

WWW.BROOKES.AC.UK/GO/RADAR

RADAR

Research Archive and Digital Asset Repository

Casado, R, Younas, M and Tuya, J (2013) Multi-dimensional criteria for testing web services transactions.

Casado, R, Younas, M and Tuya, J (2013) Multi-dimensional criteria for testing web services transactions. Journal

of Computer and System Sciences, 79 (7). pp. 1057-1076.

Doi: 10.1016/j.jcss.2013.01.020

This version is available: https://radar.brookes.ac.uk/radar/items/bafa8853-f6bc-59c9-9332-e44489a813e3/1/

Available on RADAR: July 2013
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for
personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted
extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed
in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the postprint version of the journal article. Some differences between the published version and this
version may remain and you are advised to consult the published version if you wish to cite from it.

https://radar.brookes.ac.uk/radar/items/bafa8853-f6bc-59c9-9332-e44489a813e3/1/

Corresponding author: Rubén Casado, University of Oviedo, Spain
Email: rcasado@uniovi.es

Multi-dimensional Criteria for Testing Web Services Transactions
Rubén Casadoa, Muhammad Younasb, Javier Tuyaa

aDepartamento de Informática
University of Oviedo, Spain

bDepartment of Computing and Communication Technologies
Oxford Brookes University, Oxford, United Kingdom

Abstract

Web services (WS) transactions are important in order to reliably compose distributed and autonomous services into
composite web services and to ensure that their execution is consistent and correct. But such transactions are generally
complex and they require longer processing time, and manipulate critical data. Thus various techniques have been
developed in order to perform quality assessment of WS transactions in terms of response time efficiency, failure
recovery and throughput. This paper focuses on the testing aspect of WS transactions — a key issue that has not been
examined in the literature. Accordingly it proposes multi-dimensional criteria for testing the WS transactions. The
proposed criteria have the potential to capture the behaviour of WS transactions and to analyze and classify the
possible (failure) situations that effect the execution of such transactions. These criteria are used to generate various
test cases and to provide (WS transactions) tester with flexibility of adjusting the method in terms of test efforts and
effectiveness. The proposed criteria have been designed, implemented and evaluated through a case study and a
number of experiments have been performed. The evaluation shows that these criteria have the capability to
effectively generate test cases for testing WS transactions as well as enable tester to decide on the trade-off between
test efforts and the quality.

Keywords: web services, transactions, software testing, test case generation, mutation, classification-tree

1. Introduction

Web services (WS) are self-described software applications which can be advertised, discovered, and used over the
web [1]. WS expose application functionality using high level programmatic interfaces such as WSDL. The
composition of web services (i.e., composite web services) enables inter and intra organisational collaboration and
realises the true vision of modern Business-to-Business (B2B) practice and processes [2]. Transactions are one of the
most fundamental concepts in delivering reliable application processing and ensuring data integrity in web services.
However, transactions in web services are different from traditional transactions which support ACID (Atomicity,
Consistency, Isolation and Durability) properties. Characteristics such as long-running, business requirements and
network latencies however make it difficult for WS transactions to abide by the strict rules of ACID properties.

WS transactions are defined as sequences of activities that are executed under certain constraints in order to
maintain application reliability, correctness and data consistency. The management of transactional activities
complicates the business logic of web services as their execution requires careful coordination, accounting for fault-
tolerance, correct process termination and cancelation, without undesirable consequences at any stage of the execution.
Numerous models and protocols have been developed for WS transactions which include Business Transaction
Protocol (BTP) [3], Web Services Business Activity (WS-BA) [4] and Web Services Transaction Management (WS-
TXM) [5], among others [6].

Similarly, current research proposes various solutions for testing the (non-transactional) web services [7, 8]. But
testing of WS transactions has not been researched yet. The process of testing the WS transactions is harder than
testing non-transactional web services due to several reasons. First, WS transactions involve hierarchies of interactive
activities between distributed systems that should execute in atomic manner. WS transactions are more complex
compared to classical database transactions as they involve cooperation among multiple parties, span autonomous and
independent partners, and have long duration. Second, WS transactions do not have a homogeneous transaction model
such as the ACID model. Instead they are designed and developed using multiple transaction models and protocols
and different Web services technologies. Such diversity of models and technologies also complicates the process of
testing the WS transactions. Third, various kinds of failures may happen during the processing of WS transactions,
including: (i) technical failures such as communication, system and software failures. Such failures result in loss of

2

messages, processing of services, and inconsistency of data. (ii) service level failures such as service acquisition
failures wherein services cannot be acquired due to unavailability of the desired services, payment problems, or
service cancellation. Fourth, individual behaviours (e.g., states and transitions) and relationships (e.g., execution order
and flow) of services taking part in WS transactions cannot be easily determined. This is due to the fact that such
services are heterogeneous and autonomous and thus they have different behaviours and relationships among their
activities [6, 9]. In summary, testing of WS transactions involves different challenges due to the complex nature of the
environment, distinct behaviours of individual services, the relationships between services, the sharing of data and the
consequential risk of data inconsistency.

To address the above challenges, we present multi-dimensional criteria for testing the WS transactions [10]. The
criteria define three dimensions; Level, Feature and Depth. The Level dimension defines the granularity level of
testing, i.e., testing WS transactions at different levels such as activity (web service) level [6], nested subtransaction or
overall transaction level. The Feature defines the source used to identify the situations to be tested (test conditions).
For example, the relationships between activities, the execution flow of activities or the data elements shared by the
activities of a WS-transaction. The Depth is related to test coverage items, designing of the test cases, and the cost-
benefit trade-off of testing the WS transactions. Note that in terms of standard software testing terminology, the
proposed criteria belong to the ‘integration testing’ category.

Contributions of this paper are as follows:

(i) A method for designing test cases for WS transactions. We present systematic multi-dimensional criteria to
identify test conditions and test coverage items by analysing the existing dependencies between the involved
activities.

(ii) A family of test criteria. Different criteria have been proposed to combine the test coverage items and to adjust
the test efforts.

(iii) We have evaluated the proposed criteria using a case study which has been widely discussed in the literature [11-
15]. The test suites generated using the different test criteria were executed in mutated versions of the program.
The aim is to measure the quality of test cases and to prove the effectiveness of the criteria.

The rest of the paper is structured as follows. Section 2 reviews related works on WS transactions and verification
and validation of transactional processes. Section 3 defines the scope of testing the WS transactions. Section 4
analyses the dependencies between activities from a testing point of view. Section 5 describes how the proposed
criteria use such analysis to design the test cases. Section 6 illustrates the evaluation of the criteria and discusses the
experimental results. Section 7 concludes the paper.

2. Related Work

Existing literature contains various strategies and solutions to test classical transactions, in the areas of databases
[16, 17] or system-on-chips (SoCs) at electronic system level [18, 19]. Similarly, work on performance testing and
evaluation of transactions has been received significant attention from existing work [20-22]. In addition, work on
verification and validation of classical as well as WS transactions has been carried out in the literature. The authors in
[23] developed a model for communicating hierarchical timed automata in order to describe long-running transactions.
The aim is to allow the verification of properties using model checking. The work presented in [24] translates
programs from compensations to tree automata in order to verify compensating transactions. Channel-based
coordination language, Reo, has been used in order to model long-lived transactions and to verify their properties
using model checking technology [25]. Further, authors in [26] use event calculus to validate the transactional
behaviour of WS compositions. The work in [27] proposes a formal model to verify requirements for relaxed
atomicity and another approach in [9] uses Accepted Termination States (ATS) for ensuring the relaxed atomicity of
transactions.

The aforementioned literature presents an interesting work on addressing various issues. But it lacks research on
testing the WS transactions. Various and models and protocols have been developed for WS transactions including the
classical ACID models, advanced or extended transaction models. Two Phase Commit (2PC) protocol and its variants
[28] have commonly been used for maintaining ACID properties. ACID properties are vital for WS transactions that
need strict data consistency. However, they are not suitable for long running applications due to resource
locking/blocking problems. Advanced transaction models have been developed to address 2PC and ACID related

3

issues. These includes, nested transaction model [29], SAGA model [30], open-nested [31], Split-join [32], Contracts
[33], Flex [34], and WebTram [35]. The underlying strategy of these models is to allow compensation of partially
completed transactions in order to maintain data consistency and reliability. Based on the previous transaction models
several standard specifications have been developed for WS transactions. For instance, BTP [3] adapts 2PC for short
lived transactions and nested transaction model for long-lived transactions. WS-CAF [5] is a set of WS specifications
for applications composed of multiple WS used in combination. WS-CAF uses WT-TXM to manage the transactions.
WT-TXM defines three models, ACID Transaction (TXACID), Long Running Transaction (TXLRA) and Business
Transaction Process (TXBP) that address different scenarios. Web Services Atomic Transactions (WS-AT) [36] and
WS-BA [4] are built on top of Web Services Coordination (WS-COOR) [37] and they follow its coordination
mechanism. WS-AT follows 2PC protocol while WS-BA uses the SAGA model.

In addition, various research endeavours have been made in testing (non-transactional) web services. For instance,
the authors in [7, 8] survey various approaches related to testing web services. Similarly, the work in [38] reviews
formal approaches of web services testing. Testing of web services composition has been investigated in [39, 40]. The
work presented in [41] uses the Category Partition methodology in order to define test cases for web services.
However, this work focuses on non-transactional web services. In our previous works we devised a general framework
for testing web services transactions using risk-based testing approach and taking into account individual participants
such as executor [6, 12, 42]. In this paper we focus on the overall testing of WS Transaction at different dimensions.
We also use dependencies as test basis for WS transactions [43, 44] for defining different test criteria.

3. Testing of WS transactions: Multi-dimensional criteria

Software testing has been used to systematically explore the behaviour of a software system or a component in
order to detect unexpected behaviours. Software testing techniques provide guidance to design test cases using some
information about the Software Under Test (SUT), for example, the workflow specification or a model of the WS
transactions (as in our case). They allow for systematically identifying the most relevant conditions to test the most
important values for each condition. Ideally, all the possible situations of the SUT should be tested. But this is not
feasible since even if the SUT has a simple logical structure, the number of all possible combinations of situations can
be infinite. Furthermore, the test process consumes resources such as time, cost and other resources. For these reasons,
testing techniques are used in order to ensure that testing is carried within the constraints of available resources.

Before explaining the proposed multi-dimensional criteria, first we introduce some basic concepts and definitions.
These are diagrammatically represented in Figure 1.

Test basis: These represent all sources from which the requirements of a component or a system can be inferred.
Examples of test basis are the functional requirements document or the activity diagrams of a system.

Test items: Test basis are broken down into test items which represent the minimal functional unit that can be
tested in isolation. Test items are, therefore, smaller units of a system such as a specific process or a piece of code.

Test condition: For each test item a set of test conditions is derived. A test condition is an item or event of a
component or a system that could be verified by one or more test cases; e.g. a function, transaction, feature, quality
attribute, or structural element.

Test coverage item: For each test condition several test coverage items can be specified. A test coverage item is an
entity or a property with a concrete value derived from a test condition; e.g. a logical value in a decision or a concrete
state of a statechart.

Test case: The test coverage items must be covered by the test cases. In fact, a test case exercises a combination of
test coverage items. A test case is defined as set of input values, execution pre-conditions, expected results and
execution post-conditions, that cover a set of test coverage items.

Test suite: The set of test cases is called a test suite.

4

Figure. 1. Test case design concepts

In the following we explain the proposed multi-dimensional criteria for testing the WS transactions.

3.1. Level dimension: Test Items

The level dimension refers to the granularity level of testing. It defines the test items which include:

Executor or Sub-Transaction Level: This represents testing at the executor or sub-transaction level. In the
proposed model, each executor represents a participant which is responsible for executing and terminating a sub-
transaction of a WS transaction [45]. In other words, the sub-transactions or activities that compose a WS transaction
are carried out by executors. When a web service is enrolled in a WS transaction, it must execute in a way that
complies with an agreed outcome of the overall WS transaction. In the proposed criteria, the first level of testing
considers each executor as a test item. The test cases for this level have to exercise different situations that an executor
has to manage during its life-cycle.

WS Transaction Level: This represents testing at the overall WS transaction level. A WS transaction is
represented as a flow of related activities or sub-transactions. Such relations are specified by dependencies between the
activities of a transaction. The constraints defined by the dependencies must be tested. Thus at this level, dependencies
are considered as test items. Test cases at this level must exercise different possible situations during the execution
flow of the activities in order to detect possible faults that may occur in enforcing dependencies between activities.

Recursive or Hybrid Level: A WS transaction is composed of different activities where each activity can be an
atomic task or another subtransaction of a WS transaction. Thus the above executor and transaction levels can be
applied recursively.

3.2. Feature dimension: Test conditions

Flow: An executor passes through different states during the execution of an activity [6]. The dependencies in a
WS transaction define the order of and constraints on the execution of activities. Thus, for executor and transaction
levels, a control flow analysis can be derived to identify the test conditions. At the executor level, the flow is defined
by the state transition model. Therefore, the test conditions can be defined in terms of the coverage of a particular set
of elements in the structure of such model. At the transaction level, the flow is defined by the dependencies involved
in the composition of a WS transaction. So the analysis should focus on the type of dependency and the possible
behaviours of the involved participants.

Data: An executor generally accesses data elements (stored in data sources) during its execution. Such data
elements can be concurrently accessed and updated by more than one activity of WS transactions. Thus data elements
must be taken into account during the test process as they are crucial to produce correct outcome of WS transactions.
By looking for patterns of data usage, risky situations are identified and more test conditions can be defined.

Control: The decision of an executor to move from one state to another may depend on the value of one or more
data elements. This is called a control decision. In addition, there are control decisions during the flow of execution
specified by the dependencies. For example in an exclusion dependency, the control decision decides which
activity is to be selected and started. The goal of testing the control feature is to exercise different values of the data
elements that are involved in the control decisions.

5

3.3. Depth dimension: A combination of test coverage items

Test criteria are used to define the test conditions and identify the test coverage items. The set of test cases must
cover all the test coverage items, which can be achieved in different ways, depending on the required test effort. Thus
different strategies are used to combine the test coverage items that will be exercised by the test cases. For instance,
stronger test criteria should be applied in the areas with greater risk exposure in order to achieve an effective testing.
The maximum effort would be to generate all possible combinations between the test coverage items and define a test
case to cover each combination. On the other hand, the minimum effort would be to simply cover all the test coverage
items using the lowest number of test cases. Thus the test criteria propose different test efforts ranging from minimum
to maximum efforts.

4. Classification-Tree analysis of the dependencies

Testing at the overall transaction level is a complex process as it involves various dependencies among different
activities (or sub-transactions) such as type of relationship (e.g. merge, union, etc), external conditions derived from
the business logic and cardinality of the union. The situation becomes further complicated as for each dependency
there exists a large set of possible situations to analyse. It is, therefore important to identify, organize and classify
those situations. A well-known method to classify situations for testing purposes is the Classification-tree (CT)
approach [46]. CT approach has been successfully used in both academic and industrial sectors [47, 48]. In the
proposed approach, the test basis is the overall WS transaction while the test items are the dependencies. For each
dependency we identify the test conditions and test coverage items through generation of a CT. Note that flow, data
and control (feature dimension) are all taken into account during the tree generation. Section 5 gives further details on
the test coverage items (depth dimension).

In order to explain the process of CT-based analysis of dependencies, we first present the generalized transaction
model [10]. We then describe the process for elaborating the classification tree for each dependency using an example
of the merge dependency. The CTs for other dependencies are shown in the Annex I.

4.1. Web services transaction model

A Web Service transaction, wT, is a sequence of logically linked activities (or sub-transactions) that must execute
consistently in order to achieve an agreed outcome. It is defined as wT={A,D} where A is a set of activities and D a set
of dependencies among them. Activities represent points in a wT where work is performed. An activity can be atomic
(task) or non-atomic (sub-transaction). Each activity is executed by an executor [6]. An activity is compensatable if a
compensating activity exists within the wT to undo its actions. A wT can have nested structure which contains different
sub-transactions. A compensation is an activity that undoes from a semantic point of view the actions performed by
another activity.

A dependency defines a relationship between a set of activities. In other words, dependencies are constraints that
define an order of execution between (concurrent) activities. Dependencies are further explained in sub-section 4.1.2
below.

An executor is a web service which is responsible for executing a specific activity or a sub-transaction. As
explained below, an executor passes through various states during the processing of a wT.

4.1.1. States of an executor
 An executor can be in any of the following commonly used states: Initial, Active, Completed, Compensated,

Aborted, Cancelled and Failed. The state of an executor is changed by the execution of a primitive action. There are
six atomic primitive actions: begin, complete, compensate, A-withdraw, A-cancel and A-fail. Note that the primitive
action compensate is only applicable if the activity is compensatable. Figure 2 the state transition diagram of an
executer. Solid lines represent external primitive actions while the dashed lines represent internal primitive actions.

An executor is in the Initial state when it has been enrolled in the wT and is waiting to be executed. An executor is
in the Active state when it has executed the begin primitive action but has not f nished execution. An executor is in the
Completed state after it has successfully finished its activity. From the completed state, the executor can enter the
Compensated state if the activity is compensatable. An executor is in the Aborted state after it has executed one of
the abort primitive actions. An executor is in the Cancelled state after it was cancelled while executing its activity. An
executor is in the Failed state if it was not able to successfully finish its activity. An executor is in the Compensated
state after it has executed the compensate primitive action. That is, its actions have been undone by executing a
compensating activity.

6

Figure 2. States and transitions of an executor

4.1.2. Dependencies
The proposed model defines three kinds of dependencies in WS transactions: Flow dependencies define constraints

on the workflow in terms of the order of execution of activities. Data dependencies define relationship between the
data elements used by the activities. These specify relations according to read and write operations on shared data
elements. Control dependencies are hybrid dependencies (a mix of flow and data dependencies). These dependencies
refer to feature dimension described in Section 3.2. Different types of dependencies can be combined. Consider an
example of a purchase process; the payment activity must be executed after the items have been selected (flow
dependency) but the amount to be charged depends on the calculation process that takes into account the price and
quantity of the selected items (data dependency). Finally the payment is carried out if the number of items is at least
one (control dependency).

A data element is a piece of information accessed by wT. An activity is said to write a data element if it generates
or modifies the value of such data element during its execution. An activity is said to read a data element if it reads
such data element during its execution. We represent a data dependency as write(A, d1, d2) where activity A
reads the data element d1 and modifies (writes) the data element d2. In other words, A requires d1 to produce d2.

A dependency is said to be final if it is not the input to any other dependency. A dependency is said to be
composite if its input includes another dependency. A dependency is said to be completed if the necessary activities
have been completed. For example in Exclusive, the dependency is completed if exactly one activity is completed. In
Join, the dependency is completed if all activities have been completed.

The dependencies used in the proposed criteria are graphically represented using a BMPN based notation as shown
in Table 1.

Name Notation Description

Sequence The activity A1 must complete before activity A2 can begin

Alternative

Only one activity can begin.

Fork

All the activities begin.

Merge

At least one activity must complete before another can begin. Extra
conditions can be specified.

Join

All activities must complete before another can begin.

Exclusion

Only one activity can complete

Write One activity produces a data element and it may require another data
element

Table 1. Representation of dependencies

A d1 d2

A2 A1

7

4.2. Generation of Classification-Trees for Dependencies

CT relies on the knowledge of the environment in order to provide a step-wise intuitive approach and to define test
cases. In the context of WS transactions, this knowledge is included in the transaction model in terms of dependencies
and the behaviour of activities. The main features of CT approach are summarized as follows:

(a) To analyze the test basis in order to select the test items (the dependencies in our context). Each test item (a
dependency type) is regarded under various aspects assessed as relevant for the test.

(b) For each aspect, disjoint and complete classifications are formed. Classes resulting from these classifications
may be further classified (recursively). These identify the test conditions that are relevant for testing purposes. The
stepwise partition of the input domain by means of classifications is represented graphically in the form of a tree.

(c) Partition the classes into test coverage items: these represent significant values for each class from the tester’s
view-point. It is represented graphically as the leaf nodes of the tree.

(d) To determine constraints among choices to prevent the construction of unnecessary combinations of choices.

(e) To design a set of test cases that covers all the test coverage items derived from the test conditions.

In the proposed method, we define a classification tree for each type of dependency. The classification conceives
the relevant aspects that can influence the test process. Trees are constructed according to the following steps.

1. The first step is to identify the test items. The dependencies between the activities of a WS transaction are used
as test items.

2. We identify the relevant features (classes) for the dependency. These form the test conditions that are used to
derive the test coverage items. There are two types of possible classes: orthogonal and exclusive (or non-
orthogonal).

A class is orthogonal if it can be combined with other classes. By analyzing the logic of the dependencies used in
the transactions, we have identified the following orthogonal classes:

• Cardinality: number of activities involved in the situation defined by the dependency.

• Behaviour: sequence of states/transitions of the activities involved in the situation.

• Selected: specific activity involved in the situation

• Former: set of activities that act as input in the dependency

• Latter: set of activities that act as output in the dependency

A set of sibling classes are exclusive (non-orthogonal) if the value of one excludes the rest of them. During the
elaboration of the CT, we have identified the following exclusive classes:

• Finished: activity has either completed or compensated

• Running: activity has not finished yet

• Aborted: activity has achieved the aborted state

• Valid: requirements of the dependency are fulfilled

• Invalid: requirements of the dependency are not fulfilled

The previous classes are hierarchically organized. In some situations these are recursively classified according to
their logic so as to achieve elementary classes. A class is elementary if it is not further classified and, thus,
specific values for such class can be defined.

3. Each class is divided into further classes and/or values. Each time a class is classified into further classes or
values, a new deep level can be defined. These deep levels allow for defining different test effort as discussed in
Section 5.1.

4. A set of constraints between the values/classes is specified. For example in the Sequence CT (see Annex I), there
is a value (belonging to the class latter behaviour) that defines the activity must complete and it is not compatible

8

with the value of the class former behaviour that defines the activity to be withdrawn. The reason is due to the
logic of the Sequence dependency; if the former activity does not complete, the latter cannot begin.

5. The values determined in the CT define the test coverage items. Further details on the criteria and the generation
of coverage items are presented in Section 5.

Figure 3 shows the generic structure of a dependency classification-tree.

Figure 3. Concepts in a dependency classification-tree

4.3. Classification tree for Merge dependency

This section illustrates the process of designing classification tree for the Merge dependency according to the
aforementioned steps (section 4.2). Figure 4 depicts the classification tree for the Merge dependencies. Classification
trees for other dependencies (Sequence, Join, Fork. Alternative, Exclusion, and Write) are shown in Annex I.
Orthogonal classes are shown as rectangles. Exclusive classes and concrete values are shown without rectangles. Leaf
nodes in the tree represent values. The dotted lines represent the separation between the deepest level and level above.
The criteria for defining the test coverage items depend on this separation as is shown in the next section.

The Merge dependency defines relationships between various activities of a WS transaction. It defines that at least
one of the previous activities must complete before the latter can begin. The main feature we address in the tree is to
show that the desired behaviour and constraints of the whole dependency are fulfilled or not. Thus we identified two
exclusive classes at the top level. Valid class classifies the situations where at least one activity has completed,
whereas Invalid class defines the situations where no single activity has completed successfully.

In the case of Valid class, we identify two orthogonal classes in order to represent the Cardinality of the completed
activities: Only one and More than one. We define such cardinality in order to specify the condition that at least one
activity must be completed.

Selected class represents the activity which in the Completed state. i.e., an activity is completed. This class
maintains a list of values for each activity involved in the dependency. The rest of activities involved are represented
through the Running class. This class shows whether activities are still running or not. If they are still running it means
all of them are in the Active state. If they are not running and are not completed, it means that they are aborted
(Aborted class) due to some unexpected situation. We identify four types of the Aborted class: withdrawn, cancelled,
failed, combination (aborted in different ways). These values represent the possible types of abort of an activity and an
extra value; which is the combination of different aborts types that is needed from a testing point of view.

If more than one activity has completed, we classified the behaviour of the rest of activities (Rest of activities class)
in the same way as in the Aborted class (explained above).

The other branch of the tree (Invalid class) means that the dependency was not fulfilled. In other words, no activity
has completed. So the relevant feature to test is the way in which the activities have finished. Since there are different
ways to abort, it is necessary to test all those possibilities. We use the same four values to classify the behaviour of the
non-completed activities: all were withdrawn, all were cancelled, all failed or all of them have aborted but in different
ways.

9

In this dependency, there are no extra constraints about combining leaf nodes apart from the specification by the
orthogonality of some classes as described above. The way the leaf nodes are used to define the test coverage items are
explained in Section 5.

Figure 4. Merge dependency classification-tree

5. Test case design

The goal of the test case design process is to achieve a suitable test suite. A test suite is a set of test cases that meet
a test criterion. Each test case is designed to exercise a combination of the test coverage items. All the test cases (test
suite) must cover (exercise) all the identified test coverage items. In this work, the test technique is the CT method and
the test criteria used to combine the test coverage items are presented below.

According to the CT method (see Section 4), the leaf nodes define the test coverage items that are combined to
generate the test cases. In the context of testing WS Transactions at the transaction level, a test case defines a specific
scenario that goes through different dependencies. Therefore, a test case cannot be defined only in terms of one CT
(i.e. the test coverage items derived from a dependency), but it should be defined from a set of CTs. That is why, it is
necessary to refine the concept of test coverage item in the CTs in order to represent combinations of leaf nodes
(Combined Test Coverage items). In this way, these Combined Test Coverage items will be combined again leading to
the scenarios that constitute the test cases. Two kinds of coverage items defined are:

• Primitive Test Coverage Item (Primitive TCI): It shows each value of a class in the analysis. It is shown as a leaf
node in the CT.

• Combined Test Coverage Item (Combined TCI): The specific behavior that all involved activities in the
dependency must follow. It is generated through the combination of its Primitive TCIs using different
combination criteria (of the depth dimension).

Figure 5 illustrates an example of Combined TCI derived from combining two Primitive Test Coverage Items.
Note that the states are specified in brackets and transitions between dashes.

10

The criterion to generate the Combined TCIs is related to the test effort required. Therefore, it is included in the
depth dimension as described in Section 3. The following sub-section (5.1) presents different criteria for the use and
combination of the Primitive TCIs. The strategy used to organize and combine the Combined TCIs in scenarios that
define a test case is presented in Section 5.2.

Figure 5. Combination of Primitive TCIs

5.1. Depth Dimension: Generation of the Combined Test Coverage Items

In order to combine the Primitive TCIs, we propose a family of coverage strategies by taking into account two
orthogonal aspects:

• Primitive TCI selection: This is to select the leaf nodes which are to be used in the combination

• Primitive TCI combination: This is to combine the selected Primitive TCIs

The above two aspects allow for adjusting the number of Combined TCIs that will be generated. Note that such
combinations must fulfil the constraints defined in the CT. The more the Combined TCIs defined the more the
requirements for the test suite. Thus more test cases are generated which result in the increase in test effort. But more
test cases potentially increase the effectiveness of testing. Considering these two aspects we achieve four different
criteria that allow for adjusting the testing thoroughness.

5.1.1. Primitive TCI selection

We use the depth level information in order to select the Primitive TCI (leaf nodes). The selection is done using the
following two levels:

• Strong level: It uses the deepest level (called N level) in order to cover all Primitive TCIs. Assume that there are
three activities involved in the Merge CT (Figure 4), then this criterion requires using the 16 Primitive TCIs
which are found in the tree.

• Weak level: This level, called N-1 level, requires covering all non-elementary classes but with one value for each
elementary class. In this criterion, a random leaf node (from child nodes) is selected. In the Merge CT, this
criterion requires using 5 Primitive TCIs: one value for each class Selected, No, More than One and Valid, plus
the Active value in the class Running. The number of Primitive TCI is widely reduced. But from a testing point of
view, the randomly selected leaf node can be less significant, than the other candidate node. It also brings a
nondeterministic factor in the design.

Note that the strong level criterion subsumes the weak level criterion. The dotted line in the Figure 4 separates the
N level to N-1 level in the Merge dependency.

erion. The dotted line in the Figure 4 separates the
N level to N-1 level in the Merge dependency.

11

5.1.2. Primitive TCI combination

Combined TCIs are generated from the Primitive TCIs. There is a range of criteria that can be used. The simplest
coverage criterion, each-used coverage, does not enforce any requirement on how to combine the Primitive TCIs. The
more complex coverage criteria, such as pair-wise or N-wise coverage, is concerned with (sub-) combinations of
interesting values of different parameters [49]. In this work we use the combination of the simplest and the strongest
criteria.

• Each-used: it requires that every selected Primitive TCI to be included in at least one Combined TCI — which is
derived from this dependency using the lowest number of Combined TCIs possible. It is the weakest coverage
criterion.

• N-wise: it requires all possible combinations of all selected Primitive TCIs to be included in the set of Combined
TCIs which is derived from this dependency. It is the strongest coverage criterion and thus subsumes the each-
used criterion.

The Primitive TCIs specify requirements in terms of behaviours of their activities. But in a composite dependency,
such requirements may refer to another dependency. In the latter, the dependency involved as argument (argument
dependency) is considered as an activity in terms of behaviour. In other words, if the Primitive TCI requires that such
activity (argument dependency) has to complete, a random scenario is selected where the activity (argument
dependency) is completed. If the Primitive TCI requires the activity (argument dependency) to cancel/abort/fail, all
the activities involved in the argument dependency will take such behaviour.

Figure 6 depicts the four set of Combined TCIs for the Merge CT. These are generated by combining the
orthogonal criteria of level and combination. In the strong level, each leaf node is a Primitive TCI while in the weak
level, a leaf node of each elementary class was randomly selected. Each row defines a Combined TCI which is
achieved by applying the specified combination criterion.

At the weak level the same Combined TCIs are generated for both N-wise and each-used criterion. This is because
weak level prunes the leaf nodes in the elementary classes Selected, Aborted, Rest of Activities and All Activities. This
pruning eliminates the possibility of combination. But this does not occur in other classification-trees. The strong level
generates more Combined TCIs than weak level since the former always selects more Primitive TCIs. This allows for
analysing the dependency more rigorously. However, the test effort (i.e., the number of Combined TCI generated) can
considerably grow if strong combination criteria are used.

12

 N-wise Each-used

St
ro

ng
 le

ve
l

W
ea

k
le

ve
l

Figure 6. Generation of Combined TCIs

5.2. Generating the test cases

Once all the Combined TCIs are defined, the next step is to generate a set of test cases that can cover them. Note
that one test case can cover more than one Combined TCI. To generate the test suite we use the base choice (BC)
strategy [49]. BC is a determinist iterative strategy; which means that given a base test case the same test suite is
produced every time. The f rst step of BC is to identify a base test case. The base test case combines the most
‘important’ value for each parameter. Importance may be based on any pre-defined criterion such as most common,
simplest, or smallest. From the base test case, new test cases are created by varying the minimum number of values at
a time while keeping the values of the other parameters f xed.

In the context of testing WS Transactions, the parameters are the behaviour of each activity (i.e. sequence of
states/transitions of its executor, see Figure 2). To generate the base test case we adopt the criterion of “maximum of
dependencies completed”. So the base test will define specific behaviour for all activities forming a scenario where the
number of dependencies, that are completed, is maximum.

13

The algorithm to generate the base test case is shown in Figure 7. The strategy selects, for each final dependency, a
scenario where the dependency is completed. Then the strategy is recursively applied to the dependencies included in
the input of final dependencies in order to specify the behaviour for the activities whose behaviour was not previously
defined. If it is impossible to select a scenario to complete a dependency without modifying the behaviour of a
previously specified activity, then the dependency takes a non-complete scenario while keeping the behaviour of such
activity fixed.

Base Choice Generation (output: base test case)
Generate an empty test case BC
Select all final dependencies
For each final dependency D
 Select completed scenario for D
 Copy the scenario for D in the test case BC

End

Completed Scenario (input: dependency D, output: completed scenario for D)
 Select the activities in D that has not a specified behaviour yet
 If D can be completed
 Specify completed behaviour for all activities
 Else
 Select a non-completed behaviour for all activities
 If D is composed
 Get the arguments dependency
 For each argument dependency D’
 Select Completed Scenario for D’
End

Figure 7. Base Case generation algorithm

Once the base test case is defined, the strategy creates the rest of necessary test cases. The algorithm to generate the
test suite is shown in Figure 8. The strategy gets the test coverage items which are not covered by the base test case. It
creates new test cases by varying the behaviour of the base test case´s activities in order to cover all the test coverage
items. This gives a set of test cases that covers all Combined TCIs which are generated previously.

Generation of the Test Suite (input: set of Combined TCIs, base test case BC,
output: test suite)

Add the BC test case to the test suite
Set all Combined TCIs covered by the BC test case as covered
While ∃ Combined TCI not covered

Get a not covered Combined TCI
Copy the BC test case
Modify the BC test case copy in order to cover the Combined TCI
Add the new test case to the test suite
Set all Combined TCIs covered by new test case as covered

End

Figure 8. Test Suite generation algorithm

Test suite is obtained by following the steps of the above algorithm. Each test case defines a concrete scenario for
the overall WS transaction by specifying the behaviour of all its activities. A test case can cover one Combined TCI
for each dependency of the transaction (as shown in Figure 9). This provides a set of generated test cases that cover all
the Combined TCI.

14

Figure 9. WS Transaction test case

6.

g research questions:

providing a trade-off in terms of cost-

f the proposed criteria to different types of defects or failures

6.1

ria we have developed a prototype application which implements the widely
use

 three alternative airline companies, two hotel agencies, one train company and one vehicle
res

e customer´s credit card of the total amount. The
pa

hared by the activities
flow manages the execution of the all services.

6.2

picts the modelling of the travel agency
an

 and arrival cities are under the coverage of the agency. It also coordinates the

nsive

Evaluation

In this section we evaluate the proposed criteria by taking into account the followin

RQ1: Effectiveness of the proposed criteria in detecting failures in WS Transactions.
RQ2: Usefulness of the proposed criteria useful in adjusting the test efforts and
benefit.
RQ3: Resiliency o

. Case study

In order to evaluate the proposed crite
d Travel Agency case study [11-15].

Travel Agency is an application in which customers are offered with the facilities for making travel arrangements as
follows. The Agency service receives an itinerary from a customer. After checking the itinerary for errors, it
determines the types of reservations to make and sends simultaneous requests to the transport, hotel and car rental
providers. There are

ervation service.

If any of the reservation tasks fails, the itinerary is cancelled by performing the compensatory action and the
customer is notified of the problem. Agency service waits for confirmation of the reservation requests. Upon receipt of
all confirmations, the Agency service informs the customer about the reservation confirmation and final itinerary
details. The Agency then contacts the payment services charge th

yment services also charges an extra 1% for using their service.

Travel Agency is a distributed software application written in Java 1.5. The application includes 23 Java classes and
2,540 Java lines of code (LoC). Each service is composed of two classes: serviceLogic and serviceWS. The services
that make reservations (flights, hotels, train and car) also have a serviceReservation class. The serviceLogic classes
implement the business logic of the activity, for example, checking the availability and booking of a room in a hotel.
The serviceWS wraps the logic class and other classes required by the service. Auxiliary classes, Customer and
Itinerary, are used by all the services. The class, TAcontext, represents the data elements s
(itinerary, amount and customer data) while TA

. Transactional modeling of the Case study

We model the travel agency case study according to the transaction model presented in Section 4.1. In other words,
we model the request for travel arrangement as a WS transaction. Figure 10 de

d shows some of the important activities, data elements and dependencies

The services (and their activities) involved in the travel agency WS transaction are defined as follow.

• Agency: Checks if the departure
flow execution of the activities.

• Gold Air: An airline with high availability but is the most expe

15

heaper prices but less availability

 availability and high cost.

st hotel chain.

ities:

otel

ity, date and time of return

ys booked

n, 5*Hotel, 2*Hotel, Car)

eap Air, Train)

• D7: Write({Agency, Gold Air, Cheap Air, Train Air, 5*Hotel, 2*Hotel, Car },{Payment})

Figure 10. Modelling of the Travel Agency case study

6.3

to

• Cheap Air: An airline with c

• Train: Train tickets service

• Five Star Hotel: A luxury hotel chain. High

• Two Star Hotel: A low co

• Car: Rental cars service

• Payment: Credit card services for online payments

The following data elements are used by the above activ

• Itinerary (I): Departure and arrival cities and dates

• Hotel reservation (H): Hotel address, date of arrival and number of nights booked at the h

• Flight reservation (F): City, date and time of departure and city, date and time of return

• Train reservation (T): City, date and time of departure and c

• Car reservation (R): City, date and number of da

• Amount (A): Amount to be charged to the client

• Credit balance (B): The customer credit balance

The dependencies among the above activities are defined as follows:

• D1: Fork (Gold Air, Cheap Air, Trai
• D2 :Exclusion (5*Hotel, 2*Hotel)
• D3 :Merge (Gold Air, Ch
• D4: Join (D2, D3, Car)
• D5: Sequence (Agency, D1)
• D6: Sequence (D4, Payment)

. Experimental parameters

Existing works on testing (non-transactional) web services focus on the unit testing of flow management such as
WS-BPEL process [50-54]. But they do not address the evaluation of fault detection in a particular implementation of
services. We measure the effectiveness of the proposed criteria as the degree on which the generated test cases are able

detect defects injected in a concrete implementation (described above) of the overall WS transaction.

We use a mutation approach in order to inject faults in the WS transaction of the travel agency Mutation testing has
been widely accepted as the test adequacy criteria. The idea is to make many small changes called mutants in a given

B Agency

Gold Air

5*Hotel

2*Hotel

Car

Train

Cheap Air

Payment

I

A

16

MC=KM/TM * 100. Mutation score is, therefore, an
ob

sions of the Travel Agency WS transaction. The number of mutants generated by each Java class is shown in Table
2.

 class Total Muta Traditional Muta Class mutan

program (or WS transaction in our case). Small changes of the original program are expected to produce observable
different outputs. A mutant is said to be killed if it gives different outputs from the original with some test case. The
Mutation Score (MC) is the relation between the number of mutants killed (KM) by the test suite and the number of
total generated mutants (TM). Formally, it is calculated as:

jective measure to evaluate the effectiveness of a test suite.

To apply mutation to the WS transaction of Travel Agency, we have used the MuJava tool [55] which generates two
types of mutants. Traditional mutations are generated by applying syntactic actions such as an arithmetic or logic
operator replacement in the code. Class mutations are generated by applying semantic actions such as changing the
access modifier of a variable. We have applied both types of mutants in all classes obtaining a total of 2.507 faulty
ver

Type of Class nts nts ts
service AgencyWS 104 97 7

service CarWS 173 156 17

service CheapAirWS 125 116 9

service FiveHotelWS 1173 156 7

service GoldAirWS 133 124 9

service PaymentWS 112 105 7

service TrainWS 133 124 9

service 17 15 1TwoHotelWS 3 6 7

logic AgencyLogic 0 0 0

logic CarLogic 238 233 5

logic FlightLogic 387 366 21

logic HotelLogic 23 221 6 5

logic PaymentLogic 8 6 2

logic TrainLogic 2 107 95 12

reservation FlightReservation 28 10 18

reservation HotelReservation 28 20 8

reservation TrainReservation 128 10 8

reservation tion CarReserva 28 20 8

auxiliar Customer 7 5 18 9 9

auxiliar Itinerary 7 0 7

auxiliar PaymentTransfer 10 8 2

transaction TAcontext 459 14 5

transaction TAflo 211 6w 217

Table 2. Combined TCIs generated by the criteria

ing from 0 – 1 and using the highest CB with test
suite of CBN=1. Thus, the metric used to address RQ2 is the CBN.

6.4. Experimental Results

We obtained the results using the following three steps:

To evaluate the requirement RQ2, we assess the cost-benefit relation of using the different criteria for generating
the Combined TCIs, and the test cases. The cost is estimated according to the number of test cases generated. The test
benefit is highly related to the number of defects that the test suite can reveal. It is therefore approximated by the
number of mutants killed. We define the cost-benefit relation (CB) as the relationship between the number of test
cases generated by the criterion (TC) and the mutants killed for that set of test cases (KM), CB=TC/MT. In order to
compare different CB values, we normalize the values (CBN) rang

The first step is to generate the Combined TCIs for each dependency. We developed a script that requests as input
the type of dependency, the service classes that implement the involved activities, the level and combination criteria
and generation of the set of Combined TCIs. The number of Combined TCIs generated for each dependency and each
combination of criteria are shown in Table 3. As was expected, the strong level significantly increases the number of
Combined TCIs generated independently of the combination criterion selected. Regarding the combination strategy,

17

number of Combined TCI is very similar to the weak level
criterion irrespective of the combination criterion used.

we realize that N-wise criterion increases the Combined TCIs but the increase is only noticeable when this strategy is
combined with the strong level. Also we see that the

ID Dependency St l rong leve
N e ‐wis

W l eak leve
N‐ e wis

S trong level
eac h‐use

W eak level
eac h use

D1 Fork 10 4 5 2
D2 Exclusion 18 9 4 3
D3 Merge 22 5 13 5
D4 Join 15 3 5 2
D5 Sequence 13 3 8 3
D6 Sequence 13 3 8 3
D7 Write 35 3 7 3

Total 21 126 30 50

Table 3. Combined TCIs generated by the proposed criteria

ses.
Ea

ehaviour. Thus, when the Travel
Ag

utants
killed, mutants alived, traditional mutants score and class mutation score for each class is shown in Annex II.

Stron
N

We
N

S
each‐ each

The second step is to generate the test cases. We developed a script that receives the set of Combined TCIs of all
dependencies involved in the WS transaction and then execute the algorithms (Section 5.2) to generate the test ca

ch test case specifies the behaviour that the activities have to follow during the execution of a WS transaction.

The third step is to automatically execute the test cases in the 2.507 mutant versions. Using this version the code
was instrumented and the services were configured in a way that follows a specific b

ency WS transaction starts, it reads a test case file and configures all the services.

The different test suites generated by combining the level and combination criteria were automatically executed
using MuJava and the mutation score. The mutation score and cost-benefit results are summarized in Table 4.
Mutation scores grouped by type of class are shown in Table 5. ‘S’ and ‘W’ mean strong level and weak level
respectively, while ‘N’ and ‘E’ respectively mean N-wise and each-used. Information about the number of the m

Test suite level g level
‐wise

ak level
‐wise

trong level
used

Weak level
‐used

Mutation Score 99 81 9 65,85 ,19 2,5 ,45

Number of Test Cases (TC) 71 27 37 17

Number of mutants killed (KM) 2676 2176 2479 1754

Cost‐benefit relation (CB) 0,0265 0,0 0,0 0,03 1241 1493 0969

CB normalized (CBN) 0,56 0,37 1 0,47

Table 4. Test suites results

Type of class N f
classes

Mutation it sc as tio reumber o score Trad ional mutation ore Cl s muta n sco

S/N W/N S/E W/E S/N W/N S/E W/E S/N W/N S/E W/E

Service 18 99,91 77,98 89,47 65,79 99,88 77,38 89,13 66,13 00,00 78,00 87,63 57,38

Logic 6 99,85 81,07 92,62 60,07 99,80 82,40 95,60 60,60 98,20 55,20 74,00 36,80

Reservation 4 99,11 61,61 83,04 40,18 97,50 73,75 95,00 57,00 100,00 47,75 74,25 34,50

Auxiliar 3 100,00 49,73 98,72 30,07 100,00 45,50 97,00 21,00 100,00 48,67 100,00 19,00

Transaction 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00 91,45 98,00 99,50 56,50 65,00

Average 99,77 72,37 95,35 60,95 99,64 57,22 87,18 42,54 92,77 58,82 99,44 75,71

Table 5. Results by type of class

18

han 65% and some score greater than 80%. We see that the strong level generates
tes

lthough the best CBN relation is reached by the weak level / each-
use

nd real-world faults,
suggest that the generated mutants provide a good indication of the fault detection ability of a test suite [56]. This

ity of our evaluation. The second issue, which is common in software engineering, is that how
representative the case study is? We have used the case study which is widely adapted in the literature. This ensures
tha

 the test cases is automatically generated in order to meet the requirements of the distinguishing
characteristics of WS transactions. It reduces the cost of the test design and also improves its effectiveness. It allows

sity of the test process by taking into account the time and effort. It also allows the tester to
prioritize the tests by firstly using low-effort criteria and then subsequently complement them whenever additional test
eff

Acknowledgements

This work has been performed under the research project TIN2010-20057-C03-01, funded by the Spanish Ministry
of Science and Technology. This work has also been funded by the research grant BES-2008-004355.

6.5. Discussion

The results presented in Table 4 show the effectiveness of the proposed criteria which is measured in terms of the
mutation score. The results show that the proposed criteria are indeed effective thus meeting the RQ1. All test suites
achieve a mutation score greater t

t suites that reach very high effectiveness with mutation scores greater than 90%. According to the type of class,
Table 5 shows that the weak level criterion achieves notably inferior mutation scores, especially in reservation and
auxiliary classes. These two types of classes are less complex than the other. The results suggest that the strong level is
more suitable for simple classes.

With regard to the RQ2, we see that different level and combination criteria lead to different test efforts measured
in terms of the number of test cases generated (TC). The benefit (killed mutants, KM) also differs in different test
suites as shown above. There are significant differences in the test efforts (TC). The lowest value of CBN is achieved
by the criteria combination weak level / each used. On the other hand, a similar CBN value is achieved by weak level /
N-wise (0,47) and strong level / each-used (0,56). A

 criteria, this combination achieves the lowest mutation score. Further, strong level / N-wise have the worst CBN
value but it achieves the best mutation score. The experiments also revealed that the weak level / N-wise and weak
level / each- used combinations achieve a high mutation score. Thus these results provide a metric to the tester in order
to decide the test effort in terms of cost or benefit.

In relation to the RQ3, we consider two types of injected faults: traditional mutants and class mutants. According to
the results summarized in Table 5, we see that the mutation score achieved in the traditional mutants is greater than the
one achieved in the class mutation. The average mutation scores of all classes (see Annex II) show the same tendency.
Thus the results show that the type of fault influences the effectiveness of the testing criteria.

In some cases, the above evaluation may have limitations. The first issue is that the mutation technique simulates
the faults that could appear during the development of WS Transactions. But due to the lack of information about
actual faults, we are not certain how representative these injected faults are. However, empirical studies, comparing
the fault detection ability of test suites on hand-seeded, automatically-generated (mutation) a

proves the valid

t the case study is highly representative and is not limited to a particular situation or scenario.

7. Conclusions

In this paper we have proposed novel multi-dimensional criteria for testing the WS Transactions. Our approach
generates test cases according to the dependencies between the activities involved in a WS transaction. The proposed
criteria elaborate a classification-tree analysis for each kind of dependency in order to identify the relevant test
condition and test coverage items. The aim was to derive the test cases that thoroughly exercise all dependencies. Two
orthogonal families of test criteria are used for the test coverage item selection (strong level, weak level) and the test
coverage item combination (N-wise, each-used). To evaluate the proposed method we have used a well-known case
study of Travel Agency. Evaluation results showed that the proposed criteria have the potential to design effective test
cases for WS transactions and to allow the tester to adjust the method in terms of its effectiveness, test effort and cost-
benefit analysis. It also provides the advantages of performing the testing process in a resource-scarce environment.
Further the design of

for adjusting the inten

orts are required.

19

References

[1] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web Services Platform
Architecture: Soap, Wsdl, Ws-Policy, Ws-Addressing, Ws-Bpel, Ws-Reliable Messaging and More: Prentice
Hall PTR, 2005.

[2] Z. Liangzhao, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “QoS-aware
middleware for Web services composition,” Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp.
311-327, 2004.

[3] OASIS, "Business Transaction Protocol," http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=business-transaction, [29 Nov 2011, 2004].

[4] OASIS. "Web Services Business Activity," http://docs.oasis-open.org/ws-tx/wsba/2006/06.
[5] OASIS. "Web Services Composite Application Framework," https://www.oasis-open.org/committees/ws-caf.
[6] R. Casado, J. Tuya, and M. Younas, “Evaluating the effectiveness of the abstract transaction model in testing

Web services transactions,” Concurrency and Computation: Practice and Experience, pp. in press, 2012.
[7] G. Canfora, and M. Penta, "Service-Oriented Architectures Testing: A Survey," Software Engineering:

International Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures, pp. 78-105:
Springer-Verlag, 2009.

[8] M. Bozkurt, M. Harman, and Y. Hassoun, Testing Web Services: A survey, Department of Computer Science,
King's College London, Technical Report TR-10-01, 2010.

[9] S. Bhiri, W. Gaaloul, C. Godart, O. Perrin, M. Zaremba, and W. Derguech, “Ensuring customised
transactional reliability of composite services,” Journal of Database Management, vol. 22, no. 2, pp. 29,
2011.

[10] R. Casado, J. Tuya, and M. Younas, “A Family of Test Criteria for Web Services Transactions,” Procedia
Computer Science, vol. 10, no. 0, pp. 880-887, 2012.

[11] L. Bocchi, C. Laneve, and G. Zavattaro, “A Calculus for Long-Running Transactions,” Formal Methods for
Open Object-Based Distributed Systems, vol. 2884, pp. 124-138, 2003.

[12] R. Casado, J. Tuya, and M. Younas: Testing Long-Lived Web Services Transactions Using a Risk-Based
Approach. Prooceedings of the 10th International Conference on Quality Software, 2010. IEEE Computer
Society: 337-340

[13] J. Jiang, G. Yang, Y. Wu, and M. Shi, “CovaTM: a transaction model for cooperative applications,” in
Proceedings of the 2002 ACM symposium on Applied computing, Madrid, Spain, 2002, pp. 329-335.

[14] A.-B. Arntsen, M. Mortensen, R. Karlsen, A. Andersen, and A. Munch-Ellingsen, “Flexible transaction
processing in the Argos middleware,” in Proceedings of the 2008 EDBT workshop on Software engineering
for tailor-made data management, Nantes, France, 2008, pp. 12-17.

[15] R. T. Khachana, A. James, and R. Iqbal, “Relaxation of ACID properties in AuTrA, The adaptive user-
defined transaction relaxing approach,” Future Gener. Comput. Syst., vol. 27, no. 1, pp. 58-66, 2011.

[16] D. Yuetang, P. Frankl, and C. Zhongqiang: Testing database transaction concurrency. Prooceedings of the
Automated Software Engineering, 2003. Proceedings. 18th IEEE International Conference on, 2003. 6-10
Oct. 2003;184-193

[17] Y. Deng, P. Frankl, and D. Chays, “Testing database transactions with AGENDA,” in Proceedings of the
27th international conference on Software engineering, St. Louis, MO, USA, 2005, pp. 78-87.

[18] V. Guarnieri, N. Bombieri, G. Pravadelli, F. Fummi, H. Hantson, J. Raik, M. Jenihhin, and R. Ubar: Mutation
analysis for SystemC designs at TLM. Prooceedings of the Test Workshop (LATW), 2011 12th Latin
American, 2011. 27-30 March 2011;1-6

[19] C. Chin-Yao, H. Chih-Yuan, L. Kuen-Jong, and A. P. Su: Transaction Level Modeling and Design Space
Exploration for SOC Test Architectures. Prooceedings of the Asian Test Symposium, 2009. ATS '09., 2009.
23-26 Nov. 2009;200-205

[20] X.-D. Wu, Z.-W. Sun, and Z.-J. Xing: A data-centered transaction scheduling strategy of realtime database in
micro-satellite ground test system. Prooceedings of the Mechatronics and Automation, 2009. ICMA 2009.
International Conference on, 2009. 9-12 Aug. 2009;2952-2956

[21] M. Younas, and K.-M. Chao, “A tentative commit protocol for composite web services,” Journal of computer
and system sciences, vol. 72, no. 7, pp. 1226-1237, 2006.

[22] R. M. Czekster, P. Fernandes, A. Sales, T. Webber, and A. F. Zorzo, “Stochastic Model for QoS Assessment
in Multi-tier Web Services,” Electron. Notes Theor. Comput. Sci., vol. 275, pp. 53-72, 2011.

[23] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina, “Design and verification of long-running
transactions in a timed framework,” Science of Computer Programming, vol. 73, no. 2-3, pp. 76-94, 2008.

[24] M. Emmi, and R. Majumdar: Verifying Compensating Transactions. Prooceedings of the International
Conference Verification, Model Checking, and Abstract Interpretation, 2007. 29-43

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://www.oasis-open.org/committees/ws-caf

20

[25] N. Kokash, and F. Arbab, “Formal Design and Verification of Long-Running Transactions with Eclipse
Coordination Tools,” Services Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1-1, 2011.

[26] W. Gaaloul, M. Rouached, C. Godart, and M. Hauswirth, “Verifying composite service transactional
behavior using event calculus,” in OTM Confederated international conference on On the move to
meaningful internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I, Vilamoura, Portugal,
2007, pp. 353-370.

[27] J. Li, H. Zhu, and J. He: Specifying and Verifying Web Transactions. Prooceedings of the International
Conference on Formal Techniques for Networked and Distributed Systems, 2008. 149-168

[28] “Database transaction models for advanced applications,” Morgan Kaufmann Publishers, 1992 Pages.
[29] N. Ben Lakhal, T. Kobayashi, and H. Yokota, “FENECIA: failure endurable nested-transaction based

execution of composite Web services with incorporated state analysis,” The VLDB Journal, vol. 18, no. 1, pp.
1-56, 2008.

[30] H. Garcia-Molina, and K. Salem, “Sagas,” in SIGMOD 87, 1987, pp. 249-259.
[31] G. Weikum, and H.-J. Schek, "Concepts and applications of multilevel transactions and open nested

transactions," Database transaction models for advanced applications, pp. 515-553: Morgan Kaufmann
Publishers Inc., 1992.

[32] C. Pu, G. E. Kaiser, and N. C. Hutchinson, “Split-Transactions for Open-Ended Activities,” in 14th
International Conference on Very Large Data Bases, 1988, pp. 26-37.

[33] Reuter, “ConTracts: A Means for Extending Control Beyond Transaction Boundaries,” Proceedings of the
3rd International Workshop on High Performance Transaction Systems, 1989.

[34] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres, “Ensuring relaxed atomicity for flexible transactions in
multidatabase systems,” ACM SIGMOD Record, 1994.

[35] M. Younas, B. Eaglestone, and R. Holton, “A formal treatment of a SACRED Protocol for Multidatabase
Web Transactions,” Database and Expert Systems Applications, vol. 1873, pp. 899-908, 2000.

[36] OASIS, "Web Services Atomic Transaction," http://docs.oasis-open.org/ws-tx/wsat/2006/06, [29 Nov 2011,
2009].

[37] OASIS, “Web Services Coordination,,” http://docs.oasis-open.org/ws-tx/wscoor/2006/06, 2007.
[38] A. T. Endo, and A. d. S. Simão: A Systematic Review on Formal Testing Approaches for Web Services.

Prooceedings of the IV Brazilian Workshop on Systemati and Automated Software Testing, 2010. Natal,
Brasil, 89-98

[39] B. Antonio, M. Hernán, and S. Francesco, "Testing Service Composition," 2008.
[40] M. Palacios, J. Garcia-Fanjul, and J. Tuya, “Testing in Service Oriented Architectures with dynamic binding:

A mapping study,” Inf. Softw. Technol., vol. 53, no. 3, pp. 171-189, 2011.
[41] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Bringing white-box testing to Service Oriented

Architectures through a Service Oriented Approach,” J. Syst. Softw., vol. 84, no. 4, pp. 655-668, 2011.
[42] R. Casado, J. Tuya, and M. Younas: A Framework to Test Advanced Web Services Transactions.

Prooceedings of the IEEE International Conference on Software Testing, Verification and Validation (ICST),
2011. IEEE Computer Society: Berlin, 443-446

[43] R. Casado, J. Tuya, and C. Godart: Dependency-based criteria for testing web services transactional
workflows. Prooceedings of the Next Generation on Web Services Practices, 2011. IEEE: Salamanca, Spain,
74-79

[44] R. Casado, J. Tuya, C. Godart, and M. Younas, “Test case design for transactional flows using a dependency-
based approach,” International Journal of Computer Information Systems and Industrial Management
Applications, vol. 5, pp. 20-40, 2012, 2012.

[45] R. Casado, J. Tuya, and M. Younas, “Testing the reliability of web services transactions in cooperative
applications,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, Italy,
2012, pp. 743-748.

[46] M. Grochtmann, and K. Grimm, “Classification trees for partition testing,” Software Testing, Verification and
Reliability, vol. 3, no. 2, pp. 63-82, 1993.

[47] T. Y. Chen, and P. L. Poon, “On the effectiveness of classification trees for test case construction,”
Information and Software Technology, vol. 40, no. 13, pp. 765-775, 1998.

[48] H. Singh, M. Conrad, and S. Sadeghipour, “Test Case Design Based on Z and the Classification-Tree
Method,” in Proceedings of the 1st International Conference on Formal Engineering Methods, 1997, pp. 81.

[49] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: a survey,” Software Testing,
Verification and Reliability, vol. 15, no. 3, pp. 167-199, 2005.

[50] C.-H. Liu, S.-L. Chen, and X.-Y. Li, “A WS-BPEL Based Structural Testing Approach for Web Service
Compositions,” in Proceedings of the 2008 IEEE International Symposium on Service-Oriented System
Engineering, 2008, pp. 135-141.

http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06

21

[51] J. Yan, L. Zhongjie, Y. Yuan, S. Wei, and Z. Jian: BPEL4WS Unit Testing: Test Case Generation Using a
Concurrent Path Analysis Approach. Prooceedings of the Software Reliability Engineering, 2006. ISSRE '06.
17th International Symposium on, 2006. 7-10 Nov. 2006;75-84

[52] D. Manova, S. Ilieva, F. Lonetti, A. Bertolino, and C. Bartolini, “Towards automated robustness testing of
BPEL orchestrators,” in Proceedings of the 12th International Conference on Computer Systems and
Technologies, Vienna, Austria, 2011, pp. 659-664.

[53] T. Lertphumpanya, and T. Senivongse, “A basis path testing framework for WS-BPEL composite services,”
in Proceedings of the 7th WSEAS International Conference on Software Engineering, Parallel and
Distributed Systems, Cambridge, UK, 2008, pp. 107-112.

[54] J. Garcia-Fanjul, C. de la Riva, and J. Tuya: Generation of Conformance Test Suites for Compositions of
Web Services Using Model Checking. Prooceedings of the Testing: Academic and Industrial Conference -
Practice And Research Techniques, 2006. TAIC PART 2006. Proceedings, 2006. 29-31 Aug. 2006;127-130

[55] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class mutation system: Research Articles,”
Softw. Test. Verif. Reliab., vol. 15, no. 2, pp. 97-133, 2005.

[56] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing experiments?,” in
Proceedings of the 27th international conference on Software engineering, St. Louis, MO, USA, 2005, pp.
402-411.

22

ANNEX I. Dependencies Classification-Trees

23

ANNEX II. Detailed results

Total
mutants Mutation score Mutants killed Mutants alive Number of mutants Traditional mutation score Class mutation score

Class Mutants S/N W/N S/E W/E S/N W/N S/E W/E S/N W/N S/E W/E Traditional Class S/N W/N S/E W/E S/N W/N S/E W/E

AgencyLogic 0 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0 0

AgencyWS 104 100,00 84,62 97,12 84,62 104 88 101 88 0 16 3 16 97 7 100 84 96 85 100 85 100 71

CarLogic 238 100,00 91,60 99,58 78,57 238 218 237 187 0 20 1 51 233 5 100 91 99 79 100 100 100 20

CarReservation 28 100,00 96,43 96,43 89,29 28 27 27 25 0 1 1 3 20 8 100 95 100 85 100 100 87 100

CarWS 173 100,00 97,11 98,84 91,91 173 168 171 159 0 5 2 14 156 17 100 99 99 92 100 76 94 88

CheapAirWS 125 100,00 92,00 96,80 81,60 125 115 121 102 0 10 4 23 116 9 100 92 96 82 100 88 100 66

Customer 78 100,00 82,05 96,15 23,08 78 64 75 18 0 14 3 60 59 19 100 79 94 30 100 89 100 0

FiveHotelWS 173 100,00 79,19 97,69 56,65 173 137 169 98 0 36 4 75 156 17 100 76 97 57 100 100 100 52

FlightLogic 387 99,74 73,64 99,22 61,24 386 285 384 237 1 102 3 150 366 21 99 74 99 63 100 61 95 38

FlightReservation 28 96,43 42,86 96,43 42,86 27 12 27 12 1 16 1 150 10 18 90 60 100 63 100 33 94 38

GoldAirWS 133 99,25 69,17 97,74 48,87 132 92 130 65 1 41 3 68 124 9 99 66 97 49 100 100 100 44

HotelLogic 231 100,00 88,74 100,00 80,09 231 205 231 185 0 26 0 46 226 5 100 89 100 80 100 40 100 60

HotelReservation 28 100,00 64,29 100,00 14,29 28 18 28 4 0 10 0 24 20 8 100 80 100 20 100 25 100 0

Itinerary 7 100,00 57,14 100,00 57,14 7 4 7 4 0 3 0 3 0 7 ‐ ‐ ‐ ‐ 100 57 100 57

PaymentLogic 8 100,00 62,50 87,50 50,00 8 5 7 4 0 3 1 4 6 2 100 66 100 50 100 50 50 50

PaymentTransfer 10 100,00 10,00 100,00 10,00 10 1 10 1 0 9 0 9 8 2 100 12 100 12 100 0 100 0

PaymentWS 112 100,00 69,64 99,11 58,04 112 78 111 65 0 34 1 47 105 7 100 70 99 59 100 57 100 42

TAcontext 59 100,00 84,75 100,00 98,31 59 50 59 58 0 9 0 1 14 45 100 100 100 100 100 80 100 97

TAflow 217 100,00 98,16 100,00 97,70 217 213 217 212 0 4 0 5 211 6 100 99 100 100 100 33 100 33

TrainLogic 207 99,52 88,89 76,81 30,43 206 184 159 63 1 23 48 144 195 12 100 92 80 31 91 25 25 16

TrainReservation 28 100,00 42,86 39,29 14,29 28 12 11 4 0 16 17 24 10 18 100 60 80 60 100 33 16 0

TrainWS 133 100,00 71,43 63,16 45,11 133 95 84 60 0 38 49 73 124 9 100 71 63 45 100 66 55 44

TwoHotelWS 173 100,00 60,69 65,32 59,54 173 105 113 103 0 68 60 70 156 17 100 61 66 60 100 52 52 52

Total 2680 99,85 81,19 92,50 65,45 2676 2176 2479 1754 4 504 201 1060 2412 268 99,76 82,28 92,99 67,08 99,60 65,72 84,51 49,91

