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Abstract—Chaos in dynamical systems is still considered to be
a somewhat curious, and generally undesirable property of non-
linear systems. Despite the plethora of chaotic control methods
published over the last decades, only in a few instances has the
control of chaos been used to address real world problems in
engineering or medicine. This is partly due to the limits of the
used control methods, which either require specific analytical
knowledge of the system, or the system needs to have specific
characteristics to be able to be controllable. The lack of solutions
for engineering and biomedical problems may also be due to
specific requirements that prevent the implementation of control
methods and the, as yet unproven, benefits that controlled chaos
may bring to these problems. The aim of a practical application
of chaos control is to fully control chaos in theoretical problems
first, and then show applicable solutions to physical problems of
stability and control. This controlled chaotic state should then
have clear and distinct dynamic advantages over uncontrolled
chaos and steady state systems. The application of the Rate
Control of Chaos (RCC) method, which is derived from metabolic
control processes, has already been shown to be effective in
controlling several engineering problems. RCC allows non-linear
systems to be stabilised into controlled oscillations, even across
bifurcations, and it also allows the system to operate in regions
of the parameter space that are inaccessible without this method
of control. For fun, I will show that RCC controls the N-Body
problem; for profit, that it can control a bioreactor model to
greatly improve yield. The RCC method promises to, finally,
permit the control of complex dynamic systems.
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I. INTRODUCTION

The mathematical theory of non-linear systems has been
developed for over a century. Due to the advances in the under-
standing of non-linearity, it has been realised that chaos, rather
than an exception, is ubiquitous in physical systems. From low-
level quantum dynamics, through molecular behaviour, and
chemical oscillations, to macroscopic physical interactions,
and even in astrophysics; chaos can be found virtually every-
where. Chaos exists due to the non-linear dynamics that these
systems exhibit, and even though there has been a significant
popular interest in the subject, the phenomenon has not yet
been found to be useful, apart from creating pretty figures.
The potential to exploit the dynamics of chaotic systems in
chaotically controlled systems has been recognised but not yet
achieved. In part, this is due to the perceived nature of chaos,
which does not appear to be much different from noise in
many cases. However, many forms of chaos are deterministic
in the sense that their basin of attraction is limited in phase
space. The chaotic system will evolve through the attractor
and it will visit, eventually, all of the points of the strange
attractor, although it will never repeat itself. As such, this
property is not very useful, but it implies that the chaotic

system will visit parts of the attractor repeatedly and very
closely to previously visited points. This is exploited in many
methods of chaotic control, where the controlled system is
forced to revisit points in the phase space. The resulting orbit
in phase space is seemingly stable and is known as an unstable
periodic orbit (UPO).

Different methods of chaotic control have been proposed,
that are variations of the OGY [1], [2], [3] method of
control, or variants of analytical solutions to eliminate or
reduce positive Lyapunov exponents[4], or variants of the delay
feedback method of control [5], [6], [7]. The OGY control
methods require knowledge of the unstable periodic orbits
(UPOs) contained in the attractor. Therefore, an analytical
understanding of the chaotic system is necessary to control
the system. The delay feedback control (DFC) method uses the
control function F (y) = K(y(t) − y(t − τ)) which does not
require any knowledge of the UPOs, but it needs appropriate
choices for the control constant K and the delay τ . If K and
τ are not correctly chosen then the system will not stabilise
into an orbit. Some chaotic systems cannot be stabilised at all
using either the single, or multiple generalised delay control
method [8], [9] . Further variations of the DFC scheme, such
as extended delayed feedback control [10], [7] and unstable
delayed feedback control [7] may overcome this limitation by
introducing additional real characteristic multipliers artificially,
which greatly complicates the applicability of these control
methods. It is also possible to adjust the entire system such
that chaos completely disappears [4], however, that is not
feasible in most physical systems and results in a not truly
chaotic control, which should make only minimal changes to
the chaotic system to effect control.

Exploiting chaotic dynamics for various applications has
been discussed for some time. This usually concerns the use
of chaos as an encoding mechanism, e.g. in encryption or
radar [11]. A well known example of chaos control was the
use of the OGY method to reduce cardiac fibrillation [12].
More conventional uses of chaos are rare, which is somewhat
surprising given its potential. On the other hand, the route to
exploitation has been unclear. Manufacturers and commercial
entities tend to rely on well-known properties of the dynamic
system they employ, and seek optimisation solutions in process
optimisation rather than the underlying dynamics. Parameter
spaces with instabilities (such as chaotic regions) are avoided,
and control systems are designed to maintain the process
within steady-state conditions. This makes perfect sense in
the absence of suitable alternative dynamic regimes. It should,
however, be considered that controlled chaos may permit wider
exploration of the phase space, and with a suitable control
mechanism such as the Rate Control of Chaos, this becomes
possible.
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A Rate Controlled Chaotic system is dynamically indis-
tinguishable from a normal stable system, in terms of per-
turbation dynamics and periodic properties. However, it is not
analytically dissimilar because the non-linear chaotic system
is not greatly modified. The addition of the rate control term
to some of the non-linear terms does not modify the global
behaviour but changes the local dynamics in chaotic regions of
the phase space for that variable. Clearly, this relative scaling
of the coefficients changes the dynamics in part of the attractor.
This can be visualised as a spatial adjustment of the stabilised
system from the chaotic dynamics. It can be within the basin
of attraction of the original chaotic system or the controlled
system can stretch (or shrink) the attracting space where
control becomes effective. The resulting controlled system has
several advantages over the uncontrolled system. Firstly, the
controlled system appears to be oscillating or in steady-state
(for specific controlled conditions). Secondly, the control can
be effective across system bifurcations, maintaining stability
throughout. Thirdly, it can be enabled and disabled without
further changes to the system. Fourthly, it can remain enabled
even if the system is already stable, although this may cause the
system to oscillate in a different orbit than without the control.
Therefore, the non-linear control method can be used to control
both stable and unstable non-linear systems effectively. Lastly,
the presence of the control in the system allows the exploration
of the parameter space such that the system can be controlled
even in parameter spaces that are not accessible otherwise. For
background about the Rate Control of Chaos method, see [13].

Employing the RCC method would result in a control
mechanism that can be stabilised in a wide range of system
parameters, the non-linear method will respond quickly, and
reliably to the rapid changes due to chaotic perturbations. This
has already been shown in simulations of chaotic systems,
even in complex spatiotemporal chaos. Furthermore, it has
direct applications to engineering problems. To demonstrate
the applicability of RCC, I will first show how it can control
a complex chaotic theoretical problem, the N-Body problem.
This has never previously been shown to be feasible, although
the practical application is not really realistic. Therefore, I will
also show a practical application by the control of a bioreactor
system, which demonstrates the ability of RCC to improve
yield by operating in a controlled chaotic parameter domain.

II. THEORETICAL APPLICATION: N-BODY PROBLEM

The history of the N-Body problem is long and interesting,
and harks back to the beginning of the development of math-
ematics to describe the motion of celestial bodies [14]. The
motion of the original three bodies problem, the Earth, the
Moon and the Sun, have eluded prediction for centuries [15],
and only in the late twentieth century was it shown that the
motion is chaotic. In fact, the entire solar system is unstable
chaotic [16], [17]. Extensions of this principle in computational
models to multiple (N) bodies has shown the complexity of this
problem, and the difficulties in simulation and observation due
to the chaotic nature of the N-Body dynamics [18], [19]. This
problem is therefore interesting to apply the Rate Control of
Chaos method, even though a practical implementation is not
envisioned at this stage.

Using standard notation, the equation of motion for N =
n+ 1 point masses, including a RCC function applied to the

norm, are

σ(xi) = e

(

ξ
|xi−xj |

|xi−xj |+µx

)

(1)

ẍi = −G

n
∑

j=1,j 6=i

mj

xi − xj

(σ(xi) |xi − xj |+ ǫ2)3
(2)

i ∈ {1, . . . , n}

where x is the 3D position of body i, mj the mass of body
j that exerts the gravitation force on body i resulting in the
accelaration of ẍi. G is the gravitational constant, and the
control parameters are ξ = −10 and µx = 2000. Equation
(2) is an ordinary, coupled, non-linear differential equation
of second order in time, and shows chaos due to the non-
linear dynamics between the motions of the N-bodies [14].
The term ǫ2 is a softening term used to avoid singularities
when the distance between any two bodies approaches zero.
The inclusion of RCC (1) provides non-linear control of the
system, and when the entire system is stabilised by RCC, the
softening term can be eliminated.

Videos of the simulations of almost 80,000 bodies, for
both the chaotic and controlled scenarios are available at the
included link1. To be able to distinguish between controlled
and uncontrolled motion, each simulation starts initially with
a random distribution of the bodies with random mass on the
surface of a geometrical shape. The system is then allowed
to evolve in time. When the dynamics are chaotic, the bodies
increasingly occupy more space and the initial shape slowly
vanishes. Note that the simulation is fully deterministic and
does not contain any stochastic elements apart from the
randomised initial position, and mass. The evolved system is
then controlled into a stable oscillation in time and space by
RCC. The controlled state becomes apparent by the repetition
of the intermediate shapes and the limited space these shapes
occupy. This can be repeated with different initial shapes and
distributions or by switching the control off and on again
which allows the system to oscillate with different intermediate
shapes. In the videos of RCC, the systems evolve first for
an arbitrary chosen length of 2000 time-steps chaotically.
Subsequently, the control is enabled and the system quickly
settles into a stable oscillation, the shapes are the same over
each period but are shown rotated around the x and y axes (this
has been verified numerically). Some snapshots of the states of
the orbits are shown in figure 1, where the initial condition and
intermediate states are shown for two simulations, one with a
initial distribution of the bodies onto a sphere, and one with
the initial distribution onto a double cone.

III. PRACTICAL APPLICATION: BIOREACTORS

The complexity of the metabolic processes in cellular meta-
bolism makes it difficult to perform mathematical modelling
and analysis. The complexity of the models, made of many
variables and parameters, as well as the inherent non-linearity
of these systems, makes if difficult to describe these systems
at the level needed to perform reliably. Dynamic bioreactor
models contain variable amount of detail regarding the cellular
system. Mechanistic descriptions of metabolism are based
on kinetic models with individual enzyme-catalytic reactions,
which are included in dynamic mass balance equations for

1https://goo.gl/H7nmXc
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Figure 1. Chaos in the N-Body system and Rate Control of Chaos. Row 1 shows the initial distribution of bodies over a sphere or a double cone. Row 2 shows
the final uncontrolled distribution of bodies before RCC is enabled for the columns 2 and 4 (white background). Rows 3-6 shows intermediate distributions of
the bodies in one complete period when RCC is enabled. The images in rows 2 and 6 are the same, but rotated, for the controlled systems (columns 2 and 4).
This is not the case for the uncontrolled chaos in columns 1 and 3.
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the system of interest. Large scale identification of enzyme
kinetics, needed to accurately describe such systems, are
limited by the experimental understanding of such complex
dynamics. For this reason, these models are generally limited
to primary metabolic pathways, and cannot encapsulate whole-
cell systems. These models have not been used for bioreactor
control, despite the promise of greater gain that detailed
understanding of the mechanisms may bring [20].

Dynamic models that are based on limited structure de-
scriptions of cellular metabolism, in combination with un-
segregated representations of the cell populations are most
suited for specific model-based controllers. These descriptions
are mathematically simple, and allow the system to be de-
scribed by lumped aggregation of average dynamics. These
type of models have been used effectively for bioreactors for
some time, however, they are still constraint by steady-state
dynamics. The control objective is to maximise total produc-
tion of the desired product produced in the bioreactor. Most
bioreactors are equipped with sensors for online measurement
of the temperature, pH level, and oxygen concentration of
liquids. Simple PID regulatory loops are used to maintain
the pH and temperature at constant set points predetermined
to promote cell growth and product formation. The primary
manipulated inputs available for higher level controllers are
the nutrient flow rates, and concentrations [20].

Current methods for controlling bioreactors are based on
pre-defined steady state controllers which attempt to maintain
a constant environment. This is achieved by feedback control
based on the measured bio-markers. Even for well known
reaction systems, e.g. the production of ethanol, this is not
always trivial and is sensitive to external variations that may
be beyond the chosen method’s ability to control. As a con-
sequence, bioreactors are often not performing optimally in
producing the wanted product or cell mass. It is also possible
that the system becomes unstable and the entire batch is lost
for production. Using small batch production and attempting
to rigidly control all aspects of the entire process seem to be
the only currently employed strategies.

Alternative methods for control are being researched with
the aim to increase yield of the product or cell mass with as
little sensitivity to uncontrolled variations and as little down-
time for the process as possible. Suggested feasible methods
are the use of neural networks [21] and the discrete time model
predictive control method [22]. For the neural network control,
a steady state is maintained by monitoring the bio-markers and
using a predicted value generated from the network to make
appropriate changes. However, this method is only effective
for specific configurations and dynamic ranges and cannot
be fully optimal, which is why it is not widely used. The
model’s predictive control method allows non-linear system to
be controlled at an unstable steady state that is the desired set
point for production. However, it is shown that even a well-
designed control scheme may result in very poor performance
[22].

In general, cells produce a metabolite on demand and in
quantities only sufficient to local and current requirements.
These quantities are generally small and variable which makes
it difficult to extract efficiently a sufficient amount of the meta-
bolite in an economical way. Using different methods, such
as periodic forcing, high substrate concentrations, promoting

factors as well as genetic modifications, the yield is attempted
to increase. However, due to the complex nature of cellular
regulatory systems, it is rare to find significant increases or
even to maintain a stable system. The presence of higher
dynamics in many of the bio-systems that are commercially
interesting has been shown for some time. In particular,
ethanol production [23], [24], [25], metabolic control [26] and
nitrification [27] have shown complex and chaotic dynamics.

To demonstrate the applicability of the RCC method, a
proof of concept can be designed on the basis of controlling
a bioreactor experiment. It is demonstrated that a controlled
simulation of a well-known chaotic metabolic reaction, based
on a currently used method for controlling bioreactors, is
effective, reliable and efficient. The mathematical models
for simulating and controlling bioreactor systems are based
on unstructured models in the form of ordinary differential
equations [20]. In particular, the fermentation of sugars into
alcohol by yeast, a common method to produce liquors and
bioethanol, has been studied in great detail [23]. Here RCC
is employed on the fermentation reactions to stabilise the
chaotic dynamics into a stable oscillation at high yields. In case
of periodically forced fermentors, the same method prevents
the bioreactor from losing cyclic stability when it is driven
by different forcing amplitudes. This property of RCC is
very useful by making the bioreactor more robust and less
sensitive to perturbations even at high forcing amplitudes. In
figure 2 is shown the uncontrolled chaotic oscillation of a
periodically forced fermentation. Depicted are the biomass
(amount of yeast), the product concentration (ethanol), the
substrate concentration (glucose) and the active component
fraction which is the amount of active protein (enzymes)
divided by the total biomass.

The RCC method can be applied to any or all of the
variables in the differential equations that describe the ferment-
ation process, such as the glucose influx, the ethanol efflux,
the cellular generation rate and the protein production rate. To
demonstrate the experimental applicability of the method, the
control is only applied to the growth rate term of the substrate
(13) or, alternatively, to the extraction of the product (14).
The input of glucose is an externally controlled process in any
case and seems the most intuitive manner to control the entire
reaction system. The RCC method is effective at controlling
the oscillations of the model for the entire range of parameters
by appropriate changes to the rate of influx of glucose. This
allows the control method to treat the entire reaction system as
a black box model but is still capable of control (not included
here).

An even more interesting way of controlling the ferment-
ation process is via the regulation of the produced ethanol by
controlling the rate of removal of ethanol from the bioreactor
[28]. The production of ethanol by yeast is self-limiting which
means that there is a limit to the concentration of ethanol that
is produced by the organism as production is decreased at
higher concentrations. Using this indirect means of control,
which is part of the cellular biochemical control, is even more
effective at controlling the dynamics of the bioreactor. The
RCC method is applied to the rate of efflux of ethanol which
is controlled by the manufacturer. By monitoring the amount
of biomass and the fraction of active components, the rate
of efflux of ethanol is appropriately reduced whenever these
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Figure 2. Chaos in a periodically forced bioreactor. (a) Biomass in time. (b) Substrate concentration (glucose) in time. (c) Product concentration (ethanol) in
time. (d) Active component fraction in time.

two components grow exponentially. Because the increase in
biomass is reduced by high ethanol concentrations and the
effectiveness of the enzymes is severely limited as well, a
reduction in ethanol efflux will reduce the biomass increase
resulting in a stable oscillation.

µ =
µmaxCs

Ks + Cs

(3)

Csf = Cs0 +A sin (ω t) (4)

dCe

d t
=

Cs Ce

Ks + Cs

(

k1 − k2 Cp + k3 C
2

p

)

−DCe (5)

dCp

d t
= Cx

(

Ce µ

Ypx

+mp

)

−DCp σ(Cp) (6)

dCs

d t
= σ(Cs)D (Csf − Cs)−

(

Ce µ

Ysx

)

−ms Cx (7)

dCx

d t
= Cx (Ce µ−D) (8)

Equations (3) to (8) describe the fermentation process, and
also include the two control functions σ(Cp) and σ(Cs). Only
one of these functions is needed to establish control of the
chaotic system (i.e. either fs > 0, fp = 0 or fs = 0, fp > 0).
The forcing term in equation (4) is controlled by parameter A,
if A = 0 the system reverts to the unforced system [23]. Cs is
the substrate concentration, Cp the product concentration, Ce

the active component fraction, Cx the biomass, µ is the specific

growth rate and Csf the substrate influx. The parameters of
the model are k1 = 16, k2 = −.497, k3 = 0.00383,Ks =
0.5,ms = 2.16,mp = 1.1, µmax = 1, Ysx = 0.024498, Ypx =
0.0526135, Cso = 140, D = 0.02 with forcing frequency
ω = 2π

93.47567
, based on the natural period of the limit cycle.

The control parameters are µ1 = 100, µ2 = 2, µ3 = 1, fs =
10, fp = 1, ξ = −1.

qCs
=

Cs

Cs + µ1

(9)

qCx
=

Cx

Cx + µ2

(10)

qCe
=

Ce

Ce + µ3

(11)

(12)

σ(Cs) = fs e
ξ qCs (13)

σ(Cp) = fp e
ξ qCx qCe (14)

In figure 3 are shown the phase space representation of
the uncontrolled chaotic attractor in (a) and the controlled
oscillation in (b). This clearly shows the effectiveness of the
RCC method to reduce the chaos state to a stable oscillation in
the forced chaotic bio-reactor. In figure 4 are shown the effect
of the stabilisation by the RCC method. In (a) is shown the
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Figure 3. (a) Phase-space representations of the chaotic attractor of the bio-
ethanol model, shown is concentration of product (ethanol) versus substrate
(glucose). (b) Stabilised orbit within the attractor shown in (a).

change in substrate concentration (glucose) in time which is
chaotic at first but is stabilised into a stable oscillation by the
RCC method that is enabled at time 1000. In (b) in the same
figure is shown the corresponding change in ethanol for the
same situation.

The relation between the biomass and the RCC method is
illustrated in figure 5 where the change in biomass in time
is shown in (a) for the chaotic state but with control enabled
at 1000. In figure 5 (b) is shown the control function σ(Cp)
(14) in time which, after an initial transient, controls the rate
of ethanol efflux. Note that the change in rate is very small
once the system has been stabilised into the oscillation. The
change in ethanol efflux induced by the control method varies
between 0 and approximately 1

100
of the total efflux.

The RCC method has two additional properties that are
important for this type of application. The first property is that
the RCC method can be constantly enabled, but does not have
any effect on the system if it is already stable. This implies that
the system does not need to be constantly monitored, because
the RCC method will be become involved only if the system
becomes unstable and will then stabilise the system into an
oscillation. The second property follows from this feature;
the RCC method will maintain stability of the system even
if the system is perturbed or goes through different dynamic
states. This is shown in figure 6 where the change in product
concentration (ethanol) is plotted in time. Each 1000 time steps
the amplitude of the periodic forcing oscillation is increased

such that the system goes through consecutive chaotic states if
it was not controlled. The RCC method re-stabilises the system
into different appropriate oscillations preventing the system
from becoming unstable and degenerative. The dotted line
indicates the average ethanol yield throughout. At the highest
amplitude for the forcing oscillation (far right in the figure) the
yield is significantly improved. Even at the lowest amplitude
the ethanol yield is at approximately 62 g/L, which is already
a significant improvement over steady state production which
varies, depending on the state, but is below 50 g/L. [25], [23].
Given a mean steady state production of ethanol of 46.42 g/L
[23], the improved yield using the RCC method is described
in table I. Here, the steady state yield is used as 100% with the
controlled forced system yield as improvements. Note that the
RCC method maintains a high yield throughout the change in
forcing term, even though the system would be chaotic without
the RCC method for most of the forcing values in the table.

No. Forcing term Yield Percentage

N/A 46.42 100.00 %

1 30 62.43 134.48 %

2 40 65.20 140.46 %

3 50 65.47 141.04 %

4 60 65.70 141.54 %

5 70 65.03 140.09 %

6 80 70.93 152.80 %

Table I. Increase in yield due to the RCC method applied to the forced
system with average steady state production as base line 100%.

IV. DISCUSSION

The Rate Control of Chaos method of non-linear control
allows the control of chaotic, and complex system. Its main
properties are the ability to stabilise the system into a stable
state, even when perturbed, or when the underlying dynamics
change due to a change of parameter values. It is a feed-
forward type of control that only depends on the current
state of the system to control, and requires no continuous
supervision. The N-Body control demonstration is illustrative
of the effect the control can have on a complex interacting
dynamic system, even though this specific application is only
for fun, as no feasible means to apply this control to N celestial
bodies is probable. The application of RCC to the bioreactor
demonstrates that the control is feasible for the control of a
bioreactor system, and can greatly improve the yield. This
proof of concept should be relatively easily transferable to a
physical demonstration. The limitations of the method are con-
tained within the concept. It cannot target specific solutions,
which makes finding efficient solutions more complicated. The
control needs to be designed in combination with empirical
verification to ensure reliability. So far, no chaotic or physical
system that has been targeted with this control method has
failed to be controlled, but it is recognised that the control
is unlikely to be ubiquitous. The RCC method is not bound
to specific control scenarios, as described, but can also be
more widely applied to other types of control problems of
complex, possibly chaotic, or chaotically perturbed systems.
Further proofs of concepts are currently under investigation
[29]. As a proof of the control concept, we have already
developed some initial proof that RCC is capable of controlling
very complex systems, such as wind turbines, or combustion
engines. The method is indicated to reduce stress, and allow a
system like a wind turbine to perform under a wider range of
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Figure 4. Stabilisation of chaos into stable oscillation, control enabled at time 1000. (a) Concentration of substrate (glucose). (b) Concentration of product
(ethanol).
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Figure 5. Stabilisation of chaos into stable oscillation, control enabled at time 1000. (a) Biomass in time. (b) Control function σ in time (vertical log scale).

conditions than is currently feasible. The proof of concept of
the combustion engine will demonstrate that it can control such
a system without currently used linear control maps, which
opens the possibility to allow engines to run under specific
low temperature conditions, or even, to free the constraints
of fuel dependency of the engine, allowing a wide range of
low carbon-dioxide emission fuels to be employed in the same
engine.
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