A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider

Christian L. B. Paese¹, Anna Schoenauer¹, Daniel J. Leite¹, Steven Russell², Alistair P. McGregor¹*

¹. Laboratory of Evolutionary Developmental Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.

². Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.

*To whom correspondence should be addressed: amcgregor@brookes.ac.uk (A.P.M.)

Running Head: Sox gene regulation of spider segmentation

Key words. Sox genes, Parasteatoda tepidariorum, spider, evolution, development.
Abstract

Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene *Dichaete* is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider *Parasteatoda tepidariorum*. While *Dichaete* does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Introduction

Arthropods are the most speciose and widespread of the animal phyla, and it is thought that their diversification and success are at least in part explained by their segmented body plan (1). In terms of development, insects utilise either derived long germ embryogenesis, where all body segments are made more or less simultaneously, or short/intermediate germ embryogenesis, where a few anterior segments are specified and posterior segments are added sequentially from a growth or segment addition zone (SAZ) (2, 3). It is thought that segmentation in the ancestral arthropod resembled the short germ mode seen in most insects (2, 4). Understanding the regulation of segmentation more widely across the arthropods is important for understanding both the development and evolution of these highly successful animals.

We have a detailed and growing understanding of the regulation of segmentation in various insects, especially the long germ dipteran Drosophila melanogaster and the short germ beetle Tribolium castaneum. However, studies of other arthropods including the myriapods Strigamia maritima and Glomeris marginata, and chelicerates, such as the spiders Cupiennius salei and Parasteatoda tepidariorum, have provided important mechanistic and evolutionary insights into arthropod segmentation (2, 5-9). Previous studies have shown that different genetic mechanisms are used to generate segments along the anterior-posterior axis of spider embryos. In the anterior tagma, the prosoma or cephalothorax, the cheliceral and pedipalpal segments are generated by dynamic waves of hedgehog (hh) and orthodenticle (otd) expression (10, 11). The leg bearing segments are specified by gap gene like
functions of *hunchback* (*hb*) and *distal-less* (*dll*) (12, 13). In contrast, the segments of the posterior tagma, the opisthosoma or abdomen, are generated sequentially from a SAZ. This process is regulated by dynamic interactions between Delta-Notch and Wnt8 signalling to regulate *caudal* (*cad*), which in turn is required for oscillatory expression of pair-rule gene orthologues including *even-skipped* (*eve*), and *runt* (*run*) (4, 14, 15).

Interestingly, these pair-rule gene orthologues are not involved in the production of the prosomal segments (15). Therefore, the genetic regulation of segmentation along the anterior-posterior axis in the spider exhibits similarities and differences to segmentation in both long germ and short germ insects.

The Group B Sox family gene *Dichaete* is required for correct embryonic segmentation in the long germ *D. melanogaster*, where it regulates pair-rule gene expression (16,17). Interestingly, it was recently discovered that a *Dichaete* orthologue is also likely involved in segmentation in the short germ insect *T. castaneum* (18). This similarity is consistent with work inferring that these modes of segmentation are more similar than previously thought and provides insights into how the long germ mode evolved (18, 19, 20).

However, it appears that despite these similarities, *Dichaete* can play different roles in *D. melanogaster* and *T. castaneum* consistent with the generation of segments simultaneously via a gap gene mechanism in the former and sequentially from a posterior SAZ in the latter (18).

We recently described the characterisation of 14 Sox genes in the genome of the spider *P. tepidariorum* (21) and that several of the spider Sox genes are represented by multiple copies likely produced during the whole
genome duplication (WGD) in the lineage leading to this arachnid (21). Interestingly, while *Dichaete* is not expressed in a pattern consistent with a role in segmentation (21), we found that the closely related SoxB gene, *Sox21b-1*, is expressed in both the prosoma and opisthosoma before and during segmentation (21). Here we report that in *P. tepidariorum*, *Sox21b-1* regulates both prosomal and opisthosomal segmentation. In the prosoma, *Sox21b-1* has a gap-like gene function and is required for the generation of the four leg bearing segments. In addition, *Sox21b-1* appears to act upstream of both Delta-Notch and Wnt8 signalling to regulate the formation of the SAZ, and knockdown of *Sox21b-1* results in truncated embryos missing all opisthosomal segments. Therefore, while prosomal and opisthosomal segments are generated by different mechanisms in the spider, our analysis shows that *Sox21b-1* is required for segmentation in both regions of the developing spider embryo.
RESULTS

Sox21b-1 is maternally deposited and is subsequently expressed in the germ disc and germ band of spider embryos

We previously identified and assayed the expression of the complement of Sox genes in the genome of the spider *P. tepidariorum* (21) (and see Figure 1). Our phylogenetic analysis indicates that *P. tepidariorum* Sox21b-1 and its paralog Sox21b-2 are members of the Sox group B, closely related to the *Drosophila Dichaete* and Sox21b genes (Figure 1-figure supplement 1). In insects (22, 23), *Dichaete, Sox21a* and Sox21b are clustered in the genome, however, both Sox21b paralogs are dispersed in the spider genome (21). This suggests that Sox21b-1 and Sox21b-2 possibly arose from the WGD event in the ancestor of arachnopulmonates (24), rather than by a more recent tandem duplication (20) (Figure 1-figure supplement 1).

In light of its interesting expression pattern we elected to further analyse Sox21b-1. Pre-vitellogenic *P. tepidariorum* oocytes contain a Balbiani’s body (25), where maternally deposited factors are enclosed, and we found that Sox21b-1 is abundant in this region, indicating that it is maternally contributed (Figure 1A). However, after fertilization we did not detect Sox21b-1 mRNA until early stage 5, when weak expression is detected throughout the germ disc, with stronger expression in more central cells (Figure 1B-C). At late stage 5, expression becomes more restricted to the centre of the germ disc (Figure 1D). During stages 5 and 6, the cumulus migrates to the rim of the germ disc, opening the dorsal field and giving rise to an axially symmetric germ band (Figure 1E) (see 26). In early stage 6 embryos, Sox21b-1 is observed in the middle of the presumptive prosoma in a
broad stripe (Figure 1E), which develops further during stage 7 in the region where the leg bearing segments will form (Figure 1F). This expression pattern resembles the previously described expression of the gap gene hb (13).

During these and subsequent stages, dynamic expression of Sox21b-1 is observed in the SAZ and the most anterior region of the germ band that will give rise to the head segments (Figure 1H-I). Later in development, the expression of Sox21b-1 resembles that of SoxNeuro (SoxN), another Group B Sox gene (21). This expression is similar to that of both SoxN and Dichaete in the D. melanogaster neuroectoderm and segregating neuroblasts, however in spiders the neuroectoderm does not produce stem cell like neuroblasts, but instead clusters of delaminating cells that adopt the neural fate (21, 22) (Figure 1H-I). Expression of the related group B Sox genes, Dichaete and Sox21b-2 are not detected in P. tepidariorum during embryonic development (21). The expression of Sox21b-1 in the embryo suggests that it is involved in both anterior and posterior segmentation in this spider, and then later during nervous system development.

Sox21b-1 regulates prosomal and opisthosomal segmentation

To assay the function of Sox21b-1 during embryogenesis we knocked down the expression of the gene using a parental RNAi approach (27). We observed three phenotypic classes, which were consistent between both non-overlapping Sox21b-1 fragments we used for RNAi (Figure 2, Figure2-figure supplement 1, Supplementary File 1).

Class I embryos developed a presumptive head region (Figure 2A-C), as well as normal cheliceral, pedipalpal and first leg bearing (L1) segments
The identity of these segments was confirmed by expression of labial (lab) in the pedipalps and L1, and Deformed-A (Dfd-A) in L1 (Figure 2-figure supplement 2A-D). However, the other three leg bearing segments, L2-L4, as well as all of the opisthosomal segments were missing in Class I embryos. These embryos exhibited a truncated germ band, terminating in disorganised tissue in the region of the SAZ (Figure 2C). In the case of Class II phenotypes, embryos only differentiated the head region and the cheliceral and pedipalpal segments (Figure 2D, Figure 2-figure supplement 2A-B): all leg bearing segments of the prosoma and opisthosomal segments produced from the SAZ were missing (Figure 2D). In Class III embryos, the germ band did not form properly from the germ disc (Figure 2E) and we therefore looked earlier in development to understand how this severe phenotype arose. We observed that the formation of the primary thickening occurs normally at stage 4 (27, 28, 29), but subsequently the cumulus, the group of mesenchymal cells that arise as the primary thickening at the centre of the germ disc, fails to migrate properly to the rim of the germ disc during stage 5 (Figure 2-figure supplement 3). Since migration of the cumulus is required for the transition from germ disc to germ band, this observation at least in part explains the subsequent Class III phenotype. Note that in this phenotypic class, the cells migrate towards the centre of the germ disc, creating a thick aggregation of blastomeres, whereas in embryos that we classified as “dead”, the cells are scattered and stop migrating after the germ disc stage (Figure 2-figure supplement 3B-C).

We next examined the effect of Sox21b-1 depletion on cell death and proliferation at stages 5 and 9 between knockdown and control embryos using
antibodies against Caspase-3 and phosphorylated Histone 3 (PHH3) (Figure 2-figure supplement 4). At the germ disc stage there is no detectable cell death in control embryos (n = 10), but we observed some small clusters of apoptotic cells in the Sox21b-1 knockdown embryos (n = 10) (Figure 2-figure supplement 4A-B). At stage 9, a few cells expressed Caspase-3 in the posterior-most part of the SAZ (Fig. S5C), but we did not observe cell death in this region of Sox21b-1 knockdown embryos (Figure 2-figure supplement 4D). However, we did detect pronounced cell death in the anterior extraembryonic layer of the same embryos (n = 10) (Figure 2-figure supplement 4D).

Expression of PHH3 at stages 5 and 9 indicated that Sox21b-1 knockdown embryos show decreased cell proliferation compared to controls (n= 10 for each) (Figure 2-figure supplement 4E-H). Interestingly the cells were also clearly larger in Sox21b-1 knockdown embryos compared to controls, which may reflect perturbed cell proliferation (Figure 2-figure supplement 4E-H). Thus, our functional analysis shows that Sox21b-1 is required for cell maintenance in several areas of the germ disc and is thus a key player in the transition from radial to axial symmetry. Moreover, Sox21b-1 is involved in two different segmentation mechanisms in spiders: it has a gap gene like function in the prosoma, as well as a requirement for the formation of the SAZ and subsequent production of opisthosomal segments.

Effects of Sox21b-1 knockdown on the germ disc and mesoderm

In P. tepidariorum, decapentaplegic (dpp) and Ets4 are required for cumulus formation (29, 30). To investigate if Sox21b-1 is involved in the formation of this cell cluster we assayed the expression of dpp and ets4 in Sox21b-1 RNAi
knockdown embryos. However, both genes were expressed normally and cumulus formation was unaffected (Figure 3 E, F).

The rim of the spider germ disc develops into the head structures and is regulated in part by \(hh \), while the mesodermal and endodermal layers of the head are specified by the mesendodermal gene \(forkhead (fkh) \) \((10, 27)\). To investigate if anterior expression of \(Sox21b-1 \) (Figure 1B) is involved in the formation of the head rudiment and differentiation of the mesodermal and endodermal layers in particular, we assayed the expression of \(hh \) and \(fkh \) in class I and II \(Sox21b-1 \) knockdown embryos.

\(hh \) is expressed at the rim of the germ disc in the ectoderm (Figure 3D) \((31)\) and remains unaffected by \(Sox21b-1 \) knockdown (Figure 3H). \(fkh \) is also expressed in cells around the rim, as well as in the centre of the germ disc in mesendodermal cells (Figure 3C). In \(Sox21b-1 \) knockdown embryos both of these \(fkh \) expression domains are lost (Figure 3G) and it therefore appears that \(Sox21b-1 \) is required for specification of mesendodermal cells in the germ disc of spider embryos. Indeed, in the germ disc at stage 5, when \(fkh \) expression commences, we observed invaginating cells forming a second layer (Figure 2-figure supplement 2G). However, in \(Sox21b-1 \) knockdown embryos we observed a lower number of invaginating cells, which exhibit larger nuclei compared to controls (Figure 2-figure supplement 2H).

In both spiders and flies, the \(twist (twi) \) gene is involved in mesoderm specification \((32)\) and we therefore examined the expression of this gene after \(Sox21b-1 \) knockdown to further evaluate if the loss of \(fkh \) affects the formation of the internal layers. In the wild type, \(twi \) is expressed in the visceral mesoderm of the limb buds from L1 to L4, in the opisthosomal segments O1
to O4 and in an anterior mesodermal patch in the central part of the developing head (32) (Figure 2-figure supplement 2E). While the head expression persists in Sox21b-1 class I embryos, expression in all the limb and opisthosomal segments is lower or absent (Figure 2-figure supplement 2F). In orthogonal projections the anterior-most region of the embryo three layers of cells can be identified in control embryos (Figure 2-figure supplement 2I). However, in Sox21b-1 knockdown embryos the formation of these layers is perturbed (Figure 2-figure supplement 2J). These data suggest that the ectodermal segmentation in the prosomal region occurs even when there is a reduction in the internal layers of the embryo.

Effects of Sox21b-1 knockdown on segmentation

In *P. tepidariorum*, formation of the SAZ and production of posterior segments requires the Wnt8 and Delta-Notch signalling pathways (14, 15). Interactions between these pathways regulate *hairy* (*h*) and, via *cad*, the expression of pair-rule gene orthologues including *eve* (14, 15). To better understand the loss of segments we observe in Sox21b-1 knockdown embryos we analysed the expression of *Di, Wnt8, h* and *cad* in these embryos compared to controls.

Di is expressed at stage 7 in the forming SAZ, in the region of the L4 primordia and in the presumptive head (33) (Figure 4A). Subsequently, at stage 9, *Di* expression is visible in clusters of differentiating neuronal cells and oscillates in the SAZ, an expression pattern associated with the sequential addition of new segments (Figure 4B). In Sox21b-1 knockdown embryos, *Di* expression is not detected at stage 5 (Figure 4C) and is absent in the posterior at stage 9 (Figure 4D). However, expression in the anterior
neuroectoderm appears normal up to the pedipalpal segment, although
neurogenesis is apparently perturbed in the presumptive L1 segment (Figure
4D). This suggests that the ectoderm up to the L1 segment differentiates
normally, but the development of the SAZ and posterior segment addition
controlled by Dl is lost upon Sox21b-1 knockdown.

Wnt8 is initially expressed at stage 5 in the centre and at the rim of the
germin disc (Figure 4E). At stage 9, striped expression of Wnt8 is seen from the
head to the posterior segments and in the posterior cells of the SAZ (Figure
4G). Knockdown of Sox21b-1 results in the loss of Wnt8 expression in late
stage 5 embryos (Figure 4F). At stage 9, Wnt8 expression is observed in the
cheliceral, pedipalpal and first walking limb segments of Sox21b-1 knockdown
embryos, but no expression is detected in the remaining posterior cells
(Figure 4H). Consistent with the loss of Dl and Wnt8, cad expression is also
lost in stage 5 and stage 9 Sox21b-1 knockdown embryos (Figure 4I-L).
These observations indicate that Sox21b-1 acts upstream of Wnt8 and Delta-
Notch signalling to regulate the formation of the SAZ and the subsequent
production of posterior segments. In support of this regulatory relationship we
find that Sox21b-1 expression is still detected in the posterior regions of the
truncated embryos produced by RNAi knockdown of either Dl or Wnt8 (Figure
5).

The spider orthologue of h is expressed in the presumptive L2-L4
segments and dynamically in the SAZ (14) (Figure 4M, O). In late stage 5
Sox21b-1 knockdown embryos, the expression of h is lost throughout the
entire germ disc (Figure 4N). In addition, in Class I phenotype embryos at
stage 9, the expression of h is completely absent in the tissue posterior to the
pedipalpal segment (Figure 4P). Therefore the loss of h expression is consistent with the loss of leg bearing segments in the anterior gap-like phenotype that results from knockdown of Sox21b-1 as well as loss of segments produced by the SAZ.

To look at the effect of Sox21b-1 knockdown on segmentation in more detail we examined the expression of engrailed (en) and hh. At stage 9 en is expressed segmentally from the cheliceral to the O3 segment in control embryos (Figure 4Q). However, in Sox21b-1 knockdown embryos, expression of en was only observed in the cheliceral, pedipalpal and L1 segments, consistent with the loss of all the more posterior segments (Figure 4S). hh has a similar expression pattern to en at stage 9, except it exhibits an anterior splitting wave in the cheliceral segment and is also expressed earlier in opisthosomal segments and in the SAZ (Figure 4R). Upon Sox21b-1 knockdown, hh is only detected in shortened stripes in the cheliceral and pedipalpal segments (Figure 4T).

Taken together, our analysis of P. tepidariorum embryos where Sox21b-1 is depleted by parental RNAi reveals an important role for this Group B Sox gene in both gap-like segmentation of the prosoma, as well as posterior segment formation from the SAZ. These experiments further emphasise the critical role this class of transcription factors play in arthropod segmentation.
Discussion

A SoxB gene is required for two different mechanisms of spider segmentation

The Sox (Sry-Related High-Mobility Group box) gene family encodes transcription factors that regulate many important processes underlying the embryonic development of metazoans (34-37). One such gene, *Dichaete*, is expressed in a gap gene pattern and is involved in regulating the canonical segmentation cascade in *D. melanogaster* (16, 17). Recently, the analysis of the expression of *Dichaete* in the flour beetle *T. castaneum* strongly suggests a role in short germ segmentation (18), further supported by knockdown of the *Dichaete* orthologue in *Bombyx mori*, which resulted in the loss of posterior segmentation (38).

Here we show that, while *Dichaete* is not involved in spider segmentation (21), the closely related SoxB gene, Sox21b-1, regulates formation of both prosomal and opisthosomal segments. In the prosoma *Sox21b-1* has a gap gene like role and is required for the specification of L1-L4 segments (Figure 6), resembling the roles of *hb* and *Dll* in prosomal segmentation in this spider (12, 13) and, at least superficially, gap gene function in *Drosophila*.

In *Drosophila* the gap genes regulate pair rule gene expression, and while our results indicate that *Sox21b-1* is required for the expression of *h* and the generation of leg bearing prosomal segments (Figure 4E, Figure 6), in contrast to insects, in spiders this does not involve the orthologues of *eve* and *runt* because they are not expressed in the developing prosomal segments (15, 39).
In the posterior, Sox21b-1 knockdown perturbs SAZ formation and consequently results in truncated embryos missing all opisthosomal segments. Therefore, Sox21b-1 regulates development of the SAZ, and our observations indicate this is at least in part through roles in organising the germ layers and specification of mesendodermal cells during stages 5 and 6. This is supported by the loss of fkh expression upon Sox21b-1 knockdown, which is required for mesoderm and endoderm formation in both spiders and insects (10, 40, 41). Moreover, the subsequent dynamic expression of Sox21b-1 in the SAZ after stage 6 is suggestive of a role in segment addition.

Our work on Sox21b-1 provides an important new insight into the gene regulatory network (GRN) underlying the formation of the SAZ and the sequential addition of segments from this tissue. We show that Sox21b-1 acts upstream of Wnt8 and Delta-Notch signalling in this GRN and is necessary for the activation of these important signalling pathways during posterior development (Figure 6). Note that while it is possible that Sox21b-1 could regulate Delta and Wnt8 and other segmentation genes directly or via intermediate factors, it remains possible that the loss of expression of these genes upon Sox21b-1 RNAi could be an indirect consequence of the loss of cells or incorrect cell specification when Sox21b-1 expression is knocked-down.

Further work is needed to determine if Group B Sox genes, such as Dichaete and Sox21b-1, play a similar role in posterior segmentation in other arthropods. This could provide important new insights into the evolution of the regulation of segmentation in arthropods since a Wnt-Delta-Notch-Cad regulatory cassette was probably used ancestrally in arthropods to regulate
posterior development (4, 8, 9, 14, 15, 42). Interestingly, SoxB genes also cooperate with Wnt and Delta-Notch signalling in various aspects of vertebrate development including the patterning of neural progenitors and maintenance of the stem state in the neuroepithelium (35, 43, 44, 45).

Sox21b-1 exhibits highly pleiotropic phenotypes during early spider embryogenesis

Our study shows that Sox21b-1 is not only involved in segmentation but is maternally supplied and regulates cell division in the early germ disc, as well as the transition from radial to axial symmetry during germ band formation. Further experiments with Sox21b-1 are required to fully elucidate the mechanisms by which it affects these early functions. Furthermore, while spider head development is less affected than trunk segmentation by knockdown of Sox21b-1, it is clear from our experiments that Sox21b-1 regulates cell fate in this region. Interestingly, Sox2 is involved with the neuro-mesodermal fate choice in mice and Dichaete has a role in embryonic brain development in Drosophila (45, 46): consequently, SoxB genes may play an ancestral role in the patterning of the head ectoderm and mesoderm in metazoans (45, 46).

The evolution of Sox21b-1

The evolution and diversification of Group B Sox genes in insects is not fully resolved due to difficulties in clearly assigning orthologues based on the highly conserved HMG domain sequence (17, 35, 47). However, despite these ambiguities it is clear that the Dichaete and Sox21b class genes in all
arthropods examined to date are closely related and likely arose from a
duplication in the common ancestor of this phylum (see 47 for discussion).
Note that in all insects characterised to date Dichaete, Sox21a and Sox21b
are clustered in the genome (29), however, while Dichaete and Sox21a are
also clustered in P. tepidariorum, the Sox21b paralogs are dispersed in the
genome of this spider (21). We believe it is highly significant that two very
closely related SoxB genes are involved in segmentation in both the spider P.
tepidariorum and in insects, pointing to an ancient role for this subfamily of
Sox genes in invertebrates. Given the close similarity between the HMG
domains of Sox21b and Dichaete, it is possible that in some lineages the
Dichaete orthologue assumed the segmentation role, whereas in others it was
Sox21b. In spiders, Wnt8 is involved in posterior development while in other
arthropods this role is played by Wnt1/wg (14), and therefore the evolution of
Sox21b-1 may have led to the co-option of different genes and subsequent
developmental systems drift of the regulation of posterior development.

The spider contains an additional related SoxB gene, Sox21b-2, that
possibly arose as part of the whole genome duplication event in the ancestor
of arachnopulmonates over 400 million years ago (22). It will be interesting to
examine any segmentation roles in other spiders and arachnids, including
those that did not undergo a genome duplication. Finally, Blast searches of
the Tardigrade Hypsibius dujardini genome reveal a single Dichaete/Sox21b
class gene and it will be of some interest to characterise the expression
and/or function of this gene in this sister group to the arthropods.
Key Resources Table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Parasteatoda tepidiorum)</td>
<td>caudal</td>
<td>NA</td>
<td>AB096075</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>deformed-a</td>
<td>NA</td>
<td>AB433904</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>decapentaplegic</td>
<td>NA</td>
<td>AB096072</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>delta</td>
<td>NA</td>
<td>AB287420</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>engrailed</td>
<td>NA</td>
<td>AB125741</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>ets4</td>
<td>NA</td>
<td>XP_ 015923</td>
<td>392</td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>forkhead</td>
<td>NA</td>
<td>AB096073</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>hairy</td>
<td>NA</td>
<td>AB125743</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>hedgehog</td>
<td>NA</td>
<td>AB125742</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>labial</td>
<td>NA</td>
<td>AB433903</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>sox21b-1</td>
<td>NA</td>
<td>XP_ 015916</td>
<td>301</td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>twist</td>
<td>NA</td>
<td>AB167807</td>
<td></td>
</tr>
<tr>
<td>gene (P. tepidiorum)</td>
<td>Wnt8</td>
<td>NA</td>
<td>ACH88002</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Donkey anti-mouse IgG Alexa Fluor 555</td>
<td>Invitrogen</td>
<td>A-31570</td>
<td>(1:200)</td>
</tr>
<tr>
<td>antibody</td>
<td>Goat anti-rabbit Alexa Fluor 647</td>
<td>Invitrogen</td>
<td>A-21244</td>
<td>(1:200)</td>
</tr>
<tr>
<td>antibody</td>
<td>Mouse anti-α-Tubulin</td>
<td>Sigma</td>
<td>DM1a</td>
<td>(1:50)</td>
</tr>
<tr>
<td>antibody</td>
<td>Rabbit Anti-phospho-Histone H3 (Ser10)</td>
<td>Merck Millipore</td>
<td>06-570</td>
<td>(1:200)</td>
</tr>
<tr>
<td>antibody</td>
<td>Rabbit α cleaved caspase 3</td>
<td>Cell Signaling</td>
<td>9661</td>
<td>(1:200)</td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>4′,6-Diamidino-2-phenylindole</td>
<td>Sigma-Aldrich</td>
<td>D8417</td>
<td></td>
</tr>
</tbody>
</table>
Spider Culture

P. tepidariorum were cultured at 25°C at Oxford Brookes University. The spiders were fed with *D. melanogaster* with vestigial wings and subsequently small crickets (*Gryllus bimaculatus*). Cocoons from mated females were removed and a small number of embryos were immersed in halocarbon oil for staging according to (26).

Phylogenetic analysis of *P. tepidariorum* Sox genes

To identify the phylogenetic relationship of *P. tepidariorum* Sox genes the HMG domains of *Anopheles gambiae, Mus musculus, D. melanogaster, P.*
tepidariorum and S. mimosarum Sox genes were aligned with ClustalW (Figure 1-source data 1) (21, 48). Phylogenetic analysis was performed in RAxML, with support levels estimated implementing the rapid bootstrap algorithm (1000 replicates) (49), under the PROTGAMMALG model of amino acid substitution, which was identified as best fitting model using the ProteinModelSelection.pl Perl script from the Exelixis Lab (https://github.com/stamatak/standard-RAXML/blob/master/usefulScripts/ProteinModelSelection.pl).

Fixation and gene expression analysis

Embryos from pRNAi injected females were immersed under halocarbon oil to assess their stage. In the case of stage 9 and 10 embryos that showed class II and III phenotypes, it was difficult to assess the stage by light microscopy, consequently these embryos were also staged according to their age and the presence of walking limbs as well as the stage of sibling embryos from the same cocoons that did not show any phenotype. Embryos with phenotypes showing a failure to develop after the L1 limb were considered dead after that stage. For the difference in development seen in embryos from the same cocoon, we were careful to select embryos at the same stage in both control and RNAi treated embryos for subsequent gene expression analysis although the development of RNAi embryos was occasionally slower so they appeared slightly younger. At least 10 embryos from each different phenotypical class were used for every in situ hybridization experiment (Supplementary File 2) and in situs were carried out on embryos from different cocoons and different mothers. Embryos ranging from the 1-cell stage to stage 13 were
dechorionated and fixed according to (31), with a longer fixation time of 1 hr to facilitate yolk removal for flat-mounting. For immunohistochemistry, methanol steps were omitted. Ovaries from adult females were dissected in 1x PBS and fixed in 4% formaldehyde for 30 min. Probe synthesis and RNA in situ hybridisation was carried out with minor modifications to (27), omitting Proteinase K treatment and post-fixation steps. Poly-L-lysine (Sigma-Aldrich) coated coverslips were used for flat-mounting embryos. Nuclei were stained by incubating embryos in 1 μg/ml 4-6-diamidino-2-phenylindol (DAPI) in PBS with 0.1% Tween-20 for 15 min.

Imaging, Live Imaging and Image Analysis

For imaging of flat-mounted embryos after in situ hybridisation, an AxioZoom V16 stereomicroscope (Zeiss) equipped with an Axiocam 506-Mono and a colour digital camera were used. Immunostained embryos were imaged with Zeiss LSM 800 or 880 with Airyscan confocal microscopes. For live imaging, embryos were aligned on heptane glue coated coverslips and submersed in a thin layer of halocarbon oil. Bright-field live imaging was performed using an AxioZoom V16 stereomicroscope, while fluorescence live imaging was performed with confocal microscopes. Image stacks were processed in Fiji (50) and Helicon Focus (HeliconSoft). Image brightness and intensity was adjusted in Corel PhotoPaint X5 (CorelDraw) and Fiji.

Gene Isolation from cDNA
Fragment of genes were amplified using PCR and cloned into pCR4-TOPO (Invitrogen, Life Technologies). Oligonucleotide sequences are listed in Supplementary File 3.

Immunohistochemistry

Immunostaining was carried out following (51) with minor modifications: antibodies were not pre-absorbed prior to incubation and the concentration of Triton was increased to 0.1%. The following primary antibodies were used: mouse anti-α-Tubulin DM1a (Sigma) (1:50), rabbit α cleaved caspase 3 (Cell Signaling - 9661) (1:200) and rabbit Anti-phospho-Histone H3 (Ser10) (Merck Millipore - 06-570). For detection the following secondary antibodies were used: donkey anti-mouse IgG Alexa Fluor 555 (Invitrogen) and goat anti-rabbit Alexa Fluor 647 (Invitrogen). The counterstaining was carried out by incubation in 1 μg/ml 4-6-diamidino-2-phenylindol (DAPI) in PBS + Triton 0,1% for 20 minutes.

dsRNA synthesis and Parental RNA interference

Double stranded RNA (dsRNA) for parental RNA interference was synthesized according to (15), dissolved in deionized water and injected following the standard protocol from (27). Two non-overlapping fragments of *P. tepidariorum Sox21b-1* were isolated from the 1134 bp coding sequence of the gene: fragment 1 spanning 549 bp and fragment 2 covering 550 bp. Double stranded RNA for *P. tepidariorum Dl* (853 bp), *Wnt8* (714 bp) and the coding sequence of GFP (720 bp) as used previously (27), were transcribed using the same method. Synthesis of double stranded RNA was performed
using the MegaScript T7 transcription kit (Invitrogen). After purification the
dsRNA transcripts were annealed in a water bath starting at 95°C and slowly
cooled down to room temperature. dsRNA was injected at 2.0 μg/μl in the
opisthosoma of adult females every two days, with a total of five injections (n
= 7 for each dsRNA; n= 2 for GFP controls). The injected spiders were mated
after the second injection and embryos from injected spiders were fixed for
gene expression and phenotypic analyses at three different time points: stage
4 (cumulus formation), stage 5 late (germ disc with migrating cumulus) and
stage 9 (head and limbs bud formation).

Supplemental Information

Supplemental Information includes five figures, three tables and one source
data file.

Declaration of Interest

The authors declare no competing interests.

Acknowledgements

This research was funded by a CNPq scholarship to CLBP (234586/2014-1),
a grant from The Leverhulme Trust (RPG-2016-234) to APM and AS, and in
part by a BBSRC grant (BB/N007069/1) to SR.

References

2. Peel AD, Chipman AD, & Akam M (2005) Arthropod segmentation:
beyond the Drosophila paradigm. **Nat Rev Genet** 6:905-916.

Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol, 222:189-216.

Damen WGM, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. *PNAS*, 97: 4515-4519.

Figures

Figure 1. Expression of Sox21b-1 in *P. tepidariorum* oocytes and embryos
A) Dorsal (left) and lateral (right) views of pre-vitellogenic oocytes showing Sox21b-1 mRNA in the Balbiani's body (red dashed circle and white arrows). The sperm implantation groove is indicated by a black dashed circle and grey arrow. B) Overstained early stage 4 embryo evidencing the lack of expression of Sox21b-1 at this stage. C) At early stage 5, the expression of Sox21b-1 appears in a salt and pepper pattern in the germ disc. D) Expression in the cumulus becomes stronger at late stage 5, with less expression at the periphery of the germ disc (dashed red circle). E) At stage 6 Sox21b-1 is expressed in a broad stripe in the anterior (between the red dashed lines). F) At stage 7 there is expression in the region of the presumptive leg bearing segments and in the SAZ (both indicated by red dashed lines). G) At late stage 7 Sox21b-1 is still expressed in the SAZ and the presumptive leg bearing segments (indicated by the white arrows and black brackets), but nascent expression is observed at the anterior of the germ band (indicated by the red dashed line). H) At stage 9.1, when the limb buds are visible the expression of Sox21b-1 becomes restricted to the ventral nerve cord (anterior white arrow) and can be observed in the SAZ (posterior grey arrows). I) At stage 10.1, Sox21b-1 expression is restricted to the ventral nerve cord and the head lobes. Ch: Chelicerae; HL: Head lobes; L1 to L4: Prosomal leg bearing segments 1 to 4; O1 to O6: Opisthosomal segments 1 to 6; SAZ: Segment addition zone. Ventral views are shown with anterior to the left, except as described for oocytes.
Figure 1-figure supplement 1. RAxML phylogeny of eumetazoan Sox genes. Mid-point rooted phylogenetic tree made with RAxML algorithm showing the relationship between *Anopheles gambiae* (Ag), *Mus musculus* (Mm), *D. melanogaster* (Dm), *P. tepidariorum* (Pt) and *S. mimosarum* (Sm) Sox proteins based on HMG domain sequences. Bootstrap values over 70 shown in red and the scale bar represents the expected rate of substitution per site.
Figure 1-source data 1. ClustalW alignment of Sox protein HMG domains.
Figure 2. Embryo phenotypes after Sox21b-1 parental RNAi knockdown

Whole mount (A) and flat mount (B) control embryos at stage 9 stained with DAPI. Stage 9, Class I (C), Class II (D) and Class III (E) phenotypes from Sox21b-1 knockdown. In the control embryos (A and B), the head, cheliceral, pedipalpal, prosomal walking limbs, opisthosomal segments and a posterior SAZ are all clearly visible as indicated. C) Class I phenotype embryos show a morphologically normal head, pairs of chelicerae, pedipalps and first walking limbs, but a disorganised cluster of cells in the posterior where L2-L4, opisthosomal segments and the SAZ should be. D) Class II phenotype embryos consist of fewer cells, but still form a head, cheliceral, pedipalps and a structure resembling the SAZ in the posterior. E) Class III embryos exhibit the most severe phenotype, where, after the germ disc stage, the embryo fails to form an organised germ band. Ch: Cheliceral segment, L1-L4: Prosomal segments 1 to 4, O1-O6: opisthosomal segments 1 to 6, Pp: pedipalpal segment. Anterior is to the top, scale bars: 150 µm.
Figure 2-figure supplement 1. dsRNA design and phenotypical class frequencies for each fragment and GFP control injections

A) Two non-overlapping fragments were designed for the Sox21b-1 coding sequence. Fragment 1 contains the HMG conserved domain (549 bp) and fragment 2 has no conserved domains (550 bp). B) Frequencies for each fragment, cocoon number and phenotype class. Seven spiders were injected for each Pt-Sox21b-1 fragment and two spiders for the GFP dsRNA controls. For the phenotypical class frequencies, 30 embryos per spider per cocoon were pooled, DAPI stained and analysed (total n= 210 for each).
Figure 2-figure supplement 2. Homeotic and mesodermal gene expression at stage 9 in Sox21b-1 pRNAi embryos

A) Ventral view showing Pt-Dfd-A expression in the limb buds of L1 to L4 segments in the control embryos (white arrows). B) Expression of Pt-Dfd-A is also observed in L1 in Sox21b-1 pRNAi embryos (n = 9) (white arrow in B). C) Pt-lab is expressed in the pedipalpal segment and faintly in L1 segment in control embryos (white arrow in D). In Sox21b-1 pRNAi embryos, Pt-lab expression can still be observed in the pedipalpal and L1 segments (n = 10) (white arrows in D). E) The mesodermal marker Pt-twii is expressed in the anterior-most medial region of the head, limb buds of L1 to L4, and with a stripped pattern in the O1 to O4 segments. F) In Sox21b-1 knockdown embryos, only the head expression is maintained (n= 14) (white arrow in F).
G-J show orthogonal projections of the cumulus (stage 5) and the head (stage 9) at 40x magnification of whole mount control embryos (left panels) and Sox21b-1 knockdown embryos (right panels), respectively. In control embryos the formation of subectodermal layers are visible, which are lost in the knockdown embryos. DAPI stained nuclei are shown in cyan and the membrane marker alpha-Tubulin in red. Anterior is to the left in all panels.
Figure 2-figure supplement 3. Snapshots from live imaged videos in control and Sox21b-1 knockdown embryos

Frontal view of the germ disc in A) GFP dsRNA control embryos, showing the cumulus formation (red dotted lines), cumulus migration (red dotted arrow) and dorsal field opening (red dotted line and arrows). B) Class I Sox21b-1 knockdown embryos showing cumulus formation, the partial migration of mesenchymal cells and limited dorsal field opening, which is also seen but more severely disrupted in Class II embryos (C), and absent in class III (D). Anterior is to the left, opposite to cumulus migration.
Figure 2-figure supplement 4. Cell death and cell proliferation in Sox21b-1 knockdown embryos

Ventral view of stage 5 control embryos stained for Cleaved-Caspase3 (A) and PHH3 (E). Cell death is not detectable in control embryos, but a high level of proliferation can be seen. In Sox21b-1 knockdown embryos, clusters of cells undergoing cell death can be found (B), as well as a decrease in proliferation in the knockdown embryos compared to controls (n= 15 for each staining) (F). Embryos at stage 9 stained for Cleaved-Caspase 3 (C) and PHH3 (G) show that only a small amount of cell death occurs in the SAZ, and that there is proliferation detectable throughout the entire embryo. Cell death is visible in the head extraembryonic layer in Sox21b-1 pRNAi embryos (D), and less proliferation is detected in stage 9 knockdown embryos (n= 15 for each staining). Anterior is to the top. Magnifications are 100X and 400x respectively.
Figure 3. Gene expression in control and Sox21b-1 knockdowns at the germ disc stage

Pt-dpp (A) and *Pt-Ets4* (B) are expressed in the forming cumulus (CM) in the centre of the germ disc at stage 4 (grey arrow and dotted circle). This expression is unaffected by knockdown of *Sox21b-1* (E and F) (n= 30 for each gene). C) *Pt-fkh* is expressed at the rim and centre of the germ disc at late stage 5 (grey arrow and dotted circle in C), but expression is lost in *Sox21b-1* embryos (n= 30) (G). *Pt-hh* expression at the rim of the germ disc (D) is normal in *Sox21b-1* knockdown embryos (H) (grey arrows).
Figure 4. Expression of segmentation genes in Sox21b-1 pRNAi embryos

A and B) Pt-Dl expression at late stage 6/early stage 7 is dynamic in the SAZ and is also observed in the presumptive head region and prosoma of the embryo (red dotted lines and grey arrows). B) At stage 9, Pt-Dl expression is seen in the SAZ (white arrow) but is restricted to the clusters of proneural differentiation in the anterior region of the embryo (grey arrow in the head lobes). C) In Sox21b-1 knockdown embryos, Pt-Dl expression is not detectable in late stage 5/early stage 6 embryos (grey arrow) but can still be observed in the anterior ventral neuroectoderm at stage 9 (D) up to the
pedipalpal segment (n = 17 and n = 14 for stage 5 and 9, respectively). *Pt-h* expression at stage 5 in control embryos is seen at the rim and in the centre of the germ disc (black dotted circle in **E**), which is lost in *Sox21b-1* knockdown embryos (**F**). At stage 9, *Pt-h* expression resembles *Pt-Dl*, both in the control and *Sox21b-1* knockdown embryos (**G** and **H**) (n = 15 for both stages). *Pt-Wnt8* expression is similar to *Pt-h* in stage 5 control embryos (black dotted circle in the centre, grey arrow to the rim) and is also lost in *Sox21b-1* knockdown embryos (n = 11) (**I** and **J**). Control embryos at stage 9 show the expression of *Pt-Wnt8* in the medial region of the head (grey arrow), and in distal parts of each segment up to the SAZ (white arrow in **K**). In *Sox21b-1* knockdown embryos at the same stage, the brain (grey arrow), cheliceral and pedipalpal expression is still present, but the posterior expression is lost (**L**, n = 17 for each stage). *Pt-cad* is expressed in the SAZ at late stage 5/early stage 6 embryos (**M**), which persists throughout to stage 9 control embryos (**N**). However, *Pt-cad* expression is lost upon *Sox21b-1* knockdown (n = 20 for each stage) (**O** and **P**). *Pt-en* expression is present in the posterior of each segment (black lines in **Q**), and in cheliceral, pedipalpal and L1 segments in *Sox21b-1* knockdown embryos at stage 9 (**S**, n = 10). *Pt-hh* expression in control embryos at stage 9 is seen in the posterior of each segment and in the SAZ and also in a splitting wave between the cheliceral and pedipalpal segments (indicated by the white arrows in **R**). When *Sox21b-1* is knocked-down, *Pt-hh* embryos show expression in the middle posterior of the cheliceral and pedipalpal segments (**T**, n = 8). Ch: Chelicerae; HL: Head Lobes; L1 to L4: Prosomal leg bearing segments; O1 to O5: Opisthosomal segments; SAZ: Segment Addition Zone. Anterior is to the left in stage 9 embryos.
Figure 5. Expression of Sox21b-1 in Dl and Wnt8 pRNAi embryos

Ventral view of stage 7 and 9 knockdown embryos for Pt-Dl (A and B) and Pt-Wnt8 (C and D). In knockdown embryos for both Pt-Dl and Pt-Wnt8, Sox21b-1 is still expressed at the germ band stage (A and C), in a dynamic pattern in the remaining SAZ cells, and in the forming segments in the presumptive prosoma of the embryo (white arrows). In stage 9 Pt-Wnt8 knockdown embryos, Sox21b-1 remains highly expressed in the ventral nerve cord (D). Pt-Dl knockdown embryos lack the posterior L4 segment (white arrow), but brain formation appears normal (grey arrow) (B). Pt-Wnt8 embryos show a fusion of the L4 limb buds, and Sox21b-1 is still expressed in the remaining SAZ cells (D). Anterior is to the left in all panels.
The interaction of Sox21b-1 is presented in relation to genes involved in spider embryogenesis. We found that fkh expression requires Sox21b-1 in the most anterior part of the head (OC, Ch, Pp segments). In the prosoma Sox21b-1 has a gap gene like function and is required for the expression of hairy, while Distal-less (12), hunchback and orthodenticle (11) also act as gap genes during prosomal segmentation (L1-L4). The molecular control of segmentation in the SAZ involves a feedback loop between Dl and Wnt8, which acts upstream of cad and also controls the dynamic expression of hairy (15). We can infer from our results that Sox21b-1 acts upstream of these genes in the SAZ. Sox21b-1 could directly regulate these genes or the observed loss of expression could be indirect through incorrect specification of germ disc cells.
Supplementary File 1. Phenotypic frequencies for each fragment (1 and 2) and GFP (control) dsRNA – 30 embryos per cocoon for each spider were pooled and the characteristics were divided into three phenotypical classes.

Supplementary File 2. Sample sizes for the PtSox21b-1 phenotype analysis with in situ hybridization, and phenotypic classes used in each experiment.

Supplementary File 3. List of primers used in this paper.