the developed IFEM to be incorporated into commercial FE software in a 

straightforward manner. In the present study, a computational tool consisting of a combina-

tion of User Subroutines and Python scripts is developed to integrate the proposed IFEM into 

the commercial code ABAQUS. A similar procedure to that described here can be adopted to 

incorporate the methodology in other FE codes, provided they permit the user access to rou-

tines which allow manipulation of the constitutive relationships employed in the models. 

To incorporate the interval field model of Young’s modulus in ABAQUS, we need to im-

plement the interval constitutive matrix of Eq. (10), which depends on the position vector x , 

and is expressed as the sum of the nominal value plus an interval deviation given by the su-

perposition of independent contributions associated to the EUIs. This task is herein efficiently 

accomplished by coding either User MATerial (UMAT) or USerDefinedFieLD (USDFLD) 

subroutines, written in FORTRAN 77. 

The general purpose of the UMAT subroutine is to define the constitutive behavior. The 

UMAT subroutine is called at every integration point of the numerical integration scheme 

adopted by ABAQUS to evaluate element properties. This feature enables the spatial depend-

ency of the interval Young’s modulus to be taken into account by evaluating the interval con-

stitutive matrix at the GN  integration points of the model, i.e. 

, 0 , 0 ,

1 1

( ) ˆ ˆ1 ( ) ( ) ,     ( 1,2, , )
M M

I I I

G j i i G j i i G j i G

i i

e e j N 
 


 
     

 
 D D D D    (39) 

where ,G j  is the vector which contains the coordinates of the j  th integration point. As 

will be outlined in detail next, to implement the proposed response surface approach for un-
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certainty propagation (see Section 3), the EUIs appearing in Eq. (39) are conveniently treated 

as parameters which are set either to 1  or 1  within the context of the analysis.  

Once the UMAT is implemented, the evaluation of the interval element stiffness matrix in 

Eq. (15), for any selected element type, is performed by ABAQUS through numerical integra-

tion. Repeated calls of the UMAT allow the evaluation of the interval constitutive matrix 

,( )G j

I
D   at each integration point.  

It is observed that Eq. (39) requires the knowledge of the eigenvalues and eigenfunctions 

of the spatial dependency function ( , )B x ξ , which are solutions of the Fredholm integral 

equation reported in Eq. (5). For regular domains and selected analytical expressions of the 

spatial dependency function, such as exponential, closed-form expressions of the eigenvalues 

and eigenfunctions are available [40]. In general, a numerical solution of the Fredholm inte-

gral equation is needed [41]. For this purpose, FE based Galerkin approaches are most often 

used in the literature [40]. The use of these methods leads to dense and computationally ex-

pensive matrices, especially for 2D and 3D domains [42]. Several strategies have been pro-

posed in the literature to achieve an accurate and efficient solution of the interval eigenvalue 

problem in Eq. (5) (see e.g., [42], [43], [44], [45]). 

Alternatively, the interval field representation of the uncertain Young’s modulus based on 

the IIA via EUI can be introduced into the linear-elastic constitutive model of the material by 

coding a USDFLD subroutine, which allows the user to define spatially varying field varia-

bles (FVs). Specifically, the uncertain Young’s modulus in Eq. (7) is defined so as to be pro-

portional to an interval FV which is evaluated at each integration point as: 

, ,

1

( ) ( ) ˆ1 ,      ( 1,2, , )
M

I I

G j i i G j i G

i

FV e j N


        (40) 

where, also in this case, the EUIs are treated as parameters which can be set either to 1  or 

1  within the context of the analysis. 

http://en.wikipedia.org/wiki/Integral_equation
http://en.wikipedia.org/wiki/Integral_equation
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Based on Eq. (40), the interval constitutive matrix in Eq. (10) can be readily computed at 

the GN  integration points as follows:  

, 0 ,( ) ( ),     ( 1,2, , ).I I

G j G j GFV j N  D D    (41) 

Then, the evaluation of the interval element stiffness matrix in Eq. (15) can be performed by 

ABAQUS through numerical integration for any type of element. As before, eigenvalues and 

eigenfunctions of the spatial dependency function ( , )B x ξ  at the integration points must be 

specified. 

Once the interval field description of the uncertain Young’s modulus is incorporated into 

the FE formulation, coded as either UMAT or USDFLD subroutines, the analysis can take 

advantage of ABAQUS’ pre- and post-processing interfaces and exploit the computational 

capabilities of the ABAQUS Standard solver. Moreover, it is worth emphasizing that, the im-

plemented interval constitutive behavior of the material can be used in conjunction with any 

type of element contained in ABAQUS’ libraries without writing ad hoc code for each FE 

type. 

The next step of the implementation of the proposed IFEM concerns the solution of the in-

terval global equilibrium equations (21) by means of the response surface approach described 

in Section 3. In this regard, it is recalled that the definition of the ratio of polynomial response 

surface (see Eq. (27)) requires a certain number of deterministic analyses to be performed 

which differ from one another in the values assumed by the EUIs (see Eqs. (28a-c)). Such 

deterministic analyses are herein efficiently performed as parametric studies by coding Py-

thon scripts. Indeed, as already mentioned, the interval constitutive matrix, either in the con-

text of the UMAT (see Eq. (39)) or USDFLD (see Eq. (41)), is treated as a parametric matrix 

with the EUIs playing the role of parameters which can take either the value 1  or 1 . The 

Python script to implement parametric studies in ABAQUS contains the instructions needed 
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to generate, execute, and gather the results of multiple analyses that differ only in the values 

of some of the parameters herein represented by the EUIs. The Python script requires a pa-

rameterized input file, containing the geometry of the problem, boundary and load conditions, 

the assigned type of FE and the parametric material constitutive behavior, which is defined 

through a User Subroutine (UMAT or USDFLD) and depends on the values assumed by the 

EUIs. The assembly procedure is then automatically performed by ABAQUS, which delivers 

the global stiffness matrix, as well as the load and boundary conditions, to the numerical solv-

er.  

The computational framework developed in the present study provides a simple, efficient 

and versatile tool to analyze complex structures exhibiting non-deterministic parameters, able 

to enrich the formulation of well-established deterministic FEs by introducing the interval 

field representation of the uncertain properties.  

For problems involving complex domains, large computational times may be needed for 

the numerical solution of Eq.(5). Thus, the crucial issue in the application of the developed 

computational scheme to real engineering problems is the ability to compute a large number 

of eigenpairs of the spatial dependency function accurately and rapidly. To this aim, numerical 

methods proposed within a probabilistic framework for the solution of the Fredholm integral 

equation (5) with arbitrary integral kernel over non-rectangular domains may be adopted (see 

e.g. [42], [43], [44], [45]).  

It is worth mentioning that the proposed approach is also able to analyze problems involv-

ing multi-interval fields. In the present study, for the sake of simplicity, only Young’s modu-

lus of the material is assumed to be uncertain. Additional uncertain properties described as 

interval fields, such as Poisson’s ratio, can be incorporated into the FE formulation by coding 

suitable User Subroutines. This would imply an increase of the dimensionality of uncertainty 
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which can be handled by the proposed propagation strategy with reasonable computational 

costs. 

Finally, it is observed that the non-intrusive implementation presented in the paper can be 

readily extended to the case of uncertain properties modelled as random fields. Indeed, as 

outlined in Ref. [29], the interval field model based on the IIA via EUI is formally analogous 

to the classical KL expansion of a random field consisting of a superposition of deterministic 

spatial functions with corresponding random coefficients [40]. Within the probabilistic 

framework, a set of uncorrelated standard random variables plays the same role of the EUIs. 

The propagation of random fields is more time consuming than the one of interval fields, es-

pecially when higher-order response statistics are desired. The probabilistic characterization 

of the response may be carried out by using the proposed ratio of polynomial response sur-

face in conjunction with Monte Carlo simulation [24]. As known, however, the computational 

efficiency of sampling-based procedures rapidly worsens as the truncation order of the KL 

expansion increases since samples of a large number of random variables need to be generat-

ed. Conversely, the bounds of the interval response can be efficiently evaluated even for large 

truncation orders M  of the KL-like decomposition of the interval field.  

 

5. NUMERICAL APPLICATIONS 

The proposed IFEM implemented in ABAQUS is applied to analyze two square plates under 

different loading and boundary conditions. In both cases, the constitutive behaviour of the 

material is assumed to be linear-elastic isotropic with uncertain Young’s modulus modelled as 

an interval field based on the IIA (see Eq.(7)), i.e.: 

0 0

1

ˆ( , ) 1 ( , ) 1 ( , )
M

I I I

i i i

i

E x y E B x y E x y e 


 
      

 
  (42) 
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where x  and y  are the Cartesian coordinates of a generic point of the 2D domain of the 

plates. 

The spatial dependency function (see Eq.(3)) characterizing the interval field ( , )
I

E x y  in 

Eq. (42) is assumed to have the following exponential form:  

2( , ; , ) expB B

Bx By

x y
Γ x y C

l l

 
 

  
    

 

 (43) 

where ( x , y ) and ( , ) are the Cartesian coordinates of two different points of the 2D do-

main. The parameter BC  may be regarded as the non-probabilistic counterpart to the standard 

deviation in random field theory [6], since it affects the deviation amplitude of the interval 

field and thus the degree of uncertainty. Similarly, Bxl  and Byl  may be viewed as the analogue 

of the correlation lengths since they rule the spatial dependency of the uncertain property 

along the x - and y -directions. Without loss of generality, it is herein assumed that 

Bx By Bl l l  . Notice that, if Bl  , the spatial dependency function in Eq. (43) approaches 

the value 
2

BC , and the dimensionless interval function ( , )
I

B x y  in Eq. (42) reduces to a sym-

metric interval variable, i.e. ˆ( , )
I I I

B x y b be   with deviation amplitude Bb C . This cir-

cumstance implies the TSD of the uncertain Young’s modulus which, indeed, turns out to be 

described by a single interval variable over the whole domain i.e. 
0

ˆ( , ) (1 )
I I I

E x y E E be   . 

At the opposite extreme, as 0Bl  , the TSI of the uncertain material property is achieved. In 

this case, Young’s moduli of the FEs of the selected mesh are described by independent inter-

val variables (see e.g., [23],[24]).  
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It is worth mentioning that, for regular domains, such as those employed in the square 

plates analyzed here, the eigenvalues and eigenfunctions of the exponential function in Eq. 

(43) can be evaluated in analytical form [40].  

The accuracy of the proposed IFEM is assessed by performing appropriate comparisons 

with the bounds of the response provided by the vertex method, which requires 2M
 determin-

istic analyses, M  being the truncation order of the KL-like expansion of the uncertain 

Young’s modulus in Eq. (42).  

 

5.1 Plate under uniform traction with interval Young’s modulus 

The first application concerns a typical plane stress problem, i.e. a square plate clamped along 

one edge and subjected to a uniformly distributed traction along the opposite edge (Figure 1). 

The material is assumed to have uncertain Young’s modulus described by the interval field in 

Eq. (42). The following data are considered: width and thickness of the plate 0.1mL   and

0.001mt  , respectively; nominal Young’s modulus 0 210GPaE  ; Poisson’s ratio 0.3  ; 

traction 10MPap  . The plate is discretized into 16N   plane stress four-node elements. A 

complete Gauss quadrature integration rule is adopted. The interval nodal displacements in 

the load direction, I

jyU , ( 1,2,...,20)j  , are selected as response quantities of interest.  

Both UMAT and USDFLD subroutines have been coded to incorporate the interval field 

representation of Young’s modulus into the formulation.  

The truncation order M  of the KL-like decomposition is selected by analyzing the rate of 

convergence of the proposed response surface approximation (see Eq. (27)). Specifically, 

attention is focused on the LB and UB of the interval displacement of node 20 in the load di-

rection, 
20

I

yU . In Figure 2, such bounds are plotted versus the truncation order M , for 
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0.05BC   and different values of the parameter Bl . By inspection of Figure 2, it can be in-

ferred that, as the parameter Bl  increases, the series converges more quickly, so that a smaller 

number of terms is required to represent the response surface in Eq. (27) and, therefore, the 

interval Young’s modulus in Eq. (42). To ensure a reasonable trade-off between accuracy and 

computational efficiency, 10M   terms are retained for all values of the parameter Bl  herein 

considered. Alternatively, the optimal truncation order M  may be selected referring to suita-

ble error measures similar to those introduced in the literature for assessing the accuracy of 

the truncated KL expansion of random fields (see e.g., [42],[44]). For instance, in view of the 

analogy between the parameter BC  in Eq. (43) and the standard deviation, global error 

measures related to the variance of the random field may be translated to the interval field. 

Furthermore, the number of series terms may be significantly reduced by modifying the expo-

nentially decaying spatial dependency function to remove the non-differentiability at the 

origin [48].  

In order to highlight the main features of the 2D interval field representing the uncertain 

Young’s modulus (42) over the plate domain, Figure 3 shows the LB function, ( , )E x y , the 

UB function, ( , )E x y , (see Eqs. (8a,b)), and two typical samples, 
(1) ( , )E x y  and (2)( , )E x y , 

for 0.05BC   and two different values of the parameter Bl , 0.5Bl L  and 5Bl L . Specifically, 

the samples (1) ( , )E x y  and (2)( , )E x y  are obtained from Eq.(7) setting ˆ 1,  1,3,5
I

ie i  , 

ˆ 1,  
I

je j i    and ˆ 1,  1,5,7,8,10
I

ie i   , ˆ 1,  
I

je j i  , respectively. As expected, the results 

are enclosed by the LB and UB functions. Furthermore, it is observed that, as the value of the 

parameter Bl  increases, the pattern of the interval field realizations consistently becomes more 

regular. Indeed, as already mentioned, when Bl  , the interval field reduces to a single in-
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terval variable over the plate domain, that is the condition of TSD of the interval Young’s 

modulus is approached. 

For validation purposes, the proposed bounds of the selected interval nodal displacements, 

I

jyU , ( 1,2,...,20)j  , are contrasted in Figure 4 with the ones obtained by means of the vertex 

method, for Bl L  and two different values of the parameter 
BC  which describes the degree 

of uncertainty, 0.05BC   and 0.1BC  . It can be noticed that the estimates of the LB and UB 

of the nodal displacements provided by the proposed IFEM are in very good agreement with 

the ones yielded by the vertex method, even for relatively high degrees of uncertainty. Fur-

thermore, as expected, the region of the interval displacements widens when larger values of 

BC  are considered.  

A further insight into the propagation of Young’s modulus uncertainty can be gained by 

evaluating the so-called coefficient of interval uncertainty (c.i.u.), which provides a measure 

of the dispersion of the response quantity of interest around its midpoint value. The c.i.u. of 

the nodal displacements in the load direction, 
I

jyU , ( 1,2,...,20)j  , is defined as follows: 

 
c.i.u. .

mid

jy jy jyI

jy I
jy jyjy

U U U
U

U UU

 
     

           (44) 

Figure 5 shows the comparison between the c.i.u. of the nodal displacements 
I

jyU  provided 

by the proposed method and the vertex method for Bl L  and two different values of the pa-

rameter 
BC , 0.05BC   and 0.1BC  . Besides the accuracy of the proposed method, it is ob-

served that the dispersion of the response around the midpoint value consistently increases 

with the parameter 
BC . Furthermore, it can be noticed that the uncertain Young’s modulus 

has a different influence on the selected degrees of freedom, with the interval displacements 

of nodes 1 and 5, 1

I

yU  and 5

I

yU , exhibiting the largest dispersion around their midpoint value. 
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These nodes are at the edges of the plate and experience less constraint than nodes within the 

bulk of the plate away from a free surface. 

Attention is now focused on the influence of the spatial dependency of the interval 

Young’s modulus on the response. To this aim, in Figure 6, the proposed c.i.u. of the dis-

placement of node 20 in the load direction, 
20

I

yU , versus the ratio /Bl L  is plotted ( 0.05BC 

). Notice that the dispersion of the selected response quantity around its nominal value is sig-

nificantly affected by the parameter 
Bl  governing the spatial dependency of the uncertain 

material property. In particular, the c.i.u. of the interval displacement 
20

I

yU  is generally great-

er than the value 
20c.i.u.[ ] 0.05I

y BU C   pertaining to the case of TSD ( Bl  ) of the in-

terval Young’s modulus. 

The influence of the spatial dependency of the uncertain material property on the response 

of the plate is further scrutinized in Figure 7 where the LB and UB of the interval displace-

ment of node 20 in the load direction, 
20

I

yU , versus the ratio /Bl L  are plotted ( 0.05BC  ). 

Specifically, the bounds provided by the proposed IFEM, assuming the interval field repre-

sentation of Young’s modulus, are compared with the bounds pertaining to the extreme as-

sumptions of TSD ( Bl  ) and TSI ( 0Bl  ) of the uncertain material property over the plate 

domain. The latter are obtained by applying the vertex method. As shown in Figure 7, the in-

terval field model yields a region of the interval displacement 
20

I

yU  which is wider than the 

one predicted under the assumption of TSD ( Bl  ), whatever value of the parameter 
Bl  is 

selected. This implies that, in spite of its simplicity, the representation of Young’s modulus as 

a single interval variable over the whole domain may lead to serious underestimation of re-

sponse variability. Conversely, under the assumption of TSI ( 0Bl  ), the width of the region 

of the interval displacement 
20

I

yU  may be underestimated or overestimated depending on the 
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value of the parameter 
Bl . It follows, that the spatial dependency of interval uncertainties 

plays a crucial role in order to obtain a reliable prediction of response variability.  

As outlined in Section 3, at a prescribed location, the response of the plate is a monotonic 

function of the EUIs appearing in the interval field representation (42) of Young’s modulus. It 

follows that, in general, the bounds of the interval displacements correspond to different com-

binations of the extreme values of the EUIs and therefore to different realizations of the un-

certain Young’s modulus (see Eq. (37a,b)). Figure 8 displays the samples of the interval 

Young’s modulus ( 0.05BC  , 0.5Bl L ), (LB)
( , )E x y  and (UB)

( , )E x y , which yield the LB and 

UB, 
20 yU  and 20 yU , of the interval displacement of node 20 in the load direction, 

20

I

yU  (see 

Figure 1). The spatial variability of (LB)
( , )E x y  consistently entails larger values of Young’s 

modulus close to node 20 and lower values far from the node, whereas an opposite pattern is 

exhibited by the sample (UB)
( , )E x y . Figure 9 shows the contour plots of the displacement of 

the plate along the load direction corresponding to the samples of the uncertain Young’s 

modulus shown in Figure 8, where the bounds, 
20 yU  and 20 yU , of the interval displacement 

20

I

yU  are achieved. 

Finally, the capability of the proposed IFEM to yield accurate predictions of the interval 

stress over the plate is investigated. As outlined in Section 3, the bounds of the interval stress 

can be evaluated combining the response surface approximation (34) either with sensitivity 

analysis or with a combinatorial procedure. Figure 10 shows the comparison between the LB 

and UB of the stress component in the load direction at the Gauss points of FE 12 and FE 16 

(see Figure 1) provided by the proposed method and the vertex method for Bl L  and 

0.05BC  . Notice that the proposed stress bounds, obtained by applying the response surface 

approximation (34) in conjunction with the combinatorial procedure, are very close to the 
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ones provided by the vertex method. Very accurate estimates, herein omitted for conciseness, 

are also provided by the sensitivity-based procedure described in Section 3. For comparison 

purposes, Figure 10 also displays the nominal stress component (i.e. for 0( , )E x y E ) in the 

load direction at the Gauss points of FE 12 and FE 16 which turns out to be enclosed by the 

LBs and UBs predicted in the presence of spatially varying uncertainty. It has to be mentioned 

that, for the analyzed plate, if the uncertain Young’s modulus were assumed TSD ( Bl  ), 

the stress would not be affected by uncertainty and the nominal stress would be obtained for 

any value of the TSD Young’s modulus. This implies that spatial variability of the uncertain 

material property significantly affects the stress distribution over the plate. 

It is worth emphasizing that, for the selected case study, the vertex method and the pro-

posed procedure require 102 2M   and 2 1 21M    deterministic analyses, respectively. Thus, 

the IFEM developed in the present study enables the prediction of very accurate estimates of 

the bounds of both interval displacements and stresses, which require much lower computa-

tional effort than the classical combinatorial procedure. In this regard, it is recalled that the 

deterministic analyses needed to apply either the proposed response surface approach or the 

vertex method are efficiently performed exploiting ABAQUS’ computational power.  

 

5.2 Plate under uniformly distributed transverse load with interval Young’s modulus 

As a second numerical application, a simply-supported square plate under downward uni-

formly distributed transverse load q  (see Figure 11a) is considered. The constituent material 

is assumed to be linear-elastic isotropic with Poisson’s ratio 0.25   and uncertain Young’s 

modulus described by the 2D interval field (42) with exponential spatial dependency function 

(43). The ratio between the width and thickness of the plate is assumed to be / 100L t  . The 

z -axis is taken positive downward from the x y  plane (see Figure 11a). The plate is discre-
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tized into 800N   three noded triangular thin shell elements. Complete Gauss quadrature 

integration is adopted. The normalized interval displacement of the central node A (see Figure 

11b) in the load direction, 
3 2 4

0( 10 / )I I

Az AzU E t qL U , and the normalized interval rotation 

around the x  axis of node B (see Figure 10b), 
3 3

0( / )I I

Bx BxE t qL  , are selected as response 

quantities of interest.  

Figure 12 shows the proposed estimates of the UB and LB of the normalized interval dis-

placement of node A, 
I

AzU , versus the truncation order M  of the KL-like decomposition of 

the interval Young’s modulus (42) for different values of the parameter Bl . By examining the 

convergence rate of the bounds of 
I

AzU , the first 10M   terms are retained for all values of 

the parameter Bl  herein considered.  

Table 1 and Table 2 list the bounds of the response quantities of interest, 
I

AzU  and 
I

Bx , re-

spectively, provided by the proposed method and the vertex method along with the associated 

absolute percentage errors, obtained assuming 0.5Bl L  and two different values of the pa-

rameter 
BC , 0.05BC   and 0.1BC  . Notice that the proposed IFEM yields very accurate 

estimates of the bounds of the selected normalized nodal displacement and rotation even for 

relatively high degrees of uncertainty.  

Figures 13 and 14 display the samples of the normalized interval Young’s modulus 

( 0.05BC  , 0.5Bl L ), 
(LB),

0( , ) /
i

E x y E  and 
(UB),

0( , ) /
i

E x y E  ( 1,2i  ), which yield the LB 

and UB of the normalized interval deflection of node A. Due to the symmetry of the analyzed 

plate, each bound of the central node deflection can be achieved considering two different 

realizations of Young’s modulus. Furthermore, the spatial variability of the samples 
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(LB),

0( , ) /
i

E x y E  ( 1,2i  ) consistently implies larger values of Young’s modulus close to node 

A, whereas the samples 
(UB),

0( , ) /
i

E x y E  ( 1,2i  ) exhibit an opposite pattern. 

In order to investigate the influence of the spatial dependency of the uncertain property on 

the response, the LB and UB of the interval response quantities of interest, 
I

AzU  and 
I

Bx , ver-

sus the ratio /Bl L  are plotted in Figure 15 for 0.05BC  . In particular, the proposed bounds 

are compared with the ones obtained under the extreme assumptions of TSD ( Bl  ) and 

TSI ( 0Bl  ) of the uncertain Young’s modulus over the plate domain. Notice that, for the 

present case-study, the TSI assumption ( 0Bl  ) implies the introduction of 800N   interval 

variables to describe the uncertain Young’s moduli of the FEs of the adopted mesh. The ver-

tex method is obviously unfeasible since it would require 8002  deterministic analyses. For this 

reason, the bounds of the response pertaining to the TSI condition ( 0Bl  ) are herein evalu-

ated by applying a sensitivity-based procedure [23]. Such a procedure highlights that, for the 

problem under consideration, the bounds of the normalized interval deflection 
I

AzU  are 

achieved assuming the so-called trivial combinations of the uncertain parameters, that is set-

ting all the interval Young’s moduli either to their LB or their UB. As shown in Figure 15a, 

this entails that identical bounds of the normalized interval deflection 
I

AzU  are obtained under 

the extreme assumptions of TSD ( Bl  ) and TSI ( 0Bl  ). Such bounds generally enclose 

the ones obtained adopting the interval field model. Furthermore, it is observed that, as the 

ratio /Bl L  increases, the bounds of the normalized interval deflection 
I

AzU  pertaining to the 

interval field model consistently approach the LB and UB obtained assuming TSD ( Bl  ) 

or TSI ( 0Bl  ) of the uncertain Young’s modulus. Figure 15b shows that, except for small 

values of the ratio /Bl L , the region of the normalized interval rotation 
I

Bx  provided by the 



38 

 

proposed IFEM is wider than the ones obtained under the assumptions of TSD ( Bl  ) and 

TSI ( 0Bl  ), which therefore entail underestimation of response variability. Furthermore, it 

is worth mentioning that, in the case of TSI ( 0Bl  ), the bounds of 
I

Bx  do not correspond to 

the trivial combinations. Though very close, such bounds actually are different from the ones 

obtained under the assumption of TSD ( Bl  ).  

Further information on the influence of spatial dependency can be deduced from Figure 16, 

where the proposed c.i.u. of the normalized interval displacement 
I

AzU  and rotation 
I

Bx  ver-

sus the ratio /Bl L  are plotted ( 0.05BC  ). As expected, the dispersion of both the selected 

response quantities around the midpoint value is significantly affected by the parameter Bl . In 

particular, it is observed that the c.i.u. of the normalized interval displacement 
I

AzU  is smaller 

than the value c.i.u[ ] 0.05I

Az BU C   pertaining to the case of TSD ( Bl  ). Conversely, 

the plot of the c.i.u. of the normalized interval rotation 
I

Bx  (Figure 16b) shows that, except 

for small values of the ratio /Bl L , the dispersion of 
I

Bx  around the midpoint value is greater 

than the one obtained under the assumption of TSD ( Bl  ), i.e. c.i.u[ ] 0.05I

Bx BC   . 

Also for this case-study, numerical results demonstrate that the spatial dependency of interval 

uncertainty may significantly affect response variability.  

Table 3 and Table 4 list the LB and UB of the normalized stress component 

 
2

/ /I I

xx xx h L q   evaluated at the Gauss points of FE 419 (see Figure 9b) by applying the 

vertex method and the proposed response surface approximation (34) in conjunction with sen-

sitivity analysis, for 0.5Bl L  and two different values of 
BC , 0.05BC   and 0.1BC  , re-

spectively. It is observed that the proposed IFEM provides accurate estimates of the interval 

stress components even when the degree of uncertainty increases. Very accurate results, here-
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in omitted for conciseness, are also obtained by using the proposed response surface approx-

imation (34) of the stress components in conjunction with the combinatorial procedure, as 

described in Section 3. It is worth mentioning that, also for this case study, if the uncertain 

Young’s modulus were assumed TSD ( Bl  ), the stress would not be affected by uncer-

tainty and the nominal stress would be obtained for any value of the TSD Young’s modulus. 

In particular, the maximum value of the normalized nominal stress  
2

/ /I I

xx xx h L q   over 

the plate, which is reached at Gauss point 2 of FE 419 is 0.2760 . By inspection of Tables 3 

and 4 it is inferred that this value is smaller than the UB predicted by using the interval field 

model. This result demonstrates the significant influence of spatial variability of the uncertain 

material property on the stress distribution. 

Finally, Figure 17 displays the realizations of the normalized interval Young’s modulus (

0.05BC  , 0.5Bl L ), 
(LB)

0( , ) /E x y E  and 
(UB)

0( , ) /E x y E , which yield the LB and UB of the 

normalized interval stress  
2

/ /I I

xx xx h L q   at the integration point 2 of FE 419 listed in 

Table 3. As expected, the spatial variability of the sample 
(LB)

0( , ) /E x y E  is such that Young’s 

modulus takes smaller values close to FE 419 (see Figure 11), while an opposite pattern is 

exhibited by the sample 
(UB)

0( , ) /E x y E . 

 

6. CONCLUSIONS 

An interval finite element method (IFEM) for the analysis of structures made of linear-elastic 

isotropic material with spatially varying uncertain properties has been presented. Without loss 

of generality, only Young’s modulus of the material has been assumed to be uncertain. The 

inherent spatial dependency of the uncertain material property has been taken into account 

resorting to a recently proposed interval field model based on the so-called improved interval 
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analysis via extra unitary interval (IIA via EUI). The propagation of the interval field has 

been performed by an efficient response surface approach which yields the bounds of both 

displacements and stresses in approximate explicit form. Relying on its non-intrusive nature, 

the developed IFEM has been integrated into the commercial FE software ABAQUS by cod-

ing suitable User Subroutines and Phyton Scripts. To the authors’ knowledge, this is the first 

research effort in the literature to incorporate spatially varying uncertainties modelled as in-

terval fields into a commercial FE software. The interaction with ABAQUS allows the analyst 

to handle, in principle, arbitrarily complex engineering problems, by exploiting the computing 

power of the FE solver as well as pre- and post-processing interfaces. In particular, the model-

ling phase may involve arbitrary types of FE belonging to FE packages libraries whose consti-

tutive behaviour incorporates the interval field description of Young’s modulus once suitable 

User Subroutines are coded. Thus, the analyst does not need to write a new FE code for any 

specific problem or any type of FE used in the modelling phase. 

The main features of the proposed IFEM may be summarized as follows: i) unlike the tra-

ditional IFEMs, it takes into account the spatial dependency of the uncertain material proper-

ty; ii) the dimensionality of uncertainty is drastically reduced since it does not depend on the 

number of FEs of the adopted mesh; iii) very accurate approximate explicit expressions of the 

bounds of both displacements and stresses are obtained by performing just a few deterministic 

analyses, even in the presence of relatively high degrees of uncertainty; iv) the computational 

efficiency is greatly enhanced compared to the classical combinatorial procedure; v) the im-

plementation into the commercial FE software ABAQUS yields a very powerful and versatile 

tool for the analysis of complex structural systems with spatially varying properties modelled 

as interval fields. 

Potential extensions of the developed computational tool to the analysis of nonlinear and 

dynamic problems are also envisaged. Indeed, spatially varying interval uncertainties affect-
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ing the mass, stiffness and damping matrices can be readily incorporated into commercial FE 

software by coding suitable UMAT or USDFLD subroutines. Then, efficient propagation 

strategies able to exploit the potential of the FE solver need to be developed. 

 

Acknowledgments: The authors are grateful to the three anonymous reviewers for their valu-

able suggestions on an earlier version of this paper. 
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Figure captions 

Figure 1. Square plate under uniformly distributed traction with uncertain Young’s modulus. 

Figure 2. Proposed a) UB and b) LB of the interval displacement of node 20 in the load direc-

tion of the plate under uniform traction versus the number M  of terms of the KL-like decom-

position for different values of the parameter Bl . 

Figure 3. LB, UB and two typical samples, 
(1)

( , )E x y  and 
(2)

( , )E x y , of the interval 

Young’s modulus field over the plate domain for 0.05BC  : a) 0.5Bl L  and b) 5Bl L  

Figure 4. Bounds of the interval nodal displacements in the load direction of the plate under 

uniform traction: comparison between the estimates provided by the proposed method and the 

vertex method for Bl L , a) 0.05BC   and b) 0.1BC  . 

Figure 5. Coefficient of interval uncertainty of the nodal displacements in the load direction 

of the plate under uniform traction: comparison between the estimates provided by the pro-

posed method and the vertex method for Bl L , and two values of BC , namely 0.05BC   and 

0.1BC  . 

Figure 6. Proposed coefficient of interval uncertainty of the displacement of node 20 in the 

load direction of the plate under uniform traction versus the ratio /Bl L  ( 0.05BC  ). 

Figure 7. Bounds of the interval displacement of node 20 in the load direction of the plate 

under uniform traction versus the ratio /Bl L  ( 0.05BC  ): comparison between the proposed 

estimates and the ones obtained under the assumption of TSI and TSD of the interval Young’s 

modulus. 
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Figure 8. Samples of the interval Young’s modulus ( 0.05BC  , Bl L ) which yield the a) 

LB and b) UB of the interval displacement along the y  direction of node 20 of the plate 

under uniform traction. 

Figure 9. Contour plot of the displacement of the plate in the y  direction corresponding to 

the realizations of the interval Young’s modulus which yield the a) LB and b) UB of the dis-

placement in the y   direction of node 20, respectively ( 0.05BC  , Bl L ). 

Figure 10. Interval stress component in the load direction of the plate under uniform traction 

evaluated at the integration points of a) FE 12 and b) FE 16: nominal value and bounds pro-

vided by the proposed method and the vertex method for Bl L  and 0.05BC  . 

Figure 11 . a) Simply-supported plate with uncertain Young’s modulus subjected to a down-

ward uniformly distributed transverse load; b) FE mesh. 

Figure 12. Proposed a) UB and b) LB of the normalized interval deflection of node A of the 

simply-supported plate versus the number M  of terms of the KL-like decomposition for dif-

ferent values of the parameter Bl . 

Figure 13. Samples of the normalized interval Young’s modulus ( 0.05BC  , 0.5Bl L ) 

which yield the LB of the normalized interval deflection at node A of the simply-supported 

plate. 

Figure 14. Samples of the normalized interval Young’s modulus ( 0.05BC  , 0.5Bl L ) 

which yield the UB of the normalized interval deflection at node A of the simply-supported 

plate. 
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Figure 15. Bounds of a) the normalized interval deflection of node A and b) the normalized 

interval rotation around the x  axis of node B of the simply-supported plate versus the ratio 

/Bl L  ( 0.05BC  ). 

Figure 16. Proposed coefficient of interval uncertainty of a) the normalized interval deflec-

tion of node A and b) the normalized interval rotation around the x   axis of node B of the 

simply-supported plate versus the ratio /Bl L  ( 10M  , 0.05BC  ).  

Figure 17. Samples of the normalized interval Young’s modulus ( 0.05BC  , 0.5Bl L ) 

which yield the a) LB and b) UB of the normalized interval stress component 
I

xx  in the x   

direction evaluated at the integration point 2 of FE 419 of the simply-supported plate. 

 

Table captions 

Table 1. Bounds of the normalized interval deflection 
I

AzU  of node A of the simply-supported 

plate provided by the proposed method and the vertex method, and associated absolute per-

centage errors ( 0.5Bl L ). 

Table 2. Bounds of the normalized interval rotation around the x  axis of node B 
I

Bx  pro-

vided by the proposed method and the vertex method, and associated absolute percentage er-

rors ( 0.5Bl L ). 

Table 3. Bounds of the normalized interval stress component 
I

xx  evaluated at the integration 

points of FE 419 of the simply-supported plate provided by the proposed method and the ver-

tex method, and associated absolute percentage errors ( 0.05BC  , 0.5Bl L ). 
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Table 4. Bounds of the normalized interval stress component 
I

xx  in the x  direction evalu-

ated at the integration points of FE 419 of the simply-supported plate provided by the pro-

posed method and the vertex method, and associated absolute percentage errors ( 0.1BC  , 

0.5Bl L ). 

 

Nomenclature 

iA   n  component vector whose j  th component is ,1 / i jA  

,i jA  unknown coefficients of the proposed response surface  

0 ,i ja   midpoint of the thi   interval deviation ,

I

i jU  

( )
( )

h
B x  strain-displacement matrix 

( )IB x   dimensionless interval fluctuation around the midpoint 0E  of ( )
I

E x  

,i jB   unknown coefficients of the proposed response surface  

( )b x   body forces 

BC  parameter governing the degree of uncertainty of the interval field 

 c.i.u.  coefficient of interval uncertainty of  

( )
I

D x   interval constitutive matrix  

0D   nominal constitutive matrix 

( )iD x   deviation matrix associated with the i -th extra unitary interval 

( )h I
d   interval vector of the h -th element nodal displacements 

0E   midpoint of ( )
I

E x  

( )
I

E x   interval Young’s modulus field 
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(LB)
( , )E x y  sample of Young’s modulus which yields the lower bound of the response 

quantity of interest 

(UB)
( , )E x y  sample of Young’s modulus which yields the upper bound of the response 

quantity of interest 

ˆ I
e  interval vector collecting M  extra unitary intervals 

ˆ
I

ie   thi   extra unitary interval  

(LB)

,
ˆ

h ke  vector of the combinations of the endpoints of the extra unitary intervals (LB)

, ,
ˆ

h k ie  

which give the lower bound of the thk   component of the interval stress 

within the thh   finite element 

(UB)

,
ˆ

h ke  vector of the combinations of the endpoints of the extra unitary intervals (UB)

, ,
ˆ

h k ie  

which give the upper bound of the thk   component of the interval stress 

within the thh   finite element 

F   global nodal force vector 

IFV  interval field variable 

( )h
f   nodal force vector of the thh   finite element 

I
K   interval global stiffness matrix 

0K    global nominal stiffness matrix  

iK   thi   global deviation stiffness matrix 

( )h I
k    interval stiffness matrix of the thh   finite element 

( )

0

h
k   nominal stiffness matrix of the thh   finite element 

( )h

ik   thi   deviation matrix of the thh   finite element  

I (superscript)  denotes interval variables  

( )h
L   connectivity matrix 
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L   plate width  

I

eL   interval external work 

Bxl  ( Bl )  parameter ruling the spatial dependency of the uncertain property along the x - 

direction 

Byl  ( Bl )  parameter ruling the spatial dependency of the uncertain property along the y -

direction 

M  truncation order of the Karhunen-Loève-like expansion 

 mid   midpoint operator 

 max  maximum of  

 min  minimum of  

N   number of finite elements 

( ) ( )h
N x  shape function matrix 

GN  number of integration points 

n   number of degrees-of-freedom 

( , , )O x y z  Cartesian coordinate system 

R   real numbers 

S   boundary surface of the continuous body 

tS    free surface of the continuous body 

uS    constrained surface of the continuous body 

( ) ,
( )h iσ

s x  vector collecting the sensitivities ( ) ,
( )h

k i
s


x  of the interval stress components 

( ) ( )h I

k x  within the thh   finite element with respect to the i  th extra unitary 

interval 
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( )t x   surface forces 

I
U   interval global displacement vector 

0U   nominal displacement vector 

( )i
U


 displacement vector obtained setting all the extra unitary intervals equal to 

zero except the i  th which is set to 1  

( )i
U


 displacement vector obtained setting all the extra unitary intervals equal to 

zero except the i  th which is set to 1  

I

jU   thj   interval displacement component 

0, jU   thj   nominal displacement component 

,

I

i jU  thi   interval deviation of the thj   displacement component  

( )uu x    displacements imposed on the constrained surface 

( ) ( )h I
u x  displacement field within the thh   finite element 

V    volume of the continuous body 

hV   volume of the thh   finite element  

,G j    vector listing the coordinates of the j  th integration point 

x   position vector 

( , )B x ξ   spatial dependency function 

( )E x   deviation amplitude of ( )
I

E x  

( )B x   deviation amplitude of ( )
I

B x  

,i ja   deviation amplitude of the thi   interval deviation ,

I

i jU  

( ) ( )h I
ε x   interval strain field within the thh   finite element 

(%)R   absolute percentage error affecting the estimate of R  
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i   thi   eigenvalue of ( , )B x ξ  

ξ   position vector 

,    Cartesian coordinates 

( )h I   d  Interval Total Potential Energy functional 

   solution set 

( ) ( )h I
σ x  interval stress field within the thh   finite element 

I   interval elastic strain energy 

( )i x   thi   eigenfunction of ( , )B x ξ  

  absolute value of  

Overbar denotes the upper bound of an interval quantity 

Underline denotes the lower bound of an interval quantity 

Over tilde denotes normalized interval variables 

 

Acronyms and abbreviations 

c.i.u  Coefficient of interval uncertainty 

CIA   Classical Interval Analysis 

COSSAN Computational stochastic structural analysis  

DOFs  number of degrees-of-freedom 

EUI   Extra unitary interval 

FEM  Finite element method 

FERUM Finite element reliability using MATLAB 

FFEM  Fuzzy finite element method 
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FV  field variable 

IDW  Inverse Distance Weighting interpolation 

IFEM  Interval finite element method 

IIA   Improved interval analysis 

IRSE  Interval Rational Series Expansion 

ITPE   Interval Total Potential Energy 

KL  Karhunen-Loève 

LB  Lower bound 

LIFD   Local Interval Field Decomposition method 

NESSUS Numerical evaluation of stochastic structures under stress  

SFEM  Stochastic finite element method 

StoFEL Stochastic finite element library 

TSD   Total spatial dependency 

TSI  Total spatial independency 

UB  Upper bound 

UEL  User Element subroutine 

UMAT  User MATerial 

USDFLD  USerDefinedFieLD 

 

 

 

 

 

 

 

 

 


