Hindawi Publishing Corporation
Advances in Acoustics and Vibration
Volume 2012, Article ID 863061, 7 pages
doi:10.1155/2012/863061

Research Article

Development of a Refined Quarter Car Model for
the Analysis of Discomfort due to Vibration

A. N. Thite

Department of Mechanical Engineering and Mathematical Sciences, Faculty of Technology, Design and Environment,
Oxford Brookes University, Wheatley, Oxford OX33 1HX, UK

Correspondence should be addressed to A. N. Thite, athite@brookes.ac.uk
Received 24 April 2012; Accepted 26 May 2012
Academic Editor: Joseph C. S. Lai

Copyright © 2012 A. N. Thite. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the automotive industry, numerous expensive and time-consuming trials are used to “optimize” the ride and handling
performance. Ideally, a reliable virtual prototype is a solution. The practical usage of a model is linked and restricted by the model
complexity and reliability. The object of this study is development and analysis of a refined quarter car suspension model, which
includes the effect of series stiffness, to estimate the response at higher frequencies; resulting Maxwell’s model representation does
not allow straightforward calculation of performance parameters. Governing equations of motion are manipulated to calculate
the effective stiffness and damping values. State space model is arranged in a novel form to find eigenvalues, which is a unique
contribution. Analysis shows the influence of suspension damping and series stiffness on natural frequencies and regions of
reduced vibration response. Increase in the suspension damping coefficient beyond optimum values was found to reduce the
modal damping and increase the natural frequencies. Instead of carrying out trial simulations during performance optimization
for human comfort, an expression is developed for corresponding suspension damping coefficient. The analysis clearly shows the
influence of the series stiffness on suspension dynamics and necessity to incorporate the model in performance predictions.

1. Introduction

In the vehicle suspension design, dependent on the usage
pattern, handling and ride comfort performance have
contradicting requirements [1]. The parameter range for
optimum suspension design can vary for different vehicles;
often complex combinations of parameters form a solution.
In the industry, numerous expensive and time-consuming
experimental trials are used to “optimize” the performance.
Ideally, a reliable virtual prototype is a solution. The practical
usage of a vehicle model is linked and restricted by model
complexity; a refined model without complexities is a
requirement. One of the modelling difficulties is the presence
of various compliances and their connections within the
vehicle suspension system. The object of this research is the
investigation of a quarter car model with the aim of analysing
comfort considering the compliances in shock absorber and
suspension top mount; there is series stiffness in the model.
Models of varying complexity, considering only linear
dynamic elements to systems involving nonlinear elements,

have been developed to predict, specifically, vehicle handling
and, to some extent, ride comfort. Shock absorbers have
been modelled to represent hydromechanical behaviour for
example, [2, 3] the complexities do not allow easy integration
of the model into vehicle dynamics applications. It is difficult
to perform parametric studies and visualize the outcome.
In passive simplified models, shock absorber is treated as
a viscous damper, simplest being a linear model. Often,
elements connecting the shock absorbers to the suspension
system and the effects of various noise and vibration designs
are ignored [4, 5].

Simplest vehicle model used to assess discomfort due to
vibration is of two degrees of freedom (DOF) [1], commonly
known as a quarter car model. Only vertical motion is con-
sidered for discomfort quantification [6]. In the model, tyre
is represented by a stiffness, wheel and associated elements
are represented by a mass, and suspension is represented
by a spring and a damper working in parallel (Kelvin-Voigt
model, hence forth called as an ordinary model) and vehicle
body by a mass. The representation is very simplistic and



may not capture the dynamic response accurately; impulsive
forces would make suspension spring and damper combi-
nation act practically like a rigid element. In the industry,
to eliminate adverse force transmission, a stiffness in series
(generally called the top mount) to the shock absorber and
spring combination is introduced; the presence of series stiff-
ness also benefits noise, vibration, and harshness (NVH) per-
formance at higher frequencies, above about 100 Hz. How-
ever, introduction of the series stiffness may have a complex
influence at lower frequencies, below about 30 Hz, affecting
vehicle ride comfort. Further, compliance within the shock
absorber is not considered in the Kelvin-Voigt model. To
an extent, these compliant elements limit the damping force
by relieving the pressure inside shock absorber. Overall, an
appropriate representation of series stiffness requires the use
of the Maxwell model or a viscoelastic element.

The series stiffness, as in 1 DOF model, may influence
effective damping; two modal damping ratios of the quarter
car model can be different from those based on the Kelvin-
Voigt model and the variations can be a complex function
of the suspension damping coefficient and the stiffness.
Further, the effect of series stiffness may not be equal
on the modes of vibration. The resonance frequencies are
expected to be dependent on the damping coefficient. For
optimization, sufficient damping is required for both modes.
The modal damping ratio calculation is not straightforward;
in practice, they are not calculated explicitly; instead cost
functions are formed and trials are carried out to reduce the
vibratory responses directly. The process does not provide
insight into the complex problem. It is desirable to find a
combination of parameters resulting in large damping ratios
and small shift in resonance frequency, without having to
perform numerous forced vibration analyses; the focus of
optimization continues to be the response reduction but
achieved through an alternative approach. Availability of
an explicit formula for effective damping can minimize the
optimization effort and provide critical information.

In what follows, the quarter car model dynamic response
with and without series stiffness is compared to show
the effect of series stiffness. For the harmonic input,
equations of motion are rearranged to calculate effective
stiffness and damping values. Using the knowledge of forces
transmitted through the series stiffness, a novel form of
state space equations is generated so as to calculate the
natural frequencies and modal damping ratios. The effects
of combination of suspension damping coefficient and series
stiffness are analysed showing regions of reduced vibration
response. A simplified expression is developed for optimum
suspension damping with the aim of mainly reducing wheel
hop frequency response; the wheel hop frequency response
will be shown being more sensitive to the presence of series
stiffness than the vehicle body mode response. The model
clearly shows the influence of series stiffness on the modal
damping ratios and the natural frequencies.

2. Vehicle Dynamic Lumped Parameter Model

The influence of damping on shift in the resonance frequency
and variation in the corresponding amplitude for 1 DOF
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FiGure 1: Schematic of a quarter car model with the use of
Maxwell’s model to represent the suspension dynamics.

Maxwell’s model is well documented. The vehicle suspension
system with series stiffness may show similar influence, but
the influence may not be a simple function of the damping
value alone; relative values of series and the tyre stiffnesses
may play a significant role. Further, the behaviour due to
different forms of input may also be complex.

Initially, in the next section two models of the suspension
system, with and without series stiffness, are compared for
their effect on the steady-state frequency domain response.
Later, a state space model is used to calculate the natural
frequencies and the modal damping ratios. An expression is
developed for optimum damping. In the model, stiffness and
damping coefficients used are linear equivalent parameters.

3. Application of Maxwell’s Model to Represent
the Quarter Car Dynamics

Figure 1 shows schematic of Maxwell’s model representing
the corner of a vehicle. The equations of motion can be
obtained by applying Newton’s 2nd law, which after some
manipulations are given by

myxs + kgxs — kax; = 0, (1)
CsX1 — CsXo + ksx1 — ksxo — kaxa + kaxs = 0, (2)

My + (X1 — %2) + k(1 — x2) + kexy = ke y. (3)

There is an additional response variable x, compared to
an ordinary 2 DOF model. For harmonic excitation, this
variable can be eliminated from the analysis by substituting
equivalent values in terms of response variables x; and x3,
reducing the system to 2 DOFs. Hence, for forced vibration
analysis, we have

(-Mw? + jwC+K)X = F, (4)



Advances in Acoustics and Vibration

where mass matrix is given by

M = [mu O} 5)

0 m,

effective damping matrix is given by

kécs —kécs
((ka+k)* +2a?)  ((ka+k) +w?)
e c (6)
dbs dCs
((ka+ k)* + 2w?)  ((ka+ k)’ + Cw?)
and effective stiffness matrix is given by
(cszwzkd + kaks(kg + ks))
¢ > —ka
((ka + k) + c2w?)
K ki@e? +kka+k)) . Kikatk)
((ka + k) + c2?) (ks +k)? + G2
(7)

The elements of matrices are as follows: m,, is the effective
mass of wheel hub, m, is a quarter of vehicle body mass, c;
is the suspension damping coefficient, k, is the suspension
stiffness, k; is the tyre stiffness, k; is the series stiffness, and
w is the excitation frequency. The stiffness matrix, K, has
nonlinear elements; it is now dependent on the damping
coefficient and excitation frequency. In the suspension
system, for effective isolation at higher frequencies, the series
spring stiffness is likely to be of the order of tyre stiffness [7]
for a range of displacements; the effect on second resonance
(the wheel hop frequency) is expected to be significant. The
relative values of stiffness and damping coefficient determine
the resonance frequency sensitivity. If the series stiffness is
relatively large, the system would act as an ordinary two-DOF
model and the spring and the damper being connected in
parallel, irrespective of damping in the system.

The effective damping (6) is also a complex function
of series stiffness, suspension damping coefficient, and
frequency, showing nonlinear behaviour. For large series
stiffness values, it tends to the suspension damping coeffi-
cient. On the other hand, for small values, the damping is
a complex function of series stiffness and frequency. The
effective value determines the response peaks of wheel hub
and vehicle body motion. Later in this paper an approximate
expression is developed to estimate the optimum value of
suspension damping coefficient.

Using (4), for a harmonic input, vehicle body and wheel
hub responses can be calculated. The parameters used for the
calculation are listed in Table 1, which can be obtained, for
example, using the methods of [8]. Figure 2(a) shows wheel
hub motion; there are two peaks, one each for the vehicle
body bounce mode (around 2Hz) and the wheel hop or
hub mode (around 14 Hz). Also shown in the figure is the
response where series stiffness is very large such that it can
be treated as a rigid link. There is significant difference in the
response at the wheel hub frequency; the resonance is shifted
and amplitudes are different. The vehicle body response
also shows a similar pattern of behaviour (Figure 2(b)); the

TaBLE 1: Parameter values used for the quarter car model.

System parameter Parameter value

Vehicle parameters

Tyre stiffness (N/m) 2e5
Suspension stiffness (N/m) 3e4
Suspension damping coefficient (Ns/m) Varying
Hub mass, front (kg) 40
Quarter of a vehicle body mass (kg) 250
Stiffness in series (N/m) 2e5
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FIGURE 2: (a) Wheel hub response comparison and (b) vehicle body
response comparison (damping coefficient is 1500 Ns/m), (...):
ordinary model, (—): Maxwell’s suspension model.

difference in wheel hub mode contribution to the response is
more pronounced. The change in frequency and amplitude,
as observed for the model with series stiffness, can have
significant influence on the vehicle comfort.

The shift in resonance frequency and the change in
amplitude are complex functions of series stiffness, sus-
pension damping coefficient, and suspension stiffness. For
complete analysis, forced responses may have to be calculated
for all combinations of these parameters. The process can
be expensive and may not provide insight into the problem.
The aim is to find a combination resulting in large damping
ratios and small shift in resonance frequency, without having



to perform numerous forced vibration analyses. In the next
section, a state space representation is explored to find
complex eigenvalues from which natural frequencies and
damping ratios can be extracted.

4. Natural Frequencies and Modal
Damping Ratios

Equations of motion can be rearranged for state space
formulation as given below:

3y kq ka
X3 = ——X3 + —X»,
my ny

ka+k k k
d sz + *le + *dX3.
Cs Cs Cs

(8)

Xy = X1 —

The equation of motion for m, contains velocity of connec-
tion point (Figure 1) between the suspension spring-damper
combination and the series stiffness. In the present form of
(3), it prohibits straightforward calculation of eigenvalues.
To overcome the difficulty, as the force transmitted is same
through the suspension spring-damper combination and the
series stiffness, term corresponding to the suspension spring-
damper in (3) is replaced by that of series stiffness; therefore,
for free vibration analysis the equation becomes

myX, + kd(xz - x3) + ktxl =0
ki ki ke ®)
X .

Let y1 = x1, y» = X1, 3 = X2, Y4 = X3, and y5 = X3.
Therefore,

V1 X1 b4
2 X1 2
Y=Y =1%p Y= (10)
V4 X3 Va4
Vs X3 Vs
In the state space form, equations of motion are written
as
¥ = Ay, (11)
where
0 1 0 0 07
ko, ki kg
my my my
+
A= & 1 _M @ ol. (12)
Cs Cs Cs
0 0 0 0 1
0 0 ki _ka 0
L m, m,

Natural frequencies and damping ratios of the system can
be obtained by solving eigenvalue problem det(A — IA). The
resulting eigenvalues are such that

Ay = =Gy = jwap; Aw = —Cuwn = jwgn, (13)
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FIGURE 3: Wheel hub natural frequency variation as a function of
the suspension damping coefficient and the series stiffness.

where A4 is the vehicle body eigenvalue, wgp is the damped
vehicle natural frequency, wp is the vehicle body natural
frequency, {; is the vehicle body modal damping ratio, Aj
is the wheel hop or hub eigenvalue, wgy, is the wheel hop
or hub damped natural frequency, wj is the wheel hop or
hub natural frequency, and {, is the wheel hop or hub modal
damping ratio.

Parametric studies were carried out to find variation
of damping ratios and natural frequencies. The base data
listed in Table 1 is used. Figure 3 shows variation of wheel
hub frequency as a function of the suspension damping
coefficient and the series stiffness. There is very little spread
at low suspension damping values; in the extreme case of no
damping, first element of the stiffness matrix (7) tends to
ke + kaks/(kq + k), which for large-series stiffness becomes
ki + ks. As the suspension damping coefficient increases,
so does the frequency spread. For very large values of
suspension damping coefficient, first element of the stiffness
matrix now tends to k; + kg, resulting in an increase in the
natural frequency. The increase is gradual for lower series
stiffness. In contrast, for larger series stiffness, the transition
from lower to higher natural frequency occurs within a small
range of suspension damping coefficients. Ideally, in a good
design the change in natural frequency should be minimal.

The wheel hub modal damping ratio (Figure 4) variation
as a function of suspension damping coefficient and series
stiffness is more pronounced than corresponding natural
frequency. There is a clear maximum damping ratio for each
of the series stiffnesses, increasing as the stiffness increases.
The variation in damping ratio is smooth for lower series
stiffness; detrimentally the maximum damping ratio reached
can be practically very small. For the values of practical
importance (series stiffness in the range of 1 x 10° N/m),
the maximum damping ratio achieved can be as low as
about 0.2, which can result in large response amplitude
on the vehicle body due to wheel hub mode contribution.
The sharp decrease in the damping ratio after reaching the
maximum for larger stiffness is due to sudden increase in
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FIGURE 4: Wheel hub modal damping ratio variation as a function
of the suspension damping coefficient and the series stiffness.
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FIGURE 5: Vehicle body mode natural frequency variation as a
function of the suspension damping coefficient and the series
stiffness.

the natural frequency (Figure 3); it is inversely proportional
to the natural frequency.

Figure 5 shows vehicle body frequency variation as a
function of the suspension damping coefficient and the
series stiffness. For lower suspension damping values, the
suspension stiffness and the series stiffness combined result
in equivalent stiffness of kgks/(ks + ks), which tends to
the suspension stiffness ks for large-series stiffness. Hence,
there is a spread of frequencies, which is in contrast to
the frequencies of the wheel hub mode. As the damping
coefficient increases, the effective stiffness tends to k;. The
natural frequency values show a jump from the lower to the
higher extreme for large-series stiffness.

Vehicle body mode damping ratios (Figure 6) are larger
than the hub mode damping ratios for smaller series
stiffnesses. For larger stiffnesses, the maximum value of
damping ratios is reached for similar values of suspension
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FIGURE 6: Vehicle body modal damping ratio variation as a function
of the suspension damping coefficient and the series stiffness.
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FIGURE 7: Ratio of damping ratios varying as a function of the
suspension damping coefficient and the series stiffness.

damping coefficients unlike wider range observed for the
wheel hub mode (compare Figures 6 and 4). In addition,
the maximum values are reached at much larger suspension
damping coefficients, and hence the drop in damping ratio
for a further increase may not be of practical significance.

Figure 7 shows the ratio of modal damping ratios; only
for a small range of series stiffness values, the ratio remains
constant for a limited range of the suspension damping
coefficients. Hence for the majority of parameter values, a
compromise has to be reached to have suitable damping
ratios for both modes. Comparison of Figures 4 and 6
shows the criticalness of wheel hub modal damping. The
suspension damping coefficient giving maximum modal
damping ratio is a key performance parameter. In the
next section, a simple expression is developed to estimate
this value based on the analysis of the effective damping
coefficient.



5. Optimal Damping Coefficient of
the Hub Mode

The effective damping relating to hub mode (see (6))
shows two clearly defined trends: (a) for lower values of
suspension damping coefficient it tends to kJcs/(ks + ko)?,
which for large series stiffness value gives ¢; and (b) for
larger suspension damping coefficients it tends to k3/c,w?.
As the hub mode frequency is a complex function of
various parameters, it is difficult to evaluate the latter trend.
An appropriate approximation could be based on the fact
that the interest is about variation around the wheel hub
frequency. For typical vehicle applications, this frequency
varies between 12 to 18 Hz; the midpoint value can be
suitably assumed to find an estimate of optimum damping
coefficient.

Before developing an expression for optimum damping
coefficient, the effect of assuming a constant hub mode
frequency is analysed. Figure 8 shows variation of effective
damping coefficient (first element in the damping matrix,
represented here as c.s, of (6)) as a function of suspension
damping coefficient. The circular frequency is held constant
at 94.25rad/s (15Hz). Also shown are the values based on
exact calculation. The approximation is reasonable repre-
sentation for up to about 3500 Ns/m, which is a very large
damping coefficient for the vehicle suspension systems. The
assumption of constant hub mode frequency in calculating
optimum damping value, therefore, should not result in
significant errors.

The maximum effective damping coefficient leading to
an optimal modal damping ratio can be obtained by the
following process:

e d(Kaeo/ ((ha+ k)* + 2a?))
de, des

= k3((ka+ ko) + 20?) = 2k3c2? =0 (19

_ kg + ks
_7(0 .

S

The result of (14) is used in estimating the optimum
effective damping coefficient with hub mode frequency
held constant at 15 Hz. Figure 9 shows the variation of the
optimal damping coefficient for a given series stiffness. For
most practical purposes (series stiffness of the order of tyre
stiffness ranging from 0.5 x 10° to 2 X 10° N/m), the estimates
are in reasonable agreement. Equation (14), therefore, can
be used to obtain a suitable value of suspension damping
coefficient that reduces the response of the vehicle body due
to contribution of the wheel hub mode.

6. Conclusions

A vehicle quarter car suspension model was refined to
include the effect of series stiffness. A novel form of state
space equations was used to calculate the natural frequencies
and the modal damping ratios. The effect of the suspension
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damping and series stiffness was analysed, showing regions
of reduced vibration response.

The inclusion of series stiffness reduces the effective
damping; the damping ratios achieved at two modes of
the quarter car model are smaller than those based on the
Kelvin-Voigt model. The variation of the damping ratios is
a nonlinear function of suspension damping coefficient and
stiffness. In extreme cases, for larger suspension damping
coefficients the resulting damping ratios could be negligibly
small. The effect may not be equal on the modes of vibration.

The most significant effect of series stiffness was on
the wheel hop frequency and the amplitude. Increase in
damping beyond the optimal values increases the amplitude
at resonance, having a negative impact on vehicle ride
comfort. A simplified expression for the optimal suspension
damping coefficient was developed eliminating the need
for trial simulations. Overall, the model clearly shows
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the influence of series stiffness on the modal damping ratios,
the natural frequencies, and hence the dynamic response.
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