A Start-up Assisted Fully Differential Folded Cascode Opamp

R. Nagulapalli, K. Hayatleh, S. Barker, B. Yassine, S. Zourob, S. Raparthyn, Y. Yassine

This paper explains the hidden positive feedback in the two-stage fully differential amplifier through external feedback resistors, and possible DC latch-up during the amplifier start-up. The biasing current selection among the cascode branches have been explained intuitively. With reference to previous literature. To avoid the latch-up problem irrespective of the transistor bias currents a novel, hysteresis based start-up circuit is proposed. An 87dB, 250MHz unity gain bandwidth amplifier has been developed in 65nm CMOS Technology and post-layout simulations demonstrate no start-up failures out of 1000 Monte-Carlo (6-Sigma) simulations. The circuit draws 126uA from a 1.2V supply and occupies the 2184um2 area.

Keywords: Folded-Cascode, Latch-up, DC gain, leakage, CMOS scaling, Monte-Carlo, Slew-rate.

1. Introduction: Over the years, CMOS technology scaling down processes have followed Moore’s law, which predicts the number of transistors per unit area doubles every two years, resulting in approximately 30% reduction in the transistor length. Positive consequences of this scaling include significantly decreased chip size, increase in circuit speed, and a reduction in power requirements [1]. Due to the reduced device dimensions, the drain to source electric field will increase, which causes carrier velocity saturation and eventually, electron mobility (μ) degradation. To maintain the internal electric field at a constant level, device engineers have opted to decrease the power supply voltage (V_{dd}), but the transistor threshold voltage is not similarly decreased due to digital leakage power limits. Digital design benefit from this scaling to a great extent due to lower V_{dd}, because the switching power can be expressed as CV_{dd}^2f, where C is the switching capacitance and f is the operating frequency. It is clear from this that power dissipation will decrease with V_{dd}. Unfortunately, downscaing negatively impacts analogue circuits in many ways. For example, the available V_{dd} for every transistor in a transistor stack is decreased, as well as its output impedance. This leads to low DC voltage gain and degraded output noise, therefore requiring a multi-stage amplifier to meet a specific DC gain target [2]. Cascode opamps are the only solution to achieve a high DC gain in scaled CMOS Technology, due to their high output impedance. Telescopic and Folded cascode opamps are popular architectures in the literature, and both have advantages and disadvantages. The output voltage swing is limited by the input common mode voltage in a telescopic cascode opamp, whereas a folded cascode opamp can support higher voltage swings at the output, independent of input common mode voltage, but at the expense of higher power dissipation and increased noise levels. Because of the increased use of digital circuitry, switching noise has been increased dramatically. This will affect the analogue circuit signal to noise ratio (SNR) and the sensitivity of the circuits will be compromised. Hence there is a need for fully differential circuits, which have several advantages in comparison to single-ended, such as: immunity to common-mode noise, double swing for a given power supply voltage (6dB increase in dynamic range) and reduced even-harmonics at the output.

The rest of the paper has been organized as follows. Section 2 describes the multiple feedbacks involved in two-stage folded cascode opamps and the DC latch-up problem, section 3 describes a proposed solution to make the amplifier robust against latch-up problems, and finally, section 4 describes the prototype simulation results and summarizes the paper.

2. Two-stage folded Cascode amplifier: Fig. 1 shows a conventional fully differential inverting amplifier, which gain set by the ratio of resistors R_1 and R_2. This circuit has two negative feedback loops. The feedback resistor R_2 is connected such that there will be negative feedback around the opamp for the differential mode signal of the opamp [3].

To illustrate the common mode feedback path, a common mode equivalent circuit of Fig. 2 has been shown in Fig. 3. The first and second stages act as inverting stages, so the feedback through external resistors is positive, which could be considered an external feedback loop. Though positive feedback is risky and undesirable, it can't be avoided here because the feedback resistors (R_1, R_2) are connected in such a way that there will always be negative feedback and as a by-product of this connection an internal common-mode feedback through R_{ext} to OA_1 forms positive feedback. To have a stable DC operating point, internal feedback should always be stronger than the external feedback loop, otherwise, outputs may latch onto the rails. External positive feedback loop gain can be expressed, as shown in equation (1).

$$L_{ext} = A_1A_2\frac{R_1}{R_1+R_2}$$

Where A_1 is first stage gain, expressed as:

$$A_1 = \frac{g_{m2}}{g_{m5}g_{m6}}$$

Where A_2 is second stage gain expressed as: $g_{m5}g_{m6}$

Fig. 1 Inverting Amplifier

Fig. 2 (a) Folded Cascode Fully Differential Amplifier

Fig. 2 (b) Bias voltage generation for Fig. 2(a)
The first stage common mode gain is very low due to the degeneration effect of the CMFB opamp. To ensure a stable DC common mode operating point, the positive feedback loop gain should be smaller than the negative feedback loop gain for all frequencies of interest ($L_{B\text{int}} \ll L_{B\text{int}}$). In both equations (1) & (2), the 2nd stage gain ($\theta_{m7}$$r_{o7}$) is common so as to have a stable operating point, which is always needed to make sure the first stage common mode gain is always smaller than the CMFB opamp gain. This is relatively easy to achieve because the first stage common mode gain is very low due to the degeneration effects of the tail transistor M_7. To simplify the frequency compensation of the CMFB loop, general practices are to split the load cascode device into two devices (M_6, M_7), where M_6 is driven by the constant bias, and only M_7 provides the loop gain, hence the common mode loop gain is decreased according to the ratio of M_6, M_7 dimensions [4]. Although this simplifies the frequency compensation, it weakens the negative feedback through internal CMFB compensation, it weakens the negative feedback through internal CMFB loop gain, hence the common mode loop gain is decreased according to the ratio of M_6, M_7 dimensions [4].

$L_{B\text{int}} = gm7g_{m5}R_{o5}r_{o7}g_{m7}w_{7}/L_{7}$

(2)

Where A_{CM} is the gain of CMFB of OA$_1$. To ensure a stable DC common mode operating point, the positive feedback loop gain should be smaller than the negative feedback loop gain for all frequencies of interest ($L_{B\text{int}} \ll L_{B\text{int}}$). In both equations (1) & (2), the 2nd stage gain ($\theta_{m7}$$r_{o7}$) is common so as to have a stable operating point, which is always needed to make sure the first stage common mode gain is always smaller than the CMFB opamp gain. This is relatively easy to achieve because the first stage common mode gain is very low due to the degeneration effects of the tail transistor M_7. To simplify the frequency compensation of the CMFB loop, general practices are to split the load cascode device into two devices (M_6, M_7), where M_6 is driven by the constant bias, and only M_7 provides the loop gain, hence the common mode loop gain is decreased according to the ratio of M_6, M_7 dimensions [4]. Although this simplifies the frequency compensation, it weakens the negative feedback through internal CMFB compensation, it weakens the negative feedback through internal CMFB loop gain, hence the common mode loop gain is decreased according to the ratio of M_6, M_7 dimensions [4]. Ideally, it should be small enough to improve the phase margin, but large enough to provide enough loop gain.

$\omega_u = \frac{r_{1}}{r_{1}+r_{2}} \frac{g_{m}C_{ox}W}{L}$

(3)

This choice will not work to satisfy all the opamp requirements (Unity gain bandwidth, noise). The slewing process in a folded cascode is explained next. The relationship between the branch currents is shown in equation (4).

$I_{CM} + I_{BN} = I_{BP} + \frac{I_{g}}{2}$

(4)

If a large differential voltage is applied at the input of the opamp, the total tail current is steered towards M_7 and M_7^* (Fig. 2a) will carry no current, hence M_5 current decreases to $I_{CM}+I_{BN}$ from $I_{CM}+I_{BN}$ (1/2). If $I_{CM}+I_{BN} \geq I_{BP}$ then M_5 will carry finite current and the slew rate is given by I_{BP}/C_{E}. An interesting consideration of the slew rate discussion would be observing what will happen if $I_{CM}+I_{BN} \geq I_{BP}$. In such a case, M_5 would turn off and M_7 current would be $I_{CM}+I_{BN}$, hence M_7^* would also.

Sometimes during start-up, or if there is any large transient dip in the power supply node x (M_5 source) may become stuck at ground potential, and the input common mode node at V_{CM}. In this case, differential pairs turn off and there is no charging current to pull node x to the desired potential. The design should always make sure to have $I_{BP} > I_{BN}$, such there would be a pull-up current into node x. According to equation (4), if $I_{BP} > I_{BN}$, then $2I_{CM} > I_{BP}$ would mean that CMFB should always control a current greater than half of the tail current. This is a very important conclusion for robust operation [4]. To demonstrate the problem, a folded cascode opamp was designed and initialized node x (Fig. 2) to 0V and the power supply voltage was stepped up to 1.2V. Fig. 4 depicts the simulation results. Case-2 is when the above condition violated by reducing the current, and clearly shows node x stuck at ground potential, making the opamp non-functional. Sometimes a spurious leakage of the cascode transistors, high-temperature effects, or even power supply ramp could bring the circuit out of the DC latch problem, but it is not safe to rely on these kinds of uncontrollable events [5]. Case-1 is corresponding to when the condition is met and node x moves towards the operating point (350mV in this case). Unfortunately, this condition can’t always be met, or it would be easily violated when there is some process mismatch in the transistors. Fig. 5 shows the Monte-Carlo simulation results, out of 1000 simulations, 27 have been failed to start the opamp even though the condition met ($I_{BP} > I_{BN}$) because of process mismatch introduced by Monte-Carlo. One potential solution could be using the combination of an NMOS and PMOS input differential pair, often called a rail to rail opamp [4] to avoid the latch-up state at the cost additional power. Rail to rail amplifiers are prone to stability issues because the gain of the opamp is a function of the input common mode voltage. At a lower common mode voltage, only the PMOS input pair is active and for higher common mode voltage, the NMOS differential pair is active. At the mid rail common mode voltage both nmos and pmos differential pairs are active, which will result in higher loop-gain, hence prone to stability problems. Several new folded cascode opamps have proposed in the literature [6-11] with enhanced DC gain and bandwidth, but none of them discussed or addressed the latch-up issue explained above. Next section describes the proposed technique to address the latch-up issue.
3. Proposed Solution: Rather than relying on design constraints [4], which are sensitive to device mismatch and use additional power, or utilising the rail to rail opamp which could give stability problems, a start-up assisted folded cascode would improve the robustness of the system and would solve the latch-up problem. When node x (Fig. 2) is stuck at very low voltage due to the problems mentioned in the section 2, a start-up circuit that senses this and pumps some current into it to assist its voltage ramping towards the operating point would solve the problem. Previously proposed start-up circuits operate on voltage comparison principle. M 7 gate connected to the node x in the folded Cascode (Fig. 1), and M6 is biased from a diode connected constant current transistor. When node x (Fig. 6) is stuck at ground potential M7 current is zero, hence node C potential would rise to that of the supply. Because M2 is a saturation region biased transistor with a finite VGS, to support zero current, its Vds should be zero. Node z (Fig. 6) potential would reach very close to the ground because the M3, M4 combination is an inverter and transistor M5, M6 current would increase and pump current into node x (Fig. 6). Note that it seems like M4 current flowing into an open circuit in Fig. 6. However, when it is connected to the main folded cascode opamp it would dump the current into the cascode transistors (M5, M6 in Fig. 3). The size of M7: designed such that node C would reach ground potential, when the circuit moved out of the latch-up state (node x is settled to an appropriate potential), the start-up transistors M3, M5 will be turned off to save power. The inverter formed by M5 and M6 needs to behave like a comparator with a threshold closer to the supply so that when the potential of node C decreases to slightly less than VDD, the inverter would turn off both M3 and M5. This was achieved by making transistor M3 wider (connecting several in parallel) and transistor M5 longer (several in series).

4. Results: A folded Cascode fully differential amplifier was designed using 65nm CMOS technology. To evaluate the start-up circuit functionality, in Fig. 6 the gate connection of M1 and M2 was broken and driven by the M7 gate with a voltage source which terminated M6 with a voltage source current. By sweeping the M7 gate voltage, M6 drain current was plotted in Fig. 7. It shows that the M7 gate potential is close to the ground, M6 is pumping 140mA into the amplifier (precisely into node x), which helps its start-up. As soon as the M7 gate potential rises above 20mV, M6 current drops, almost reaching ~2.1mA.

The start-up circuit’s literature does not include any discussion regarding the inclusion of hysteresis [12][14]. Whenever there is leakage from devices (in modern technologies) start-up circuits could also be stuck at a potential depending on the leakage level. Hysteresis puts devices that are supposed to turn off into hard off mode, and vice versa. In Fig. 6, M5 provides hysteresis and M6 enables the start-up action by injecting current into the amplifier. When M6 is required to pump current, M5 acts as a pull-down node of voltage C such that M6 is in hard on mode.
Table I shows the transistor sizes used in the design. Table-II shows the performance comparison of the proposed design with the recently published folded Cascode opamps. Table-II reveals that the present design is the only design which used start-up circuit to bring the circuit out of latch-up issue, whereas [4] also has no latch-up issue but it’s power consumption is higher.

Conclusion: A hidden positive feedback and subtle start-up issues in a fully differential folded cascode has been discussed. This start-up issue could affect reliability of the circuit in the mass production. Many of the previous implementations hasn’t considered this and some researchers addressed this issue by increasing the power dissipation. In this paper a start-up circuit has been added to the opamp to improve robustness without increasing power consumption. A Monte Carlo simulation performed to demonstrate the start-up failures, without start-up circuit shows 27 runs were not starting out of 1000 runs, whereas with the proposed solution had no failures from the same number of runs.

R. Nagulapalli, K. Hayatleh, S. Barker, B. Yassine, S. Zourob, S. Raparthy, N. Yassine
(Faculty of Technology, Design and Environment, Oxford Brookes University, Wheatley Campus, Oxford, OX33 1HX, UK)
E-mail: khayatleh@brookes.ac.uk

References

Table I Transistor sizes.

<table>
<thead>
<tr>
<th>Component Name</th>
<th>W/L (um/um)</th>
<th>Component Name</th>
<th>W/L (um/um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>72/3</td>
<td>M1</td>
<td>1/4</td>
</tr>
<tr>
<td>M2</td>
<td>36/3</td>
<td>M2</td>
<td>1/4</td>
</tr>
<tr>
<td>M3</td>
<td>52/2.6</td>
<td>M3</td>
<td>3/4</td>
</tr>
<tr>
<td>M4</td>
<td>40/2.6</td>
<td>M4</td>
<td>1/6</td>
</tr>
<tr>
<td>M5</td>
<td>28/3</td>
<td>M5</td>
<td>1/6</td>
</tr>
<tr>
<td>M6</td>
<td>20/3</td>
<td>M6</td>
<td>1/6</td>
</tr>
<tr>
<td>M7</td>
<td>26/3</td>
<td>M7</td>
<td>2/4</td>
</tr>
<tr>
<td>M8</td>
<td>14/1.2</td>
<td>M8</td>
<td>1/4</td>
</tr>
<tr>
<td>M9</td>
<td>10/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II Performance comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>This Work</th>
<th>[4]</th>
<th>[10]</th>
<th>[11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (V)</td>
<td>1.2</td>
<td>3.3</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Power (µW)</td>
<td>151</td>
<td>342</td>
<td>295</td>
<td>569</td>
</tr>
<tr>
<td>Technology (nm)</td>
<td>65</td>
<td>500</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>DC Gain(dB)</td>
<td>87</td>
<td>76</td>
<td>74</td>
<td>90</td>
</tr>
<tr>
<td>Bandwidth(MHz)</td>
<td>250</td>
<td>100</td>
<td>173</td>
<td>475</td>
</tr>
<tr>
<td>Start-up Circuit</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Latch-up Problem</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>