2	Survey respondents from 13 countries
3	
4	AUTHORS
5	
6	Cheneal Puljević, Amelia Cossart, Emma L. Davies, Monica J. Barratt, Larissa J. Maier,
7	Marie Jauffret-Roustide, Adam R. Winstock, Jason A. Ferris
8	
9	ABSTRACT
10	
11	Background: The COVID-19 pandemic is hypothesized to have impacted cannabis access and
12	usage worldwide. This study describes changes in cannabis use and related impacts following
13	COVID-19-related restrictions among an international sample of people who use drugs.
14	Methods: Using data from the Global Drug Survey COVID-19 Special Edition, we identified
15	20,417 respondents from 13 countries who reported whether the number of THC-containing
16	cannabis usage days changed compared to before COVID-19 restrictions. Using a multinomial
17	multivariable logistic regression we investigated the impact of changes in cannabis use on
18	respondents' mental health, physical health, relationships, finances, work/study performance,
19	and cannabis-related pleasure/enjoyment.
20	Results: Similar proportions of respondents reported that their cannabis use had stayed the
21	same (38.2%) or increased (38.3%) compared to February 2020, while 21.9% of respondents
22	reported a decrease. The most common reason for increased use was having more time
23	(68.4%), while decreased use was associated with having less contact with people they use
24	cannabis with (58.4%). The likelihood of reporting worse mental and physical health, finances,
25	and work/study performance was highest among those who reported increased cannabis use.
26	Conclusions: These findings highlight the need for policy to address the improved provision of
27	mental health and other support for people who frequently use cannabis.
28	
29	Keywords: Cannabis; COVID-19; Mental Health; Surveys and Questionnaires

31 **1. INTRODUCTION**

The COVID-19 outbreak, declared a pandemic by the World Health Organization on 12 32 March 2020 (World Health Organization, 2020), is hypothesized to have had a widespread 33 34 impact on drug distribution, access and usage worldwide (Barratt & Aldridge, 2020; UNODC, 2021).. For example, the United Nations Office of Drugs and Crime (UNODC) suggested that 35 the COVID-19 pandemic resulted in increased demand for cannabis, evidenced by continued 36 37 large-scale seizures of cannabis in the Middle East and North Africa in 2020 and 2021 (UNODC, 2020, 2021). Overall, global cannabis use has increased among all age groups over 38 39 recent years (UNODC, 2020); while some research suggests that this is due to its recent 40 decriminalization or legalization in some countries (Campeny et al., 2020; Gali et al., 2021; 41 Parker & Anthony, 2018; UNODC, 2020), other studies suggest that this is due to decreasing 42 perceptions that cannabis is harmful (Cohen et al., 2019; Gali et al., 2021; Parker & Anthony, 43 2018).

A notable body of research has explored the impacts of cannabis use on individuals' 44 45 physical and mental health (e.g., Hall, 2015; World Health Organization, 2016). The majority 46 of studies reporting physical or mental health harms from THC-containing cannabis use 47 describe harms from frequent (i.e., daily) and/or long-term use (Campeny et al., 2020; Hall, 2015; World Health Organization, 2016) and the causal directions of associations largely 48 49 remain unclear (Hall, 2015; Horwood et al., 2012; Moore et al., 2007). Physical health harms 50 associated with cannabis use commonly arise from mixing cannabis with tobacco (Hall, 2015) 51 and can include chronic bronchitis, cardiovascular disease, and strokes, but authors note a lack 52 of well-designed epidemiological studies investigating the extent of these associations (Hall, 53 2015; World Health Organization, 2016). In terms of the impact of cannabis use on mental 54 health, there is some evidence of increased risk of experiencing schizophrenia or other 55 psychotic disorders (Cohen et al., 2019; Hall, 2015; Hall & Degenhardt, 2009; Moore et al.,

2007; World Health Organization, 2016) and bipolar disorder (Agrawal et al., 2011; Henquet et 56 57 al., 2006) among people who use cannabis regularly. Other studies have found modest to weak associations between cannabis use and depressive and/or affective disorders (Horwood et al., 58 59 2012; Moore et al., 2007). There is also some limited evidence suggesting that cannabis use 60 may be associated with relationship conflict (Cerda et al., 2016; Haydon & Salvatore, 2022), 61 financial difficulties (Brook et al., 2013; Cerda et al., 2016), or reduced work or study 62 performance (Brook et al., 2013; Cerda et al., 2016), but these research areas are relatively 63 unexplored, and causal directions of these associations remain unknown. There is also increasing global recognition of medical and therapeutic benefits associated with cannabis use 64 65 (e.g., reduced pain, anxiety, and inflammation, and improved sleep (Bilbao & Spanagel, 2022; 66 Vickery & Finch, 2020)), with a growing number of countries now allowing the use of cannabis for medical purposes in recognition of these benefits (UNODC, 2021).. Some 67 68 individuals also report using cannabis simply because they derive pleasure or enjoyment from 69 doing so (Lee et al., 2007; Reilly et al., 1998). As such, when investigating impacts of cannabis 70 use, there is value in exploring the extent to which people obtain benefit from enjoying their 71 cannabis use too.

72 There is a growing body of international research reporting mixed findings regarding 73 changes in THC-containing cannabis use patterns following the COVID-19 pandemic (Chong 74 et al., 2021; Pereira et al., 2022). A 2021 scoping review on cannabis use during the COVID-75 19 pandemic by Chong and colleagues (2021) identified 33 studies reporting changes in 76 cannabis use before and during the pandemic. While there was considerable heterogeneity in 77 the studies' designs, populations and timeframe, most studies reported either stable cannabis use or increased use since the pandemic began (Chong et al., 2021). For example, a number of 78 79 studies reported no significant changes in cannabis use frequency compared to before the 80 COVID-19 outbreak, including cross-sectional online surveys conducted in 21 European

countries (Manthey et al., 2021), Belgium (Vanderbruggen et al., 2020), Germany (Werse & 81 82 Kamphausen, 2021), and France (Brissot et al., 2020), and a repeated measures study from the USA (Graupensperger et al., 2021). Other studies have reported increased frequency of 83 cannabis use since the pandemic began, including studies of Australians who reported recent 84 85 cannabis use (Sutherland et al., 2020), regularly use illicit stimulants (Peacock et al., 2020), or who were detained by police (Doherty et al., 2021), and a sample of survey respondents from 86 87 the Netherlands who reported increasing their frequency of use but not overall amount 88 (Benschop et al., 2021). A nationally-representative study from the USA noted that cannabis 89 use was particularly high at the beginning of April and May 2020, when the pandemic first 90 broke out (Brenneke et al., 2022). 91 A number of studies have also explored the reasons behind changes in cannabis use during the pandemic (Chong et al., 2021; Peacock et al., 2020; Vanderbruggen et al., 2020). 92 93 For example, the scoping review by Chong et al (2021) identified 37 studies that described the 94 impacts of psychological stressors, changes in cannabis's accessibility, cannabis use 95 promotion, and decreased treatment access on changes in cannabis use during COVID-19. Other studies from California (Fedorova et al., 2022), Belgium (Vanderbruggen et al., 2020) 96 97 and Australia (Peacock et al., 2020) described increased cannabis use during COVID-19 98 restrictions due to boredom, while a cross-sectional study of 70 Canadian young adults found 99 that respondents who experienced self-isolation during the COVID-19 pandemic used 20% 100 more cannabis than those who did not (Bartel et al., 2020). The scoping review (Chong et al., 101 2021) also identified 14 studies investigating adverse clinical and psychiatric outcomes of 102 cannabis use during the pandemic. While most of these described increased susceptibility of 103 people who used cannabis to COVID-19 infection (Chong et al., 2021), two studies noted adverse health outcomes for people who used cannabis heavily (increased severity of COVID-104 19 symptoms and hospitalization) (Hatoum et al., 2021; Volkow, 2020), two described 105

increased likelihood of poor mental health among people who used cannabis during this period 106 107 (Borgonhi et al., 2021; Lázaro-Pérez et al., 2020), and one described positive impacts of 108 cannabis use on mental health during this time, with cannabis providing relief from COVID-109 19-related stress and anxiety (O'Sullivan et al., 2021). 110 Our study builds on this emerging evidence through a unique and targeted exploration 111 of changes in cannabis use following COVID-19 restrictions among a relatively large 112 international sample of people who use drugs. Secondary aims of this study include 113 investigating the associations of these changes in cannabis use with respondents' perceived impacts of these changes on their mental health, physical health, relationships, finance, 114 115 work/study performance, and cannabis-related pleasure/enjoyment, and perceived reasons for 116 these changes.

117 **2. METHODS**

118 *2.1.Sample*

119 This study uses data from the Global Drug Survey (GDS) – COVID-19 Special Edition. 120 The GDS is an annual, anonymous, cross-sectional web survey conducted in collaboration with 121 worldwide media partners. Details about the GDS's methodology, including survey design, 122 recruitment and representativeness have been previously described (Barratt et al., 2017). In addition to the annual survey at the end of each year, GDS developed a Special Edition 123 124 COVID-19 survey, which ran for seven weeks between 3 May and 21 June 2020, to offer 125 insights into the impact of COVID-19 on respondents' use of alcohol and other drugs, mental 126 health and relationships. The GDS COVID-19 survey was available in ten languages: Danish, 127 Dutch, English, Finnish, French, German, Hungarian, Italian, Portuguese, and Spanish. The 128 study received ethics approval from [REDACTED FOR BLIND PEER REVIEW] (11671/001). All participants provided informed consent before survey commencement. From 129 130 an initial sample of 59,969 respondents who completed the survey, we restricted our sample to

131 respondents from countries with 500 or more respondents (n=56,927), those who reported

132 THC-containing cannabis use in the past year (n=23,584) and those who provided an answer to

133 the question about changes in the number of THC-containing cannabis usage days since

134 COVID-19 restrictions commenced (n=20,417).

135 2.2.Measures

Relevant survey questions and response options are listed in Supplementary Table 1. 136 137 Socio-demographic variables included gender (cis woman/ cis man/ trans woman/ trans man/ 138 non-binary, with trans gender calculated by comparing gender assigned at birth to self-reported gender identity (Australian Bureau of Statistics, 2021)), age, ethnicity, country of residence, 139 residential location (city/urban, regional or remote), employment status (with those who 140 141 reported full-time and casual/part-time employment combined into the 'employed' group). 142 Lifetime diagnosis of mental health and/or development conditions was calculated by combining participants who indicated ever being diagnosed with at least one of the mental 143 144 health and/or development conditions listed in Supplementary Table 1. Those who indicated 145 cannabis use in the past 12 months were asked to indicate the number of days of cannabis use in the past 30 days and whether the number of THC-containing cannabis usage days in a 146 147 typical week had changed when compared to February 2020 (i.e., before the global implementation of COVID-19 restrictions in March 2020), with the following response 148 149 options: increased a lot; increased a little; stayed the same; decreased a little; decreased a lot; 150 and unsure/ don't know. Respondents who reported an increase or decrease in their cannabis 151 use compared to February 2020 were then asked to describe the impact of changed cannabis 152 use on six measures (described hereafter as the six impact measures): mental health, physical 153 health, relationships, finances, work/study performance, and cannabis-related 154 pleasure/enjoyment (with four response options: worse; stayed the same; better; not 155 applicable). The six impact measures were selected by the authorship team who developed the

GDS COVID-19 survey (AW, MB, JF, ED) based on domains recognized as influencing or being influenced by drug use (Daley, 2013). Respondents who reported 'not applicable' to any of the six impact measures were excluded from analyses related to that impact measure. These respondents were then asked to select reasons for their increase or decrease from a provided list (see Supplementary Table 1), with multiple response options allowed.

161 *2.3.Data analysis*

First, we calculated descriptive statistics to compare socio-demographic characteristics and cannabis use patterns among the total sample and those who reported that their cannabis use had increased a lot, increased a little, stayed the same, decreased a little, or decreased a lot when compared to February 2020. We then used descriptive statistics to compare changes in cannabis use according to respondents' home countries, to compare those who reported an increase or decrease in cannabis use in terms of the six impact measures, and for the perceived reasons for changes in cannabis use.

169 Finally, we conducted a multinomial multivariable logistic regression to investigate 170 associations between changes in cannabis use and the six impact measures, with cannabis use 'decreased a lot' as the reference category. Multinomial logistic regression was chosen over 171 172 ordinal logistic regression as the authors considered 'better', 'stayed the same' and 'worse' to be qualitative descriptors, and chose to err on the side of caution with respects to violating the 173 proportional odds assumption by using ordinal logistic regression. As our study aimed to 174 175 specifically explore the associations of *changing* cannabis behaviors during initial COVID-19 176 restrictions, participants who self-reported that their cannabis use 'stayed the same' (n=7,806) 177 or who answered "unsure/don't know" (n=309) to the question about changes in cannabis use 178 were not shown the question about the six impact measures as they cannabis use either did not 179 change or any change was unknown, and were excluded from multinomial logistic regression 180 analyses. The predicted probabilities from the models were calculated using Stata's margin

command (results shown in Supplementary Table 2), and then plotted for each of the six 181 182 impact measures to illustrate the association of changing cannabis use on the six impact measures. We clustered by country (to account for any unobserved within country correlation 183 (StataCorp, 2021)) and controlled for the confounding effects of gender and age in the models 184 (modelling age as a non-linear quadratic term with estimates for both age and age²), and also 185 186 included gender and age as interaction variables based on previous research showing that 187 person-level characteristics can account for variance in substance use measures (Barratt et al., 188 2017). We considered a p value of <0.05 statistically significant and applied a Bonferroni correction (Neyman & Pearson, 1928). A sensitivity analysis review was undertaken 189 190 comparing the full model (Supplementary Table 2A and 2B) and a 'best-fit' reduced model 191 (Supplementary Table 3A and 3B). The estimates from the reduced model are not dissimilar to the full model so for consistency we present in Figure 3 the results of the full model. All 192 193 analyses were conducted using Stata v16 (StataCorp, 2019).

3. RESULTS

A total of 20,417 respondents were included in the final sample. Table 1 shows the 195 sample's socio-demographic characteristics; the majority described themselves as cis-male 196 197 (61.4%), white (76.1%), employed (67.5%), and living in a city/urban area (68.1%). The 198 median age of the sample was 27 years (interquartile range (IQR) 22-35 years). Respondents' 199 most common country of residence was Germany (38.2%). Nearly a third of respondents 200 (29.5%) reported a lifetime history of a mental health and/or developmental condition. 201 Respondents most frequently described using cannabis alone at home (42.3%) in the past 30 202 days, and approximately a quarter of respondents reported using cannabis alone a little or a lot 203 more often (25.2% combined) compared to before COVID-19 restrictions, while 9% of respondents reported using it alone a little or a lot less often. 204

205	Respondents most commonly reported that their cannabis use had increased in a typical
206	week compared to February 2020 (38.3%; comprised of 22.6% who reported it had increased a
207	little, and 15.7% who reported it had increased a lot; see Table 1). A near identical proportion
208	of respondents reported their cannabis use stayed the same (38.2%), while 21.9% of
209	respondents reported a decrease in their cannabis use since COVID-19 restrictions commenced
210	(including 8.2% who reported that it had decreased a little and 13.7% who reported it had
211	decreased a lot). Approximately 1.5% of the sample answered "don't know/unsure" about
212	whether their cannabis use had changed when compared to February 2020.
213	Respondents reported using cannabis on a median of seven days (IQR 1-26 days) in the
214	previous 30 days. This ranged from a median of 20 days (IQR 10-30) among those who
215	reported their cannabis use had increased a lot since February 2020, to a median of 0 days
216	(IQR 0-3) among those who reported it had decreased a lot, suggesting an association between
217	overall days of use and changes in cannabis use.
218	Among respondents who reported an increase or decrease in cannabis use, respondents
219	most commonly reported that their mental health, physical health, relationships, finances,
220	work/study performance and cannabis-related pleasure enjoyment stayed the same compared to
221	February 2020 (Table 2). Figure 1 shows that the most commonly reported reasons for
222	increased cannabis use during restrictions included having more time to use cannabis (68.4%),
223	and/or boredom (66.6%; Figure 1A). The most common reasons for decreases in cannabis use
224	included less contact with people who they use it with (58.4%), and fewer occasions for usage
225	(48.8%; Figure 1B).
226	Figure 2 shows that respondents from all countries were most likely to report that their

cannabis use had stayed the same compared to February 2020, except for Brazil, where
respondents were most likely to report their cannabis use had decreased a lot. Comparing all
countries, respondents from Brazil were most likely to report decreasing their cannabis use a

lot (33.5%) and decreasing it a little (9.5%), tied with respondents from the United Kingdom
for the latter. Respondents from Switzerland were most likely to report that their cannabis use
stayed the same (45.0%). Alternatively, those from Denmark were most likely to report their
cannabis use had increased a little (27.6%; followed closely by those from the United States at
27.4%), while respondents from Australia were most likely to report that their cannabis use had

236 Figure 3 shows the predicted probabilities (adjusted for gender and age) of respondents who self-reported changes in the six impact measures following changes in their cannabis use. 237 Supplementary Table 2 shows the relative risk ratios used to produce Figure 3. First, 238 239 respondents most commonly reported that their mental health, physical health, relationships, 240 finances, work/study performance, and cannabis-related pleasure stayed the same. Graphs A (mental health) and C (relationships) in Figure 3 show similar trends; respondents were more 241 242 likely to report that their mental health and relationships improved, irrespective of whether they reported that their cannabis use increased (a lot or a little) or decreased (a lot or a little). 243 Furthermore, those who reported increasing their cannabis use a lot were equally as likely to 244 245 report that their mental health got better or got worse. However, the predicted probability of 246 self-reporting worse mental health was highest among those who reported increasing their 247 cannabis use a little, followed by those who increased a lot. Graphs B (physical health), D 248 (finances), and E (work/study performance) show similar trends; as self-reported cannabis use 249 increased, we found an increase in the predicted probability of respondents' describing their 250 physical health, finances and work/study performance worsening, with those who reported that 251 their cannabis use had increased a lot being most likely to report that their physical health, finances, and work/study performance worsened, and least likely to report it improved after 252 253 COVID-19 restrictions. Finally, graph F shows a positive association in the predicted

254 probability, with respondents more likely to report that cannabis-related pleasure improved as 255 cannabis use increased.

4. DISCUSSION

257 This study describes self-reported changes in cannabis use following the global introduction of COVID-19 restrictions among an international sample of people who used 258 259 cannabis in the past year. Noting that our data derives from a cross-sectional survey 260 incorporating a retrospective exploration of respondents' self-reported changes in cannabis use 261 and outcomes, our study explores the associations of respondents' self-described changes in cannabis use since the COVID-19 pandemic commenced with the perceived impacts of their 262 263 changed cannabis use on their mental health, physical health, relationships, finances, 264 work/study performance, and cannabis-related pleasure outcomes. These findings provide an understanding of the short-term impact of initial COVID-19 restrictions, with international 265 266 variations in these trends reflecting the impact of COVID-19 on environmental-level factors 267 (e.g., lockdowns, border closures and travel restrictions) that have influenced global drug supply and access (EMCDDA, 2020), and individual-level factors (e.g. loneliness, self-268 269 isolation, boredom (Bartel et al., 2020; Fedorova et al., 2022; Peacock et al., 2020; 270 Vanderbruggen et al., 2020)) recognized as influencing drug use (Ingram et al., 2020). 271 Respondents most commonly reported no changes in their cannabis use following 272 COVID-19 restrictions, reflecting findings from other international studies (Chong et al., 2021; 273 Graupensperger et al., 2021; Vanderbruggen et al., 2020; Werse & Kamphausen, 2021). 274 Similar numbers of respondents reported increasing their cannabis use a lot (15.7%) or 275 decreasing it a lot (13.7%) since COVID-19 restrictions commenced, echoing findings from 276 other studies, such as a study of 36,538 adults from 21 European countries (Manthey et al., 277 2021). Respondents most commonly reported increasing their cannabis use because they had 278 more time to use it or were bored, directly aligning with findings from studies that have

279 explored reasons for changes in cannabis use following the outbreak of COVID-19 (Chong et 280 al., 2021; Fedorova et al., 2022; Peacock et al., 2020; Vanderbruggen et al., 2020). Those who 281 described decreasing their cannabis use most commonly ascribed this to having less contact with people they use it with, reflecting the social nature of cannabis use for many people 282 (Buckner et al., 2012; Johnson et al., 2019). As the body of research exploring changes in 283 284 substance use following the outbreak of COVID-19 continues to expand (Chong et al., 2021), it 285 will be valuable for future research to investigate the true extent of COVID-19 restrictions on peoples' choice to use and/or ability to access cannabis, and the environmental factors and 286 287 individual motives that drive these changing patterns of substance use. 288 Australian respondents were most likely to report increasing their cannabis a lot, 289 consistent with findings from other Australian-based studies (Doherty et al., 2021; Peacock et al., 2020; Sutherland et al., 2020), including from the National Wastewater Drug Monitoring 290 291 Program (NWDMP), which reported a record high of cannabis consumption in Australia's 292 capital cities in June 2020 (Australian Criminal Intelligence Commission, 2020). While we did 293 not analyze country-specific reasons for changes in use, and these are non-representative 294 percentages based on varying sample sizes, NWDMP authors ascribe this to the largely local 295 nature of Australian cannabis cultivation and supply (Australian Criminal Intelligence 296 Commission, 2020). On the other hand, respondents from Brazil were most likely to report 297 decreasing their cannabis use a lot. A cross-sectional study of drug use during COVID-19 298 restrictions among 2,435 Brazilian people reported no overall change in cannabis use, yet 299 significantly decreased cannabis use among participants who reported engaging in rigorous or 300 very rigorous social distancing (Nin et al., 2022). As such, although the reason for our finding 301 remains unknown, it is possible that Brazilian respondents were more likely to reduce their 302 cannabis use as a direct result of COVID-19 restrictions such as social distancing than those

from other countries, especially within the context of high numbers of COVID-19 cases anddeaths in Brazil compared to other countries (Guerin, 2021).

305 Interestingly, we found that those who reported increasing their cannabis use a lot were 306 equally as likely to report that their mental health improved or worsened, but also that these 307 respondents' risk of reporting worse mental health following COVID-19 restrictions was 308 highest. As with other studies (Hall, 2015; Horwood et al., 2012; Moore et al., 2007), the 309 causal direction of these associations remains unknown, and it is unknown whether other 310 factors (related or unrelated to COVID-19 restrictions) mediated these associations. However, irrespective of the direction of these associations, previous studies have found associations 311 312 between self-isolation and increased cannabis use (Bartel et al., 2020; Fedorova et al., 2022), 313 COVID-19 restrictions and poor mental health (Borgonhi et al., 2021; Javanbakht et al., 2022; Lázaro-Pérez et al., 2020; Sutherland et al., 2020), and using cannabis to cope with anxiety 314 315 (Javanbakht et al., 2022; O'Sullivan et al., 2021; Temple et al., 2014). We also found that 316 respondents who reported increased cannabis use since the COVID-19 pandemic commenced were more likely to report worsened physical health, finances and work/study performance. 317 This finding aligns with those of previous studies reporting financial difficulties, workplace 318 319 problems, and relationship conflict among people reporting frequent cannabis use (Brook et al., 320 2013; Cerda et al., 2016; Haydon & Salvatore, 2022). For example, a longitudinal cohort study 321 of 1,037 New Zealanders found that participants reporting persistent cannabis dependence were more likely to report financial difficulties, workplace problems, and relationship conflict 322 323 (Cerda et al., 2016). However, as is the case for our other findings, the causal direction of these 324 associations, the impacts of other factors on these associations are unknown, and it is likely that the COVID-19 pandemic and associated restrictions impacted respondents' physical 325 326 health, finances and work/study performance independent of their cannabis use. We also found 327 that respondents were more likely to report that cannabis-related pleasure improved as

328 cannabis use increased. Although previous studies have reported enjoyment as a common 329 reason for cannabis use (Lee et al., 2007; Reilly et al., 1998), cannabis use for enjoyment or pleasure purposes remains a relatively unexplored area of research, and a greater understanding 330 of this benefit of cannabis use may be valuable to supplement knowledge on cannabis's known 331 medical and therapeutic benefits (Bilbao & Spanagel, 2022; Vickery & Finch, 2020). 332 333 As the COVID-19 pandemic continues, there will be opportunities for further research 334 to explore these associations in more detail, especially the extent to which cannabis use may or 335 may not impact the physical and mental health, relationships, finances, work/study performance and cannabis-related pleasure among people who use it. In particular, these 336 337 findings highlight a clear a need for the ongoing and improved provision of evidence-based

mental health support throughout the COVID-19 pandemic, particularly targeted at those with a history of mental illness and/or who may engage in potentially risky drug use exacerbated by COVID-19 and associated restrictions. Furthermore, initiatives that encourage people to go outdoors and spend time in nature or engage in other mindful activities that center around selfcare and creating community and purpose may decrease boredom and potentially prevent risky levels of cannabis use.

4.1. Strengths and Limitations

345 Our study's relatively large sample size (n=20,416), with respondents recruited from 13 346 countries, allows for a novel international comparison of changes in cannabis use following COVID-19 restrictions. Our findings are also subject to some limitations. First, the GDS is a 347 348 cross-sectional survey that recruits a self-selected convenience sample of people who use drugs 349 and have an internet connection, limiting our findings' generalizability. The non-compulsory 350 nature of many GDS questions also resulted in missing data across most variables. Third, as the 351 survey only ran between 3 May and 21 June 2020, it is likely that several respondents' 352 cannabis use frequency has subsequently changed again as COVID-19 restrictions have largely

since eased internationally. The accuracy of the data may have also been negatively affected by 353 354 the nature of self-report, as some respondents' answers may be incorrect or subject to recall 355 bias. We also did not measure respondents' changes in the amount of cannabis use, only self-356 reported frequency of use, meaning that some respondents who reported an increase in the number of days of cannabis use may have actually used less cannabis overall, and vice versa. 357 The reported associations between changes in cannabis use and the six outcome measures may 358 359 have also been affected by concurrent use of other substances, which was not accounted for in 360 our analyses. Next, it is possible that some respondents who reported using more or less cannabis may have done so for reasons unrelated to COVID-19. We also did not account for 361 362 differing patterns of use in countries or jurisdictions where adult cannabis use is legal. For 363 example, in some places, such as California in the USA, cannabis dispensaries were considered essential businesses and remained open throughout COVID-19 restrictions (Roberts, 2020). 364 365 Finally, we also did not apply any advanced modelling approaches to account for the large 366 variation in respondent numbers from different countries (such as weighted regression to account for heteroskedasticity due to vary sample sizes across countries). Future research may 367 368 benefit from accounting for concurrent substance use and the jurisdictional legal status of 369 cannabis in more sophisticated modelling (including accounting for varying cluster sizes).

370

5. CONCLUSIONS

Among an international sample of people who used cannabis in the past year, the proportion of respondents who reported no change (38.2%) or an increase (38.3%) in the frequency of cannabis use following the outbreak of the COVID-19 pandemic were comparable. Respondents were most likely to report that the perceived impacts of their changed cannabis use on their mental health, physical health, relationships, finances, work/study performance, and cannabis-related pleasure outcomes stayed the same as before February 2020, but risk of reporting worse mental health following COVID-19 restrictions was

378 highest among those who reported increasing their cannabis use. Furthermore, as respondents' 379 reported cannabis use increased, we found an increased likelihood of respondents reporting that 380 their physical health, finances and work/study performance worsened. This study's unique 381 exploration of the associations of self-reported changes in cannabis use on individuals' 382 perceived mental health, physical health, relationships, finances, work/study performance, and 383 cannabis-related pleasure outcomes adds to a growing body of research describing the impacts 384 of the COVID-19 pandemic on cannabis use, and highlight the need for increased and ongoing 385 evidence-based psychological support targeted at those who may engage in risky drug use 386 exacerbated by COVID-19 and associated restrictions.

387

389	References
390	Agrawal, A., Nurnberger Jr, J. I., Lynskey, M. T., & Bipolar Genome Study. (2011, Feb 28).
391	Cannabis involvement in individuals with bipolar disorder. Psychiatry Res, 185(3),
392	459-461. https://doi.org/10.1016/j.psychres.2010.07.007
393	
394	Australian Bureau of Statistics. (2021). Standard for Sex, Gender, Variations of Sex
395	Characteristics and Sexual Orientation Variables.
396	https://www.abs.gov.au/statistics/standards/standard-sex-gender-variations-sex-
397	characteristics-and-sexual-orientation-variables/latest-release
398	<u>enaracteristics-and-sexual-orientation-variables/ latest-release</u>
399	Australian Criminal Intelligence Commission. (2020). National Wastewater Drug Monitoring
400	
	Program (Report 11). <u>https://www.acic.gov.au/publications/national-wastewater-drug-</u>
401	monitoring-program-reports/report-11-national-wastewater-drug-monitoring-program
402	
403	Barratt, M. J., & Aldridge, J. (2020, Sep). No magic pocket: Buying and selling on drug
404	cryptomarkets in response to the COVID-19 pandemic and social restrictions. Int J
405	Drug Policy, 83, 102894. https://doi.org/10.1016/j.drugpo.2020.102894
406	
407	Barratt, M. J., Ferris, J. A., Zahnow, R., Palamar, J. J., Maier, L. J., & Winstock, A. R. (2017).
408	Moving on From Representativeness: Testing the Utility of the Global Drug Survey.
409	Substance Abuse: Research and Treatment, 11, 1-17.
410	
411	Bartel, S. J., Sherry, S. B., & Stewart, S. H. (2020). Self-isolation: A significant contributor to
412	cannabis use during the COVID-19 pandemic. Subst Abus, 41(4), 409-412.
413	https://doi.org/10.1080/08897077.2020.1823550
414	
415	Benschop, A., van Bakkum, F., & Noijen, J. (2021). Changing Patterns of Substance Use
416	During the Coronavirus Pandemic: Self-Reported Use of Tobacco, Alcohol, Cannabis,
417	and Other Drugs. Front Psychiatry, 12, 633551.
418	https://doi.org/10.3389/fpsyt.2021.633551
419	
420	Bilbao, A., & Spanagel, R. (2022, Aug 19). Medical cannabinoids: a pharmacology-based
421	systematic review and meta-analysis for all relevant medical indications. <i>BMC Med</i> ,
422	20(1), 259. <u>https://doi.org/10.1186/s12916-022-02459-1</u>
423	$20(1), 255. \underline{\text{maps.://doi.org/10.1100/312510/022/02455/1}}$
424	Borgonhi, E. M., Volpatto, V. L., Ornell, F., Rabelo-da-Ponte, F. D., & Kessler, F. H. P. (2021,
425	Jan 20). Multiple clinical risks for cannabis users during the COVID-19 pandemic.
426	Addict Sci Clin Pract, 16(1), 5. https://doi.org/10.1186/s13722-021-00214-0
	Addici Sci Cim Fraci, 10(1), 5. <u>https://doi.org/10.1180/815722-021-00214-0</u>
427	Describer C. C. Nambelle C. D. Distance K. E. Cataviti, I. Tamas 11an, K. N. Casail, E. J.
428	Brenneke, S. G., Nordeck, C. D., Riehm, K. E., Schmid, I., Tormohlen, K. N., Smail, E. J.,
429	Johnson, R. M., Kalb, L. G., Stuart, E. A., & Thrul, J. (2022, Feb). Trends in cannabis
430	use among U.S. adults amid the COVID-19 pandemic. <i>Int J Drug Policy</i> , 100, 103517.
431	https://doi.org/10.1016/j.drugpo.2021.103517
432	
433	Brissot, A., Philippon, A., & Spilka, S. (2020). Résultats de l'enquête Cannabis online 2020.
434	https://www.ofdt.fr/publications/collections/notes/resultats-de-lenquete-cannabis-
435	online-2020/
436	
437	Brook, J. S., Lee, J. Y., Finch, S. J., Seltzer, N., & Brook, D. W. (2013). Adult work
438	commitment, financial stability, and social environment as related to trajectories of

439	marijuana use beginning in adolescence. Subst Abus, 34(3), 298-305.
440	https://doi.org/10.1080/08897077.2013.775092
441	
442 443	Buckner, J. D., Crosby, R. D., Silgado, J., Wonderlich, S. A., & Schmidt, N. B. (2012, Mar). Immediate antecedents of marijuana use: an analysis from ecological momentary
444	assessment. J Behav Ther Exp Psychiatry, 43(1), 647-655.
445	https://doi.org/10.1016/j.jbtep.2011.09.010
446	
447	Campeny, E., Lopez-Pelayo, H., Nutt, D., Blithikioti, C., Oliveras, C., Nuno, L., Maldonado,
448 449	R., Florez, G., Arias, F., Fernandez-Artamendi, S., Villalbi, J. R., Sellares, J., Ballbe, M., Rehm, J., Balcells-Olivero, M. M., & Gual, A. (2020, Apr). The blind men and the
450	elephant: Systematic review of systematic reviews of cannabis use related health harms.
451	Eur Neuropsychopharmacol, 33, 1-35. https://doi.org/10.1016/j.euroneuro.2020.02.003
452 453	Cerda, M., Moffitt, T. E., Meier, M. H., Harrington, H., Houts, R., Ramrakha, S., Hogan, S.,
454	Poulton, R., & Caspi, A. (2016, Nov). Persistent cannabis dependence and alcohol
455	dependence represent risks for midlife economic and social problems: A longitudinal
456	cohort study. Clin Psychol Sci, 4(6), 1028-1046.
457	https://doi.org/10.1177/2167702616630958
458	
459	Chong, W. W., Acar, Z. I., West, M. L., & Wong, F. (2021, Dec 29). A Scoping Review on the
460	Medical and Recreational Use of Cannabis During the COVID-19 Pandemic. Cannabis
461	Cannabinoid Res. https://doi.org/10.1089/can.2021.0054
462	
463	Cohen, K., Weizman, A., & Weinstein, A. (2019, May). Positive and Negative Effects of
464	Cannabis and Cannabinoids on Health. Clin Pharmacol Ther, 105(5), 1139-1147.
465	https://doi.org/10.1002/cpt.1381
466	
467	Daley, D. C. (2013, Dec). Family and social aspects of substance use disorders and treatment. J
468	Food Drug Anal, 21(4), S73-S76. https://doi.org/10.1016/j.jfda.2013.09.038
469	Data da Calliara T. 8 Marca A. (2021) Langet of the COVID 10 and the income this
470	Doherty, L., Sullivan, T., & Voce, A. (2021). Impact of the COVID-19 pandemic on cannabis
471	demand and supply in Australia.
472	
473	EMCDDA. (2020). EMCDDA special report: COVID-19 and drugs – Drug supply via darknet
474	markets. https://www.emcdda.europa.eu/publications/ad-hoc/covid-19-and-drugs-drug-
475	supply-via-darknet-markets_en
476	
477	Fedorova, E. V., Wong, C. F., Conn, B. M., Ataiants, J., Iverson, E., & Lankenau, S. E. (2022,
478	Apr). COVID-19's Impact on Substance Use and Well-Being of Younger Adult
479	Cannabis Users in California: A Mixed Methods Inquiry. J Drug Issues, 52(2), 207-
480	224. <u>https://doi.org/10.1177/00220426211052673</u>
481	
482	Gali, K., Winter, S. J., Ahuja, N. J., Frank, E., & Prochaska, J. J. (2021, Feb 12). Changes in
483	cannabis use, exposure, and health perceptions following legalization of adult
484	recreational cannabis use in California: a prospective observational study. Subst Abuse
485	<i>Treat Prev Policy</i> , 16(1), 16. <u>https://doi.org/10.1186/s13011-021-00352-3</u>
486	
487	Graupensperger, S., Fleming, C. B., Jaffe, A. E., Rhew, I. C., Patrick, M. E., & Lee, C. M.
488	(2021, Apr). Changes in Young Adults' Alcohol and Marijuana Use, Norms, and

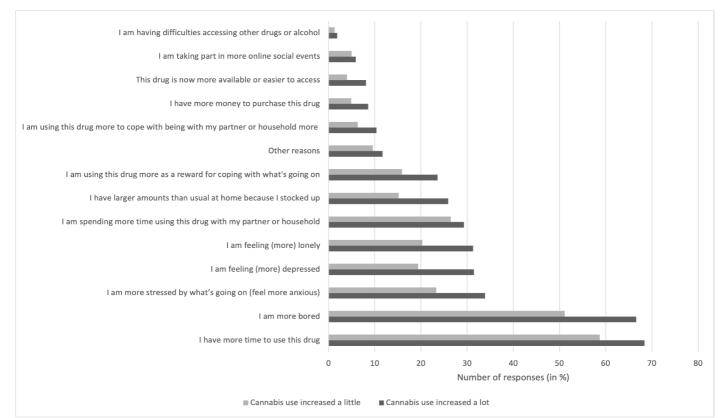
489	Motives From Before to During the COVID-19 Pandemic. J Adolesc Health, 68(4),
490	658-665. https://doi.org/10.1016/j.jadohealth.2021.01.008
491	
492	Guerin, O. (2021, 9 July 2021). Covid-19 pandemic: 'Everything you should not do, Brazil has
493	done'. BBC News. https://www.bbc.com/news/world-latin-america-57733540
494	
495	Hall, W. (2015, Jan). What has research over the past two decades revealed about the adverse
496	health effects of recreational cannabis use? Addiction, 110(1), 19-35.
497	https://doi.org/10.1111/add.12703
498	
499	Hall, W., & Degenhardt, L. (2009, Oct 17). Adverse health effects of non-medical cannabis
500	use. Lancet, 374(9698), 1383-1391. https://doi.org/Doi 10.1016/S0140-6736(09)61037-
501	0
502	
503	Hatoum, A. S., Morrison, C. L., Colbert, S. M. C., Winiger, E. A., Johnson, E. C., Agrawal, A.,
504	& Bogdan, R. (2021, Dec). Genetic Liability to Cannabis Use Disorder and COVID-19
505	Hospitalization. Biol Psychiatry Glob Open Sci, 1(4), 317-323.
506	https://doi.org/10.1016/j.bpsgos.2021.06.005
507	
508	Haydon, K. C., & Salvatore, J. E. (2022, Aug 1). Relationship perceptions and conflict
509	behavior among cannabis users. <i>Drug Alcohol Depend</i> , 237, 109502.
510	https://doi.org/10.1016/j.drugalcdep.2022.109502
511	
512	Henquet, C., Krabbendam, L., de Graaf, R., ten Have, M., & van Os, J. (2006, Oct). Cannabis
513	use and expression of mania in the general population. J Affect Disord, 95(1-3), 103-
514	110. https://doi.org/10.1016/j.jad.2006.05.002
515	110. <u>mps.//doi.org/10.1010/j.jud.2000.002</u>
516	Horwood, L. J., Fergusson, D. M., Coffey, C., Patton, G. C., Tait, R., Smart, D., Letcher, P.,
517	Silins, E., & Hutchinson, D. M. (2012, Dec 1). Cannabis and depression: an integrative
518	data analysis of four Australasian cohorts. <i>Drug Alcohol Depend</i> , 126(3), 369-378.
519	https://doi.org/10.1016/j.drugalcdep.2012.06.002
520	
521	Ingram, I., Kelly, P. J., Deane, F. P., Baker, A. L., Goh, M. C. W., Raftery, D. K., & Dingle, G.
522	A. (2020, Jul). Loneliness among people with substance use problems: A narrative
523	systematic review. <i>Drug Alcohol Rev, 39</i> (5), 447-483.
524	https://doi.org/10.1111/dar.13064
525	<u>https://doi.org/10.1111/ddi.15001</u>
526	Javanbakht, M., Rosen, A., Ragsdale, A., Richter, E. I., Shoptaw, S., & Gorbach, P. M. (2022,
527	Apr). Interruptions in Mental Health Care, Cannabis Use, Depression, and Anxiety
528	during the COVID-19 Pandemic: Findings from a Cohort of HIV-Positive and HIV-
529	Negative MSM in Los Angeles, California. J Urban Health, 99(2), 305-315.
530	https://doi.org/10.1007/s11524-022-00607-9
531	<u>mapsdoi.org/10.100//511021/022/00007/</u>
532	Johnson, E. C., Tillman, R., Aliev, F., Meyers, J. L., Salvatore, J. E., Anokhin, A. P., Dick, D.
533	M., Edenberg, H. J., Kramer, J. R., Kuperman, S., McCutcheon, V. V., Nurnberger, J.
534	I., Jr., Porjesz, B., Schuckit, M. A., Tischfield, J., Bucholz, K. K., & Agrawal, A.
535	(2019, Apr). Exploring the relationship between polygenic risk for cannabis use, peer
536	cannabis use and the longitudinal course of cannabis involvement. <i>Addiction, 114</i> (4),
537	687-697. https://doi.org/10.1111/add.14512
538	007-077. <u>https://doi.org/10.1111/add.14512</u>
550	

539	Lázaro-Pérez, C., Martínez-López, J. Á., & Gómez-Galán, J. (2020). Addictions in Spanish
540	College Students in Confinement Times: Preventive and Social Perspective. Social
541	Sciences, 9(11). https://doi.org/10.3390/socsci9110195
542	
543	Lee, C. M., Neighbors, C., & Woods, B. A. (2007, Jul). Marijuana motives: young adults'
544	reasons for using marijuana. Addict Behav, 32(7), 1384-1394.
545	https://doi.org/10.1016/j.addbeh.2006.09.010
546	
547	Manthey, J., Kilian, C., Carr, S., Bartak, M., Bloomfield, K., Braddick, F., Gual, A., Neufeld,
548	M., O'Donnell, A., Petruzelka, B., Rogalewicz, V., Rossow, I., Schulte, B., & Rehm, J.
549	(2021, Apr 26). Use of alcohol, tobacco, cannabis, and other substances during the first
550	wave of the SARS-CoV-2 pandemic in Europe: a survey on 36,000 European substance
551	users. Subst Abuse Treat Prev Policy, 16(1), 36. https://doi.org/10.1186/s13011-021-
552	<u>00373-y</u>
553	
554	Moore, T. H. M., Zammit, S., Lingford-Hughes, A., Barnes, T. R. E., Jones, P. B., Burke, M.,
555	& Lewis, G. (2007, Jul-Aug). Cannabis use and risk of psychotic or affective mental
556	health outcomes: a systematic review. Lancet, 370(9584), 319-328.
557	https://doi.org/10.1016/S0140-6736(07)61162-3
558	
559	Neyman, J., & Pearson, E. S. (1928, Jul). On the use and interpretation of certain test criteria
560	for purposes of statistical inference Part I [Article]. <i>Biometrika, 20A</i> , 175-240.
561	https://doi.org/10.1093/biomet/20A.1-2.175
562	
563	Nin, M. S., Heidrich, N., Almeida, F. B., Izolan, L. R., Constant, H., Freese, L., Gomez, R., &
564	Barros, H. M. T. (2022). Social distancing and changes in drug use: Results from a
565	cross-sectional study during the COVID-19 pandemic in Brazil. <i>Front Psychiatry</i> , 13,
566	999372. https://doi.org/10.3389/fpsyt.2022.999372
567	Olevilium S. E. Stauman C. W. & Louislatta S. P. (2021) Could Complicital De a
568	O'Sullivan, S. E., Stevenson, C. W., & Laviolette, S. R. (2021). Could Cannabidiol Be a
569 570	Treatment for Coronavirus Disease-19-Related Anxiety Disorders? <i>Cannabis</i>
570 571	Cannabinoid Res, 6(1), 7-18. <u>https://doi.org/10.1089/can.2020.0102</u>
572	Parker, M. A., & Anthony, J. C. (2018, Jul). Population-level predictions from cannabis risk
573	perceptions to active cannabis use prevalence in the United States, 1991-2014. Addict
574	Behav, 82, 101-104. https://doi.org/10.1016/j.addbeh.2018.02.030
575	<i>Denav</i> , 82, 101-104. <u>https://doi.org/10.1010/j.add0cii.2018.02.030</u>
576	Peacock, A., Karlsson, A., Uporova, J., Price, O., Chan, R., Swanton, R., Gibbs, D., Bruno, R.,
577	Dietze, P., Lenton, S., Salom, C., Degenhardt, L., & Farrell, M. (2020). Australian
578	Drug Trends 2020: Key Findings from the National Ecstasy and Related Drugs
579	Reporting System (EDRS) Interviews.
580	https://ndarc.med.unsw.edu.au/sites/default/files/ndarc/resources/National%20EDRS%
581	20Annual%20Report%202020 update2.pdf
582	207 mildul/02010eport/0202020_updute2.pdf
583	Pereira, C. F., Vargas, D., Toneloto, F. L., Ito, V. D., & Volpato, R. J. (2022). Implications of
584	Cannabis and Cannabinoid Use in COVID-19: Scoping Review. <i>Rev Bras Enferm</i> ,
585	75Suppl 1(Suppl 1), e20201374. https://doi.org/10.1590/0034-7167-2020-1374
586	$TF = \left(11 \right) $

587	Reilly, D., Didcott, P., Swift, W., & Hall, W. (1998, Jun). Long-term cannabis use:
588	characteristics of users in an Australian rural area. Addiction, 93(6), 837-846.
589	https://doi.org/10.1046/j.1360-0443.1998.9368375.x
590	
591	Roberts, C. (2020). California Marijuana Stores Still Essential, Can Remain Open During
592	Latest COVID-19 Shutdown. Forbes.
593	https://www.forbes.com/sites/chrisroberts/2020/12/04/california-marijuana-stores-still-
594	essential-can-remain-open-during-latest-covid-19-shutdown/?sh=2240c1f61cdb
594 595	essential-call-remain-open-during-fatest-covid-19-silutdowil/?sil=2240c1101cdb
	State Come (2010) State Statistical Software Release 16 In TV. State Come IIC
596	StataCorp. (2019). <i>Stata Statistical Software: Release 16</i> . In TX: StataCorp LLC.
597	https://www.stata.com/new-in-stata/
598	
599	StataCorp. (2021). Stata 17 Base Reference Manual.
600	
601	Sutherland, R., Baillie, G., Memedovic, S., Hammoud, M., Barratt, M., Bruno, R., Dietze, P.,
602	Ezard, N., Salom, C., Degenhardt, L., Hughes, C., & Peacock, A. (2020). Key findings
603	from the 'Australians' Drug Use: Adapting to Pandemic Threats' (ADAPT) Study
604	(ADAPT Bulletin no. 1, Issue. <u>http://doi.org/10.26190/5efbef7c8d821</u>
605	
606	Temple, E. C., Driver, M., & Brown, R. F. (2014). Cannabis use and anxiety: is stress the
607	missing piece of the puzzle? Front Psychiatry, 5, 168.
608	https://doi.org/10.3389/fpsyt.2014.00168
609	
610	UNODC. (2020). World Drug Report (2: Drug use and Health Consequences, Issue.
611	$= \cdots = \cdots$
612	UNODC. (2021). World Drug Report 2021.
613	https://www.unodc.org/res/wdr2021/field/WDR21_Booklet_5.pdf
614	
615	Vanderbruggen, N., Matthys, F., Van Laere, S., Zeeuws, D., Santermans, L., Van den Ameele,
616	S., & Crunelle, C. L. (2020). Self-Reported Alcohol, Tobacco, and Cannabis Use
617	during COVID-19 Lockdown Measures: Results from a Web-Based Survey. Eur Addict
618	<i>Res, 26</i> (6), 309-315. https://doi.org/10.1159/000510822
619	Res, 20(0), 509-515. <u>https://doi.org/10.1159/000510822</u>
620	Vickery, A. W., & Finch, P. M. (2020, Nov). Cannabis: are there any benefits? Intern Med J,
621	50(11), 1326-1332. <u>https://doi.org/10.1111/imj.15052</u>
622	
623	Volkow, N. D. (2020, Jul 7). Collision of the COVID-19 and Addiction Epidemics. Ann Intern
624	Med, 173(1), 61-62. <u>https://doi.org/10.7326/M20-1212</u>
625	
626	Werse, B., & Kamphausen, G. (2021). Cannabis und Coronavirus SARS-CoV-2 – Eine Online-
627	Kurzbefragung während der Kontaktbeschränkungen in der frühen Phase der Pandemie.
628	Suchtherapie, 22(02), 101-106. https://doi.org/10.1055/a-1336-8005
629	
630	World Health Organization. (2016). The health and social effects of nonmedical cannabis use.
631	WHO Press.
632	
633	World Health Organization. (2020). WHO announces COVID-19 outbreak a pandemic.
634	https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-
635	19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic
636	

		Number (%) [missing]				
Characteristic	Full sample	Cannabis	Cannabis use	Cannabis	Cannabis use	Cannabis use
	(n=20,417) ^a	use	increased a	use	decreased a	stayed the
		increased a	little	decreased a	lot	same
		lot	(n=4,613)	little	(n=2,797)	(n=7,807)
		(n=3,211)		(n=1,680)		
Gender						
Cis woman	7,478 (36.7)	1,207 (37.6)	1,751 (38.0)	582 (34.6)	1,082 (38.7)	2,759 (35.3)
Cis man	12,533 (61.4)	1,942 (60.5)	2,774 (60.1)	1,063 (63.3)	1,660 (59.4)	4,897 (62.7)
Trans woman	47 (0.2)	4 (0.1)	11 (0.2)	5 (0.3)	5 (0.2)	21 (0.3)
Trans man	58 (0.3)	11 (0.3)	8 (0.2)	9 (0.5)	9 (0.3)	20 (0.3)
Non-binary	292 (1.4)	47 (1.5)	69 (1.5)	21 (1.3)	41 (1.4)	110 (1.4)
Age: Median (Interquartile Range [IQR])	27 (22-35)	26 (21-32)	27 (22-34)	26 (22-34)	25 (21-32)	29 (23-37)
Ethnicity ^b						
White	15,545 (76.1)	2,371 (73.8)	3,658 (79.3)	1,275 (76.0)	1,981 (68.6)	6,094 (78.1)
Mixed	840 (4.1)	153 (4.8)	179 (3.9)	73 (4.3)	145 (5.2)	276 (3.6)
Hispanic/ Latino	237 (1.2)	33 (1.0)	48 (1.0)	15 (0.9)	71 (2.5)	68 (0.9)
Asian	161 (0.8)	36 (1.1)	34 (0.7)	12 (0.7)	27 (1.0)	49 (0.6)
Black/ African American	137 (0.7)	25 (0.8)	22 (0.5)	12 (0.7)	37 (1.3)	41 (0.5)
Aboriginal/Māori	63 (0.3)	20 (0.6)	13 (0.3)	0 (0.0)	5 (0.2)	25 (0.3)
Native American	1 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Other	215 (1.0)	46 (1.4)	39 (0.8)	16 (1.0)	36 (1.3)	72 (0.9)
	[3,218 (15.7)]	[526 (16.4)]	[620 (13.4)]	[277 (16.5)]	[558 (19.9)]	[1,182 (15.1)]
Country of Residence						
Australia	1,007 (4.9)	252 (7.8)	232 (5.0)	64 (3.8)	101 (3.6)	340 (4.4)
Austria	494 (2.4)	72 (2.3)	123 (2.7)	41 (2.4)	65 (2.3)	186 (2.4)
Brazil	1,323 (6.5)	141 (4.4)	220 (4.8)	126 (7.6)	443 (15.8)	368 (4.7)
Denmark	315 (1.5)	65 (2.0)	87 (1.9)	23 (1.4)	26 (1.0)	105 (1.3)
France	3,040 (14.9)	498 (15.5)	580 (12.6)	260 (15.5)	536 (19.2)	1,115 (14.3)
Germany	7,792 (38.2)	1,048 (32.6)	1,850 (40.1)	669 (39.8)	869 (31.1)	3,248 (41.6)
Greece	235 (1.2)	30 (0.9)	38 (0.8)	21 (1.3)	62 (2.2)	74 (1.0)
Ireland	909 (4.5)	173 (5.4)	181 (3.9)	77 (4.6)	168 (6.0)	297 (3.8)
Netherlands	1,728 (8.5)	331 (10.3)	453 (9.8)	117 (7.0)	137 (4.9)	665 (8.5)
New Zealand	923 (4.5)	167 (5.2)	207 (4.5)	64 (3.8)	86 (3.1)	386 (4.9)
Switzerland	1,227 (6.0)	152 (4.8)	294 (6.4)	86 (5.1)	132 (4.7)	552 (7.1)
United Kingdom	950 (4.6)	195 (6.1)	218 (4.7)	90 (5.4)	132 (4.7)	297 (3.8)
United States	474 (2.3)	87 (2.7)	130 (2.8)	39 (2.3)	40 (1.4)	174 (2.2)

 Table 1. Socio-demographic characteristics for the sample of people who reported in the number of THC-containing cannabis usage days when compared to February 2020 (pre-COVID restrictions)


Residential Location						
City / Urban area	13,908 (68.1)	2,237 (69.7)	3,191 (69.2)	1,148 (68.3)	1,852 (66.2)	5,273 (67.5)
Regional area	4,058 (19.9)	595 (18.5)	877 (19.0)	331 (19.7)	588 (21.0)	1,605 (20.6)
Remote area	1,063 (5.2)	151 (4.7)	211 (4.6)	94 (5.6)	164 (5.9)	423 (5.4)
	[1,388 (6.8)]	[228 (7.1)	[334 (7.2)]	[107 (6.4)]	[193 (6.9)]	[506 (6.5)]
Employment status	- , / -					- , /-
Employed	13,779 (67.5)	2,158 (67.2)	3,220 (69.8)	1,067 (63.5)	1,612 (57.6)	5,506 (70.5)
Unemployed	6,484 (31.8)	1,026 (32.0)	1,373 (29.8)	595 (35.4)	1,164 (41.6)	2,235 (28.6)
	[154 (0.8)]	[27 (0.8)	[20 (0.4)]	[18 (1.1)]	[21 (0.8)]	[66 (0.9)]
Lifetime diagnoses of mental health and/or developmental condition						
Yes	6,032 (29.5)	1,032 (32.1)	1,323 (28.7)	509 (30.3)	912 (32.6)	2,189 (28.0)
No	10,465 (51.3)	1,390 (43.3)	2,340 (50.7)	889 (52.9)	1,427 (51.0)	4,259 (54.6)
	[3,920 (19.2)	[789 (24.6)]	[950 (16.8)]	[282 (16.8)]	[458 (16.4)]	[1,359 (17.4)]
Number of days of cannabis use in the past 30 days: Median (IQR)	7 (1-26)	20 (10-30)	15 (5-29)	3 (0-15)	0 (0-3)	3 (0-30)
	[445 (2.2)]	[73 (2.3)]	[133 (2.9)]	[37 (2.2)]	[77 (2.8)]	[122 (1.56)]
Settings in which cannabis was used in last 30 days#						
Alone at home with no contact with others	8,634 (42.3)	1,940 (60.4)	2,577 (55.9)	606 (36.1)	549 (19.6)	2,931 (37.5)
Alone at home with others co-present (e.g., video calls)	4,041 (19.8)	988 (30.8)	1,271 (27.6)	283 (16.8)	202 (7.2)	1,289 (16.5)
With household members at home	5,996 (29.4)	1,350 (42.0)	1,893 (41.0)	362 (21.5)	288 (10.3)	2,079 (26.6)
With household members and other people co-present (e.g., video calls)	1,680 (8.2)	448 (14.0)	542 (11.7)	95 (5.7)	54 (1.9)	535 (6.9)
Music festivals	466 (2.3)	113 (3.5)	129 (2.8)	36 (2.1)	41 (1.5)	144 (1.8)
Nightclubs	352 (1.7)	91 (2.8)	94 (2.0)	25 (1.5)	28 (1.0)	108 (1.4)
House parties	2,149 (10.5)	479 (14.9)	588 (12.7)	168 (10.0)	133 (4.8)	758 (9.7)
Smaller gatherings	3,292 (16.1)	735 (22.9)	967 (21.0)	273 (16.3)	256 (9.2)	1,030 (13.2)
Underground parties/ events	466 (2.3)	126 (3.9)	115 (2.5)	31 (1.8)	36 (1.3)	152 (1.9)
Street or public places	3,592 (17.6)	834 (26.0)	1,095 (23.7)	246 (14.6)	258 (9.2)	1,131 (14.5)
	[2,468 (18.2)]	[453 (16.1)]	[639 (15.9)]	[202 (20.2)]	[229 (23.8)]	[929 (19.7)]
Using cannabis alone more or less often when compared to February $2020^{\#}$						
A lot less often	889 (4.4)	112 (3.5)	76 (1.6)	105 (6.3)	483 (17.3)	111 (1.4)
A little less often	939 (4.6)	76 (2.4)	121 (2.6)	313 (18.6)	114 (4.1)	260 (3.3)
About the same	4,523 (22.2)	259 (8.1)	1,023 (22.2)	293 (17.4)	111 (4.0)	2,814 (36.0)
A little more often	3,181 (15.6)	672 (20.9)	1,746 (37.8)	123 (7.3)	60 (2.1)	569 (7.3)
A lot more often	1,953 (9.6)	1,332 (41.5)	337 (7.3)	30 (1.8)	59 (2.1)	190 (2.4)
Does not use cannabis alone	1,530 (7.5)	244 (7.6)	483 (10.5)	107 (6.4)	95 (3.4)	575 (7.4)
Unsure/Don't know	219 (1.1)	41 (1.3)	71 (1.5)	11 (0.6)	15 (0.5)	69 (0.9)
	[7,183 (35.2)]	[475 (14.8)]	[704 (15.3)]	[698 (41.6)]	[1,860 (66.5)]	[3,219 (41.2)]

IQR=interquartile range; ^a The full sample includes 309 participants who answered "don't know/ unsure" for the question asking whether their number of cannabis usage days had changed compared to before COVID-19 restrictions; ^b Regulations in France prevented questioning around ethnicity, leading to higher rates of missing data on this variable; [#]Multiple responses permitted

	Number (%) [missing]					
Characteristic	Cannabis use	Cannabis use	Cannabis use			
	increased a lot	increased a little	decreased a little			
	(n = 3,211)	(n = 4,613)	(n = 1,680)	(n = 2,797)		
Impact of changed cannabis use on						
mental health ($n = 12,143$)						
Worse	806 (25.1)	646 (14.0)	156 (9.3)	341 (12.2)		
Stayed the same	1,574 (49.0)	2,974 (64.5)	1,192 (70.9)	1,611 (57.6)		
Better	740 (23.1)	865 (18.7)	248 (14.8)	650 (23.2)		
Not applicable	55 (1.7)	81 (1.8)	59 (3.5)	145 (5.2)		
	[36 (1.1)]	[47 (1.0)]	[25 (1.5)]	[50 (1.8)]		
Impact of changed cannabis use on						
physical health $(n = 12, 101)$						
Worse	959 (29.9)	742 (16.1)	78 (4.7)	138 (4.9)		
Stayed the same	1,864 (58.1)	3,356 (72.8)	1,296 (77.1)	1,757 (62.8)		
Better	275 (8.6)	342 (7.4)	216 (12.9)	687 (24.6)		
Not applicable	59 (1.8)	112 (2.4)	61 (3.6)	159 (5.7)		
	[54 (1.7)]	[61 (1.3)]	[29 (1.7)]	[56 (2.0)]		
Impact of changed cannabis use on relationships $(n = 12,009)$						
Worse	399 (12.4)	312 (6.8)	85 (5.1)	192 (6.9)		
Stayed the same	2,075 (64.6)	3,426 (74.3)	1,328 (79.0)	1,944 (69.5)		
Better	530 (16.5)	583 (12.6)	126 (7.5)	339 (12.1)		
Not applicable	134 (4.2)	195 (4.2)	101 (6.0)	240 (8.6)		
11	[73 (2.3)]	[97 (2.1)]	[40 (2.4)]	[82 (2.9)]		
Impact of changed cannabis use on						
finances $(n = 11,909)$						
Worse	894 (27.8)	741 (16.1)	65 (3.9)	81 (2.9)		
Stayed the same	1,994 (62.1)	3,385 (73.4)	1,222 (72.7)	1,683 (60.2)		
Better	116 (3.6)	182 (3.9)	248 (14.8)	710 (25.4)		
Not applicable	122 (3.8)	164 (3.6)	94 (5.6)	208 (7.4)		
11	[85 (2.7)]	[141 (3.0)]	[51 (3.0)]	[115 (4.1)]		
Impact of changed cannabis use on						
work/study performance (n =						
11,896)						
Worse	917 (28.6)	781 (17.0)	100 (6.0)	159 (5.6)		
Stayed the same	1,684 (52.4)	3,082 (66.8)	1,236 (73.6)	1,781 (63.7)		
Better	218 (6.8)	274 (5.9)	153 (9.1)	416 (14.9)		
Not applicable	288 (9.0)	327 (7.1)	142 (8.4)	338 (12.1)		
11	[104 (3.2)]	[149 (3.2)]	[49 (2.9)]	[103 (3.7)]		
Impact of changed cannabis use on						
cannabis-related						
pleasure/enjoyment ($n = 11,975$)						
Worse	631 (19.6)	603 (13.1)	229 (13.6)	474 (16.9)		
Stayed the same	1,294 (40.3)	2,596 (56.3)	1,063 (63.3)	1,478 (52.9)		
Better	1,158 (36.1)	1,213 (26.3)	245 (14.6)	353 (12.6)		
Not applicable	51 (1.6)	83 (1.8)	103 (6.1)	401 (14.3)		
PP	[77 (2.4)]	[118 (2.5)]	[40(2.4)]	[91 (3.3)]		

 Table 2. Cannabis use patterns and impacts for the full sample and according to change in THC-containing cannabis use

#Multiple responses permitted

Figure 1A. Reported reasons for increased cannabis use when compared to February 2020.

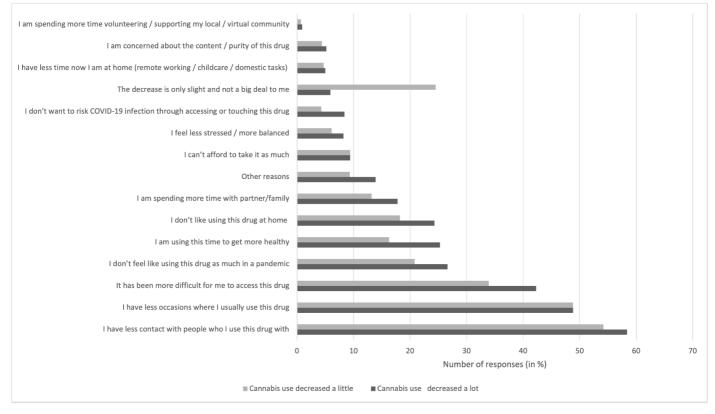


Figure 1B. Reported reasons for decreased cannabis use when compared to February 2020.

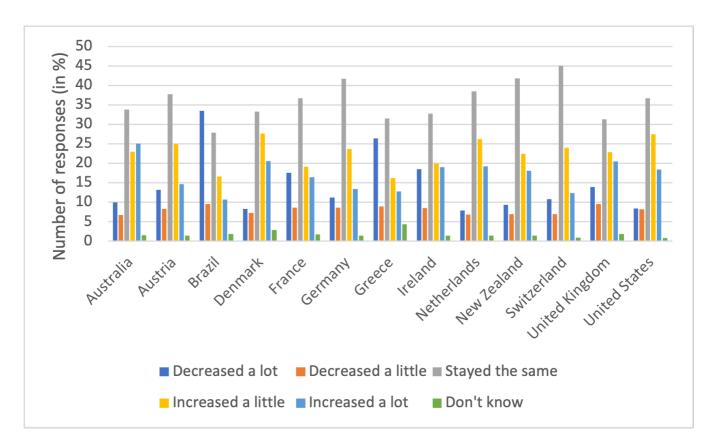


Figure 2. Changes in cannabis use compared to February 2020 by country

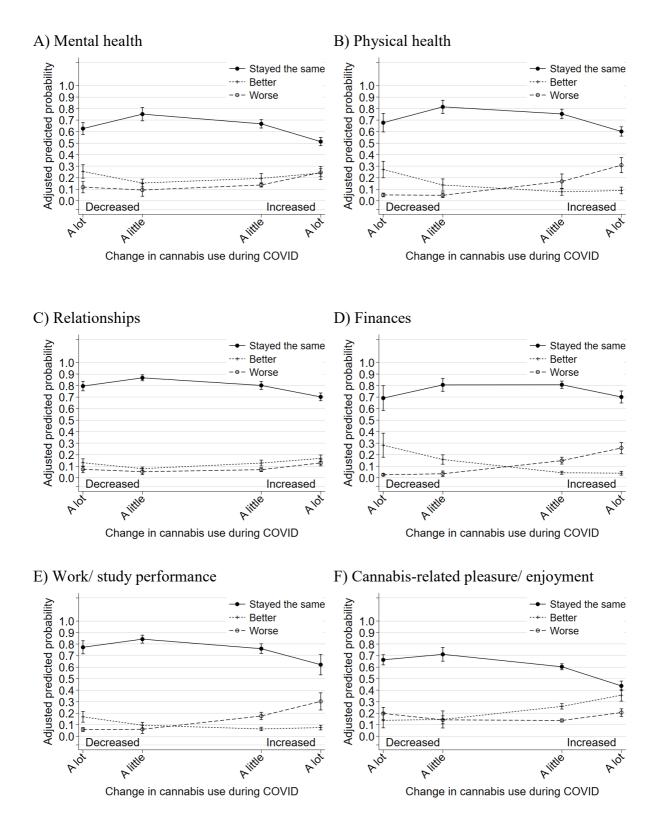


Figure 3. Predicted probabilities of the reported impacts of changes in cannabis use when compared to February 2020 (after adjusting for cisgender and age and clustering for country).