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Abstract 

 

The Biotic Pump Theory, as described by Drs. Makarieva and Gorshkov (M&G), defines the 

mechanism by which water vapour is transported from areas of low evaporation to areas of 

high evaporation, conveniently termed “donor” and “acceptor” regions, respectively, and 

where only the latter exhibits condensation. The implications of such a theory are critical, 

especially to moisture regulation of tropical rainforests, yet highly controversial. 

Unfortunately, most of the theory’s physics cannot be evaluated due to the lack of 

atmospheric observations over such areas. 

 

This study aims at building a conceptual model of the theory over the Amazon basin as to 

quantitatively assess the existence and determine the properties of donor and acceptor 

regions statistically through their respective condensation rates. The model uses the 

predictive capabilities of Time-Delayed Neural Networks to downscale available 

atmospheric observations to calculate condensation rates at a scale suited for this analysis. 

Validation of the downscaling model reveals monthly Mean Absolute Errors to range 

between 0.022 m s-1 and 2.76 m s-1 in the predictions of vertical velocity and zonal wind 

speed, respectively. 

 

Findings quantitatively support the existence of a biotic mechanism regulating the transport 

of water vapour as these clearly show the presence of donor and acceptor regions. These 

regions have average spatial distributions of 42% - 58%, respectively, over the whole study 
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area and correlations are found between wind speeds and condensation rates. Mean annual 

condensation rate for the Amazon basin is calculated to be of 0.23E-06 mol m-3 s-1.  Results 

also show an increase in average condensation rate (0.06E-06 mol m-3 s-1) for the last 9 

years, which does not strictly adhere to M&G’s views on the impacts of deforestation on 

precipitation. Outcomes hence also suggest a more complex relationship between 

evaporation and condensation, and therefore highlight the necessity to further refine this 

novel theory. 
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Chapter 1 

Introduction 

 

 

1.1 The importance of the Amazon basin 

Water is essential for life and its properties enable it to play a critical role in the processes of 

climate and make this planet habitable. In addition to dissolving minerals, transporting them 

to the oceans and lubricating the sliding of one tectonic plate over another, water carries 

energy around the globe, distributing it as part of a planetary conveyor belt system. While in 

the ocean it is readily available, most of the water found on land comes from large-scale 

migration of water vapour transported by winds (Gimeno et al., 2010; Penman, 1963). 

During that passage a water molecule, whether in the form of ice, liquid or vapour may find 

itself pushed upwards into the atmosphere, during which time it may form clouds 

(depending on cloud condensation nuclei), and later bring about precipitation through 

means of condensation. Air can hold a certain quantity of water vapour, depending on 

temperature and therefore on the saturation curve of water vapour. Consequently, the 

position of air in the atmosphere, which latitude it is in, and how much is exposed to direct 

sunlight, has profound consequences for local weather and, more generally, climate.  
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To sustain itself, vegetation requires sufficient soil moisture and subsequently precipitation. 

Between 50% and 75% of the rainfall over the Amazon rainforest is derived from its own 

evapotranspiration (Lettau et al., 1979; Marengo, 2006; Salati, 1987; Salati and Vose, 1984); 

this process is known as moisture recycling. Extensive deforestation will inevitably lead to a 

reduction in evapotranspiration which, according to Hutyra et al. (2005), is likely to result in 

savannization. Moreover, deforestation and edge effects in the forest surrounding large 

scale clearings increase the likelihood of destructive fires and forest die-back, as was indeed 

the case during the 2005 and 2010 Amazon droughts (Cochrane and Laurance, 2002; Hutyra 

et al., 2005; Laurance and Williamson, 2001; Lewis et al., 2011; Phillips et al., 2009). 

 

Through the use of climate models (i.e. Global and Regional Climate Models; GCMs and 

RCMs, respectively) a number of scientists have predicted the effects of tropical rainforest 

removal on precipitation (e.g. Clark et al., 2001; Henderson-Sellers et al., 1993; Marengo, 

2006; Werth and Avissar, 2004). Other than resulting in a predictable reduction in 

evapotranspiration, an outcome of such research suggests an apparent connection between 

the deforestation of the Amazon Rainforest and statistically-significant changes in 

precipitation at other tropical and mid-latitude regions (Avissar and Werth, 2005; Werth and 

Avissar, 2002). These “teleconnections” have been determined to affect parts of North 

America, Europe and South Africa (see Figure 1.1). The South American Low Level Jet Stream 

is also known to transport a considerable amount of water vapour from the Amazon Basin 

to the River Plate Basin, where as much as 50% of the Plate basin’s rainfall is derived from 

the Amazonian teleconnection (Gimeno et al., 2010; Marengo, 2006). 
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1 Introduction 

 

Figure 1.1. Teleconnections of the Amazon basin. Illustration adapted from Marengo (2006). 

 

The Amazon Rainforest is hence considered to play a vital role in maintaining the fragile 

equilibrium of global climate and its deforestation may therefore have a profound impact on 

local and global precipitation patterns. Figure 1.2 illustrates past and future deforestation 

extent over the Amazon basin as predicted by Soares-Filho et al. (2006).  

 

Makarieva and Gorshkov (2007; 2009a; 2009b; 2010a; 2010b) and Makarieva et al. (2009; 

2012; 2010) believe that, although GCMs take deforestation of tropical rainforests into 

account, they do not encapsulate all of the observed dynamics of rainforests and thus fail in 

producing realistic predictions. Subsequently, they reformulate some of the physics of 
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atmospheric moisture fluxes in order to fit observations. The “Biotic Pump” opens a new 

dimension in the understanding of the hydrological cycle and our climate. 

 

 

Figure 1.2. Forest cover for scenarios assuming (a) that recent deforestation trends will continue and (b) the 

Brazilian environmental legislation is implemented through the refinement and multiplication of current 

experiments in frontier governance. Illustration from Soares-Filho
 
(2006). 

 

The Biotic Pump Theory (BPT) states, against general belief, that the major physical cause of 

moisture fluxes is not the non-uniformity of atmospheric and surface heating but the fact 

that water vapour is invariably upward-directed since its partial pressure is not 

compensated by its weight in the atmospheric column due to condensation. The physical 

meaning of this behaviour results in densely vegetated forests “sucking-in” atmospheric 

moisture from the ocean; water vapour travels from regions of low evaporation and no 

condensation (donor regions, i.e. ocean) to regions of high evaporation and high 

condensation (acceptor regions, i.e. land). Extensive deforestation will hence lead to a 

tipping point where the forest cover is too little to exercise this mechanism, engendering 

changes in local and global water vapour regime. 
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1 Introduction 

Although the importance of the Amazon rainforest has been emphasized in an extensive 

collection of publications, the interaction of its vegetation on precipitation and global water 

vapour circulation is still poorly understood (e.g. Avissar and Werth, 2005; Makarieva et al., 

2009; Meesters et al., 2009; Myneni et al., 2007). Marengo (2006) attributes this to the 

“lack of basic hydrometeorological observational data systematically collected over time 

and space”. Not only the lack, but also the coarseness of available data over the Amazon 

basin makes evaluating the existence of the Biotic Pump mechanisms difficult. Available 

datasets covering the extent of the Amazon basin (mostly interpolated from local stations 

measurements) have horizontal resolution in the order of several hundred kilometres. At 

this scale, much of the subgrid-scale features and dynamics, such as topographical features, 

convective processes and hydrological processes, are lost (e.g. Carter et al., 1994; Coulibaly 

et al., 2005; Hewitson and Crane, 1996; Wigley et al., 1990). 

 

 

1.2 Overall aim and specific objectives 

The overall aim of this research is to assess the existence of the Biotic Pump mechanism as 

set forward by Makarieva and Gorshkov (2007; 2009a; 2009b; 2010a; 2010b; Makarieva et 

al., 2009; 2012; 2010) as this theory could potentially provide us with a more profound 

insight in understanding tropical rainforests and help us with more realistic predictions of 

deforestation-induced impact on the climate; hence giving us the chance to successfully 

preserve this fragile ecosystem. It is here assumed that the mechanism of the Biotic Pump, if 

it exists, will be visible in the observed data of the Amazon basin. 
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This is here attempted by elaborating a conceptual model of the BPT, the Biotic Pump 

Conceptual Model (BioPCM). To tackle the issue of data availability, BioPCM makes use of 

the predictive capabilities of Time-Delayed Neural Networks to downscale, from surface 

conditions, observed tropospheric profiles of the variables important to the working of the 

Biotic Pump. The model then calculates condensation rates from the physics of the BPT. 

Finally, outputs of the model are analysed in order to identify donor and acceptor regions 

from their particular properties relating to condensation and, as such, assess the presence 

of a biotically-regulated mechanism as described by Drs. Makarieva and Gorshkov. 

 

The specific objectives of this research are to: 

A. Downscale available observed data of tropospheric profiles of air temperature, zonal 

wind speed, vertical velocity, atmospheric pressure and water vapour pressure using 

Time-Delayed Neural Networks. 

B. Validate the downscaled tropospheric profiles of air temperature, zonal wind speed, 

vertical velocity, atmospheric pressure and water vapour pressure over the Amazon 

basin. 

C. Calculate and map monthly means of condensation rates in order to identify donor 

and acceptor regions of the study site and, in this way, assess the presence of a 

mechanism driven by the Biotic Pump. 

D. Formulate conclusions, based on the results, on the possibility of the existence of 

such a mechanism and propose future developments to ascertain the validity of the 

proposed conclusions. 
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1 Introduction 

BioPCM is conceptual in as such that it is used only for the evaluation of the existence of the 

Biotic Pump mechanism. If satisfactory, the resulting model will engender the prospect of 

being implemented in predictive models where simulation of tropical rainforests is required 

or being assessed. 

 

 

1.3 Study site and data 

The site of interest for this study is the Amazon basin. In order to simplify calculations and 

data analysis, I focus on a rectangular window located in the centre of the Amazon basin 

(see Figure 1.3). The latitude of the window spans from 1.25 °N to 12.5 °E and the longitude 

from 53.75 °W to 73.75 °W, covering a total area of approximately 3709243 km2. Surface 

height ranges from -15 m to 5924 m. The highest point is in the Andean mountain range 

located at the bottom-left corner of the window, and the lowest point is found in the top-

right corner close to the mouth of the Amazon River. 

 

Three datasets are used in this study: the NCEP/NCAR reanalysis dataset, the CRU TS-3.1 

surface observations and the SRTM 1-km digital elevation data. The NCEP/NCAR dataset is 

chosen for its global high-resolution coverage of atmospheric variables necessary to 

conducting this study. The CRU data are selected for their global coverage of basic surface 

observations at very high-resolution and SRTM 1-km digital elevation data are here used to 

complement the CRU observations. The main advantages of using these datasets are: a) all 

three sets are widely-used and accepted by the scientific community, b) NCEP/NCAR and 

CRU datasets are continuously being updated, and c) these are freely available online. 
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Figure 1.3. Window delimiting the study area, where the Amazon basin is represented as the green area. 

 

 

1.3.1 NCEP/NCAR reanalysis dataset 

The NCEP/NCAR reanalysis dataset (Kalnay et al., 1996) was developed by the National 

Centres for Environmental Prediction and the National Centre for Atmospheric Research, 

Washington DC, USA. The aim of the reanalysis project is to provide a record of global 

analyses of atmospheric fields in order to address the needs of the research and climate 

monitoring community. In doing so, the NCEP and NCAR have created a dataset that covers 

surface and atmospheric variables globally. The dataset was generated by recovering 

available land surface, ship, radiosonde, aircraft, satellite and other data, controlling the 

quality of the collected data, and finally, assimilating the collected data. The dataset is 

composed out of monthly averages of surface and atmospheric variables at a horizontal 

resolution of 2.5° (approximately 278 km), for 17 vertical pressure levels, ranging from 1000 

mbar to 10 mbar, and at Earth’s surface. The data covers a time period of 64 years, from 

1948 to 2011. 
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1 Introduction 

In this study, I use forty years of monthly averages of current climate data (1971 – 2010) 

from the NCEP/NCAR reanalysis dataset. The first 30 years (1971 – 2000) are used to train 

the Time-Delayed Neural Networks, which are then validated on the remaining 10 years 

(2001 – 2010). In total, five atmospheric variables and three surface variables from the 

NCEP/NCAR reanalysis dataset are here used (see Table 1.1). 

 

Level Variable NCEP/NCAR acronym Unit 

Atmosphere 

Air temperature air °C 

Height hgt m 

Vertical velocity omega m s
-1

 

Relative humidity rhum % 

Zonal wind speed uwnd m s
-1

 

Atmospheric pressure* N/A mbar 

Water vapour pressure** N/A mbar 

Surface 

Air temperature air.sfc °C 

Surface height hgt.sfc m 

Relative humidity rhum.sfc % 

Atmospheric pressure pres.sfc mbar 

Table 1.1. NCEP/NCAR reanalysis data variables used in the study. 

* Calculated from height. 

** Calculated from relative humidity and temperature (see Appendix I). 

 

Note that atmospheric variables are converted from pressure levels to altitude using the 

height data and a simple interpolation method. Pressure for a specific altitude is then 

determined from the height data and water vapour pressure is calculated from relative 

humidity and air temperature data (see Appendix I for a detailed description of the 

calculation of water vapour pressure). The set of NCEP/NCAR reanalysis data variables listed 

in Table 1.1 are hereafter referred to as the “NCEP dataset”. The NCEP/NCAR reanalysis 

dataset is provided by the NOAA/OAR/ESRL PSD, Colorado, USA, from their Web site at 

http://www.esrl.noaa.gov/psd/. 
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1.3.2 CRU TS-3.1 surface observations 

The CRU TS-3.1 time series (Mitchell and Jones, 2005) was developed by the Climate 

Research Unit of the University of East Anglia, UK, in an attempt to construct a global high-

resolution dataset of homogenised monthly surface observations that will address the 

needs of climatologists. The dataset was created by collecting available observations from 

surface stations, correcting for station data inhomogeneity, and interpolating the data onto 

a 0.5° (approximately 56 km) grid at a global level. The period covered by the data is of 109 

years, from 1901 to 2009. 

 

I here use 39 years of CRU TS-3.1 surface observations (1971 – 2009) as input to the NCEP-

trained Time-Delayed Neural Networks. By doing so, the neural networks predict the 

atmospheric variables from the CRU TS-3.1 surface data and, as such, downscale the data. 

Four surface variables of the CRU TS-3.1 time series are used (see Table 1.2). 

 

Level Variable CRU TS-3.1 acronym Unit 

Surface 

Air temperature tmp °C 

Water vapour pressure vap mbar 

Relative humidity* N/A % 

Atmospheric pressure** N/A mbar 

Height*** N/A m 

Table 1.2. CRU TS-3.1 data variables used in the study. 

* Calculated from vapour pressure and temperature (see Appendix I). 

** Calculated using Time-Delayed Neural Networks (see Chapter 3). 

*** Taken from the SRTM 1-km elevation data, upscaled to fit the CRU resolution (see Heading 1.3.3). 

 

Note that relative humidity is here calculated from water vapour pressure and air 

temperature data (see Appendix I for a detailed description of this calculation). Pressure has 
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1 Introduction 

to be calculated using the Time-Delayed Neural Networks (procedure similar to that of the 

downscaling of the atmospheric variables from surface variables; see Chapter 3), and height 

is taken from the SRTM 1-km elevation data, upscaled to fit the CRU TS-3.1 resolution (see 

Chapter 1, Heading 1.3.3). Likewise to that of NCEP, it is necessary to complete the CRU TS-

3.1 dataset as these variables are necessary for the downscaling procedure. The set of CRU 

TS-3.1 data variables listed in Table 1.2 are hereafter referred to as the “CRU dataset”. The 

CRU TS-3.1 surface observations are provided by the BADC/NERC, Didcot, UK, from their 

Web site at http://badc.nerc.ac.uk/. 

 

 

1.3.3 SRTM 1-km elevation dataset 

The SRTM 1-km digital elevation data (Jarvis et al., 2008) was developed by NASA’s (National 

Aeronautics and Space Administration, USA) Shuttle Radar Topographic Mission. The 

objective of the mission is to provide high-resolution surface elevation data in order to 

promote the use of geospatial science and applications for sustainable development and 

resource conservation in the developing world. The 1-km data is a resampled version of the 

SRTM 90 m digital elevation database version 4.1, released in 2008. For this study, I upscale 

the 1-km data further to 0.5°, as to fit the CRU dataset resolution, using a simple gridbox-

average algorithm. Note that all further references to the CRU dataset include the SRTM 1-

km elevation data upscaled to fit the CRU dataset resolution. The SRTM 1-km elevation 

dataset is provided by the CGIAR/CSI from their Web site at http://srtm.csi.cgiar.org/. 
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1.4 Structure of thesis 

The thesis is divided as follows. Chapter 2 describes the theory of the Biotic Pump as well as 

the physics used for calculating condensation rates; it is the main literature review of this 

work. Chapter 3 outlines the elaboration and application of the ensembles of Time-Delayed 

Neural Networks used for the downscaling of the variables necessary for the calculation of 

condensation rates. This is followed in Chapter 4 by the calculation and mapping of 

condensation rates, and the identification of donor and acceptor regions. The thesis is 

finalized by a discussion and conclusion in Chapter 5. 

By quantitatively assessing the existence of a biotically-driven mechanism as described by 

Drs. Makarieva and Gorshkov, I here intend to contribute to the body of knowledge on 

atmospheric physics with a particular focus on condensation-induced fluxes. The results and 

conclusions presented in Chapters 4 and 5, respectively, constitute my contribution to these 

topics. These results and conclusion have to be considered with care due to the 

controversial nature of the proposed theory. 
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Chapter 2 

Theory of the Biotic Pump 

 

 

In this chapter I give a brief overview of the history of the research on the Biotic Pump, as 

well as of the physical mechanism around which the theory revolves and the main 

arguments of the opposition to the existence of such a mechanism. This is then followed by 

a detailed explanation of the condensation-induced mechanism that causes winds, the 

transport of water vapour, and the presence of so-called “donor” and “acceptor” regions. I 

also discuss the local and global implications of such a mechanism with regards to 

deforestation and water regulation, and its possible impact on the wider scientific 

community. Finally, I conclude the chapter by outlining the physical formulas of 

condensation rate, which are then later used in Chapter 4 as part of the assessment of the 

Biotic Pump Theory (BPT) with regards to its condensation-induced dynamics. 

 

 

2.1 Brief overview 

The Biotic Pump Theory was developed by Drs. Anastassia Makarieva and Victor Gorshkov 

(hereafter referred to as “M&G”), scientists of the Petersburg Nuclear Physics Institute in St. 
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Petersburg, Russia. The theory was first published in 2007 (Makarieva and Gorshkov, 2007) 

and subsequently refined in their 2009, 2010 and 2012 publications (Makarieva and 

Gorshkov, 2009a; 2009b; 2010a; 2010b; Makarieva et al., 2009; 2012; 2010). The scientific 

community has been increasingly divided about the findings of M&G, the main criticism 

being that the theory is not supported by basic physical principles (Meesters et al., 2009). 

However, M&G have been able to defend their research and have taken critics and 

comments on board, as to leave no doubt that the Biotic Pump is indeed a reality. This on-

going controversy has asked for an objective evaluation of the BPT, part of which will be 

attempted in this thesis. 

 

In short, the theory describes, through the use of fundamental physics, the mechanism of 

densely vegetated closed-canopy forests as biotic pumps that attract moisture from the 

oceans to the land. In this way, the forest keeps the supply of moisture to land constant as 

to sustain its vegetation and, indirectly, regulate global circulation of water vapour. The 

novelty of the Biotic Pump mechanism lies in the fact that M&G physically derive vertical 

and horizontal pressure changes induced by condensation to be the primary factor driving 

winds. These winds transport water vapour from regions of high pressure (donor – low 

evaporation, no condensation) to low pressure (acceptor – high evaporation, high 

condensation). This differs from conventional knowledge that states that the major cause of 

pressure gradients (and hence winds) is due to uneven heating of the surface and 

atmosphere. In their publications, M&G claim that the scientific community has overlooked 

this mechanism. This point of view was first expressed by Lorenz (1967; 1983) and is 

supported by, for example, Schneider (2006), Sheil and Murdiyarso (2009). 
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2.2 Condensation-induced circulation of moisture 

The atmosphere is composed out of two types of gases: condensable gases, such as water 

vapour, and non-condensable gases, such as Nitrogen, Oxygen, Argon, etc. The air contained 

in the atmosphere is said to be “dry” when no water vapour is present in its composition, 

and “wet” when it holds water vapour. In a static atmosphere, water on land will evaporate 

owing to the incoming energy of solar radiation and mix in with the air of the lower altitudes 

of the troposphere (i.e. lower part of the atmosphere where most hydrological atmospheric 

processes take place). Any upward displacement of this wet air will cause the water vapour 

to condense (when reaching saturation point) as a result of the decrease in temperature 

with altitude. The condensation of the water will remove the excess water vapour from the 

atmospheric column (i.e. through precipitation) and hence reduce the total pressure of the 

column. 

 

Two forces act upon water vapour: an upward-directed force, resulting from the vertical 

compression of the water vapour, and a downward-directed force, generated by the weight 

of the water vapour in the air column. In removing water vapour through condensation, the 

force resulting from the vertical compression of water vapour in the atmospheric column 

will be greater than the weight of the remaining water vapour. This will result in an 

invariably upward-directed force that acts equally on air parcels with positive and negative 

buoyancy (see Figure 2.1). The force is a result of both processes of evaporation and 

condensation and is subsequently termed “evaporative-condensational force” by M&G 

(2007; 2010a). 
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The evaporative-condensational force is dependent on the local concentration of water 

vapour which, by definition, makes it dependent on evaporation rates; the higher the 

evaporation rate, the more water vapour is present in the atmosphere, the more 

condensation will take place, and hence the stronger the resulting force (assuming that 

enough soil moisture is available to maintain evaporation). In order to exist, the 

evaporative-condensational force hence requires continuous evaporation that will 

compensate for the loss of moisture from condensation of the ascending water vapour 

molecules. 

 

 

Figure 2.1. The upward-directed evaporative-condensational force (  ) equal to the difference between the 

upward-directed pressure gradient force (  ) and downward-directed weight (  ) of water vapour. Illustration 

from M&G (2007). 

 

Owing to the removal of water vapour through condensation, inhomogeneities in the rates 

of condensation between two regions will engender differences in the respective 

atmospheric pressures of these areas. Under Newton’s second law of motion, the resulting 

pressure gradient will force air to flow from areas of high pressure to areas of low pressure, 
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conveniently termed “donor” and “acceptor” regions by M&G, respectively. This defines the 

condensation that occurs during the ascension of water vapour as being responsible for, 

both, vertical and horizontal pressure gradients, and hence its circulation. 

 

According to the BPT, evaporation occurs in both, donor and acceptor region, while 

condensation takes place only in the acceptor region. This implies that the amount of 

precipitation in the acceptor region is always higher than local evaporation and that, both, 

acceptor and donor regions can be identified through their respective rates of 

condensation. With increasing evaporation, the condensation rate grows more rapidly than 

that of evaporation as these are not directly related (condensation rate is dependent on 

vertical velocity). Therefore, the acceptor region has always higher evaporation rates than 

the donor region. Following this logic, one can see that evapotranspiration of the Amazon 

basin, with its high Leaf Area Index, exceeds evaporation over the ocean with the net result 

that the forest draws in moist air from the ocean to the land (Fig. 2.2). 

 

 

Figure 2.2. The physical principle that the low-level air moves from areas with weak evaporation to areas with 

more intensive evaporation, where black arrows represent evaporation flux  (width schematically indicates the 

magnitude of this flux) and empty arrows are the horizontal and ascending fluxes of moisture-laden air in the 

lower atmosphere. Illustration from M&G (2007). 
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It is important to note that, whether induced by temperature changes or the evaporative-

condensational force, other conditions can also bring about the rising and condensation of 

air parcels. For example, moving air will be automatically lifted along a mountain side and 

forced to condense as it ascends. Such mechanism dictated by topography is currently not 

included in the conceptual model and will hence not be reflected in the results over the 

relatively little Andean mountain region of the study site. 

 

 

2.3 Implications for Earth’s climate and research 

M&G (2007) state that “in the absence of biotic control, air fluxes transporting ocean-

evaporated moisture to the continents weaken exponentially as they propagate inland” (see 

Figure 2.3). This has been proven using empirically-established data, showing that the 

dampening of such fluxes is of the order of several hundred kilometres; hence much less 

than the linear dimension of the continents. Conventional models predict up to a 30% of 

reduction in local precipitation associated with continental-scale deforestation (Bonan, 

2008), while M&G predict that even smaller-scale deforestation will lead to more than a 

95% reduction in local precipitation over the deep interior of the continents (Makarieva and 

Gorshkov, 2007). 

 

The logic behind this statement is that deforestation will lead the forest to a tipping point at 

which the vegetative cover will be too little to attract enough water vapour to sustain the 

basin’s vegetation in the deep interior (i.e. > 2000 km from the ocean-source). This will lead 

to a rapid decrease in forest cover, further reducing forest evapotranspiration and acting as 
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a positive feedback to the dying of the forest vegetation. Ultimately, this will result in the 

savannization or desertification of the Amazon basin and engender dramatic changes in 

local and global precipitation patterns. The main point to retain from this statement is that, 

if the BPT is found to be true, total loss of the Amazonian rainforest due to deforestation 

will happen much quicker than currently believed by the scientific community. This has been 

another source of criticism by the opposition qualifying this theory as “appealing to 

conservationists” (Meesters et al., 2009). 

 

 

Figure 2.3. Impact of deforestation predicted by conventional climate models against the BPT. Data from M&G 

(2007). 

 

Other than underlining the lack of knowledge on atmospheric dynamics with regards to 

water vapour fluxes, the theory opens new lines of investigations for a variety of fields 

ranging from the management of water resources, risk assessments of forest fires to 
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paleoclimatology. For example, if found to be true, the theory urges the re-assessment of 

current deforestation impact scenarios in order to enable decision-makers to efficiently 

preserve tropical rainforests. Furthermore, the BPT could potentially provide new 

information and explanations to old controversies such as the birth and evolution of 

continental vegetation and, as such, of human existence. All of which reinforces the 

argument for the necessity to evaluate objectively this emerging theory. 

 

 

2.4 Physics of condensation 

In hydrology, condensation is defined as the process by which water changes from its 

gaseous state to its liquid form. Water vapour contained in an air parcel will expand and 

cool as it ascends in the atmosphere; it will remain unsaturated as long as its temperature 

does not reach the temperature at which water starts condensing, known as the dew-point 

temperature. When the dew-point is reached, the air parcel’s relative humidity, defined as 

the amount of water found inside a mixture of air relative to the maximum amount that 

mixture can hold, becomes 100% and the water vapour starts condensing (assuming that 

the conditions of the saturated water vapour remain constant and that sufficient cloud 

condensation nuclei are available). As a consequence, a cloud forms until condensation is 

brought to an end. 

 

The process of condensation constitute an important part of the hydrological cycle as all 

water evaporated from Earth’s surface precipitates back to the surface by means of 

condensation. For the most part, evaporation comes from extensive water bodies (i.e. 
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oceans and seas), having a direct impact on the large-scale migration of moisture from the 

oceans to the continents, and hence playing a critical role in the global distribution of water 

vapour. Note that there are no major differences in the physics of evaporation from 

different surface types, only differs the way in which the surface controls the amount of 

moisture that is being evaporated (Shuttleworth, 1993). 

 

M&G (2010a) state that “the process of condensation should be reflected in the changes of 

[…] relative molar density of water vapour”. Consequently, molar rate   (mol m-3 s-1) of 

condensation per unit volume can be calculated using: 

 
              (
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where    (m s-1) is the velocity vector directed along the temperature gradient towards the 

lower temperature,   (m s-1) is vertical velocity along the z-axis and   (m s-1) is horizontal 

velocity along the x-axis (i.e. zonal wind speed; see Figure 2.4).   and    (mol m-3) are molar 

density of moist air as a whole and of water vapour, respectively,   and    (mbar) are 
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atmospheric and water vapour pressure, respectively,   is relative molar density of water 

vapour,   (K) is air temperature,   (J K-1) is the universal gas constant (8.31447215 J K-1),   is 

the angle between the isothermal and the horizontal planes, and       are the unit 

orthogonal vectors specifying the directions of coordinate axes     and  , respectively. 

Terms      and   (  ⁄ )    in Equation 1 are both subtracted from the total density 

change (     ) as these represent the equilibrium gravitational expansion and density 

change of water vapour, respectively, which are unrelated to condensation. Equation 2 is 

the equation of state of moist air as a whole and of water vapour, respectively, and 

Equation 5 relates the magnitudes of velocities     and   . 

 

 

 

Figure 2.4. Schematic representations of zonal winds (  and   ) and vertical velocities (  and   ), where    is 

the horizontal velocity in the isothermal plane, perpendicular to the temperature gradient. Warmer 

temperatures are represented in red and colder temperatures in blue. 
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In this thesis, Equations 1 to 5 are used to calculate condensation rates in order to 

distinguish between donor regions and acceptor regions through their respective 

condensative properties (recall that condensation is found only in the acceptor region). By 

doing this, one can assess whether this aspect of the BPT is reflected in the observed data, 

as well as analyse the spatial and temporal properties of the regions, and hence support or 

not the existence of such a mechanism. However, to use Equations 1 to 5 at a scale suitable 

for this study, it is necessary to downscale the atmospheric profiles of the five input 

variables using Time-Delayed Neural Networks: 

 Air temperature  -   

 Atmospheric pressure  -   

 Water vapour pressure -    

 Zonal wind speed  -   

 Vertical velocity  -   

 

The construction of the neural network ensembles used in the downscaling of these five 

atmospheric variables and the implementation of the procedure are outlined in the next 

chapter. 
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Chapter 3 

Downscaling observations 

 

 

I start this chapter off by exposing the issue of data availability and the restrictions set on 

research by such limitations. This is then followed by the description of the workings and 

applications of a procedure that makes use of Artificial Neural Networks (ANNs) to 

downscale available observations in order to tackle, to a significant extend, the issue of data 

inconsistency and coarseness. It is important to note that the downscaling of the 

atmospheric variables is achieved using only widely-available surface variables. The specific 

type of neural network used in this study is an ANN dependent on its previous state, also 

known as a Time-Delayed Neural Network (TDNN). I also describe and justify the choice of 

architecture, and detail the training and validation of two TDNN ensembles. The first 

ensemble, “TDNN-A” (where “A” stands for “atmosphere”), is used to downscale the 

atmospheric profiles of the five input variables to the equations for calculating condensation 

rate. The second neural network ensemble, “TDNN-S” (where “S” stands for “surface”), is 

used to predict and downscale surface relative humidity only, as this variable is not available 

from the observed surface dataset but necessary to the downscaling procedure of TDNN-A. 

The chapter is concluded by the explanation and implementation of the downscaling 

procedure. 
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3.1 The issue of data availability 

It is here assumed that donor and acceptor regions can be identified through their 

respective properties based on condensation rates. In order to calculate this variable with a 

certain degree of confidence, it is imperative to have both ground data and upper-air 

observations. Unfortunately, data available over the Amazon basin is scarce and even more 

so for atmospheric data (see Appendix II for a detailed review of current state of upper-air 

observations over the Amazon basin). 

 

While accuracy and coverage of satellite imagery have improved markedly in recent years, 

radiosonde-collected data still provides us with the most detailed measurements of the 

troposphere (i.e. lower part of the atmosphere where most hydrological atmospheric 

processes take place) on account of their fine vertical resolution (Gettleman et al., 2011; Kivi 

et al., 2009). However, biases in data (temperature, relative humidity, pressure, wind 

direction and wind speed) are compounded in the tropics by relying on such sparse, historic 

and continued, sampling of important variables (Randel and Wu, 2006; Sherwood et al., 

2005). Figure 3.1 shows the locations of operational sounding stations that form the upper-

air network (GUAN) of the Global Climate Observing System (GCOS) as recorded by the 

World Meteorological Organization (WMO) in February 2011. 

 

As of 2011, only 50% of the South American GUAN stations transmitted regular reports 

(CIIFEN, 2012). This lack of data is further highlighted by the GCOS goal for establishing a 

reference network for upper-air climate observations (GRUAN) as an extension to GUAN. 

GRUAN standards are more rigorous than that of GUAN and aim at addressing historic 
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biases in the data. Of the 15 initial GRUAN sites, none were in South America. There is a 

current plan for expansion, as the importance of monitoring the Amazon is recognized, 

however the budgets to support this research have not yet materialized.   

 

 

Figure 3.1. Global positions of operational sounding stations (▲) as recorded by the WMO in February 2011. 

The Amazon basin is represented by the green area. 

 

The primary factor in the lack of sounding data availability is, quite simply, cost. It is 

important to recognize that this issue is recurrent in developing countries of Africa and 

South America, where budgets allocated to soundings is often limited or a minute part of a 

bigger budget (e.g. Cheruiyot, 2006; Douglas, 2008). This limitation results in the inability of 

a vast majority of developing countries to comply with the standards set by the WMO in 

their 2007 revision of the WMO Convention originally published on the 11th October 1947.  

 

I here propose to use the predictive properties of ANNs for the downscaling of available 

surface and atmospheric data of the NCEP and CRU datasets, in order to calculate 



 

28 
 

condensation rates at a resolution suited for the evaluation of the existence of the Biotic 

Pump mechanism. 

 

 

3.2 Time-Delayed Neural Networks 

ANNs are powerful intelligent networks that mimic the natural neural network of the human 

brain. ANNs are intelligent in the sense that they learn to relate input to output through a 

trial-and-error process; the networks are not programmed to solve a problem, they are 

trained. The strength of ANNs is their ability to assimilate highly non-linear problems (Hayati 

and Mohebi, 2007). Research on ANNs started in the 1940’s (McCulloch and Pitts, 1943) and 

has since then been applied successfully to a wide variety of fields where prediction is 

needed (e.g. finance, medicine, engineering, robotics, physics, etc.; ASCE, 2000a). More 

recently, ANNs have shown promising results in several studies that aimed at predicting or 

downscaling climate variables using neural networks (ASCE, 2000b; Baboo and Shereef, 

2010; Cannon and Whitfield, 2002; Haylock et al., 2006). For example, El-Shafie et al. (2011) 

compared the performance of an ANN to that of a multi-regression model in the prediction 

of precipitation and found that the former is more accurate. Another example is the work of 

Dibike and Coulibaly (2006) that successfully uses neural networks in the downscaling of 

precipitation and temperature and quantitatively assesses their superiority over a 

regression-based statistical downscaling model. Overall, ANNs are generally believed to be 

more powerful downscaling tools than other regression techniques usually used for the 

downscaling of climatological data since ANNs do not assume any set architecture; they let 

the data define it (von Storch et al., 2000).  
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The most commonly used ANN architecture is probably that of a Multi-Layer Perceptron 

(MLP). MLPs are composed out of an input layer, one or more hidden layers and an output 

layer. The number of nodes (or neurons) in the input and output layers will represent the 

number of inputs and outputs given, while the hidden layers consist of an arbitrary number 

of nodes. Each node is connected by weighted vertices (or synapses) to each and every node 

of the following layer (see Figure 3.2). By means of forwarding the inputs through the 

network architecture (feed-forwarding), ANNs relate inputs to outputs by adapting the 

weights between nodes through a process known as error backpropagation (Haykin, 1998). 

Error backpropagation is an iterative adaptive learning function that works back from the 

calculated output, finding each node’s contribution to the output error and updating the 

weight of the node in the direction that shows the smallest error. While being forwarded to 

the next layer, nodes’ outputs are summed up and fed to the transfer function of the 

receiving node. As such, transfer functions determine the input-output behaviour of 

individual nodes. 

 

Although various studies have used MLPs successfully in predicting or downscaling climate 

variables (Bustami et al., 2007; Hayati and Mohebi, 2007), some claim that the common 

MLP architecture is not suited for predicting variables that vary over time (e.g. Coulibaly et 

al., 2001). For this particular study I will hence use a temporal neural network termed 

“Time-Delayed Neural Network” (TDNN). TDNNs are MLPs that keep the previous states of 

the input layer in memory. Such networks have shown to be efficient in the prediction of 

time series (e.g. Coulibaly et al., 2005; Dibike and Coulibaly, 2006; Gautam and Holz, 2000), 

the hypothesis being that a climate variable depends/relates to the previous state of that 

same variable (i.e. that climate variables are temporally dependent). The exact architecture 
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of the network (i.e. number of hidden layers, number of nodes in the hidden layers, 

adaptive learning function, transfer function and number of previous input states kept in 

memory) has to be arbitrarily determined by testing the performance of various structures. 

 

 

 

Figure 3.2. Architecture of a multi-layer perceptron. Input nodes are represented as Xi, output nodes as Yk, and 

the nodes from the hidden layer(s) are represented as Hj. The number of weighted connections w is the number 

of nodes from the previous layer times the number of nodes from the next layer. 

 

 

3.3 Methodology and model validation 

This chapter aims at elaborating an ensemble of TDNNs that will be used to downscale 

monthly mean values of the variables necessary for the calculation of condensation rates. As 

was concluded in Chapter 2, five atmospheric variables need to be downscaled in order to 
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achieve this. The general idea is to have TDNNs predict these five variables from widely-

available surface variables (i.e. surface temperature, surface relative humidity and surface 

pressure). Each TDNN is trained on the NCEP dataset at a horizontal resolution of 2.5° x 2.5° 

and then fed with the CRU surface data (at a resolution of 0.5° x 0.5°) to predict atmospheric 

and surface data at a finer resolution and, as such, downscale the data. Unfortunately, the 

original CRU dataset does not have surface pressure measurements, meaning that surface 

pressure too needs to be predicted using neural networks. 

 

To do this, two TDNN ensembles are elaborated using the neural network toolbox of 

MATLAB R2010a (version 7.10.0.499). The first TDNN ensemble (hereafter referred to as 

“TDNN-A”, where “A” stands for “atmosphere”) is used for downscaling the five 

atmospheric variables: air temperature, pressure, water vapour pressure, zonal wind speed 

and vertical velocity. All five variables are necessary for the calculation of condensation rate. 

The second ensemble (hereafter referred to as “TDNN-S”, where “S” stands for “surface”) is 

used for downscaling surface pressure, which is a necessary input for the downscaling of the 

atmospheric variables. Both TDNN ensembles are trained over 30 years (1971 – 2000) and 

their predictions validated on the remaining 10 years (2001 – 2010) using the NCEP 

reanalysis data at a horizontal resolution of 2.5° x 2.5°. The trained networks of TDNN-A are 

then fed with 39 years (1971 – 2009) of CRU surface observations together with the surface 

pressure outputs of TDNN-S, at a horizontal resolution of 0.5° x 0.5°, to predict the 

tropospheric profiles of relevant atmospheric variables at a finer resolution (i.e. downscale 

atmospheric data to 0.5° x 0.5°). 
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In this study, accuracy of the simulations of the neural network ensembles on their training 

periods is not described in great detail for the main reason that the function of the trained 

networks is to downscale climatological data by predicting values given a set of unseen 

input data. The importance therefore does not lie as much in the accuracy of the model’s 

simulations in predicting the training data, but rather in its performance in predicting the 

target values of the unseen data (i.e. the 10 years of data the networks have not been 

trained on). The accuracy of the predictions given the unseen dataset is hence quantified 

during the validation of the networks. Here, validation is defined as the quantification of the 

uncertainties that lie within the model’s predictions. For example, looking at the validation 

results, one can say that the TDNN ensemble TDNN-A (used for the downscaling of 

atmospheric variables) can predict tropospheric profiles of air temperature, using unseen 

input data, with an average accuracy of plus or minus 0.41 °C. In contrast, saying that TDNN-

A can simulate its own training dataset (i.e. its final performance after having converged) for 

air temperature with an average Mean Squared Error (MSE) of 1E-20 °C does not tell how 

reliable the ensemble is when fed with data it has not been trained to recognize. 

 

It is important to note that this study is following the methodology used by Coulibaly et al. 

in his 2005 article on the downscaling of precipitation and surface temperature using 

temporal neural networks. The study of Coulibaly et al. makes use of 30 years of the NCEP 

dataset to train its networks and then validates the networks (i.e. by quantifying the 

accuracy of its predictions) using 10 years of unseen NCEP data. Training and validation of 

the network ensembles are found in Headers 3.4.2 and 3.5.2 (“Training and validation”) and 

the discussion of the results is found in Header 5.2.1 (“Downscaling observations using 

Time-Delayed Neural Networks”). 
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3.4 Temporal neural network ensemble: TDNN-A 

3.4.1 Network ensemble and architecture 

Ideally, one would want to construct only one TDNN per target variable for the whole of the 

study site, as to take spatial variation into account and diminish the user’s workload. 

However, a network that covers the whole extent of the study site will be extremely time-

consuming to train. From experience with this data, one can assume an exponential 

correlation between training time and the amount of training data. The study site is hence 

divided into eight equal parts as to reduce the strain on the computer’s processor (see 

Figure 3.3).  

 

 

Figure 3.3. Eight divisions of the study site, where the Amazon basin is represented as the green area. Grid 

boxes correspond to the resolution of the NCEP dataset. 



 

34 
 

TDNN-A is composed out of eight TDNNs for each of the five target variable (one per study 

site part, per target variable), giving us a total of 40 neural networks. Each network has eight 

inputs (month, longitude, latitude, surface height, altitude of vertical layer, surface air 

temperature, surface relative humidity and surface pressure) and only one corresponding 

output (either air temperature, pressure, water vapour pressure, zonal wind speed or 

vertical velocity), depending on which target variable it has been trained to predict (see 

Table 3.1 and Figure 3.4). Using an ensemble of networks over a single neural network has 

shown to mitigate the problem of data overfitting (i.e. when the network is too finely-tuned 

to the training data; Cannon and Whitfield, 2002). 

 

Inputs 
Variable Acronym Unit 

Month t 1 - 12 
Longitude x ° 
Latitude y ° 

Surface height z(0) m 
Altitude of vertical layer z m 
Surface air temperature T(0) °C 
Surface relative humidity RH(0) % 

Surface pressure p(0) mbar 

 

Outputs (at a given altitude) 
Variable Acronym Unit 

Air temperature T(z) °C 
Atmospheric pressure p(z) mbar 

Water vapour pressure pv(z) mbar 
Zonal wind speed u(z) m s

-1 

Vertical velocity w(z) m s
-1

 

Table 3.1. Description of the input and output variables of the TDNN-A ensemble. 

 

Note that all inputs are used, even if these do not show direct correlations with the targeted 

output; there may or may not exist an indirect relationship for which the TDNN will 

automatically adapt its weights accordingly. Furthermore, location, altitude of the vertical 

layer, and month of the year are included in the input array in order for the network to 
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account for the target’s spatial and temporal variations. Including the time period of the 

targeted variable as well as its horizontal and vertical location has shown to improve the 

network’s prediction (e.g. Liu et al., 2001; Smith et al., 2005). For example, given that the 

month is January, longitude is 287.5°, latitude is -7.5°, the height of Earth’s surface is at -27 

m, the altitude of the vertical layer of interest is 100 m, surface air temperature is 24.99 °C, 

surface relative humidity is 93.30%, and surface pressure is 1013.5 mbar, the network 

should predict water vapour pressure at an altitude of 100 m to be 28.74 mbar. 

 

 

Figure 3.4. Example architecture of the Time-Delayed Neural Networks used in this study. The TDNN in this 

example has eight inputs (t, x, y, z(0), z, T(0), RH(0) and p(0); see Table 3.1) and one output, air temperature at 

a given height (T(z); see Table 3.1). Hi represents the number of hidden nodes and TDj is the time-delay which 

holds j-steps of the input layer (eight inputs * j-steps) in memory. The time-delay memory is forwarded together 

with the input layer to the hidden layer(s) and can hence be seen as part of the network’s input. 
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The best network architecture for this study was determined to be a feed-forward network 

with two hidden layers, each consisting of 70 nodes. It should be noted that, in this 

particular application of neural networks, the number of nodes used in each layer is not 

considered to be dependent on the intrinsic relationships between the input and output 

variables, but rather on the amount of training data used; the more nodes are being used, 

the closer the predictions of the neural network get to actual observations. This view is 

supported by Geman et al. (1992) who also state that the greater the number of hidden 

nodes used, the stronger it is prone to overfitting. However, data overfitting can be 

overcome by using large training sets at least 30 times greater than the number of hidden 

nodes (Sarle, 2002). In this particular study, the training dataset is some 160 times greater. 

The problem of data overfitting is further reduced by using an ensemble of neural networks 

as opposed to a single network. However, more nodes require greater processing capacity in 

order to train the network. The computer used in this study is able to handle a maximum of 

70 nodes per layer, which justifies the amount of nodes used in this particular case. 

 

It is common practice to use only one hidden layer in the construction of any MLP, as it has 

been proven that such architecture is able to approximate any complex relationship (Hornik 

et al., 1989). MLPs are subsequently termed “universal approximators”. However, in this 

specific study, an architecture that encompasses two hidden layers performs much better 

than that of one hidden layer, both in training time and in the accuracy of its predictions. 

Figure 3.5 plots network performance against time to illustrate this point. Here, four 

networks that differ in number of hidden layers and nodes are being trained with a subset 

of the entire pressure training dataset for testing purposes. Training is stopped after 100 

iterations or sooner if the minimum performance gradient is smaller than 1E-10. Networks 1 
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3 Downscaling observations 

and 2 are composed out of one hidden layers with 70 and 140 nodes, respectively, while 

networks 3 and 4 are composed out of two hidden layers, where each layer counts 35 and 

70 nodes, respectively; networks 1 and 3 hence each have 70 hidden nodes, and networks 2 

and 4 each have 140 hidden nodes. Note that this example run is one of many that were 

undertaken to ascertain the recurrence of this behaviour. 

 

 

Figure 3.5. Performance of Networks 1, 2, 3 and 4 against training time, where performance is defined as the 

Mean Squared Error (MSE) between training targets and training outputs. Networks 1 and 2 are composed out 

of one hidden layer counting 70 and 140 hidden nodes, respectively, and networks 3 and 4 are composed out of 

two hidden layers with each 35 and 70 hidden nodes, respectively. 
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After 100 iterations, network 1 reaches a performance error of 274 mbar in 11 minutes and 

13 seconds while network 2, with twice as many nodes, reaches an error of 0.0115 mbar in 

1 hour 6 minutes and 3 seconds. This suggests that more nodes diminish training error but 

increase training time. Network 3 reaches 100 iterations after 8 minutes and 26 seconds 

with a final performance error of 0.628 mbar, which suggests that two layers perform faster 

that one layer with the same total number of hidden nodes. Network 4 shows a very small 

performance error of 3.86E-26 mbar after 19 minutes and 12 seconds of training. It hence 

offers the best combination of performance against time. It should also be taken into 

account that network 4 converges only after 20 iterations. 

 

The number of time steps kept in memory (the time-delay) ranges from 9 to 12 steps. Since 

input and output values are monthly means, one can say that the network keeps 9 to 12 

months in memory. The exact number of memory spaces allocated in each network 

depends on the temporal variance of the target variable and is detailed in Table 3.2. 

 

Network Target variable Time-delay Inputs Output 

net_t[1:8] Air temperature 12 [t,x,y,z(0),z,T(0),RH(0),p(0)] T(z) 
net_p[1:8] Atmospheric pressure 09 [t,x,y,z(0),z,T(0),RH(0),p(0)] p(z) 
net_v[1:8] Water vapour pressure 09 [t,x,y,z(0),z,T(0),RH(0),p(0)] pv(z) 
net_u[1:8] Zonal wind speed 12 [t,x,y,z(0),z,T(0),RH(0),p(0)] u(z) 
net_w[1:8] Vertical velocity 12 [t,x,y,z(0),z,T(0),RH(0),p(0)] w(z) 

Table 3.2. Description of each network of the TDNN-A ensemble with regards to its target variable, the number 

of memory spaces allocated to its time-delay, the array of inputs and corresponding output (see Table 3.1. for 

inputs and outputs acronyms). 

 

The training function in use is the Levenberg-Marquardt backpropagation algorithm (LMA; 

Bishop, 1996). As opposed to the standard gradient descent backpropagation algorithm, the 

Widrow-Hoff algorithm (Haykin, 1998), the LMA provides a solution to the problem of 
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3 Downscaling observations 

minimizing a function over a parameter space; meaning that in many cases it finds a solution 

even if it starts very far off the final minimum error. The adaptive function of the network is 

a gradient descent with momentum. The momentum is an optimization of the regular 

gradient descent function, which proves to be more efficient on complex error surfaces. The 

activation functions in the hidden layers are tan-sigmoid transfer functions and the output 

layer has a linear transfer function. The linear function is useful when calculating accurate 

errors during the training process. 

 

 

3.4.2 Training and validation 

Each TDNN is trained using a set of 30 years of the NCEP monthly means data (1971 – 2000). 

During the training, both inputs and targeted outputs are provided to the network. The 

network adapts its internal weights in order to relate inputs to targeted outputs. Each 

training set is composed of 12 input-target pairs per year, per vertical layer, per gridbox; 

which amounts to a maximum of 17280 pairs. Input-target pairs are left out when surface 

height is higher than the altitude of the target data. The network is considered to have 

converged when the training has reached 2 hours or 100 iterations; MSE between actual 

output and predicted output are then usually in the order of 1E-20. Note that during the 

first hour of training MSE descends rapidly, and thereafter diminishes marginally. The 

training is stopped after 2 hours or 100 iterations mainly due the restrictions imposed by the 

processing capability of the platform used for this study. Better network performance could 

be expected from longer training periods; this may however also increase bias in the 

network’s predictions caused by data overfitting. 
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The trained network is then validated against unseen NCEP data using the remaining 10 

years (2001 – 2010) in order to assess how well the network performs outside its training 

period; here, the process of validation defines the bias in the network’s predictions. Unlike 

during the training of the network, targets are not provided and the network’s weights 

remain unchanged; the network now simulates output from given inputs. Inputs are taken 

from the 10 years of the NCEP data the network was not trained on. Accuracy of these 

simulations is quantitatively determined for each TDNN by calculating Mean Absolute Errors 

(MAE) between the network’s outputs and the NCEP data corresponding to the given inputs. 

Results are assessed monthly to check for temporal variation in the network’s performance, 

and per vertical layer to check for vertical spatial variation (Tables 3.3 and 3.4, respectively).  

 

Horizontal spatial variation of MAE is not included as no significant variations were found in 

the results. Results also show that all networks perform well in the prediction of their 

respective output variables. From network averages, one can note that MAE for the 

prediction of zonal wind speed is higher than others. This reflects the chaotic behaviour and 

inhomogeneity observed in horizontal wind speeds, both over time and altitude. It could 

also be argued that relating profiles of zonal winds to surface conditions is not sufficient for 

predicting this variable accurately. Contrarily, vertical velocity shows a very small MAE due 

to the data’s small variability (difference between greatest and smallest values is on average 

0.17 m s-1). Note that the average of the averages (bottom right corner of each table) can be 

considered as a reference index of the overall performance of TDNN-A which could be 

compared to the performance of similar ANN ensembles. 
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3 Downscaling observations 

Mean Absolute Error per month 

 
net_t[1:8]  

(°C) 
net_p[1:8] 

(mbar) 
net_v[1:8] 

(mbar) 
net_u[1:8] 

(m s
-1

) 
net_w[1:8] 

(m s
-1

) 
Average 

Jan 0.44 0.46 0.65 2.70 0.024 0.85 
Feb 0.56 0.48 0.70 2.84 0.028 0.92 
Mar 0.50 0.48 0.67 2.73 0.022 0.88 
Apr 0.46 0.44 0.62 2.72 0.020 0.85 
May 0.51 0.47 0.58 2.92 0.022 0.90 
Jun 0.50 0.40 0.56 2.83 0.020 0.86 
Jul 0.47 0.42 0.54 2.66 0.020 0.82 

Aug 0.52 0.38 0.54 3.26 0.021 0.94 
Sep 0.52 0.41 0.61 2.56 0.020 0.82 
Oct 0.44 0.33 0.59 2.73 0.020 0.82 
Nov 0.43 0.31 0.58 2.35 0.022 0.74 
Dec 0.43 0.34 0.65 2.80 0.025 0.85 

Average 0.48 0.41 0.61 2.76 0.022 0.86 

Table 3.3. Monthly Mean Absolute Errors between outputs of the TDNN-A ensemble and NCEP data. 

 

Mean Absolute Error per vertical layer 

 
net_t[1:8] 

(°C) 
net_p[1:8] 

(mbar) 
net_v[1:8] 

(mbar) 
net_u[1:8] 

(m s
-1

) 
net_w[1:8] 

(m s
-1

) 
Average 

100m 0.47 0.54 1.11 2.85 0.029 1.00 
750m 0.37 0.32 0.77 2.20 0.021 0.74 

1500m 0.49 0.19 0.90 2.25 0.024 0.77 
3000m 0.45 0.40 0.79 2.58 0.022 0.85 
4250m 0.41 0.38 0.59 2.65 0.021 0.81 
5500m 0.47 0.44 0.45 2.72 0.021 0.82 
7500m 0.55 0.51 0.37 3.11 0.023 0.91 
9500m 0.64 0.59 0.30 3.73 0.021 1.06 

Average 0.48 0.42 0.66 2.76 0.023 0.87 

Table 3.4. Mean Absolute Errors per vertical layer between outputs of the TDNN-A ensemble and NCEP data. 

 

Little temporal and vertical dependence is shown by the results, suggesting that the 

ensemble is robust to such variations and is more dependent on the variance of the target 

variable and/or its relation to input variables. The only noticeable correlations are found in 

the MAE of the predictions of water vapour pressure, where errors decrease with altitude, 

and for zonal wind speeds, where errors increase with altitude. This again could be 

explained through the decreasing variance between the minimum and maximum values of 

water vapour pressure with altitude and vice versa for zonal wind speeds. 
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3.5 Temporal neural network ensemble: TDNN-S 

3.5.1 Network ensemble and architecture 

The structure of each TDNN of TDNN-S remains largely the same as that used for the 

downscaling of atmospheric variables: two hidden layers of 70 nodes each, an LMA training 

function, a gradient descent with momentum as adaptive function, tan-sigmoid transfer 

functions for the hidden layers and a linear transfer function for the output layer. Three 

properties change in the structure of the TDNNs and TDNN-S: 1) there are only six input 

variables, surface pressure and altitude of the vertical layer are left out, 2) the output 

variable is only found at the surface, and 3) the study site window is divided into four equal 

parts (see Figure 3.6), not eight, since the amount of data being processed is less because of 

having only one vertical layer (surface). TDNN-S hence encompasses only four networks; 

one per study site part for one target variables (see Table 3.5). 

 

 

Figure 3.6. Four divisions of the study site, where the Amazon basin is represented as the green area. Grid 

boxes correspond to the resolution of the NCEP dataset. 
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3 Downscaling observations 

Network Target variable Time-delay Inputs Output 

net_p[1:4] Pressure 11 [t,x,y,z(0),T(0),RH(0)] p(0) 

Table 3.5. Description of each network of the TDNN-S ensemble with regards to its target variable, the number 

of memory spaces allocated to its time-delay, the array of inputs and corresponding output (see Table 3.1. for 

inputs and outputs acronyms). 

 

 

3.4.2 Training and validation 

Likewise to the training of TDNN-A, TDNN-S is trained using the NCEP dataset over the 

period 1971 – 2000 and then validated on the remaining 10 years. Each training set is 

composed of 12 input-target pairs per year, per gridbox; which amounts to a maximum of 

2160 pairs. Again, training is stopped after 2 hours or after 100 iterations due to the 

restrictions imposed by the computer’s processing capability. The accuracy of the 

simulations is determined using MAE and is illustrated in Table 3.6. 

 

Mean Absolute Error per month 

 
net_p[0]  
(mbar) 

Jan 0.44 
Feb 0.56 
Mar 0.50 
Apr 0.46 
May 0.51 
Jun 0.50 
Jul 0.47 

Aug 0.52 
Sep 0.52 
Oct 0.44 
Nov 0.43 
Dec 0.43 

Average 0.48 

Table 3.6. Monthly Mean Absolute Errors between outputs of the TDNN-S ensemble and NCEP data. 
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The results show that the network performs well in the prediction of surface pressure with 

an average MAE of 0.48 mbar for an area coverage greater than 3500000 km2. Again, no 

significant temporal dependence is shown by the results, suggesting that the ensemble is 

robust to such variations. 

 

 

3.6 Downscaling 

The trained and validated ensembles are now used to predict atmospheric variables at a 

smaller horizontal resolution. This is achieved by using the CRU surface data and the surface 

pressure outputs of TDNN-S as inputs to the TDNN-A ensemble (see Figure 3.7). Moreover, 

the CRU surface variables are at a smaller resolution than that of the NCEP dataset; some 

five times smaller. As such, TDNN-A downscales the data from 2.5° cells to 0.5° cells 

(approximately 278 km to 55 km). 

 

Note that the first year of the TDNN-A output is not taken into account in the comparison as 

it is considered to be the time necessary for the calibration of the time-delay memory. 

Furthermore, the year 2010 is also not taken into account as this data is not available from 

the CRU dataset. This gives us a total usable period of 38 years (1972 – 2009). Furthermore, 

it should be born in mind that additional uncertainties could have been added to the output 

due to the inherent differences between the NCEP and CRU surface data. The data that 

results from the downscaling procedure is hereafter referred to as “CRU-DS”, where “DS” 

stands for “downscaled” (see Table 3.7). 
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3 Downscaling observations 

 

 

Figure 3.7. Diagram of the structure of the downscaling procedure using the CRU surface data and both TDNN 

ensembles, TDNN-S and TDNN-A. Ensembles are represented in blue and datasets in black. 

 

Level Variable CRU-DS acronym Unit 

Atmosphere 

Air temperature T °C 

Vertical velocity w m s
-1

 

Zonal wind speed u m s
-1

 

Atmospheric pressure p mbar 

Water vapour pressure pv mbar 

Surface 

Air temperature* T °C 

Vertical velocity w m s
-1

 

Water vapour pressure* pv mbar 

Table 3.7. Downscaled data variables used in the study (CRU-DS). 

* Available from the original CRU dataset without TDNN downscaling 

 

The validation of the predictions of the trained ensembles has shown that temporal neural 

networks are suited for the downscaling of atmospheric and surface variables, with the 

lowest error found where the variance between minimum and maximum value of the target 

variable is lowest. The tropospheric profiles of the five variables resulting from the 

downscaling procedure, referred to as the CRU-DS dataset, are used in the next chapter as 

TDNN-S 

(downscaling) 

CRU surface data 
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input to Equations 1 to 5 (See Heading 2.4) in order to calculate condensation rates. The 

condensations rates are then mapped as to study the properties of regions with 

condensation versus regions where no condensation takes place, enabling the formulation 

of conclusions with regards to the quantitative assessment of this particular aspect of the 

Biotic Pump Theory. 
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Chapter 4 

Results 

 

 

The results of calculating condensation rates over the study area are presented in this 

chapter. Firstly, I explain the procedure followed in this study for determining gridbox values 

of condensation rates and then analyse the mapping of donor and acceptor regions over 

space and time. This is followed by a study of the changes in average condensation rate over 

the period 2001 – 2009. The chapter is finalized by an examination of the relationship 

between vertical velocities, zonal wind speeds and condensation rates for the whole of the 

study area over the period 1972 - 2009. All of these analyses are done for the purpose of 

quantitatively assessing the Biotic Pump Theory with regards to the existence and working 

of donor and acceptor regions. 

 

 

4.1 Dynamically allocated donor and acceptor regions 

Calculating the condensation rate of each 0.5° gridbox using Equations 1-5 (see Heading 2.4) 

gives us the possibility to assess whether a gridbox is considered to be a donor region or an 

acceptor region. Recall that both can be identified based upon their respective 
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condensation rates (i.e. condensation is found in the acceptor region while none is found in 

the donor region). Furthermore, if the region undergoes condensation, one can determine 

how strong the condensation rate is at that particular point. The condensation rate is 

calculated in between gridboxes and vertical layers as the equation accounts for the 

differences in temperature, and molar density of dry and water vapour, in the x-, y- and z-

direction (see Figure 4.1). This gives us a total of 7448 condensation rate values (38 x 28 

gridboxes in the x- and y-direction, respectively, for seven vertical layers) per month for 

each of the 38 years (1972 – 2009). 

 

 

Figure 4.1. Schematic representation of the gridbox calculation of condensation rate        in between 

gridboxes and vertical layers, where  x,  y and  z are changes in a specific variable in the x-, y- and z-direction, 

respectively. 

 

The equation for condensation rate (Equation 1; Makarieva and Gorshkov, 2010a) however 

does not return zero values when no condensation is taking place. Instead, it returns 

negative condensation rate values which show gradients ranging between -1.38E-05 mol m-3 

s-1 and -1.49E-09 mol m-3 s-1. These values could be interpreted as being the degree to which 

atmospheric conditions are prone to produce condensation (e.g. the lower the negative 
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4 Results 

value, the less likely it is for condensation to take place). Negative values are hence 

substituted for zero, meaning that there is no condensation. Moreover, one should bear in 

mind that having a zero value for a gridbox does not mean that absolutely no condensation 

takes place over these 56 km2; what it does say is that on average no condensation takes 

place (i.e. the negative values are on average more important than the positive 

condensation rate values). 

 

Monthly means of condensation rate values, averaged over all seven vertical layers, are 

mapped in Figure 4.2; the value in the bottom-right corner of each individual map 

represents the catchment average of the condensation rate (i.e. sum of all condensation 

rate values divided by the total number of gridboxes). The set of maps clearly illustrates the 

existence of donor and acceptor regions at macro-scale. The distribution and size of these 

regions vary over time showing seasonality; however these do not show any spatial 

dependence. The highest rate of condensation is found during the month of October with 

1.71E-06 mol m-3 s-1, while the lowest rate is found in May with 0.66E-06 mol m-3 s-1. Mean 

annual condensation rate for the Amazon basin is of 1.23E-06 mol m-3 s-1. The wet and dry 

seasons (December to May and June to November, respectively) show on average similar 

rates of condensation, which are of 1.24E-06 mol m-3 s-1 and 1.23E-06 mol m-3 s-1, 

respectively. Furthermore, from comparing seasonal variations between the calculated 

condensation rates and the climatologic averages (1960 – 1990) of monthly precipitation in 

Manaus, Brazil and Leticia, Colombia, one can notice a one- to two-month lag between the 

high and low points of condensation rates and precipitation occurrences (see Figure 4.3). 

Widths of the donor regions range between 56 km and 1680 km, and that of the acceptor 

regions range between 56 km and 2128 km. The ratio of donor versus acceptor region is of 
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41.88% - 58.12%, respectively. Note that the eight divisions of the study site pertaining to 

the downscaling of the atmospheric variables using the Time-Delayed Neural Networks 

(TDNNs) are clearly visible in the maps. 
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4 Results 

 

Figure 4.2. Monthly means of condensation rate (mol m
-3

 s
-1

) averaged over 1972 – 2009 and seven vertical 

layers, where the Amazon basin is represented as the green area. Catchment average of condensation rate is 

shown in the bottom-right corner of each map. 
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Figure 4.3. Monthly catchment means of condensation rate, averaged over 1972 – 2009 and seven vertical 

layers, and monthly climatological means of precipitation in Manaus, Brazil, and Leticia, Amazonas, averaged 

over 1960 – 1990. The shaded areas represent the wet season. Climatological means are taken from the Hong 

Kong Observatory website (http://www.weather.gov.hk/). 

 

 

4.2 Changes in condensation rate 

Monthly changes in condensation rate over the last 9 years of the data (2001 – 2009) are 

compared against the preceding 29 years (1972 – 2000) as to assess the effects of the ever-

increasing clearing of the Amazon basin vegetation (e.g. Davidson E. A. et al., 2012; Moore 

et al., 2007; Soares-Filho et al., 2006; Werth and Avissar, 2002) on the process of 

condensation. We here only choose 29 years to define the baseline climatology as the total 

period of the data is of 38 years. Ideally, the period 1971 – 2010 would have been chosen, 

enabling the calculation of changes over the last 10 years of data against the preceding 30 
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4 Results 

years. However, the year 1971 of data is part of the calibration period of the downscaling 

procedure and 2010 is not available from the CRU dataset. It is important to bear in mind 

that the World Meteorological Organization standards recommend a period of 30 years to 

determine climatological means (WMO, 1983). 

 

Condensation rate values are averaged over the whole catchment for the seven vertical 

layers for each of the selected periods. The changes in average condensation rate, 

illustrated in Figure 4.4, suggest that the last 9 years have undergone a significant increase 

in condensation rate during the months of October and November, with an average increase 

of 0.38E-06 mol m-3 s-1 and 0.55E-06 mol m-3 s-1, respectively. A slight decrease of 0.17E-06 

mol m-3 s-1 is found during the month of June. On average, an increase in condensation rate 

is found compared to that of the baseline climatology defined over the period 1972 – 2000. 

This increase is on average of 0.06E-06 mol m-3 s-1 over the whole of the study site. Changes 

in condensation rate are found over the dry season, while no significant changes are 

recorded during the wet season. Figure 4.5 shows the annual progress of mean 

condensation rate over the entire study period (1972 – 2009). The trend of the annual mean 

condensation rate indicates a yearly increase of 0.0009E-06 mol m-3 s-1. 
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Figure 4.4. Monthly means of condensation rate for the last 9 years of data (2001 – 2009) averaged over the 

study site catchment and the seven vertical layers. Baseline climatology is calculated over the preceding 29 

years (1972 – 2000). The error bars represent the catchment monthly standard errors between yearly 

condensation rates and average condensation rate for the periods 1972 – 2000 and 2001 – 2009. The shaded 

areas represent the wet season. 

 

 

Figure 4.5. Yearly means of condensation rate for the period 1972 – 2009 averaged over the study site 

catchment and the seven vertical layers. 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

C
o

n
d

e
n

sa
ti

o
n

 r
at

e
 (

m
o

l/
m

³/
s 

* 
E-

0
6

) 

Month 

72-00 01-09

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1970 1975 1980 1985 1990 1995 2000 2005 2010

C
o

n
d

e
n

sa
ti

o
n

 r
at

e
 (

m
o

l/
m

³/
s 

* 
E-

0
6

) 

Year 

Condensation rate Trend



 

55 
 

4 Results 

4.3 Condensation rate versus zonal wind speed 

According to M&G, the major force driving winds is induced by condensation. Catchment 

annual means of condensation rate, zonal wind speed and upward velocity are plotted 

against altitude in Figure 4.6 as to assess whether such relationship is reflected in the form 

of correlations between these three variables. Annual means are averaged over 38 years, 

from January 1972 to December 2009. 

 

Figure 4.6 suggests that the great majority of water vapour condensates between the 

surface layer up to about 1250 m. Between 1250 m and 1750 m the condensation rate 

becomes negative. It then increases slightly and becomes positive again. From an altitude of 

2250 m condensation rate decreases marginally and steadily until reaching 6250 m where 

its increase is more pronounced. Zonal wind speed and upward velocity follow similar 

curves to one another. Both decrease together with condensation rate, are then 

approximately flat where condensation rates decrease slightly and steadily, and finally 

increases significantly together with condensation rate. Furthermore, results suggest that 

from the surface layer up until an altitude of approximately 625 m zonal winds are 

predominantly blowing from East to West (where wind speed is positive), while these are 

travelling from West to East at higher altitudes (where wind speed is negative). Bear in mind 

that these statements are valid at catchment level only; this will not apply where surface 

height is higher, as for example in the Andean region of the study site (bottom-left corner) 

where maximum surface height is of 5925 m. 
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Now that the results of this study have been analysed it is possible to formulate conclusions 

with regards to the existence and properties of acceptor and donor regions, and hence 

determine whether the overall results support or not to the existence of a biotically-

regulated mechanism. The final chapter of the thesis encompasses a summary of the Biotic 

Pump theory and the approach used to quantitatively assess the validity of its hypothesis 

with regards to condensation-induced dynamics of water vapour and winds. This is then 

followed by a discussion on the results of the downscaling of observations using TDNNs and 

on the results of the analysis of condensation rates over the study area. Finally, conclusions 

and recommendations for future research on the topic are formulated. 

 

 

Figure 4.6. Catchment annual means of condensation rate, zonal wind speed and upward velocity against 

altitude. 
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Chapter 5 

Discussion and conclusions 

 

 

5.1 Summary 

The Biotic Pump Theory (BPT), as set forward by Drs. Makarieva and Gorshkov (M&G; 2007; 

2009a; 2010a; 2010b; Makarieva et al., 2009; 2012; 2010), states that the major force 

driving winds, and hence the movement of water vapour, is induced by the changes in 

atmospheric pressure caused by condensation while, traditionally, winds are believed to be 

products of the differences of Earth’s surface heating. The implications of such a theory are 

highly relevant to a wide variety of scientific fields as it involves the global regulation and 

distribution of water – also known as “the blue gold”. Other than emphasizing the fragile 

equilibrium of tropical rainforests with regards to human-induced deforestation, the theory 

could potentially provide answers to questions as old as human existence; for example, that 

of the evolution of vegetation on land. Although built on fundamental physics, the BPT is 

highly controversial as it defies elementary and longstanding knowledge of atmospheric 

processes. This study therefore aims at investigating the validity of the physics of the BPT 

over the Amazon basin. 
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The BPT describes the mechanism by which water vapour is transported from areas of low 

evaporation to areas of high evaporation, conveniently termed “donor” and “acceptor” 

regions, respectively. According to M&G, only acceptor regions exhibit condensation 

because of the high evaporation rates found in those regions. This condensation of water 

vapour engenders a decrease in atmospheric pressure over acceptor regions, which 

subsequently creates a flux (i.e. winds) from high pressure to low pressure systems. 

Unfortunately, due to the lack of funding allocated towards collecting atmospheric 

observations over such isolated areas as the Amazon basin, it is near impossible to test a 

great majority of the physical processes described by M&G as available observations are 

simply too coarse and inconsistent. Current atmospheric observation datasets over the 

Amazon basin are interpolated onto a 2.5° (approximately 278 km) grid from satellite 

observations and very few sounding stations. However, much of the atmospheric processes 

need to be determined at higher resolutions (e.g. Carter et al., 1994; Coulibaly et al., 2005; 

Hewitson and Crane, 1996; Wigley et al., 1990) to provide for an acceptable degree of 

confidence. 

 

In view of the complications and the nature of the theory, I here focus on implementing a 

conceptual model (Biotic Pump Conceptual Model; BioPCM) that downscales available data, 

calculates condensation rates and maps these rates in order to differentiate donor regions 

from acceptor regions using their respective condensative properties. As such, I hope to 

quantitatively assess the existence of these regions and, by doing so, contribute to research 

on the BPT and atmospheric dynamics. The model uses the predictive capabilities of Time-

Delayed Neural Networks (TDNNs) to downscale atmospheric observations from higher-

resolution surface observations, enabling us to account for sub-grid processes. Artificial 
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neural networks are here chosen as these have shown promising results in the prediction 

and downscaling of meteorological variables (e.g. ASCE, 2000b; Baboo and Shereef, 2010; 

Cannon and Whitfield, 2002; El-Shafie et al., 2011; Haylock et al., 2006). Condensation rate 

for each gridbox is then calculated using the physics detailed in the BPT. Finally, donor and 

acceptor regions are mapped and identified through their respective condensative 

properties. The construction and running of BioPCM constitutes the study’s specific 

objectives A to C as described in Chapter 1. 

 

Two TDNN ensembles are created for the downscaling procedure. The first ensemble, 

TDNN-S, is used for predicting the missing surface variable necessary to the downscaling of 

atmospheric observations from higher-resolution surface observations. The second 

ensemble, TDNN-A, is then used together with the outputs of TDNN-S for the downscaling 

of the five atmospheric variables essential to the calculation of condensation rate. Before 

being used for the downscaling procedure, both ensembles are trained over 30 years (1971 

– 2000) and their predictions are then validated against the next 10 years (2001 – 2010). 

Overall, results of the validation suggest that TDNNs are an effective method for predicting 

tropospheric profiles of air temperature, pressure, water vapour pressure, zonal wind speed 

and vertical velocity, using only widely-available surface variables (temperature, relative 

humidity and pressure). The largest errors are found in the predictions of zonal wind speeds, 

where mean absolute error is on average 2.76 m s-1. One can hypothesize that this results 

from the erratic behaviour of winds, both in space and time. Alternatively, it is possible to 

conclude that predicting zonal wind speed from only three surface variables (temperature, 

relative humidity and pressure) is not sufficient for achieving an accurate estimate. Lowest 

mean absolute errors between observations and simulations are of 0.022 m s-1 for vertical 
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velocity. In general, predictions of the TDNNs get better as the gap between maximum and 

minimum value of the target variables gets smaller. 

 

Once validated, the TDNN ensembles are used for the scaling of atmospheric observations 

from 2.5° down to 0.5° (approximately 278 km and 56 km, respectively) for the period 1972 

– 2009; timespan differs from the training and validation periods as the first year is used for 

the calibration of the neural network’s time-delay and because the year 2010 is not 

available in the surface observations dataset. It is important to note that due to the 

constraints set by the equipment’s processing capabilities, it was necessary to divide the 

study site into eight equal parts. This limitation produced inhomogeneities between the 

divisions of the study site in the form of clearly visible lines in the resulting condensation 

rate maps (see Figure 4.2). One could overcome this by implementing an averaging 

procedure in between study site divisions or by using a more powerful computer that is able 

to handle the whole of the study site. An alternative approach would be that of having a 

“sliding window” where only one TDNN per target variable is being trained successively on 

each division of the study site. As such, the neural network will take spatial variation into 

account, not only inside each study site division, but also in between divisions. This 

approach hence reduces the user’s workload (i.e. only one neural network is trained per 

target variable as opposed to eight), and makes smooth transitions between divisions 

possible. However, it is likely that performance of the TDNN will decline due to an increase 

in area, and hence in the range of climatic conditions, to be covered by only one network; 

TDNNs specific to one study site division are likely to be more accurate. 
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5.2 Discussion 

Monthly condensation rates are calculated from the output of the downscaling procedure 

together with the equations of M&G (2010a). These rates are then mapped. Donor and 

acceptor regions are clearly visible in the maps and have on average a ratio of 42% - 58%, 

respectively. This coincides with M&G’s theory on condensation-induced dynamics with 

regards to two points: 1) there exists regions where, on average, no condensation occurs 

and others where condensation does occur, termed donor and acceptor regions, 

respectively, and 2) the ratio of the distribution of donor and acceptor region is 

approximately 50:50 (Makarieva and Gorshkov, 2010a). However, one would need to have a 

look at the global distribution of these dynamically allocated regions in order to verify the 

second statement fully. 

 

Donor and acceptor regions show seasonal variation, with a minimum condensation rate in 

May and a maximum in October. However, no significant differences are found between the 

wet and dry seasons experienced by the Amazon basin over the course of the year. This 

coincides with the findings of Myneni et al. (2007) that state that evapotranspiration over 

the Amazon basin increases slightly during the dry season due to an increase in the 

vegetation’s Leaf Area Index, which in turn would maintain condensation rates over the area 

roughly constant. The width of the regions extends from one gridbox to the whole of the 

study site (56 km and 1680 km, respectively). These properties of acceptor and donor 

regions are not mentioned in the BPT making comparison of these results with existing ones 

impossible. This further underlines the necessity for extending research in this particular 

branch of atmospheric physics. 

 



 

62 
 

Results suggest that most water vapour condensates between the surface up to an altitude 

of approximately 1250 m. Zonal winds are directed from East to West up to an altitude of 

625 m and then switch to the opposite direction. Moreover, the curves of zonal wind speed 

and vertical velocity both decrease and increase together with that of condensation rate, 

showing correlation. It remains unclear however whether the increase in average 

condensation rate calculated over the dry season for the last 9 years could be directly 

related to deforestation and, as such, act as a significant factor in the increasing frequency 

of severe floods and droughts in the Amazon. Following the BPT, an increase in 

condensation would be linked to an increase in evaporation, which does not agree with 

M&G’s view on the impacts of deforestation. This suggests that the relationship between 

condensation and evaporation is more complex. 

 

Deforestation will ultimately lead to a decrease of both evaporation and condensation over 

the deforested area but this will first experience a period of increased evaporation and 

condensation. Densely-vegetated forests keep moisture below the canopy, and as such 

“protect” water vapour from evaporation. The only way for soil moisture to evaporate back 

to the atmosphere in these conditions is through plant transpiration; vegetation thus 

regulates the amount of moisture held in the soil. When deforested, this biotic control on 

soil moisture-atmosphere exchange will cease to exist and the area with the now bare soil 

evaporates more than before. Assuming a biotic regulation of the incoming water vapour 

through condensation-induced pressure changes, increased evaporation and condensation 

will increase the land-ocean pressure gradient and lead to greater attraction of water 

vapour from the oceans and consequently further increase evaporation and condensation. 

This positive feedback will remain functioning until the forest cover is too little to attract 
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sufficient water vapour from the ocean, at which point evaporation, and subsequently 

condensation, decreases. In the case that biotic regulation of water vapour does not occur, 

extensive deforestation will still lead to a decrease in evaporation and condensation since 

the inland of the continent is greatly dependent on the process of moisture recycling. The 

difference between both cases is the degree to which evaporation and condensation 

decrease. 

  

Interestingly, this reasoning could explain the recent increase in the frequency of droughts 

and floods in the Amazon basin. Assuming that a) there exists biotic regulation of water 

vapour, b) temperature has increased because of deforestation (i.e. because of an increase 

in surface albedo from bear soil and an increase in greenhouse gasses such as water vapour 

and carbon dioxide), and c) the process is still in its first stage (i.e. increased evaporation 

and condensation), it is possible to envisage that higher temperatures and the increased 

evaporation result in higher atmospheric concentrations of water vapour due to an increase 

in the capacity for air to hold moisture. Consequently, water vapour will be kept in the 

atmosphere for longer periods, hence reducing soil moisture stores and increasing drought 

incidence. The water vapour will finally precipitate when reaching the highest altitudes of 

the troposphere, causing displaced and more intense rainfalls, which in turn may create 

floods. Following this reasoning, it is possible to conclude that deforestation will, in its first 

stage, be responsible for decreasing the frequency of rainfall but increasing its intensity, 

subsequently engendering droughts and floods. 
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5.3 Conclusions 

Results have shown the presence and delimitations of donor and acceptor regions through 

their respective condensative properties, as well as clear correlations between horizontal 

and vertical winds, and condensation. However, results also show an increase in 

condensation rates over the dry season for the last 9 years. This, according to the BPT, 

would results from an increase in evaporation, which does not strictly adhere to M&G’s 

views on the impacts of deforestation on precipitation. The findings hence support the 

existence of a biotic mechanism regulating the transport of water vapour as proposed by 

M&G. However, these outcomes also suggest a more complex relationship between 

evaporation and condensation, and hence highlight the need to further refine this novel 

theory. Other than assessing the existence of the BPT, results also provide for a refined 

insight into the interactions between vegetation and atmospheric processes such as 

evaporation and condensation, and further underline the necessity to promote research in 

this area. 

 

 

5.4 Recommendations for future research 

Although this study has shown promising results, it is important to continue the quantitative 

and impartial assessment of the BPT since many aspects of the theory remain yet to be 

evaluated. Future research should see the application of this methodology globally in order 

to identify acceptor and donor regions and determine their distribution at a global scale. 

One should aim at following the same approach but at an even higher resolution since much 

of the atmospheric process over tropical rainforest are very localized.  
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Efficiency and accuracy of artificial neural network prediction for the downscaling of 

atmospheric data should also be further improved. Research should focus on exploring 

approaches that will diminish or completely remove inhomogeneities between study site 

divisions and on comparing different neural network types and architectures. For example, 

such research could assess how a network with an architecture comprised out of eight 

outputs performs against that comprised of only one output such as those used in this 

study.  

 

Another aspect to look at is the correlation between the evaporative-condensational force, 

condensation nuclei, vegetation density and condensation rate. This could provide for 

further explanations to the complex nature of the interactions between evaporation and 

condensation. The effects of latent heat released by condensation on air temperature and 

the uplifting of air due to topography should also be taken into account in a more complex 

model. Furthermore, changes in condensation rates should not only be examined over time 

(see Figure 4.4) but also spatially. Such results could for example give us more insight on the 

dependence of the Intertropical Convergence Zone (ITCZ) to condensation-induced pressure 

changes since variations in the ITCZ can drastically affect climatic conditions in equatorial 

regions engendering droughts and/or floods. 

 

According to M&G (2010a), even reforesting areas affected by deforestation might not be 

enough to restore the fragile equilibrium developed by tropical rainforest over thousands of 

years as much of the physical properties of both vegetation and atmospheric dynamics 

remain unknown. In order to fully understand the interaction between vegetation and 
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water vapour, it remains imperative to tackle the issue of data availability and build high-

resolution global datasets of atmospheric variables. As long as our observational data 

remains uncertain, so will our model predictions. 
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Glossary 

 

Adaptive learning function: Learning where 

a system programs itself by adjusting 

weights or strengths until it produces the 

desired output. 

Artificial Neural Networks: A 

computational model based on the 

structure and functions of biological neural 

networks. 

Buoyancy: The upward force exerted upon 

an air parcel (or any object) by virtue of the 

density (mainly temperature) different 

between the parcel and that of the 

surrounding air. 

Cloud condensation nuclei: Tiny particles 

upon whose surfaces condensation of water 

vapour begins in the atmosphere. 

Convection: Motions in a fluid that result in 

the transport mixing of the fluid’s 

properties. In meteorology, convection 

usually refers to atmospheric motions that 

are predominantly vertical, such as rising air 

currents due to surface heating. The rising 

of heated surface air and the sinking of 

cooler air aloft is often called free 

convection. 

Convergence: The notion that some 

functions and sequences approach a limit 

under certain conditions; in this case, the 

conditions set to limit the training of the 

artificial neural networks. 

Data overfitting: This occurs when a 

statistical model describes random error or 

noise instead of the underlying relationship. 

A model which has been overfit will 

generally have poor predictive 

performance, as it can exaggerate minor 

fluctuations in the data. 
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Desertification: A general increase in the 

desert conditions of a region. 

Dew-point: The temperature to which air 

must be cooled (at constant pressure and 

constant water vapour content) for 

saturation to occur. 

Edge effects: Effect of the juxtaposition or 

placing side by side of contrasting 

environments on an ecosystem. 

Error backpropagation: A method of 

training in that it uses gradient information 

to modify the network weights to decrease 

the value of the error function on 

subsequent tests of the inputs. 

Evapotranspiration: Sum of evaporation 

and plant transpiration from the Earth's 

land surface to atmosphere. 

Feed-forwarding: A multi-layer perceptron 

network in which the outputs from all 

neurons go to the owing but not preceding 

layers, so there are no feedback loops. 

Global Climate Models: A mathematical 

model of the general circulation of a 

planetary atmosphere or ocean and based 

on the Navier-Stokes equations on a 

rotating sphere with thermodynamic terms 

for various energy sources (radiation, latent 

heat). 

Intertropical Convergence Zone: The 

boundary zone separating the northeast 

trade winds of the Northern Hemisphere 

from the southeast trade winds of the 

Southern Hemisphere. 

Isothermal: Of equal or constant 

temperatures. 

Leaf Area Index: The ratio of total upper 

leaf surface of vegetation divided by the 

surface area of the land on which the 

vegetation grows. 

Multi-Layer Perceptron: A network 

composed of more than one layer of 

neurons, with some or all of the outputs of 
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each layer connected to one or more of the 

inputs of another layer. 

Partial pressure: Pressure of a gas if it alone 

would occupy the volume of a gas mixture. 

Radiosonde : A balloon-borne instrument 

that measures and transmits pressure, 

temperature, and humidity to a ground-

based receiving station. 

Regional Climate Models: See Global 

Climate Model, but applied on a regional-

scale. 

Relative humidity: The ratio of the amount 

of water vapour in the air compared to the 

amount required for saturation (at a 

particular temperature and pressure). The 

ratio of the air’s actual vapour pressure to 

its saturation vapour pressure. 

Savannization: A general increase in the 

savannah conditions of a region. 

South American Low Level Jet Stream: A 

narrow stream that channels the near-

surface flow between the Tropics and mid-

latitudes east of the mountain range. It is 

related to the transport of moisture from 

the Amazon region into the fertile lands of 

southern Brazil and northern Argentina. 

Time-Delayed Neural Networks: These 

networks are similar to feed-forward 

networks, except that the input weight has 

a tap delay line associated with it. This 

allows the network to have a finite dynamic 

response to time series input data. 

Transfer function: The relationship 

between the input and the output of a 

system, subsystem, or equipment in terms 

of the transfer characteristics. 

Troposphere: The layer of the atmosphere 

extending from the earth’s surface up to 

about 10 km above the ground. 

Zonal wind: A wind that has a predominant 

east-to-west component. 
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Appendix I 

Calculation of relative humidity 

 

 

By definition, relative humidity    (%) is the amount of water inside a mixture of air relative 

to the maximum amount that mixture can hold. It is defined as the partial pressure of water 

vapour    (mbar) relative to its saturation pressure      (mbar; Tsonis, 2007): 
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, where      (mbar) is the steam-point pressure (1013.25 mbar),   (K) is air temperature 

and      (K) is steam-point temperature (373.16 K). 

 

 

Reference: Tsonis, A. A. (2007) Moist air. An Introduction to Atmospheric Thermodynamics. 

Second ed. New York, USA, Cambridge University Press.  
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Radiosonde-collected data over the Amazon rainforest are of vital importance to a wide 

variety of studies that aim at understanding the interaction of the forest’s vegetation on 

local and global climatology. However, atmospheric measurements in the Amazon basin are 

sparse due to the lack of funding allocated towards collecting such data and meeting the 

standards set by the World Meteorological Organization. We here review current 

radiosonde technologies and an alternative that aims at lowering sounding costs by 

recovering the sondes: the glidersonde. Two major issues currently hamper future 

developments and commercialisation of this technology: 1) how to have reusable 

radiosondes while keeping the market viable for the sonde manufacturers and 2) the need 

for governmental aviation authorizations for flying glidersondes that are difficult to obtain. 

We conclude this review with an alternative consideration as an incentive for cooperation in 

the development and implementation of cost-effective sounding equipment. 

 

 

One Sentence Summary:  

Possible viable alternative for conducting cost-effective daily atmospheric soundings. 

 

 

Main Text:  

 

The importance of atmospheric soundings in the Amazon 

Although the importance of the Amazon rainforest has been emphasized in previous 

research (e.g. 1, 2-4), the interaction of its vegetation on precipitation and global water 
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vapour circulation is still poorly understood (e.g. 5, 6-8). Marengo (9) attributes this large 

amount of remaining uncertainties to the “lack of basic hydrometeorological observational 

data systematically collected over time and space”. In order to study surface-atmospheric 

exchanges in the Amazon basin with a certain degree of confidence, it is imperative to have 

both ground data and the more costly upper-air observations, such as that of radiosondes 

and satellites. 

 

While accuracy and coverage of satellite imagery have improved markedly in recent years, 

radiosonde-collected data still provides us with the most detailed measurements of the 

troposphere due to their fine vertical resolution (10, 11). However, biases in data 

(temperature, relative humidity, pressure, wind direction and wind speed) are compounded 

in the tropics by relying on such sparse, historic and continued, sampling of important 

variables (12, 13). Fig. 1 shows the locations of operational sounding stations that form the 

upper-air network (GUAN) of the Global Climate Observing System (GCOS) as recorded by 

the World Meteorological Organization (WMO) in February 2011. The figure also illustrates 

the scarcity of sounding stations in the Amazon basin compared to other parts of the globe. 
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Fig. 1. Global positions of operational sounding stations (▲) as recorded by the WMO in February 2011. The 

Amazon basin is represented by the shaded area. 

 

As of 2011, only 50% of the South American GUAN stations transmitted regular reports (14). 

This lack of data is further highlighted by the GCOS goal for establishing a reference network 

for upper-air climate observations (GRUAN) as an extension to GUAN. GRUAN standards are 

more rigorous than that of GUAN and aim at addressing historic biases in the data. Of the 15 

initial GRUAN sites, none were in South America. There is a current plan for expansion, as 

the importance of monitoring the Amazon is recognized, however the budgets to support 

this research have not yet materialized.   

 

 

Why so few measurements? 

The primary factor in the lack of sounding data availability is, quite simply, cost. Here, we 

take as example the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) 
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which, being the governmental institute for meteorological and hydrological services of 

Colombia, is responsible for recording the climate at a national level (15). In 2011, the 

meteorological station of the IDEAM in Leticia, based in the southern tip of the Colombian 

Amazon, received funding for a total of 119 flights, while the recommended amount is 

about 730 flights a year (i.e. two flights a day; 16). 

 

It is important to recognize that this case study is representative of issues that are recurrent 

in developing countries of Africa and South America, where budgets allocated to soundings 

is often limited or a minute part of a bigger budget (e.g. 17, 18). This engenders the inability 

of a vast majority of developing countries to comply with the standards set by the WMO in 

their 2007 revision of the WMO Convention originally published on the 11th October 1947.  

 

 

Current radiosonde technologies 

Sensor accuracy has made improvement over the years, however the standards for long-

term climate studies require even higher accuracy and more rigorous documentation of 

instrument changes in order to reduce temporal and spatial inhomogeneity (19). Working 

towards correcting these issues is WMO’s GRUAN programme, formed to provide long-

term, high quality and accurate climate data. The 2010 WMO evaluation of radiosonde 

performance quantitatively ranked radiosonde technologies against GRUAN requirements 

(20). The top three companies closest to meeting these standards are Vaisala (Finland), 

GRAW (Germany), and Lockheed Martin Sippican (USA). 
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All three manufacturers have pricing levels that depend on the specifications of the 

radiosonde sensors. Assuming that a) the sondes are being acquired by a large agency such 

as the WMO or a national weather institute and b) a quantity corresponding to two flights a 

day per year is being ordered, the price is on average 155 USD per sonde. Here, we do not 

consider the cost of shipping, which may or may not be included in the sonde cost. For new 

stations, or stations that are changing equipment, additional charges will result from buying 

the corresponding receiving device (i.e. used in the collection of the data radio-transmitted 

by the sonde), which ranges from 12.500 USD to 80.000 USD. 

 

Considering only well-established sounding stations, and therefore discounting the costs of 

the receiving devices, lifting gas and infrastructure, each station will spend approximately 

113.000 USD per year on sondes alone; this does not include expenses for balloons, lines 

and parachutes (see Fig. 2). Costs of sondes increase by as much as 35% when quantities of 

supplies decrease. 
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Fig. 2. Set up of the GRAW sounding equipment for a flight.  

 

 

Possible alternative: glidersondes 

An alternative to lower the costs of conducting daily soundings would be to have the 

radiosonde come back and be reused. Indeed, once the balloon has been launched it is 

often impossible to get the equipment back; the sonde can drift tens of kilometres away 

(21). The issue of recovering the radiosonde becomes even more prominent in parts of the 

globe where topography and/or land-cover render the landing site difficult to access (e.g. 

the dense vegetation of the Amazon rainforest). 
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With this objective in mind, the development of a new technology was initiated in 1997 by 

the National Severe Storm Laboratory (USA): the radiosonde would glide back to a 

designated landing point. This recoverable system sees the lifting of a miniature plane (the 

“glidersonde”) using the same balloon and lifting gas method as that of a regular sounding 

flight. Once the balloon reaches its upmost altitude and pops, the plane free-falls until 

stabilizing and then glides back to a designated point using an onboard GPS and flight 

navigation computer. 

 

 

Fig. 3. The “DataBird”, glidersonde model developed by GPSBoomerang. 
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A recent model developed by GPSBoomerang (New Zealand), the “DataBird” (see Fig. 3), has 

shown promising results with the possibility of ascending to 35km and coming back within a 

100m radius of the predetermined landing site (22). Unfortunately, glidersonde devices are 

still prototypes and therefore not readily available on the commercial market. Other than 

the lack of funding, a major issue currently impeding their development are strict air space 

restrictions exemplified in the US with Federal Aviation Administration (FAA) regulations: a 

Certificate Of Authorization (COA) is imperative but difficult to obtain as a glidersondes are 

considered to be Unmanned Aircraft Systems (UAS) and hence fall in the same category as 

military drones. In general, International Civil Aviation Organization rules should be 

considered; their document on UAS use similar requirements as the US FAA guidelines to 

acquire certificates (23). 

 

 

Future developments 

To conclude this review we here underline two major issues that currently hamper the 

development and commercialisation of the glidersonde technology: 1) how to have reusable 

radiosondes while keeping the market viable for sonde manufacturers and 2) the need for 

permits that are difficult to obtain for flying glidersondes. 

 

We propose an alternative consideration to address the first issue, namely that of providing 

users with reusable equipment while maintaining manufacturer’s market share. One way to 

achieve this is to develop glidersonde systems that fit current radiosonde models and have 

the radiosondes be reusable for the number of flights needed to break even on the cost of 
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the glider, plus make an additional cost savings over the disposable radiosondes. For 

example, a package of six DataBird modules, capable of going into the stratosphere, costs 

approximately 3.000 USD. This would require each module to complete four flights with one 

reusable radiosonde to break even with current radiosonde costs and realize an additional 

23% cost savings. In this way, the total budget spent on radiosondes could remain 

consistent while the availability of data increases. Applying this to our case study, the 

IDEAM of Leticia in the year 2011 would have purchased the same amount of radiosondes, 

been able to use them for four times as many flights (with the proposed glider system), and 

hence collect quadruple the amount of atmospheric data while having their sonde provider 

maintaining their sales level. In developed countries, this increase in flights could lead to a 

greater temporal resolution of the data. 

It could also be hypothesized that such properties of reusability will attract more occasional 

users. Additionally, this addresses the issue mentioned by Douglas (18), namely the need for 

the sensors on the glider to be periodically reconditioned and replaced due to possible 

damages caused by landing and reiterative use; these will be replaced every four flights, 

assuming the glider is capable of consistent performance. Furthermore, recovering the 

sonde reduces the environmental impact caused by the non-biodegradable equipment of 

the radiosonde. 

 

In order to overcome the second issue, that of overly strict aviation regulations, it is 

imperative to broaden interagency and private industry cooperation. Although in the US the 

FAA streamlined the permit process for its government partners in March 2012 (24), private 

companies cannot obtain a COA; issuing permits such as that of the COA to meteorological 

services has been made straightforward but the current process is such as to deter private 
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companies from developing the necessary glidersonde technology. It should be clearly 

understood that the technology and acquired data sets are equally beneficial for all involved 

parties. 

 

We urge cooperation in the development of an operational glidersonde system and in the 

collection of more extensive and continuous data over areas such as the Amazon basin that 

are of vital importance to global climate. Climate models are key and powerful tools with 

which most future predictions are achieved today and we strongly believe their simulation 

and prediction performances will benefit from refined atmospheric data sets. However, as 

long as our observed data remains uncertain, so will our model predictions. 
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