A new synthesis and preliminary evaluation of some analogues of mecamylamine - a compound with anti-addiction properties.

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

David Mangan ${ }^{\text {a }}$, Neasa McNabola ${ }^{\text {a }}$, Emily H. Clark ${ }^{\text {b }}$, Isabel Bermudez ${ }^{\text {c }}$, Susan Wonnacott ${ }^{\text {b }}$ and J. Mike Southern ${ }^{\text {a }}$

Another compound that has stimulated interest in the area and is of direct relevance to the work described herein is the general nAChR antagonist mecamylamine (3). Mecamylamine (MA) was initially developed as a treatment for hypertension and was sold as Inversine ${ }^{\circledR}$ by Merck for many years until the development of β blockers which were more effective and have an improved sideeffect profile. ${ }^{9}$ More recently, interest in mecamylamine has been reinvigorated by observations that it has anti-addictive properties against not only nicotine but other drugs of abuse. ${ }^{10}$ For example, clinical trials have shown that smokers are more likely to quit and more likely to be abstinent after 12 months when assisted by MA in combination with NRT - a remarkable 40% remained abstinent after 12 months. ${ }^{11}$ MA has been shown to reduce cue-induced craving in human cocaine addicts. ${ }^{12}$ In human clinical studies MA was shown to diminish the euphoric and stimulant effects of ethanol and was also found to reduce the self-reported desire to consume ethanol in healthy male and female non-smoking social drinkers. ${ }^{13}$ The significance of this is enhanced by the fact that, in addition to the well known health consequences of excessive alcohol consumption, there is growing evidence of a direct link between alcohol intake and some cancers. ${ }^{14}$ MA has been shown to reduce self-administration (a model for addiction) of a variety of drugs of abuse such as ethanol, opiates and stimulants in animal models. ${ }^{15}$ There are also indications that varenicline may have some role to play in the treatment of cocaine addiction. ${ }^{16}$
It is currently unknown whether the general activity of MA at different nAChR subtypes is important for activity, or indeed whether fine-tuning the structure could produce a more effective compound by enhancing its activity at a specific receptor subtype; $\alpha 3 \beta 4^{15(f)}$ and $\alpha 4 \beta 2^{17}$ are currently considered prime candidates. Moreover, the generation of subtype-specific compounds can help elucidate the role of different subtypes within the CNS and offer insight into other disorders. ${ }^{18}$ Surprisingly, despite the long history of MA the influence of stereochemistry on activity was only assessed in 2001. ${ }^{19}$ Furthermore, MA seems to have effects in other disorders such as Tourette's Syndrome ${ }^{20}$ and nAChR's have been postulated to have roles in many other neuropsychiatric disorders. ${ }^{18}$

In addition, MA is an attractive lead for drug development since the pharmacokinetics are well understood, bioavailability of MA is high and the compound is known to readily cross the blood-brain barrier. ${ }^{10}$ MA has been used by millions of patients which indicates that serious side-effects are rare and are typically anti-cholinergic in nature e.g. dry mouth and constipation. Additionally, doses for antiaddictive action are considerably lower than those required for antihypertensive activity. The work described above indicates that the development of analogues merits further investigation.

The seminal SAR studies of MA have been completed by Corne, ${ }^{21}$ Stone, ${ }^{22}$ Wragg, ${ }^{23}$ Herr ${ }^{24}$ and Suchocki. ${ }^{25}$ The key points, of particular relevance to this study, are summarised in Figure 2. More recent studies by Crookes have developed some interesting dimeric and trimeric systems. ${ }^{26}$

Features necessary for activity

Alterations which decrease activity

Figure 2 - Factors associated with the activity of mecamylamine
Analysis of the current SAR data highlights two significant points; increased steric bulk (for H to Me) at positions 2 and 3 (Figure 2) improves activity, and although the bridge is important, the relationship of the amine with the 1-carbon and 2-carbon variant has not been examined. The current study started with the concept of increasing the steric bulk around the amine and also the examination of the importance of amine relative stereochemistry. Previous syntheses of MA, although concise, have relied on camphene derivatives, which meant exploring options other than methyl groups adjacent to the amine would be synthetically challenging. ${ }^{26,27}$ In order to explore these options an alternative new synthetic route would be required.

As a model study, the preparation of MA from norboranone (4) was attempted - if this methodology were successful it should allow alternative groups to be installed in the place of methyl units around the amine. Treatment of norboranone (4) with LDA at low temperature gave the expected enolate which was methylated with methyl iodide forming 5 in 84% yield. Note that the addition of the electrophile occurred from the exo-face due to the 'picket fence' effect. ${ }^{28}$ Attempts to add a second methyl group by treatment with LDA and methyl iodide led to incomplete reaction. However, the use of NaHMDS, in place of LDA, followed by treatment with methyl iodide generated the dimethylated ketone $\mathbf{6}$, and exposure of this ketone to methyl lithium formed tertiary alcohol 7. Again the 'picket-fence' effect directed the methyl lithium to the exo-face with no evidence of alternative stereoisomers by NMR spectroscopy.

[^0]The procedure for the conversion of alcohol 7 to azide 8 was based on the methodology developed by Arcus ${ }^{29}$ but required a degree of optimisation. Alcohol 7 was exposed to sodium azide in a biphasic system consisting of sulfuric acid and chloroform and in this case, the reaction was highly dependent on the concentration of sulfuric acid employed (Table 1). Employing 40\% sulfuric acid no reaction was observed, 50\% gave the desired tertiary azide 8 in 67\% yield while 75% sulfuric acid gave the rearranged product 9. Presumably, during the formation of the desired azide 8 the reaction proceeds via a $S_{N} 1$ process with the azide anion adding selectively from the exo-face. Azide $\mathbf{8}$ is relatively volatile and care must be taken when removing the solvent at reduced pressure.

Table 1: Formation of azides 8 and 9

Sulfuric Acid	Time	Product Distribution (\%)			
Conc. \% (M)	(h)	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
$75(13.8)$	3	0	0	100	
$50(9.2)$	4	0	100	0	
$40(7.4)$	24	100	0	0	

Reduction of the azide $\mathbf{8}$ also proved interesting. Initially the reduction was attempted using typical Staudinger Reaction conditions, ${ }^{30}$ with triphenylphosphine and water in THF at room temperature however, this was unsuccessful. Repeating the reaction in toluene at reflux was also failed to provide any of the desired amine. Vaultier ${ }^{31}$ has shown that, in the case of hindered azides, it can be beneficial to complete the formation of the intermediate iminophosphorane prior to the addition of water. Treatment of the azide 8 with triphenylphosphine in toluene at reflux formed a new synthetic intermediate ($\mathrm{R}^{1}=P h$, indicated by ${ }^{31} \mathrm{P}$ NMR) but the expected amine was not produced upon addition of water, instead the intermediate slowly reverted back to the starting azide 8. This indicated that the intermediate observed was not the expected iminophosphorane as diatomic nitrogen gas would be lost, irreversibly, in the process of its formation. It is known that tributylphosphine is more reactive than triphenylphosphine in the Staudinger Reaction ${ }^{32}$ and it was employed in this case. Treatment of azide 8 with tributylphosphine in THF generated a new product (presumably phophoazide 10, $\mathrm{R}^{1}=$ Bu , indicated by ${ }^{31} \mathrm{P}$ NMR) after 4 hours at room temperature. Addition of water followed by treatment with 2 M HCl in diethyl ether provided the expected amine salt 14.HCl. Formation of the HCl salt allowed simple removal of tributylphosphine oxide by washing with butanone. Treatment with aqueous NaOH gave the expected amine 14 in 58\% yield

12

13
14
Scheme 2 - Azide reduction

During the Staudinger Reaction with tributylphosphine it was noted that only upon addition of water was a gas (presumably nitrogen) evolved. It was therefore speculated that the highly congested bicyclic system in combination with the bulky phosphines formed intermediates that were unable to undergo the standard Staudinger-type mechanism and that the reaction therefore stalled at the phosphoazide intermediate 10. In the case of the tributylphosphine we suggest that the added water is able to bridge the cis-phosphoazide 12 and effect the loss of nitrogen without the requirement for a formal formation of a 4-membered ring. In the case of the triphenyl derivative, it is suspected that the intermediate is too hindered and/or electronically unreactive for water to have the same effect providing a means for the phosphoazide ($\left.\mathbf{1 0}, \mathrm{R}^{1}=\mathrm{Ph}\right)$ to revert back to the azide 8. Attempts at aza-Wittig reactions from either of the initial phosphine addition products (prior to the addition of water, usually expected to be the iminophosphorane) were unsuccessful.

Although the Staudinger Reaction was attractive from the perspective of functional group compatibility, allowing access to more elaborate analogues for future SAR work, other reduction methodologies were also explored (Scheme 3). Treatment of azide 8 with $10 \% \mathrm{Pd} / \mathrm{C}$ and hydrogen produced the amine 14 in 90% yield and treatment with lithium aluminium hydride provided the expected compound 14 in 70\% yield.

Scheme 3 - Alternative azide reduction

Reductive amination allowed the successful addition of a methyl group to 14 after problems associated with dimethylation were solved by a slightly modified procedure. The reaction of amine 14

COMMUNICATION

with paraformaldehyde in dichloromethane was monitored by proton NMR spectroscopy until complete formation of the imine had occurred at which point sodium borohydride was added followed by the dropwise addition of methanol which gave MA (3) in 72% yield (Scheme 4). It was important to add a limited quantity of methanol, dropwise, to prevent decomposition of the imine. Alternatively, deprotonation of amine 14 with butyl lithium before the addition of methyl iodide gave MA in 49% yield.

Scheme 4 - Methylation to form mecamylamine

Having prepared MA itself attention turned to the synthesis of endo-MA (17) in which the amine is positioned on the same face as the two-carbon bridge (Scheme 6). The synthetic approach involved attack of a nucleophile on the appropriate imine 16, hopefully controlled by the picket fence effect; the first task was to prepare the hindered imine. Although the synthesis of endo-MA (17) has been reported by Suchocki ${ }^{25}$ it was formed in trace quantities ($<1 \%$) that only permitted characterisation by mass spectral analysis. Rather than employ the same method of imine formation (which required bubbling methyl amine through a reaction mixture in toluene at reflux for 18 hours) we employed the methodology developed by Moss (Scheme 5). ${ }^{33}$ The reaction was performed in a sealed system, and the order of reagent addition proved critical. DBU was added to a suspension of methylamine hydrochloride and stirred until the mixture became homogeneous. Titanium tetrachloride and trimethylamine were added sequentially and the mixture heated at reflux for 20 minutes before the ketone 6 was added and heating continued for 16 hours. After work-up the hindered imine 16 was recovered in 61% yield.

Scheme 5 - Formation of a hindered imine

Treatment of the imine 16 with methyl lithium, methylmagnesium bromide or methylcerium trichloride gave none of the desired amine. However, precomplexation with borontrifluoride etherate to form a solid prior to addition of 10 equivalents of methyl lithium
in diethyl ether gave endo-MA (17) in 56% yield after work-up with concentrated ammonia (Scheme 6).

Scheme 6 - Preparation of endo-mecamylamine

Having developed a new synthetic route to MA and having prepared endo-MA (17) in sufficient quantities for analysis and biological evaluation, the versatility of the new synthetic approach was investigated further. Previous SAR work had shown that the replacement of hydrogen with methyl groups around the amine gave improved activity. It was decided to examine the effect of adding further steric bulk with the exchange of one of the methyl groups for an ethyl group. It was hoped that the "picket-fence" effect ${ }^{28}$ could be used to control the addition of nucleophiles and electrophiles to the exo-face, at least during the early stages of the synthetic sequence. Fortunately this was indeed the case and the two deprotonation/alkylation steps with the appropriate electrophiles gave ketone 18 in 68\% yield (Scheme 7). Subsequent nucleophilic attack of methyllithium gave alcohol 19 in 92% yield. All reactions occurred diastereoselectively from the exo-face, with no indication (by NMR spectroscopy) of the formation of alternative stereoisomers.

Scheme 7 - Replacing a methyl group with ethyl

The formation of azide $\mathbf{2 0}$ was achieved by treatment of alcohol 19 with sodium azide in a biphasic solvent system with sulfuric acid and chloroform (Scheme 8). Once again, use of 9.2 M (50\%) sulfuric acid facilitated the formation of the desired azide in 53% yield without the concomitant formation of the azide formed by the Wagner-Meerwein-type rearrangement. However, in this reaction a second azide was formed in 28% yield that appeared to be lacking an ethyl group and was tentatively assigned as 21.

Scheme 8 - Azide formation

Attempts to reduce the azide by catalytic hydrogenation led to decomposition however, fortunately, treatment with LiAlH_{4} in THF at 0 으 gave the expected amine 22 in 84\% yield (Scheme 9).

Scheme 9 - Azide reduction

The final step was the methylation of the amine and the twostep reductive amination methodology was employed once again (Scheme 10). The reaction of amine 22 with paraformaldehyde in dichloromethane was monitored by proton NMR spectroscopy until complete formation of the imine $\mathbf{2 3}$ had occurred at which point sodium borohydride was added followed by the dropwise addition of methanol which gave the MA derivative 24 in 59\% yield.

24 59\% (2 steps)

Scheme 10 - Formation of a mecamylamine analogue

Having prepared mecamylamine and two novel analogues all three compounds were evaluated by assessing their ability to reduce the action of agonists at two nAChR subtypes. In order to gain preliminary insight into the effects of the structural alterations the compounds were tested at fixed concentrations against the $\alpha_{4} \beta_{2}$ subtype (expressed in oocytes, $3 \mu \mathrm{M}$ vs $\mathrm{ACh} 100 \mu \mathrm{M}$) and the $\alpha_{3} \beta_{4}$ subtype (SH-SY5Y cells, $100 \mu \mathrm{M}$ vs nicotine $100 \mu \mathrm{M}$). Interestingly, endo-MA (17, entry 3 of table 2) was more active than MA (3, entry 2 of Table 2) at $\alpha_{4} \beta_{2}$ but less active than MA (3) at $\alpha_{3} \beta_{4}$. Compound 24 (entry 4 of Table 2) had a similar profile and was more active than MA (3) at $\alpha_{4} \beta_{2}$ but less active then MA (3) at $\alpha_{3} \beta_{4}$. Pleasingly, the preliminary pharmacological data indicate that manipulation of the structure will allow the enhancement of both activity and selectivity, at least in the case of the $\alpha_{4} \beta_{2}$ receptor, and work will continue to develop compounds that are more selective for the $\alpha_{3} \beta_{4}$ receptor.

Table 2 - Biological activity of the parent compound exo-mecamylamine and two new analogues

Entry	Compound	$\boldsymbol{\alpha}_{4} \boldsymbol{\beta}_{\mathbf{2}}$ response (\%)	$\boldsymbol{\alpha}_{\mathbf{3}} \boldsymbol{\beta}_{\mathbf{4}}$ response (\%)
$\mathbf{1}$	--	100	100
$\mathbf{2}$	$\mathbf{3 . H C l}$	$33 \pm 8 \%$	$6.3 \pm 1 \%$
$\mathbf{3}$	$\mathbf{1 7 . H C l}$	$18 \pm 7 \%$	$13.8 \pm 7 \%$
$\mathbf{4}$	$\mathbf{2 4 . H C l}$	$18 \pm 5 \%$	$12.0 \pm 2 \%$

Conclusions

A new route to mecamylamine and mecamylamine analogues which allowed the facile synthesis of MA itself and two analogues is described. Preliminary pharmacological evaluation of the simple MA derivatives indicates that minor structural changes e.g. methyl to ethyl have interesting effects on activity at nAChR subtypes. Of particular note is the fact that these small structural changes show enhanced selectivity and activity at the two subtypes assessed. The versatile route should allow installation of a variety of functional groups which is significant in light of the biological effect of the simple structural modifications described. Clearly more detailed pharmacology is required but the work reported herein indicates that the formation of analogues related to MA may be fruitful in the pursuit of effective treatments and/or tool compounds for addiction and other psychiatric disorders associated with nAChRs.

Notes and references

1. Substance and related addictive disorders, Diagnostic and Statistics Manual of Mental Disorders, Fifth edition, American Psychiatric Association,
http://dx.doi.org/10.1176/appi.books.9780890425596.dsm1 6
2. J. Hewig, N. Kretschmer, R. H. Trippe, H. Hecht, M. G. H. Coles, C. B. Holroyd and W. H. R. Miltner, Biol. Psychiatry, 2010, 67, 781.
3. (a) E.J. Nestler, Nat Neurosci., 2005, 8, 1445; (b) G. Di Chiara, V. Bassareo, S. Fenu, M.A. De Luca, L. Spina, C. Cadoni, E. Acquas, E. Carboni, V. Valentini and D. Lecca, Neuropharmacology, 2004, 47, 227.
4. http://www.who.int/mediacentre/factsheets/fs339/en/ updated June 2016, accessed 14-07-16.
5. K. B. Mihalak, F. I. Carroll and C.W. Luetje, Mol. Pharmacol., 2006, 70, 801.
6. K. Cahill, L.F. Stead and T. Lancaster, Nicotine receptor partial agonists for smoking cessation. Cochrane Database of Systematic Reviews 2012, Issue 4. Art. No.: CD006103. DOI: 10.1002/14651858.CD006103.pub6
7. H.R. Arias, Int. J. Biochem. Cell Biol., 2009, 41, 2098. 8.http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSaf etyInformationforPatientsandProviders/DrugSafetyInformati onforHeathcareProfessionals/ucm169986.htm
8. J.M. Young, D. R. Shytle, P.R. Sanberg and T.P. George, Clin. Ther., 2001, 23, 533.
9. I. Bacher, B. Wu, D.R. Shytle and T.P. George, Exp. Opin. Pharmacother., 2009, 10, 2709.
10. T. Lancaster, L.F. Stead, Mecamylamine (a nicotine antagonist) for smoking cessation. Cochrane Database of Systematic Reviews, 1998, Issue 2. Art. No.: CD001009. DOI: 10.1002/14651858.CD001009
11. M.S. Reid, J.D. Mickalian, K.L. Delucchi and S.P. Berger, Neuropsychopharmacol., 1999, 20, 297.
12. (a) E. M. Young, S. Mahler, H. Chi and H. de Wit, Alcohol. Clin. Exp. Res., 2005, 29, 58; (b) H. Chi and H. de Wit, Alcohol. Clin. Exp. Res., 2003, 27, 780.
13. J. Connor, Addiction, 2016 early view, DOI: 10.1111/add. 13477.
14. (a) E. Lof, P. Olausson, A. deBejczy, R. Stomberg, J.M. McIntosh, J.R. Taylor and B. Soderpalm,
Psychopharmacology, 2007, 195, 333; (b) L.M. Hendrickson, R. Zhao-Shea and A.R. Tapper, Psychopharmacology, 2009,

204, 563; (c) L. Zanetti, A. de Kerchove D'Exaerde, A. Zanardi, J.P. Changeux, M.R. Picciotto and M. Zoli, M.

Psychopharmacology, 2006, 187, 181; (d) E.D. Levin, T. Mead, A.H. Rezvani, J.E. Rose, C. Gallivan, and R. Gross, Physiol. Behav., 2000, 71, 565; (e) I.M. Maisonneuve, S.D. Glick, Pharmacol, Biochem.Behav., 2003, 75, 607; (f) S.D. Glick, I.M. Maisonneuve, B.A. Kitchen and M.W. Fleck, Eur. J. Pharmacol., 2002, 438, 99; (g) S.D. Glick, K.E. Visker, and I.M. Maisonnneuve, Psychopharmacology, 1996, 128, 426.
16. J.G. Plebani, K.G. Lynch, Q. Yu, H.M. Pettinati, C.P. O'Brien and K.M. Kampman, Drug Alcohol Depend., 2012, 121, 163.
17. U. Maskos, B.E. Molles, S. Pons, M. Besson, B.P. Guiard, J.P. Guilloux, A. Evrard, P. Cazala, A. Cormier, M. MameliEngvall, N. Dufour, I. Cloez-Tayarani, A.P. Bemelmans, J. Mallet, A.M. Gardier, V. David, P. Faure, S. Granon and J.P. Changeux, Nature, 2005, 436, 103.
18. A. A. Jensen, B. Frolund, T. Liljefors and P. KrogsgaardLarsen, J. Med. Chem., 2005, 48, 4705.
19. R. L. Papke, P. R. Sanberg, and R. D. Shytle, J. Pharmacol. Exp. Ther., 2001, 297, 646.
20. R.J. Lukas, L. Ke, M. Bencherif and C.M. Eisenhour, Drug Development Research, 1996, 38, 136.
21. N.D. Edge, S.J. Corne, G.E. Lee and W.R. Wragg, Brit. J. Pharmacology, 1960, 15, 207.
22. C.L. Stone, M.A. Torchiana, K.L. Meckelnberg, J. Stavorski, M. Sletzinger, G.A. Stein, W.V. Ruyle, D.F. Reinhold, W.A.

Gaines, H. Arnold, and K. Pfister, J. Med. Chem., 1962, 5, 665. 23. E. Lunt and W.R. Wragg, J. Chem. Soc. C., 1970, 13, 1845.
24. M.E. Herr, H.C. Murray and G.S. Fonken, J. Med. Chem., 1971, 14, 842.
25. J.A.Suchocki, L.M. Evererette, J.M. Thomas, G. Clifford and B.R. Martin, J. Med. Chem., 1991, 34, 1003.
26. Z. Zhang, M. Pivavarchyk, K. L. Subramanian, A. G.

Deaciuc, L. P. Dwoskin and P. A. Crooks, Bioorg. Med. Chem. Lett., 2010, 20, 1420.
27. G. A. Stein, M. Sletzinger, H. Arnold, W. Gaines and K. Pfister, J. Am. Chem. Soc., 1956, 78, 1514.
28. E. J. Corey, R. Hartmann and P. A. Vatakencherry, J. Am. Chem. Soc., 1962, 84, 2611.
29. C.L. Arcus and R.J. Mesley, J. Chem. Soc., 1953, 178.
30. H. Staudinger, and J. Meyer, Helv. Chim. Acta., 1919, 2, 635.
31. M. Vaultier, N. Knouzi and R. Carrié, Tetrahedron Lett., 1983, 24, 763.
32. E. Shoji, ChemInform, 2005, 36.
33. N. Moss, J. Gauthier and J. Ferland, Synlett, 1995, 142.
34. H.C. Brown, and J.H. Kawakami, J. Am. Chem. Soc. 1970,

92, 1990.
35. M. Moroni, R. Zwart, B.K. Cassels, E. Sher, and I. Bermudez, Mol. Pharm., 2006, 70, 755.
36. M. Moroni, R. Vijayan, A. Carbone, R. Zwart, P.C. Biggin and I. Bermudez, Journal of Neuroscience, 2008, 28, 6884. 37. F.A. Dajas-Bailador, A.J. Mogg and S. Wonnacott, J.

Neurochem., 2002, 81, 606.

Experimental procedure

General Experimental section

Melting points were determined using a standard melting point apparatus and are uncorrected. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FT-IR spectrometer equipped with a universal ATR sampling accessory. Proton nuclear magnetic resonance (NMR) spectra were recorded on: Bruker Avance III 400 MHz , Bruker DPX400 400 MHz and Bruker Avance II 600 MHz spectrometers (${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400.23 $\mathrm{MHz}, 400.13 \mathrm{MHz}$ and 600.13 MHz respectively). Chemical shifts are reported in ppm relative to tetramethylsilane and coupling constants (J) are quoted in Hertz. Carbon NMR spectra were recorded on the previously mentioned instruments $(100.64 \mathrm{MHz}, 100.61 \mathrm{MHz}$ \& 150.9 MHz , respectively) with total proton decoupling. HSQC, HMBC, TOCSY and nOe NMR experiments were used to aid assignment of NMR peaks when required. A Waters micromass LCT-tof mass spectrometer was used in ES positive and ES negative modes for electrospray mass spectrometry. Electron impact mass spectra were determined on a Quatro-II mass spectrometer in the El mode. Mass spectra were recorded in CSCB Trinity College Dublin, CSCB University College Dublin. Flash chromatography was performed using Merk Kiesegel 60 (art. 9385). Merck precoated Kiesegel foils $60 F_{254}$ were used for thin-layer chromatography and slides were visualised by UV irradiation, KMnO_{4}, or anisaldehyde staining. Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and triethylamine were distilled from calcium hydride.

3-exo-Methylbicyclo[2.2.1]heptan-2-one (5)

3 A solution of freshly distilled diisopropylamine ($1.70 \mathrm{~mL}, 1.72$ $\mathrm{g}, 11.84 \mathrm{mmol}$) in anhydrous THF (11 mL) was cooled to -78 ${ }^{\circ} \mathrm{C}$, a solution of 2.5 M n-butyllithium in hexanes $(4.60 \mathrm{~mL}$, 11.36 mmol) was added. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and a solution of bicyclo[2.2.1]heptan-2-one $(1.00 \mathrm{~g}, 9.08 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{~mL})$ was then added dropwise. After stirring for 2 hours at $0{ }^{\circ} \mathrm{C}$, iodomethane $(1.70 \mathrm{~mL}, 3.87 \mathrm{~g}, 27.30 \mathrm{mmol})$ was added dropwise. After stirring for 2 hours at room temperature, a solution of 1 M $\mathrm{HCl}(8 \mathrm{~mL})$ was added. The product was extracted using diethyl ether ($2 \times 10 \mathrm{~mL}$), washed with brine (10 mL) and dried over MgSO_{4}. The solvent was evaporated at reduced pressure to yield the title compound as a yellow oil. (0.95 g , 84\%)
4
IR $u_{\max }\left(\mathrm{cm}^{-1}\right): 2956,2874,1736,1459,1082,937,850$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 1.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, H8), 1.43-1.56 (m, 3H, H5a, H6a, H7a), 1.77-1.91 (m, 4H, H5b, H6b, H3, H7b), 2.30-2.35 (m, 1H, H4), 2.53-2.58 (m, 1H, H1). $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 27.5\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 34.0\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 41.0(\mathrm{CH}, \mathrm{C} 3), 47.5$ (CH, C4), 49.2 (CH, C1), 220.7 ($\mathrm{q}, \mathrm{C} 2$).
8 HRMS: $(m / z-\mathrm{Cl})$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$125.0966, found 125.0974.

9
3,3-Dimethylbicyclo[2.2.1]heptan-2-one (6)
10

11
General procedure A
A solution of 3-exo-methylbicyclo[2.2.1]heptan-2-one (1.24 $\mathrm{g}, 10 \mathrm{mmol}$) in anhydrous THF (12 mL) was added to a cooled (-78 ${ }^{\circ}$ C) 1 M solution of sodium bis(trimethylsilyl)amide in THF ($15.00 \mathrm{~mL}, 15.00 \mathrm{mmol}$) and the reaction mixture allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring for 2 hours at $0{ }^{\circ} \mathrm{C}$, iodomethane ($1.93 \mathrm{~mL}, 4.40 \mathrm{~g}, 30.98 \mathrm{mmol}$) was added dropwise and the reaction mixture allowed to warm to room temperature. After stirring for 2 hours at room temperature, a solution of $1 \mathrm{M} \mathrm{HCl}(8 \mathrm{~mL})$ was added. The product was extracted using diethylether ($2 \times 10 \mathrm{~mL}$), washed with brine $(10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4}. The solvent was evaporated at reduced pressure to provide a pale yellow oil which was purified by flash chromatography on silica gel eluting with 97:3 hexane:ethylacetate to yield the title compound as a pale yellow oil. (1.15g, 83\%)
14
15 IR $u_{\max }\left(\mathrm{cm}^{-1}\right): 2967,2874,1739,1464,1290,1153,949,748$.
$16{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 1.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 1.08(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H} 8), 1.43-1.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6 \mathrm{a}, \mathrm{H} 7 \mathrm{a}), 1.58-1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{a})$, 1.76-1.93 (m, 2H, H5b, H6b), 1.97-2.03 (m, 1H, H7b), 2.30$2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.53-2.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1)$.
$\left.\left(\mathrm{CH}_{3}, \mathrm{C}\right), \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$. 8 (ppm) $21.5\left(\mathrm{CH}_{3}, \mathrm{CO}\right), 23.26$ $\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 23.31\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 24.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 35.1\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 46.2$ (CH, C4), 47.2 ($q, \mathrm{C} 3$), 50.2 (CH, C1), 223.3 (q, C2).
18 HRMS: $(m / z-E I)$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}(\mathrm{M})^{+}$138.1045, found 138.1045.

19
2-exo-,3,3-Trimethylbicyclo[2.2.1]heptan-2-ol (7)
20

21
General procedure B
23 A solution of 3,3-dimethylbicyclo[2.2.1]heptan-2-one (0.897 $\mathrm{g}, 6.50 \mathrm{mmol})$ in anhydrous THF (20 mL) was added dropwise to a cooled ($-78 \varrho^{\circ}$ C) solution of methyllithium (1.6 M in diethylether, $8.13 \mathrm{~mL}, 13.00 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and after 3 hours, 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The product was extracted using diethylether ($2 \times 20 \mathrm{~mL}$), washed with brine (20 mL) and the combined organic extracts dried over MgSO_{4}. The solvent was evaporated at reduced pressure to yield a pale yellow oil which was purified by flash
chromatography on silica gel eluting with 98:2 hexane:ethyl acetate to give the title compound as a white solid 0.89 g , 89%). M.p. $118-120^{\circ} \mathrm{C}$ (lit., ${ }^{34} 113-115^{\circ} \mathrm{C}$)
$\left.\mathrm{CH}_{3}, \mathrm{C}\right), 24.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 26.3\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 27.0\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 34.6$
$\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 42.0$ (q, C3), 49.7 (CH, C4), 50.9 (CH, C1), 78.8
($\mathrm{q}, \mathrm{C} 2$).

28 HRMS: $(\mathrm{m} / \mathrm{z}-\mathrm{EI})$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{M})^{+}$154.1358, found 154.1353.

2-Azido-2-endo-,3,3,-trimethyl-bicyclo[2.2.1]heptane (8)
30

31
32
33 General Procedure C
34
A solution of HN_{3} was prepared by carefully adding a solution of 50% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ to $\mathrm{NaN}_{3}(2.00 \mathrm{~g}, 30.77 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. To this was added 2,3,3-trimethylbicyclo[2.2.1]heptan-2-ol ($1.00 \mathrm{~g}, 6.49 \mathrm{mmol}$). After stirring for 4 hours at room temperature, ice-cold water (30 mL) was added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 30 mL). The combined organic extracts were washed with 5% NaHCO_{3} solution (30 mL), dried over MgSO_{4}, and evaporated at reduced pressure to give a yellow oil which was purified by flash chromatography on silica gel using 100% hexane to yield the title compound as pale yellow oil. ($0.78 \mathrm{~g}, 67 \%$ yield)
35
36 IR $u_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2934,2876,2083,1454,1253,1071,801$
$0.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 1.06$ (s, $3 \mathrm{H}, \mathrm{H} 8), 1.12-1.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{a}), 1.25-1.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 10, \mathrm{H} 5 \mathrm{a})$, 1.41-1.51 (m, 2H, H6), 1.55-1.63 (m, 1H, H5b), 1.75-1.80 (m, 1H, H4), 1.99-2.05 (m, 1H, H7b), 2.11-2.15(m, 1H, H1).
38 $17.3\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 23.1$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 23.5\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 23.7\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 26.8\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 34.8$ $\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 43.9(\mathrm{q}, \mathrm{C} 3), 48.8(\mathrm{CH}, \mathrm{C} 1), 49.8(\mathrm{CH}, \mathrm{C} 4), 72.6$ (q , C2).
39 HRMS: $(\mathrm{m} / \mathrm{z}-\mathrm{ES})$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right)^{+}$152.1439, found 152.1443.
40
2-endo-,3,3-Trimethyl-bicyclo[2.2.1]heptan-2-amine (14)
41

42
43
44 Reduction using lithium aluminium hydride:

45 General procedure D

46 To a solution of 2-azido-2-endo-,3,3trimethylbicyclo[2.2.1]heptane ($179 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous THF (10 mL) under an argon atmosphere cooled to $0{ }^{\circ} \mathrm{C}$, was added a solution of lithium aluminium hydride

COMMUNICATION

Journal Name
(2 M in THF, $400 \mu \mathrm{~L}, 0.80 \mathrm{mmol}$) dropwise. The reaction mixture was allowed to warm to room temperature over 2 hours. After this time, TLC analysis showed that no starting material remained. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ was added slowly. After stirring for 30 minutes at room temperature, the product was extracted using diethyl ether ($2 \times 10 \mathrm{~mL}$), washed with brine (10 mL), the combined organic extracts dried over MgSO_{4} and concentrated to give a clear viscous oil. The crude oil was further purified by flash chromatography on silica gel eluting with 50:50 hexane:ethyl acetate to provide the title compound ($107 \mathrm{mg}, 70 \%$) M.p. $110^{\circ} \mathrm{C}-112^{\circ} \mathrm{C}$ (Sublimes)

48 Reduction via Staudinger protocol:
49
50 To a solution of 2-azido-2-endo-,3,3trimethylbicyclo[2.2.1]heptane (179mg, 1 mmol) in anhydrous THF (10 mL) under an argon atmosphere, tributylphosphine ($375 \mu \mathrm{~L}, 304 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added. The reaction mixture was stirred for 4 hours at room temperature. $\mathrm{H}_{2} \mathrm{O}(180 \mu \mathrm{~L}, 10 \mathrm{mmol})$ was added and effervescence was observed. The reaction mixture was stirred for a further 16 hours at room temperature. The organic solvent was evaporated to yield a pale yellow oil. This oil was redissolved in DCM (20 mL) and dried over MgSO_{4}. A 2 M solution of hydrogen chloride in diethyl ether ($1 \mathrm{~mL}, 2 \mathrm{mmol}$) was added to form the hydrochloride salt of the amine that was triturated to give a pale yellow oil that was purified by flash chromatography on silica gel using a eluent gradient from 100\% ethyl acetate to 50:50 ethyl acetate:methanol. After removing the solvent under vacuum, the amine was extracted from 1 M NaOH (15 mL) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 15 \mathrm{~mL}$), dried over MgSO_{4}, filtered and concentrated to yield the title compound ($88 \mathrm{mg}, 58 \%$) M.p. $110{ }^{\circ} \mathrm{C}-112{ }^{\circ} \mathrm{C}$ (Sublimes)
51
52 Reduction by hydrogenation:
53
54 To a solution of 2-azido-2-endo-3,3-trimethylbicyclo[2.2.1]heptane ($0.30 \mathrm{~g}, 1.72 \mathrm{mmol}$), in methanol (20 mL) palladium on charcoal ($0.03 \mathrm{~g}, 10 \% \mathrm{w} / \mathrm{w}$) was added. The reaction vessel was evacuated and filled with hydrogen. The reaction mixture was stirred vigorously under a blanket of hydrogen at atmospheric pressure overnight. The reaction mixture was filtered through celite, dried over magnesium sulfate and filtered before the volatiles were removed at reduced pressure. The free amine was isolated by the addition of a 1 M solution of NaOH and extraction with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were dried over magnesium sulfate and filtered before the volatiles were removed at reduced pressure to yield the title compound as a white solid ($0.24 \mathrm{~g}, 1.56 \mathrm{mmol}, 90 \%$). M.p. $110{ }^{\circ} \mathrm{C}-112{ }^{\circ} \mathrm{C}$ (Sublimes).

55 IR $u_{\max }\left(\mathrm{cm}^{-1}\right): 3387,2953,2870,1464,1386,1258,1127$, 806, 743.
$56{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 1.00$ (3H, s, H9), 1.07-1.13 (4H, m, H10, H7a), 1.23-1.33 (1H, m, H5a), 1.33-1.43 (1H, m, H6a), 1.50-1.66 (2H, m, H5b, H6b), 1.71-1.76 (1H, m, H1), 1.80-1.85 (1H, m, H4), 1.91-1.97 (1H, m, H7b).
$57{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 22.8(\mathrm{C} 10), 23.0(\mathrm{C} 6)$, 23.1 (C8), 23.6 (C5), 25.9 (C9), 34.0 (C7), 42.5 ($q, C 3$), 49.9 (C1), 52.1 (C4), 59.5 (q, C2).
58 HRMS: $(m / z-E I)$ Calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}(M)+153.1517$, found 153.1510 .
59

2-endo-3,3-Trimethyl- N -methylenebicyclo[2.2.1]heptan-2amine (15)
60

61

62

General Procedure E

To a solution of 2-endo-,3,3-trimethyl-bicyclo[2.2.1]heptan-2-amine ($1.00 \mathrm{~g}, 6.54 \mathrm{mmol}$) in anhydrous DCM (20 mL), under an argon atmosphere, was added paraformaldehyde $(1.18 \mathrm{~g}, 39.25 \mathrm{mmol})$ and $4 \AA$ molecular sieve pellets (1 g). The reaction mixture was heated at reflux under an argon atmosphere until NMR indicated complete formation of the imine (ca. 12 h). After this time, the molecular sieves and any unreacted paraformaldehyde were removed by filtration. The residue was washed with DCM (40 mL). The washings were combined and the solvent evaporated at reduced pressure to yield the title compound as a clear oil 0.98 g , 91\%) that was used in the next step without further purification.
63
$I R U_{\max }\left(\mathrm{cm}^{-1}\right): \quad 2934,2867,1647,1460,1095,937,782$, 1386, 1290, 1075, 971, 878
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 0.94(\mathrm{~s}$, 3H, H8), 1.06 (s, 3H, H10), 1.09-1.13 (m, 1H, H7a), 1.32-1.40 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{a}$), 1.42-1.50 (m, 1H, H6a), 1.53-1.63 (m, 1H, H6b), 1.65-1.74 (m, 1H, H5b), 1.77-1.82 (m, 1H, H4), 2.02-2.12 (m, 2H, H1, H7b), 7.32-7.45 (m, 2H, H11).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 18.3\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 23.1$ $\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 23.3\left(\mathrm{CH}_{2}, \mathrm{C} 6\right) 23.57\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 23.62\left(\mathrm{CH}_{2}, \mathrm{C} 5\right)$, $27.6\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 33.9\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 43.2$ (q, C3), $48.7(\mathrm{CH}, \mathrm{C} 4), 49.7$ $(\mathrm{CH}, \mathrm{C} 1), 70.1(\mathrm{q}, \mathrm{C} 2), 146.5\left(\mathrm{CH}_{2}, \mathrm{C} 11\right)$.

N,2,3,3-tetramethylbicyclo[2.2.1]heptan-2-amine (3)

66

67

68

General Procedure E

2-endo-3,3-trimethyl- N-methylenebicyclo[2.2.1]heptan-2-
amine ($1.00 \mathrm{~g}, 6.06 \mathrm{mmol}$) was added to $\mathrm{NaBH}_{4}(345 \mathrm{mg}$, 9.09 mmol) in anhydrous DCM (20 mL), under an argon atmosphere, at $-78{ }^{\circ}$ C. Anhydrous methanol $(0.97 \mathrm{~mL}, 30.6$ mmol) was added dropwise and the reaction mixture allowed to warm to room temperature. After 1 hour, water $(20 \mathrm{~mL})$ was added and the product was extracted using DCM ($2 \times 20 \mathrm{~mL}$). The organic extracts were combined and dried over MgSO_{4}. The solvent was removed under reduced pressure to yield the title compound as a clear oil (0.82 g , 81%). The product was dissolved in anhydrous diethyl ether $(8 \mathrm{~mL})$ and a solution of hydrogen chloride (2 M in diethyl ether, $4.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) was added, the resultant solid was isolated by filtration and dried under vacuum to yield the expected hydrochloride salt compound as a white solid in quantitative yield. M.p. $239{ }^{\circ} \mathrm{O}-241$ 으 (decomposes), litt ${ }^{22}$ $245{ }^{\circ} \mathrm{C}-246^{\circ} \mathrm{C}$.

Alkylation via quantitative deprotonation and subsequent alkylation:

A solution of n-butyllithium (2.5 M in hexanes, $222 \mu \mathrm{~L}, 0.56$ mmol) in anhydrous THF (2 mL) was prepared and cooled to $0{ }^{\circ}$ C. To this was added a solution of 2 -endo-,3,3-trimethyl-bicyclo[2.2.1]heptan-2-amine ($0.081 \mathrm{~g}, 0.53 \mathrm{mmol}$) in anhydrous THF (1 mL) dropwise. The reaction mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$ before freshly distilled iodomethane ($34 \mu \mathrm{~L}$, 0.57 mmol) was added dropwise and the reaction mixture allowed to warm to room temperature over 30 minutes. Water (10 mL) was added and the product was extracted with DCM ($2 \times 20 \mathrm{~mL}$). The organic extracts were combined and dried over MgSO_{4}. The solvent was evaporated at reduced pressure to yield the title compound as a clear oil ($0.44 \mathrm{~g}, 49 \%$).

N,2-endo-,3,3-Tetramethylbicyclo[2.2.1]heptan-2-amine (3)

IR $u_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: 2930, 2830, 1450, 1410, 1255, 1110
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 1.01-$ 1.05 (m, 4H, H8, H7a), 1.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 10$), 1.23-1.32 (m, 1H, H5a), 1.33-1.47 (m, 2H, H6), 1.52-1.65 (m, 1H, H5b), 1.65$1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{~b})$, 2.17-2.22 (m, 1H, H4), $2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 11)$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 17.5\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 22.9$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 23.1\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 23.7\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 25.1\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 29.7$ $\left(\mathrm{CH}_{3}, \mathrm{C} 11\right)$), $33.9\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 43.4(\mathrm{q}, \mathrm{C} 3), 44.5(\mathrm{CH}, \mathrm{C} 4), 50.0$ (CH, C1), 63.3 ($\mathrm{q}, \mathrm{C} 2$).
HRMS: ($m / z-$ ES $)$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} 168.1747$, found 168.1752.

N,2,3,3-tetramethylbicyclo[2.2.1]heptan-2-aminium chloride (3. HCl)

$\mathrm{IR}_{\mathrm{u}_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2933,1594,1462,1387,1112,1071 . ~}^{\text {. }}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9)$, 1.19$1.25(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{a}), 1.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 8), 1.30-1.37$ (m, 1H, H5a), 1.38-1.50 (m, 5H, H10, H6), 1.51-1.61 (m, 1H, H5b), 1.82-1.85 (m, 1H, H4), 2.34-2.43 (m, 2H, H1, H7b), 2.59-2.69 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H} 11$), 8.40 (bs, $1 \mathrm{H}, \mathrm{H} 12$), 9.05 (bs, 1H, H12).
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 16.1\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 22.9$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 23.3\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 23.4\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 26.2\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 28.9$ $\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 44.6(\mathrm{q}, \mathrm{C} 3), 44.9(\mathrm{CH}, \mathrm{C} 4), 50.5$ ($\mathrm{CH}, \mathrm{C} 1$), 70.1 ($\mathrm{q}, \mathrm{C} 2$).
HRMS: (m / z - ES) calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N} \mathrm{M}^{+}$168.1747, found 168.1741.

70
N -(3,3-Dimethylbicyclo[2.2.1]heptan-2-ylidene) methanamine (16).
71

Methylamine hydrochloride ($640 \mathrm{mg}, 9.48 \mathrm{mmol}$) was ground into a fine powder and heated to $100{ }^{\circ} \mathrm{C}$ under high vacuum to remove all traces of water. A reflux condenser was fitted to the flask and the system flushed with argon and a thick septum added. 1,8-Diazabicyclo[5.4.0]undec-7-ene $(19.24 \mathrm{mmol}, 1.406 \mathrm{~mL}, 1.434 \mathrm{~g})$ was added and the reaction mixture stirred for 5 minutes. Triethylamine ($4.545 \mathrm{~mL}, 3.30$ $\mathrm{g}, 32.61 \mathrm{mmol}$) was added. Titanium tetrachloride solution (1 M in DCM, $3.60 \mathrm{~mL}, 3.60 \mathrm{mmol}$) was added and the reaction was stirred for 20 minutes at 40 oC. 3,3dimethylbicyclo[2.2.1] heptan-2-one ($1.00 \mathrm{~g}, 7.25 \mathrm{mmol}$) was added slowly and the reaction mixture turned from bright red to dark brown. After stirring at $40{ }^{\circ} \mathrm{C}$ for 16 hours, the reaction mixture was poured into diethyl ether (200 mL) and filtered thorough celite to remove triethylamine hydrochloride. The organic fraction was dried over MgSO_{4} and evaporated at reduced pressure to yield the title compound as a clear oil ($663 \mathrm{mg}, 61 \%$) which was employed in the next step without further purification.

IR $u_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2965,2869,1686,1463,1379,1105,1066$.
${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 400 \mathrm{MHz}$): $\delta(\mathrm{ppm}) \quad 1.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 1.09(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H} 8$), 1.23-1.33 (m, 1H, H6a), 1.41-1.46 (m, 1H, H7a), 1.531.63 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 5 \mathrm{a}$), 1.74-1.88 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H} 5 \mathrm{~b}, \mathrm{H} 6 \mathrm{~b}, \mathrm{H} 7 \mathrm{~b}$), 2.08$2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 3.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 10), 3.19-3.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1)$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 22.6\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 22.9$ $\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 24.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 24.7\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 35.4\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 38.3$ $\left(\mathrm{CH}_{3}, \mathrm{Cl}\right)$), 40.1 (CH, C1), 44.3 ($\mathrm{q}, \mathrm{C} 3$), 46.8 (CH, C4), 189.8 (q , C2).
HRMS: ($\mathrm{m} / \mathrm{z}-\mathrm{ES}$) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$152.1439, found 152.1444.

N,2,3,3-tetramethylbicyclo[2.2.1]heptan-2-aminium

 chloride (17.HCI).76

77
78
N -(3,3-Dimethylbicyclo[2.2.1]heptan-2-ylidene)
methanamine ($250 \mathrm{mg}, 1.66 \mathrm{mmol}$) was placed in a RBF with a stirring bar in the absence of any solvent under an argon atmosphere. To this was added boron trifluoride diethyl etherate ($316 \mu \mathrm{~L}, 354 \mathrm{mg}, 2.49 \mathrm{mmol}$) dropwise and a crystalline solid formed. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and methyllithium solution (1.6 M in diethyl ether, $10.00 \mathrm{~mL}, 16.00 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 1 hour. Ammonium hydroxide solution (30\% in water, 10 mL was added and the product extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$), washed with brine (10 mL) and the combined organic extracts dried over MgSO_{4}. The volatiles were removed at reduced pressure to yield the desired amine as a viscous oil. This product was redissolved in anhydrous diethyl ether (2 mL) and a solution of hydrogen chloride (2 M in diethyl ether, $1.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added. The hydrochloride salt was isolated by filtration and dried under vacuum to yield the title compound as a white solid ($191 \mathrm{mg}, 56 \%$). M.p. $140{ }^{\circ} \mathrm{C}-145{ }^{\circ} \mathrm{C}$ (decomposes).
79
$I R u_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3358,2965,1457,1381,1341,1081,912$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{d}_{6}\right.$-DMSO, 400 MHz$): \delta(\mathrm{ppm}) \quad 1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H})$), 1.11-1.23 (m, 4H, H7a, H9), 1.24 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 10$), 1.30-1.47 (m,

COMMUNICATION

2H, H5a, H6a), 1.50-1.68 (m, 2H, H5b, H6b), 1.73-1.77 (m, 1H, H4), 1.82-1.89 (m, 1H, H7b), 2.14-2.18 (m, 1H, H1), 2.47 ($\mathrm{t}, J=5.34 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 11$), 7.91 (br s, $1 \mathrm{H}, \mathrm{H} 12 \mathrm{a}$), 9.25 (br s, 1 H , H12b).
${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO, 100 MHz$): \delta(\mathrm{ppm}) \quad 19.1 \quad\left(\mathrm{CH}_{3}, \mathrm{C} 10\right)$, $21.8\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 21.8\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 23.4\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 27.5\left(\mathrm{CH}_{3}, \mathrm{C} 8\right)$, $28.9\left(\mathrm{CH}_{3}, \mathrm{C} 11\right)$, $34.7\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 42.9(\mathrm{q}, \mathrm{C} 3), 46.4(\mathrm{CH}, \mathrm{C} 1)$, 49.7 (CH, C4), 68.4 (q, C2).

HRMS: (m / z - ES) calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}\left(\mathrm{M}^{+}\right.$) 168.1752, found 168.1751.

80
3-exo-Ethyl,3-methylbicyclo[2.2.1]heptan-2-one (18)
81

82
83
Prepared as per general Procedure A using 3-exo-methylbicyclo[2.2.1]heptan-2-one ($1.76 \mathrm{~g}, 14.20 \mathrm{mmol}$), 1 M sodium bis(trimethylsilyl)amide in THF ($21.3 \mathrm{~mL}, 21.3 \mathrm{mmol}$), THF 25 mL and iodoethane ($3.41 \mathrm{~mL}, 6.65 \mathrm{~g}, 42.62 \mathrm{mmol}$) to yield the title compound as a clear oil. (1.75 g, 81\%).
84
IR umax (cm^{-1}): 2960, 2876, 1739, 1460, 1083, 938, 850.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$,
H9), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 10$), 1.33-1.53 (m, 4H, H6a, H7a, H8), 1.561.66 (m, 1H, H5a), 1.68-1.77 (m, 1H, H5b), 1.79-1.90 (m, 1H, H6b), 1.93-2.01 (m, 1H, H7b), 2.36 (br s, 1H, H4), 2.52-2.57 (m, 1H, H1).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 8.4 \quad\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), \quad 17.9$ $\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 23.2\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 25.2\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 34.8\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 42.8$ (CH, C4), 50.1 ($q, \mathrm{C} 3), 50.2(\mathrm{CH}, \mathrm{C} 1), 223.3(\mathrm{q}, \mathrm{C} 2)$.
HRMS: (m / z - ES) calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}\left(\mathrm{M}^{+}\right)$153.1279, found 153.1279.

85
3-exo-Ethyl-2-exo-,3-dimethylbicyclo[2.2.1]heptan-2-ol (19) 86

87
88
Prepared as per general procedure B using 3-exo-ethyl,3-methylbicyclo[2.2.1]heptan-2-one ($4.25 \mathrm{~g}, 27.92 \mathrm{mmol}$), methyllithium (1.6 M in diethylether, $34.9 \mathrm{~mL}, 55.84 \mathrm{mmol}$) and THF (80 mL) to yield the title compound as a clear oil. ($4.32 \mathrm{~g}, 92 \%$).
89
IR umax (cm-1): 3455, 2953, 2875, 1454, 1370, 1292, 1199, 1148, 1003, 899, 876
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.86(\mathrm{t}, \mathrm{J}=7.50 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H} 9), 0.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 10), 1.11-1.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{a}), 1.25(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H} 11), 1.26-1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5 \mathrm{a}, \mathrm{H} 6 \mathrm{a}), 1.38(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, H8), 1.60-1.69 (m, 2H, H7b, H6b), 1.81-1.90 (m, 1H, H5b), 1.94-1.98 (m, 1H, H4), 2.02-2.06 (m, 1H, H1).
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 9.7\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 17.0\left(\mathrm{CH}_{3}\right.$, C10), $20.6\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 23.7\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 25.3\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 29.5$ $\left(\mathrm{CH}_{2}, \mathrm{C} 8\right), 34.1\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 43.7(\mathrm{CH}, \mathrm{C} 4), 44.4(\mathrm{q}, \mathrm{C} 3), 50.7(\mathrm{CH}$, $\mathrm{C} 1), 79.2$ ($\mathrm{q}, \mathrm{C} 2$).

HRMS: $(m / z-\mathrm{Cl})$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 169.1592$, found 169.1592.

90
2-Azido-3-exo-ethyl-2-endo-,3-dimethylbicyclo[2.2.1] heptane (20)

Prepared as per general procedure C using 3-exo-ethyl-2-exo-,3-dimethylbicyclo[2.2.1]heptan-2-ol ($500 \mathrm{mg}, 2.98$ $\mathrm{mmol}), 50 \% \mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL}), \mathrm{NaN}_{3}(2.40 \mathrm{~g}, 36.9 \mathrm{mmol})$ and $\mathrm{CHCl} 3(50 \mathrm{~mL})$ with a reaction time of 8 hours to yield 2-azido-3-exo-ethyl-2,3-dimethylbicyclo[2.2.1]heptane as a clear oil ($304 \mathrm{mg}, 53 \%$) and a related azide tentatively assigned as 2-azido-2-endo-,3-dimethylbicyclo[2.2.1]heptane as a clear oil ($140 \mathrm{mg}, 28 \%$).
94
2-azido-3-exo-ethyl-2-endo-,3-dimethylbicyclo[2.2.1]heptane (20):

95
IR umax (cm^{-1}): 2917, 2849, 2087, 1463, 1378, 1131.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 10), 0.88$
($\mathrm{t}, \mathrm{J}=7.38 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9$), 1.11-1.14 (m, 1H, H7a), 1.28-1.35 (m, 4H, H5a, H11), 1.39-1.60 (m, 5H, H8, H6, H5b), 1.94-1.97 (m, $1 \mathrm{H}, \mathrm{H} 4), 1.98-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{~b}), 2.15-2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm}) \quad 10.1 \quad\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 17.7$ $\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 19.3\left(\mathrm{CH}_{3}, \mathrm{C} 10\right), 23.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right) 24.2\left(\mathrm{CH}_{2}, \mathrm{C} 5\right)$, $30.7\left(\mathrm{CH}_{2}, \mathrm{C} 8\right), 34.9\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 46.1(\mathrm{CH}, \mathrm{C} 4), 46.5(\mathrm{q}, \mathrm{C} 3), 48.7$ ($\mathrm{CH}, \mathrm{C} 1$), 73.7 ($\mathrm{q}, \mathrm{C} 2$).
HRMS: $(m / z-E S)$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right)^{+}$166.1596, found 166.1596.

2-Azido-2-endo-,3-dimethylbicyclo[2.2.1]heptane (21):
96

97
98
$I R U_{\max }\left(\mathrm{cm}^{-1}\right): 2965,2879,2082,1458,1261,1111,1079$, 741.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 0.92(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 3 \mathrm{H}$, H8), 1.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 9$), 1.26-1.48 (m, 5H, H7a, H5, H6), 1.77$1.83(\mathrm{~m}, 1 \mathrm{H} H 7 b), 1.91-2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 2.11-2.17(\mathrm{~m}, 2 \mathrm{H}$, H4, H1).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta(\mathrm{ppm}) \quad 12.13 \quad\left(\mathrm{CH}_{3}, \mathrm{C} 8\right), 17.6$ $\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 20.1\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 24.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 37.2\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 42.7$
(CH, C4), 44.6 (CH, C3), $48.0(\mathrm{CH}, \mathrm{C} 1), 69.6$ ($\mathrm{q}, \mathrm{C} 2$).
3-exo-Ethyl-2-endo-,3-dimethylbicyclo[2.2.1]heptan-2amine (22)

Biological testing

Xenopus oocyte expression and electrophysiological recordings

107
Stage V and VI Xenopus oocytes were prepared as previously described. ${ }^{35,36}$ Wild-type $\alpha 4$ or $\beta 2$ subunit cDNAs, ligated into the pCl (Promega) expression vector, were dissolved in distilled water at a concentration of $1 \mu \mathrm{~g} / \mu \mathrm{L}$ (spectrophotometric and agarose gel electrophoresis determinations). Mixtures of wild-type $\alpha 4$ and $\beta 2$ cDNA at 1:1 ratios were injected into the nuclei of oocytes in a volume of $18.4 \mathrm{~nL} /$ oocyte, using a Nanoject Automatic Oocyte Injector (Drummond, Broomall, PA, U.S.A.). The total amount of cDNA injected per oocyte was kept constant at 2 ng . After injection oocytes were incubated at $18{ }^{\circ} \mathrm{C}$ for $2-5$ days in a modified Barth's solution containing $88 \mathrm{mM} \mathrm{NaCl}, 1$ $\mathrm{mM} \mathrm{KCl}, 2.4 \mathrm{mM} \mathrm{NaHCO} 3,0.3 \mathrm{mM} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, 0.41 \mathrm{mM} \mathrm{CaCl} 2$, $0.82 \mathrm{mM} \mathrm{MgSO}{ }_{4}, 15 \mathrm{mM}$ Hepes and $5 \mathrm{mg} / \mathrm{L}$ neomycin (pH 7.6) Recordings were performed $3-5$ days post-injection.

108 Oocytes were placed in a 0.1 mL recording chamber and perfused with modified Ringer solution (in $\mathrm{mM}: \mathrm{NaCl} 150$, KCl 2.8 , Hepes $10, \mathrm{BaCl}_{2} 1.8 ; \mathrm{pH} 7.2$, adjusted with NaOH) at a rate of $10 \mathrm{~mL} / \mathrm{min}$. We chose a nominally Ca^{2+} free solution in order to minimise the contribution to the response of Ca^{2+}-gated chloride channels which are endogenous to the Xenopus oocyte and may be activated by Ca^{2+} entry through the nAChRs, as previously reported. ${ }^{35}$
Oocytes were impaled by two agarose-cushioned microelectrodes filled with $3 \mathrm{M} \mathrm{KCl}(0.5-2.0 \mathrm{M} \Omega)$ and voltage-clamped at -60 mV using a Geneclamp 500B amplifier (Axon Instruments, CA, U.S.A.). All experiments were carried out at room temperature. A minimum interval of 4 minutes was allowed between acetylcholine applications as this was found to be sufficient to ensure reproducible recordings. The sensitivity of the receptors to inhibition by the novel $n A C h R$ antagonists ($3 \mu \mathrm{M}$) was tested by first superfusing the antagonist for 2 min and then coapplying it with an EC_{50} of $\operatorname{ACh}\left(\alpha_{4} \beta_{2} n A C h R E C_{50}: 100 \mu \mathrm{M}\right)$

109

SH-SY5Y cells (passages 19 to 28) were cultured in an incubator at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2} .{ }^{37}$ Cells were maintained in Advanced DMEM/F-12 medium supplemented with 2% FBS, 2 mM L-glutamine, $190 \mathrm{U} / \mathrm{mL}$ penicillin and $0.2 \mathrm{mg} / \mathrm{mL}$ streptomycin. For assays, cells were plated in 96 well plates (Falcon) and grown under the same culture conditions until confluent before being used. Ca^{2+} response assay Cells in 96 well plates were washed twice with $\mathrm{TSS}\left(137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgCl}_{2}\right.$, $1.8 \mathrm{mM} \mathrm{CaCl} 2,0.2 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 12 \mathrm{mM} \mathrm{NaHCO} 3,5.5 \mathrm{mM}$ glucose; pH 7.4). Cells were then incubated in TSS with $10 \mu \mathrm{M}$ fluo-3 AM and 0.02% pluronic acid for 1 hour, at room temperature in the dark. Cells were washed twice more with TSS and left in $80 \mu \mathrm{~L}$ TSS. For inhibitor pre-incubations, the $80 \mu \mathrm{~L}$ TSS was replaced with $80 \mu \mathrm{~L}$ TSS containing appropriate drug concentrations. All drugs were pre-incubated at room temperature in the dark 10 for 10 minutes, except for CdCl_{2} which was pre-incubated for 15 minutes. Four replicate wells were used per condition in each assay. Stimulation drugs, either $100 \mu \mathrm{M}(-)$-nicotine hydrogen tartrate or 100 mM KCl , were added in $20 \mu \mathrm{~L}$ TSS and fluorescence was measured (485nm excitation, 538nm emission) using a Fluoroskan Ascent plate reader and Ascent software (Labsystems). Maximum ($F_{\max }$) and minimum ($F_{\min }$) fluorescence values for each well were obtained by taking readings after adding 1% Triton $\mathrm{X}-100$ and 350 mM MnCl 2 respectively (both in TSS). These measurements were used to calculate $F_{\max }-F_{\min }$, and assay results were normalised as a percentage of $F_{\max }-F_{\text {min }}$.

[^0]: Scheme 1 - Formation of the tertiary alcohol

