A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves

doi: 10.1104/pp.113.234468

This version is available: https://radar.brookes.ac.uk/radar/items/c7005009-4812-4918-9735-286b353cbdac/1/

Available on RADAR: May 2016
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the postprint version of the journal article. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Running head:

Integrated day-night model of leaf metabolism

Corresponding authors:

R.G. Ratcliffe and L.J. Sweetlove*
Department of Plant Sciences,
University of Oxford,
South Parks Road,
Oxford OX1 3RB
U.K.

+44 1865 275000
george.ratcliffe@plants.ox.ac.uk
lee.sweetlove@plants.ox.ac.uk

*For editorial correspondence and proofs

Journal area:

Systems and Synthetic Biology

A diel flux-balance model captures interactions between light and dark metabolism during day-night cycles in C$_3$ and CAM leaves.

C.Y. Maurice Cheung1, Mark G. Poolman2, David. A. Fell2, R. George Ratcliffe1 and Lee J. Sweetlove1

1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
2 School of Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK
One sentence summary:
A diel flux balance modeling framework that integrates temporally-separated metabolic networks provides realistic descriptions of light and dark metabolism in C_3 and CAM leaves, and suggests that energetics and nitrogen use efficiency are unlikely to have been drivers for the evolution of CAM.

Funding:
CYMC was supported by a studentship from the University of Oxford Systems Biology Doctoral Training Centre funded by the Clarendon Fund and a Sloane-Robinson award from Keble College, Oxford.

Corresponding authors:
R. George Ratcliffe, george.ratcliffe@plants.ox.ac.uk
* Lee J. Sweetlove, lee.sweetlove@plants.ox.ac.uk
* For editorial correspondence and proofs

ABSTRACT
Although leaves have to accommodate markedly different metabolic flux patterns in the light and the dark, models of leaf metabolism based on flux balance analysis (FBA) have so far been confined to consideration of the network under continuous light. A new FBA framework is presented that solves the two phases of the diel cycle as a single optimisation problem and thus provides a more representative model of leaf metabolism. The requirement to support continued export of sugar and amino acids from the leaf during the night, as well as to meet night-time cellular maintenance costs, forces the model to set aside stores of both carbon and nitrogen during the day. With only minimal constraints, the model successfully captures many of the known features of C_3 leaf metabolism, including the recently discovered role of citrate synthesis and accumulation in the night as a precursor for the provision of carbon skeletons for amino acid synthesis during the day. The diel FBA model can be applied to other temporal separations such as that which occurs in CAM photosynthesis, allowing a system-level analysis of the energetics of CAM. The diel
model predicts that there is no overall energetic advantage to CAM, despite the potential for suppression of photorespiration through CO\(_2\) concentration. Moreover, any savings in enzyme machinery costs through suppression of photorespiration are likely to be offset by the higher flux demand of the CAM cycle. It is concluded that energetic or nitrogen-use considerations are unlikely to be evolutionary drivers for CAM photosynthesis.
INTRODUCTION

Photosynthetic metabolism continues to be studied intensively due to its importance for crop performance and for the global carbon cycle in relation to climate change. The metabolic pathways and enzymes involved in carbon fixation and related metabolic processes such as the synthesis of sucrose and starch have been well characterised. However, it is apparent that a full appreciation of leaf metabolism requires these metabolic processes to be placed in the context of the wider metabolic network (Szecowka et al., 2013). This is particularly important for predicting how strategies for engineering improved photosynthesis (Maurino and Weber, 2013) may affect network properties such as redox and energy balancing (Kramer and Evans, 2011).

Flux-balance analysis has emerged as the method of choice for predicting fluxes in large metabolic network models (Sweetlove and Ratcliffe, 2011) and several flux-balance models have explicitly considered photosynthetic metabolism in a variety of plants species and microorganisms. These include cyanobacteria (Knoop et al., 2010; Montagud et al., 2010; Nogales et al., 2012; Saha et al., 2012; Knoop et al., 2013), Chlamydomonas (Boyle and Morgan, 2009; de Oliveira Dal'Molin et al., 2011), Arabidopsis (de Oliveira Dal'Molin et al., 2010a), rapeseed embryos (Hay and Schwender, 2011), rice (Poolman et al., 2013), maize (Saha et al., 2011) and several C4 plants (de Oliveira Dal'Molin et al., 2010b). These models successfully predicted the metabolic routes involved in the fixation of CO2 into different biomass components in the light. However, one major feature of metabolism of photosynthetic organisms, namely the interactions between light and dark metabolism is neglected in most of these studies. Effectively, most models assume that the organism grows in constant light which is rarely true in natural conditions.

Apart from the obvious switch from photoautotrophic to heterotrophic metabolism between day and night, interactions between the two phases can occur through the temporal separation of storage compound synthesis and subsequent mobilisation. For example, it has been shown that the carbon skeletons used for nitrogen assimilation during the day are largely provided by carboxylic acids that were synthesised and stored during the previous night (Gauthier et al., 2010). Such temporal shifts of carbon and nitrogen metabolism have substantial implications for fluxes in the central metabolic network of leaves in the light (Tcherkez et al., 2009). Interactions between temporally separated metabolic events are also a critical
feature of crassulacean acid metabolism (CAM) photosynthesis in which CO₂ is initially fixed at night via PEP carboxylase, leading to night-storage of carboxylic acids (mainly malic acid) which are decarboxylated during the day to provide CO₂ for the conventional photosynthetic carbon assimilation cycle. While this is principally an adaptation to arid environments, there are unresolved questions as to whether CAM photosynthesis is energetically more efficient than C₃ photosynthesis (Winter and Smith, 1996). Such questions are becoming more important in the light of the proposed use of CAM plants as a source of biofuel (Yan et al., 2011).

One recent study has used flux-balance analysis to consider both light and dark metabolism in Synechocystis over a complete diel cycle divided into 192 time steps (Knoop et al., 2013). Time-courses of metabolic flux predictions over a diel cycle were simulated by altering the constraints on metabolic outputs (biomass composition) depending on the time-point and based on empirical rules. This led to a highly constrained model and did not allow the range of potential interactions between the day and night phases to be fully explored. We have developed an alternative modelling framework for integrated day-night flux-balance analysis in which the metabolic fluxes in the light phase and the dark phase were simulated simultaneously in a single optimisation problem. A pre-defined list of storage compounds that can accumulate freely over the diurnal cycle was made available to the model. The model was then free to choose amongst these storage compounds, the choice being dictated by the need to satisfy the objective function within the applied constraints. This diurnal modelling framework was used to explore the interactions between light and dark metabolism and to predict the metabolic fluxes in the light in both C₃ and CAM photosynthesis. We show that accounting for day-night interactions leads to an altered pattern of fluxes during the day that provides a better match with experimental observations. We were also able to simulate network flux distributions in CAM metabolism. The model successfully predicts the classical CAM cycle in the different CAM subtypes and allows a comparison of the energetic efficiency and metabolic costs between CAM and C₃ photosynthetic metabolism.

RESULTS

A day-night modelling framework for leaf metabolism
The aim was to construct a flux-balance model that accounted for the day and night phases of leaf metabolism in an integrated fashion such that storage compounds synthesised during the day were available for use in the dark and vice versa. This was achieved by applying a specific framework of constraints to an existing genome-scale model of Arabidopsis metabolism (Cheung et al., 2013). The assumption was made that each phase (day and night) was in a pseudo-steady-state, as has been done for previous flux-balance models of photosynthetic metabolism. The two inter-dependent steady states were modelled as a single optimisation problem with photoautotrophic metabolism specified in the day by allowing a photon influx, and heterotrophic metabolism specified at night by setting the photon influx to zero. For simplicity a 12 h-12 h day-night cycle was specified. Also for simplicity, we considered the case of a mature leaf in which the only metabolic outputs were the synthesis of sucrose and a range of amino acids for export to the phloem. It is trivial to extend the model to consider a growing leaf and to account for shorter or longer days.

The relative proportions of 18 amino acids exported to the phloem (Supplemental Table 1) and the ratio of sucrose to total amino acid export (2.2:1) were constrained in accordance with measurements of the composition of Arabidopsis phloem exudate (Wilkinson and Douglas, 2003). The model was required to maintain export of sugars and amino acids to the phloem during the day and night, but at a ratio of 3:1 (day: night) based on measurements in Arabidopsis rosettes (Gibon et al., 2004). The sole source of nitrogen for the leaf model was nitrate import from the xylem, based on the observation that nitrate represents the main form of nitrogen (80%) entering a leaf (Macduff and Bakken, 2003). The rate of nitrate import into the leaf during the day and the night was constrained to be 3:2 based on measurements in various plant species (Delhon et al., 1995; Macduff and Bakken, 2003; Siebrecht et al., 2003). Besides the export of sucrose and amino-acids, cellular maintenance costs were accounted for by including generic ATPase and NADPH oxidase steps for maintenance and the requirement to satisfy a specified carbon conversion efficiency (Cheung et al., 2013). In this case, we assumed a carbon conversion efficiency of 50% during the night based on the day-night carbon balance calculated from measurements in Arabidopsis rosettes (Gibon et al., 2004). The ratio of ATP maintenance cost to NADPH maintenance cost was assumed to be 3:1 (Cheung et al., 2013) and maintenance costs were assumed to
be the same in the light and dark phases. In addition to the above constraints, fluxes through the chloroplastic NADPH dehydrogenase (NDH) and plastoquinol oxidase were set to zero as the contributions of NDH (Yamamoto et al., 2011) and plastoquinol oxidase (Josse et al., 2000) to photosynthesis are thought to be minor. The flux of sucrose synthase was constrained to be irreversible in the direction of sucrose degradation, as it is thought that sucrose synthase is not involved in sucrose synthesis in leaves (Nguyen-Quoc et al., 1990).

In order to maintain a metabolic output at night, the model must accumulate carbon and nitrogen stores during the day. To explore the metabolic interaction between the day and the night, the model included a set of sugars and carboxylic acids to be utilised as carbon storage molecules. Specifically, starch, glucose, fructose, malate, fumarate and citrate were free to accumulate during either the day or night phase. No direct constraints were applied to the amount of each compound that accumulated other than the requirement for the overall model to be mass balanced. For nitrogen, nitrate and the 20 common amino acids were allowed to accumulate as storage compounds, but the latter were constrained such that accumulation was only permitted during the day but not at night, in accordance with observations on the diel fluctuations of amino-acids in leaves (Scheible et al., 2000). Again, no direct constraints were applied to the amount of each amino acid to be accumulated. Thus the model was free to choose among a set of storage compounds to allow the constraint of export of sugars and amino acids at night to be met. The interconnections between the light and dark phases of the model, as well as the input and output constraints, are summarised in Fig. 1. Fluxes were predicted using linear programming with an objective function to minimise the sum of fluxes within the specified constraints. The two phases were modelled simultaneously in a single optimisation problem analogous to modelling interactions between two micro-organisms or two tissues/cell-types in multicellular organisms (de Oliveira Dal'Molin et al., 2010b). As Arabidopsis is a C₃ plant, the ratio of Rubisco carboxylation to oxygenase was set to a typical value of 3:1 to simulate photorespiration (Gutteridge and Pierce, 2006).

The integrated day-night model leads to altered flux predictions in comparison to a constant light model.
To assess the effect of the diel modelling framework, fluxes predicted in the light phase of the diel model were compared to those predicted in a constant-light model. The latter model was constrained by total sucrose and amino-acid export and cellular maintenance costs that matched those over a 24-hour period in the diel model.

To take account of the fact that some fluxes are not uniquely defined at the optimum, flux variability analysis was used to determine the feasible range of all fluxes. Fluxes in the light component of the diel model were considered to be significantly different from those of the same reactions in the constant light models if their flux ranges did not overlap. This procedure identified 131 reactions with non-overlapping flux ranges in the light (Supplemental Table II). These reactions carried different fluxes in the light, but none carried flux in opposite directions in the two models. Fluxes were compared using a similarity measure calculated from the fraction of the smaller flux value over the larger flux value. Reactions with a similarity measure of less than 0.25 are listed in Table I, where the smaller the value of this measure, the larger the difference in fluxes. A similarity measure of zero means that the reaction carried zero flux in one of the models. Some reactions that carried different fluxes between the diel and constant light models are to be expected. For example, starch synthesis was turned on during the day in the diel model, but not in the constant light model where there was no need to store carbon because of the continuous assimilation of CO₂. Similarly transport of carboxylic acids and nitrate across the tonoplast for storage in the vacuole was activated in the diel model.

However, there were also changes in metabolic fluxes that were less directly constrained. These relate to the citrate used to provide carbon skeletons for glutamate and glutamine synthesis in the light. Table I shows that the synthesis of citrate was predicted to occur in the peroxisome via peroxisomal citrate synthase. In contrast, the diel model predicted that citrate would be synthesised via the mitochondrial TCA cycle during the night and stored in the vacuole. Nocturnally stored citrate was then exported from the vacuole during the day and metabolised into 2-oxoglutarate via aconitase and isocitrate dehydrogenase for glutamate synthesis (Fig. 2). The prediction of the diel model is consistent with observations from isotopic labelling experiments (Gauthier et al., 2010) and this example demonstrates the importance of considering the interconnections between light and dark metabolism for the prediction of realistic flux distributions.
Predictions of metabolic network fluxes in a mature C₃ leaf over a day-night cycle

The flux solution using the day-night modelling framework can be summarised in a simple flux map (Fig. 3) and a complete list of predicted flux ranges for reactions in the light and dark are provided in Supplemental Table III. The diurnal modelling framework successfully predicted that starch is the main carbon storage compound that accumulates in the light even though the model was free to utilise sugars and carboxylic acids as the carbon store. Some malate was also predicted to accumulate in the light, which then fed into the TCA cycle in the dark. Interestingly, the model predicted that both citrate and nitrate were stored at night in order to support nitrogen assimilation which was predicted to occur primarily during the day. The nitrate store was generated by transporting imported nitrate from the xylem into the vacuole during the night and release of the vacuolar store to the cytosol during the day. The model also predicted the storage during the day of a proportion of amino acids synthesised in the light and these were then exported into the phloem in the dark.

In the light phase, the model predicted large fluxes through the linear photosynthetic electron transport pathway and the Calvin-Benson pathway to support sucrose and amino acid synthesis and starch accumulation. The classical photorespiratory pathway for the oxidation of 2-phosphoglycolate was also predicted to be active due to a constraint in the model that set the Rubisco carboxylation to oxygenase ratio to 3:1. Note, that if this constraint is removed, the Rubisco oxygenase reaction become inactive. The TCA cycle was predicted to operate in a non-cyclic mode in the light with two separate branches (Fig. 4) consistent with the current understanding based on isotope labelling experiments, and as predicted from other flux-balance models (Sweetlove et al., 2010). Oxaloacetate produced from phosphoenolpyruvate carboxylase was converted into malate which accumulated in the light. The model predicted that the mitochondrial electron transport chain (ETC) is active in the light, carrying a flux equivalent to 10% of the flux through photosynthetic linear electron transport. The mitochondrial ATP synthase was predicted to contribute to 18% of total ATP synthesis in the light with the rest produced by the chloroplast thylakoid ATP synthase. The two sources of NADH
feeding into the mitochondrial ETC are glycine decarboxylase and the malate-oxaloacetate shuttle (Fig. 5) with contributions of 53% and 47% respectively (the mitochondrial isocitrate dehydrogenase reaction is predicted to exclusively generate NADPH which is used for maintenance reactions in the mitochondrion). The ultimate source of reductant in a photosynthetic leaf is from the photosynthetic linear electron transport. While most of the reducing power is used for photosynthetic CO₂ fixation in the chloroplast, a small proportion of reductant was shuttled out of the chloroplast by the malate-OAA shuttle (11%) and the 3-phosphoglycerate (3PGA)-glyceraldehyde 3-phosphate (GAP) shuttle (4%) (Fig. 5). Malate-OAA exchanges were responsible for transfer of reductant from the chloroplast into the cytosol, the mitochondrion and the peroxisome. The 3PGA-GAP shuttle transported reductant from the chloroplast to the cytosol to produce NADPH by the non-phosphorylating NADP-GAPDH. A proportion of NADPH produced in the cytosol was shuttled into the mitochondrion by the isocitrate-2-oxoglutarate shuttle (Fig. 5).

In the dark phase, the largest fluxes are related to starch degradation, sucrose synthesis, glycolysis, the oxidative pentose phosphate pathway (OPPP), the TCA cycle and the mitochondrial electron transport chain (Fig. 3). The breakdown of starch was predicted to be carried out by the hydrolytic pathway generating maltose for transport from the chloroplast to the cytosol. This is the result of constraining the chloroplastic hexose phosphate transporter to carry zero flux, in line with experimental observations (Niewiadomski et al., 2005), thus limiting the possible metabolic routes for carbon export from the chloroplast. When this constraint was removed starch breakdown occurred via starch phosphorylase. Glycolysis and the OPPP were predicted to occur in both the cytosol and the chloroplast, with 72% of the total flux through glycolytic glyceraldehyde 3-phosphate dehydrogenase and 55% of that through the OPPP glucose 6-phosphate dehydrogenase steps occurring in the cytosol. The TCA cycle operates in a cyclic mode in the dark (Fig. 4) consuming pyruvate produced from stored starch via glycolysis. A small proportion of the citrate produced by citrate synthase (15%) is stored in the dark to provide carbon skeletons for glutamate and glutamine synthesis in the light.

Predictions of metabolic fluxes in a mature CAM leaf over a diurnal cycle
From a structural metabolic modelling perspective, the Arabidopsis genome-scale metabolic model contains all the metabolic reactions required to carry out the various subtypes of CAM photosynthesis. However, because the metabolic cycle that constitutes CAM photosynthesis is temporally segregated, metabolism in CAM leaves cannot be modelled with a single-steady state FBA model. We therefore applied the diel modelling framework to predict metabolic fluxes in a mature CAM leaf over a 24-hour cycle. As for the mature C$_3$ leaf, the model was constrained by sucrose and amino acid export and cellular maintenance costs. The main additional constraint for simulating CAM photosynthesis was that CO$_2$ exchange with the environment was set to have zero flux in the light to simulate the closure of stomata in CAM plants during the day. Other differences between the C$_3$ and CAM models arose from the treatment of the Rubisco oxygenase activity and the export of carbon from the plastids. First, Rubisco oxygenase activity is likely to be suppressed in CAM leaves in the light due to the increase in the internal partial pressure of CO$_2$, but since there is also an increase in internal oxygen concentration, it is unclear to what extent photorespiration is prevented in CAM plants (Lüttge, 2011). Accordingly the Rubisco carboxylase to oxygenase ratio was left unconstrained in the light phase of the CAM model. Secondly, in the ice plant *Mesembryanthemum crystallinum* L., a facultative CAM plant, chloroplasts of CAM-induced plants mainly export glucose 6-phosphate (Neuhaus and Schulte, 1996) and this is coincident with a 71-fold increase in transcript level for the chloroplastic G6P transporter (Cushman et al., 2008). On this basis, the chloroplastic glucose 6-phosphate transporter was not constrained in the CAM model. Finally the various subtypes of CAM photosynthesis were simulated by setting the reactions specific to other subtypes to carry zero flux. The constraints applied for modelling the different modes of photosynthesis are summarised in Table II.

Using the diel modelling framework with CAM-specific constraints, FBA successfully predicted metabolic fluxes consistent with the well-known CAM cycle (Supplemental Table III). In the light, nocturnally stored malate was decarboxylated by malic enzyme or PEPCK depending on the subtype. In the generic CAM model (no sub-type constraints), 89% of malate decarboxylation was predicted to be carried out by PEPCK, with the remaining 11% carried out by the cytosolic malic enzyme. In addition to the photosynthetic linear electron transport and reductive pentose phosphate pathway, which were expected to carry high fluxes in the light, the
gluconeogenesis pathway also carried a high predicted flux in the light to convert
PEP, from malate decarboxylation, to starch or soluble sugars for storage as part of
the CAM cycle. In the generic CAM model, only starch was stored during the day but
not soluble sugars. In our initial models of the sugar-storing subtypes, fructose was
produced in the cytosol by sucrose synthase and subsequently transported into the
vacuole by the vacuolar hexose transporter. However, it is thought that tonoplast
hexose transport activity is restricted to the night (in an efflux capacity) in CAM
plants to avoid futile cycling (Holtum et al., 2005; Antony et al., 2008). When the
vacuolar hexose transporter activity was subsequently restricted to the dark period,
the model predicted that sucrose is imported into the vacuole and catabolised into
glucose and fructose by vacuolar invertase, which is in line with postulated models in
the literature (Smith and Bryce, 1992; McRae et al., 2002; Holtum et al., 2005).

The Rubisco carboxylase to oxygenase ratio was unconstrained in modelling
CAM and the model predicted no Rubisco oxygenase flux suggesting that Rubisco
oxygenase is not necessary for the functioning of a mature CAM leaf under the
assumption of minimising total flux. The mitochondrial ETC and ATP synthase
carried high fluxes in the light with the mitochondrial ETC carrying a flux equivalent
to 29% of the flux through photosynthetic linear electron transport and the
mitochondrial ATP synthase contributing to 34% of the total ATP produced in the
light in the generic CAM model. Similar values were predicted for the various CAM
subtypes. Similar to C_3 leaves, an incomplete TCA cycle was predicted in the light
phase with two separate branches, citrate to 2-oxoglutarate and succinate to
oxaloacetate (Fig. 6). Interestingly, the oxaloacetate-branch differed from that found
for the C_3 model in that oxaloacetate was produced, not consumed and succinate
was the starting point of the branch, not fumarate (Figs. 4 and 6). In the CAM TCA
cycle, the two branches are joined via the activity of isocitrate lyase in the
peroxisome to produce succinate (Fig. 6).

In the dark phase, the stored carbon (starch or soluble sugars) was predicted
to be catabolised to produce PEP, the substrate for carboxylation, via glycolysis.
PEP was carboxylated by PEP carboxylase to produce oxaloacetate, which was
subsequently converted into malate for storage in the vacuole as malic acid during
the night. With respect to starch degradation, the phosphorolytic route via starch
phosphorylase was predicted in CAM because it is more energetically efficient than
the hydrolytic route via maltose, and this is consistent with the current view of the
CAM cycle (Weise et al., 2011). While most of the carbon store was used to provide the substrate for carboxylation in the CAM cycle, some went into the OPPP, to produce NADPH for maintenance processes, and into the TCA cycle, to produce NADH for ATP synthesis via the mitochondrial ETC and ATP synthase. As in a mature C₃ leaf, the model predicted a complete TCA cycle in the dark in a mature CAM leaf (Fig. 6).

Quantitative comparisons of metabolism between C₃ and CAM leaves

The CO₂-concentrating mechanism in CAM is an energy-requiring process and the energetic cost of supporting sucrose and amino acid export from mature leaves and cell maintenance processes was compared between C₃ and CAM in terms of photon use (Fig. 7). Photon use in a mature CAM leaf is similar to that in a C₃ leaf, being ±10% of C₃ depending on the CAM subtype.

Rubisco is the most abundant protein on earth, contributing up to 50% of the soluble protein and 20-30% of the total nitrogen in a C₃ leaf (Feller et al., 2008). The investment in Rubisco, in terms of energy and nitrogen, is likely to contribute significantly to the evolutionary fitness trade-off in plants. By comparing the model predictions, it was apparent that total flux through Rubisco (carboxylase + oxygenase flux) was lower in CAM than C₃, mainly as a consequence of the prediction of no oxygenase activity in the CAM model (Fig. 7). While this may suggest a cost-saving for a CAM plant, it is offset by the fact that the CO₂-concentrating mechanism requires high fluxes through the CAM cycle. As a consequence, the total flux through the entire metabolic network is 32-64% higher in CAM than in C₃ (Fig. 7).

DISCUSSION

Integration of light and dark metabolism is required to capture known features of leaf metabolism by FBA

The usefulness of constraints-based modelling tools such as FBA depends on the extent to which they capture known features of the metabolic network. Good agreement has been reported between the predicted and measured fluxes for a heterotrophic Arabidopsis cell culture, leading to insights into cell maintenance costs
under stress conditions (Cheung et al., 2013). There is an expectation that a similar modelling approach will be useful in analysing photosynthetic metabolism, but most applications to date have been based on the analysis of the network under conditions of constant light. Here analysis of the Arabidopsis model revealed that there are several features of leaf metabolism that can only be captured by FBA by considering the interaction between the temporally-separated phases of light and dark metabolism. For example, the diel model accumulated citrate in the vacuole during the night and this was released during the day to provide carbon skeletons for nitrogen assimilation. This agrees with evidence from isotope labelling experiments (Gauthier et al., 2010) and the current view of carboxylic acid metabolism in leaves in the light (Tcherkez et al., 2009; Sweetlove et al., 2010). In contrast, a single-steady-state, constant light FBA leaf model generated citrate via an unusual metabolic route involving threonine aldolase and peroxisomal citrate synthase. This route is most likely chosen by the model because of its efficiency in terms of carbon use: the route leads to the fixation of 1 CO$_2$ by PEP carboxylase and releases 0.5 CO$_2$ from the recycling of glycine via the photorepiratory pathway. In another Arabidopsis genome-scale metabolic model, the threonine aldolase reaction was absent and the model predicted that citrate would be synthesised from pyruvate by pyruvate dehydrogenase and mitochondrial citrate synthase (de Oliveira Dal'Molin et al., 2010a), contradicting well-established evidence that the mitochondrial pyruvate dehydrogenase is inhibited transcriptionally and post-transcriptionally in leaves in the light (Tovar-Mendez et al., 2003). A possible explanation for the accumulation of citrate in the dark over the synthesis of citrate from primary photosynthate in the light could be that the degradation of starch to produce citrate (via glycolysis, PEP carboxylase, pyruvate dehydrogenase and citrate synthase) provides a carbon-neutral route for transferring ATP and reducing power from the light phase to the dark phase. This conserves the net carbon required to support dark metabolism, where citrate in the dark would otherwise be metabolised through the TCA cycle and the carbon would be released as CO$_2$. Confirming this, if the model was configured with citrate accumulation prevented, the total CO$_2$ release in the dark was increased by 2%.

The diel model was free to choose between a range of carbon- (starch, sugars and carboxylic acids) and nitrogen-storage compounds (nitrate and amino acids) to support the export of sugars and amino acids during the night, and to meet
the night-time maintenance costs. The fact that the model solution selected starch and amino acids as the main daytime storage carbon and nitrogen compounds, respectively, consistent with the known biochemistry of C3 leaves, reflects the success of the objective function (minimisation of sum of fluxes) in capturing the drivers that shape the metabolic system. Essentially, the choice of starch over sugars and amino acids over nitrate storage, leads to a more efficient metabolic network. For example, it is energetically less costly to mobilise a plastidic starch store than a vacuolar sucrose store. Leaf starch breakdown initially occurs hydrolytically in the plastid to generate maltose which is then metabolised to hexose phosphate by a combination of the cytosolic enzymes glucosyltransferase, hexokinase and α-glucan phosphorylase (Zeeman et al., 2004). The latter enzyme uses Pi rather than ATP as the phosphoryl donor, and hence saves an ATP compared to the breakdown of vacuolar sucrose via invertase and phosphorylation by hexokinases. The choice of starch over carboxylic acids is again driven by the efficiency driver of the objective function: carboxylic acids are more oxidised than starch and hence the energy stored per carbon is less than for starch. The model also correctly predicted that nitrate assimilation would occur only during the day, it being overall more efficient (lower sum of fluxes) to store nitrate that is imported into the leaf at night and release it from the vacuole (along with appropriate quantities of citrate) during the day for assimilation into amino acids, consistent with experimental measurements (Stitt et al., 2002).

However, it should be noted that the behaviour of all these models is highly dependent on the accuracy of the reaction list and the nature of the constraints applied. The choice of objective function will also affect the flux solution, although we have previously demonstrated that the choice of objective function is less important than the constraints applied to an FBA model of heterotrophic metabolism (Cheung et al., 2013). Similarly, for this model, the use of other objective functions (e.g. minimisation of photon use) did not change the main conclusions about the operation of the network through the diel cycle. Having established that the diel modelling framework can capture realistic aspects of leaf metabolism through the day-night cycle, it can be employed in future to examine how the predicted flux distribution changes in response to different metabolic scenarios such as variations in available light for photosynthesis and the transition from sink to source leaves.
The diel metabolic modelling framework allows simulation and analysis of CAM

The diel framework for FBA also allows CAM photosynthesis to be tackled for the first time. Only minimal changes to the constraints of the diel C₃ model were required to capture the classical CAM cycle, the major change being to constrain CO₂ exchange with the environment to zero during the light. This constraint forced the model to carry out net carbon fixation during the night. Even though the model was set up with free choices for the use of carboxylating enzymes and the nocturnal carbon store (from malate, fumarate, citrate, starch and soluble sugars), the conventional CAM cycle was predicted with PEP carboxylase as the carboxylating enzyme and malate as the main temporary storage of fixed carbon in the dark. In addition to malate, a small amount of citrate was predicted to accumulate during the night, and this was used during the day in part to support nitrate assimilation and in part for conversion to malate via isocitrate lyase. In fact, some CAM plants accumulate a large amount of citrate during the night (Lüttge, 1988; Borland and Griffiths, 1988) and it has been speculated that either ATP citrate lyase or the TCA cycle are used for catabolism of this stored citrate (Holtum et al., 2005). ATP citrate lyase produces oxaloacetate and acetyl-CoA from citrate, but since there is no major sink for acetyl-CoA in the output constraints, this route was not chosen by the model. One possible reason for preferring isocitrate lyase over the TCA cycle is that the conversion of citrate to malate by the former route releases less CO₂ per molecule of citrate (glyoxylate produced from isocitrate lyase is metabolised through the photorespiratory pathway, producing 0.5 molecules of 3PGA and 0.5 molecules of CO₂ per molecule of citrate catabolised) than the latter route (2 molecules of CO₂ released per molecule of citrate catabolised by aconitase, isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase). In the absence of measurements of ATP citrate lyase and isocitrate lyase in CAM plants, it is not clear whether these two enzymes are involved in the catabolism of citrate in vivo. Transcripts for both enzymes were identified in a recent sequencing study of two agave species (Gross et al., 2013) but at present, there is no quantitative data on the expression or activity levels that could be used to discriminate between the possible routes. Ultimately, detailed metabolic flux analysis would be required to examine this issue.
Analysis of the energetics of CAM metabolism

In the model of CAM leaf metabolism, where the model was free to choose between different decarboxylating enzymes and storage compounds, malate decarboxylation was predicted to be mainly carried out by PEPCK. This can be explained by the observation that the mPEPCK-subtypes of CAM require fewer photons, which leads to a lower total flux through the metabolic network (the objective function that is optimised in the model) than the ME-subtypes (Fig. 7). In other words, considering the whole network, the PEPCK-subtype is more energetically efficient. This conclusion contrasts with previous manual calculations of CAM-subtype energetics that considered the stoichiometry of a much smaller metabolic network (Winter and Smith, 1996) and emphasises that the net balance of ATP and NAD(P)H consumption is a property of the whole network.

While CAM undoubtedly represents an adaptation to arid conditions (Cushman, 2001; Silvera et al., 2010), the CAM cycle also acts as a CO₂-concentrating mechanism and reduced CO₂ availability may have been the common, original selection pressure that led to the evolution of CAM in both terrestrial and aquatic environments (Keeley and Rundel, 2003). The CO₂ concentrating mechanism may also suppress the carbon- and energy-consuming process of photorespiration, although this is open to debate and depends critically upon the internal CO₂:O₂ concentration ratio. However, there is a trade-off between the energetic investment in the CO₂-concentrating mechanism in the form of the CAM cycle and the benefit of suppressing photorespiration. The modelling results suggest that the photon use of C₃ and CAM leaves are similar (Fig. 7), meaning that there is little to be gained in terms of energetics in running the CAM cycle. However as well as the running costs of the network, there is also the cost of the enzyme machinery. A knock-on consequence of suppression of Rubisco oxygenase activity is that less Rubisco protein is required to fix a given amount of carbon. Given that Rubisco contributes up to 50% of the soluble proteins and 20-30% of the total nitrogen in a C₃ leaf (Feller et al., 2008), the predicted reduction of 22-32% of total Rubisco flux in CAM compared to C₃ could be a significant benefit in terms of nitrogen use efficiency. However, at the same time, there are additional enzyme machinery costs for operating the CAM cycle. There are contradicting experimental observations relating to nitrogen efficiency in CAM plants (Luttge, 2004). From the model
predictions, CAM requires 12-43% more total flux through the metabolic network than C₃. Although enzyme machinery cost per metabolic flux for each reaction will vary depending on factors such as the size and the turnover rate of the enzyme, the total network flux can be used as a proxy for the overall enzyme machinery cost by averaging out the variation between reactions, although the extent to which this assumption is distorted by very abundant enzymes with low K_{cat} values, such as Rubisco, has not been tested. By balancing the benefit from reduced Rubisco requirement with the increase in enzyme machinery costs in the rest of the metabolic network, the total nitrogen invested in enzyme machinery is likely to be similar in C₃ and in CAM. Thus the modelling results suggest that energetics and nitrogen use efficiency are unlikely to have been contributory drivers for the evolution of CAM photosynthesis.

CONCLUSION

The diel FBA-modelling framework not only predicted known features of leaf metabolism more accurately than a continuous light model, but it also allowed CAM photosynthesis to be modelled at a network scale. This has allowed an accurate accounting of the energetics of CAM metabolism, demonstrating that there are unlikely to be substantial energetic benefits in CAM photosynthesis over C₃, despite the potential for suppression of photorespiration due to the CO₂-concentrating effect of the CAM cycle. In the current diel FBA framework it is assumed that the light and dark phase each represent pseudo steady-states. This ignores known differences in metabolic behaviour that occur within each phase, particularly at the light-dark transition points, in both C₃ and CAM leaves. The framework can easily be extended to account for such transitions, by further sub-dividing each phase. However, this requires a more detailed knowledge of the input-output constraints at each time-step and will lead to a more tightly constrained model where each time step is solved as an independent or concatenated FBA problem. For this initial exploration, it was preferable to apply minimal constraints to establish whether a metabolic network optimised for efficiency (lowest overall flux) matched known configurations of C₃ and CAM metabolism over a diel cycle.

MATERIALS AND METHODS
Construction of a diel metabolic model

The genome-scale metabolic model of Arabidopsis used for the analysis of heterotrophic metabolism (Cheung et al., 2013) was adapted to model leaf metabolism over a day-night cycle. The diel modelling framework was developed by dividing the day-night cycle into two phases, light and dark, with metabolism in each phase assumed to be at steady-state. The model was constructed by duplicating the Arabidopsis genome-scale metabolic model, with the reactions and metabolites in each duplicate labelled “_Light” or “_Dark” before the compartmentation suffix. In addition, dummy reactions for “transporting” storage metabolites from one phase to another were manually added with the suffix “_LightDark”. The diel model is available in SBML format (Supplementary Data 1). Flux balance analysis and flux variability analysis were implemented as before (Cheung et al., 2013).

Quantitative comparison between flux ranges calculated from the diel model and the continuous light model

Flux ranges for reactions in the light were calculated using flux variability analysis for the diel model, \((v_{\text{diel, min}}, v_{\text{diel, max}}) \), and the continuous light model, \((v_{\text{single, min}}, v_{\text{single, max}}) \).

Reversible reactions carrying fluxes in opposite directions in the two sets of flux ranges were defined as reactions where either \(v_{\text{diel, min}} \geq 0 \) and \(v_{\text{single, max}} \leq 0 \) or \(v_{\text{single, min}} \geq 0 \) and \(v_{\text{diel, max}} \leq 0 \). Reactions with non-overlapping flux ranges were defined as reactions where either \(v_{\text{diel, min}} > v_{\text{single, max}} \) or \(v_{\text{single, min}} > v_{\text{diel, max}} \). For reactions with non-overlapping flux ranges that did not carry fluxes in opposite directions, a similarity measure was calculated as \(v_{\text{low, max}} / v_{\text{high, min}} \), where \(v_{\text{low, max}} \) is the maximum flux of the reaction with the lower flux range of the pair and \(v_{\text{high, min}} \) is the minimum flux of the reaction with the higher flux range. This measure varies from 0 to 1 where a value close to 0 represents a large difference between the flux ranges.

Supplemental Data

Supplemental Table I. Relative amino-acid composition in the phloem of Arabidopsis.
Supplemental Table II. List of reactions with non-overlapping flux ranges between the diel model and the single steady-state model and their similarity measures.

Supplemental Table III. Predicted fluxes for reactions in the light and the dark in a leaf with either C3 or CAM photosynthesis.

Supplemental Data 1. Diel model of Arabidopsis leaf metabolism in SBML format.

ACKNOWLEDGEMENTS

We would like to thank Professor J.A.C. Smith (University of Oxford) for discussions on the energetics of CAM metabolism.

LITERATURE CITED

phosphate/phosphate translocator GPT1 is essential for pollen maturation and
embryo sac development. Plant Cell 17: 760-775

the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA 109: 2678-2683

Poolman MG, Kundu S, Shaw R, Fell DA (2013) Responses to light intensity in a
genome-scale model of rice metabolism. Plant Physiol 162: 1060-1072

genome-scale metabolic reconstruction of maize metabolism. PloS ONE 6: e21784

Reconstruction and comparison of the metabolic potential of cyanobacteria
Cyanothecae sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS ONE 7:
e48285

Scheible WR, Krapp A, Stitt M (2000) Reciprocal diurnal changes of
phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate
synthase and NADP-isocitrate dehydrogenase expression regulate organic acid
metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23:
1155-1167

xylem of poplar - diurnal variations and spatial distribution along the shoot axis.
Planta 217: 783-793

Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:
995-1010

24

FIGURE LEGENDS

Figure 1. Flux-balance framework for integrated metabolic modelling of the day and night phases of a mature leaf. The light dark phases are represented by the white and grey backgrounds of the diagram respectively. Metabolites shown in the dashed rectangles between the two phases represent potential storage compounds. Starch, glucose, fructose, malate, fumarate, citrate and nitrate were allowed to accumulate in the light and in the dark as denoted by the arrows pointing towards the light and dark states. Twenty common amino-acids were allowed to accumulate in the light but not in the dark as denoted by the arrow pointing from the light phase to the dark phase. Export to the phloem was set to four sucrose to one amino-acid, with 18 different amino-acids in the proportions shown in Supplemental Table 1. The export rate was set to be three times greater in the light than in the dark. Nitrate was set as the sole nitrogen source with the ratio of nitrate uptake from the phloem in the light to that in the dark set to 3 to 2. Cellular maintenance costs in the dark were set to a fixed value where the carbon exported during the night roughly equalled the carbon released as CO₂ in the dark phase. Maintenance costs were assumed to be the same in the light and the dark. The ratio of ATP maintenance cost to NADPH maintenance cost was set to 3 to 1.

Figure 2. Metabolic routes for glutamate biosynthesis from two modelling approaches. A single steady-state model in constant light is shown on the left and the diel modelling framework on the right. In constant light, the carbon skeletons for glutamine synthesis were predicted to be supplied via a metabolic route in which threonine is metabolised in the cytosol to acetate, transported to the peroxisome and metabolised to citrate which is exported to the cytosol and converted to 2-oxoglutarate. Using the diel modelling framework, the model predicted the use of citrate stored in the dark to provide the carbon skeletons for glutamate synthesis in the light. Abbreviations: PEP, phosphoenolpyruvate; OAA, oxaloacetate. The thickness of the arrows is scaled to indicate relative flux magnitudes (in molar units).

Figure 3. Predicted flux map of metabolism for a mature C₃ leaf over a day-night cycle. The light dark phases are represented by the white grey backgrounds respectively. Metabolites shown in the dashed rectangles between the two phases
represent storage compounds. The thickness of the arrows is proportional to the metabolic flux through the reactions (in molar units). Metabolic processes listed within rounded rectangles carry fluxes too large to be represented on the flux map. Abbreviations: ETC, electron transport chain; OPPP, oxidative pentose phosphate pathway; TCA, tricarboxylic acid.

Figure 4. Flux predictions through the TCA cycle and pyruvate dehydrogenase in a C₃ leaf in the light and the dark. A non-cyclic mode with two separate branches, citrate to 2-oxoglutarate and oxaloacetate and fumarate to malate, was predicted to operate in the light. A cyclic mode of the TCA cycle was predicted to operate in the dark, mainly to produce ATP via oxidative phosphorylation. Fluxes illustrated are net conversion between metabolites over all subcellular compartments. The thickness of the arrows is proportional to the metabolic fluxes through the reactions (in molar units). Citrate stored in the dark is represented by an arrow pointing from the dark phase to the light phase. Malate storage is not illustrated in this diagram.

Figure 5. Reductant shuttling between subcellular compartments and the production and consumption of NADH in mitochondria in the light. Left-pointing arrows represent reductant-consuming reactions; right-pointing arrows represent reductant-producing reactions. The thickness of the solid arrows is proportional to the metabolic flux through the reactions (in molar units), except for the conversion between 3PGA and GAP in the chloroplast where the zig-zag line across the arrow indicates that the flux is too large to be illustrated to scale in the diagram. Reductant shuttles between four subcellular compartments, cytosol, chloroplast, mitochondria and peroxisome, are shown with dashed arrows representing transfer of metabolites between compartments. Abbreviations: 2OG, 2-oxoglutarate; 3PGA, 3-phosphoglycerate; ETC, electron transport chain; GAP, glyceraldehyde 3-phosphate; OAA, oxaloacetate.

Figure 6. Flux predictions through the TCA cycle and related reactions in a CAM leaf. A non-cyclic mode with two distinct branches, citrate to 2-oxoglutarate and succinate to oxaloacetate, was predicted to operate in the light. The two branches of the TCA cycle are connected by isocitrate lyase which converts isocitrate into succinate and glyoxylate. A cyclic mode of the TCA cycle was predicted to operate in
the dark, mainly to contribute to ATP production via oxidative phosphorylation.

Fluxes illustrated are net conversion between metabolites over all subcellular compartments. The thickness of the arrows is proportional to the metabolic flux through the reactions (in molar units), except for the conversion between malate and oxaloacetate where the zig-zag line across the arrow indicates that the flux is too large to be illustrated to scale in the diagram. Citrate stored in the dark is represented by an arrow pointing from the dark phase to the light phase. Malate storage is not illustrated in this diagram.

Figure 7. Comparison of model predictions between C$_3$ and the various subtypes of CAM defined in Table II. The model predictions for photon use, Rubisco carboxylase flux, Rubisco oxygenase flux, total flux through Rubisco and the total flux in the metabolic model are shown with values scaled as a percentage of the value in the C$_3$ leaf model.
Table I. List of reactions in the light that have different fluxes in the diel model and the continuous light model

Reactions with similarity measures less than 0.25 are listed, where a small value represents a large difference in fluxes from the two modelling approaches (see Supplemental Table II for a complete list of reactions with non-overlapping flux ranges). The metabolic context of the reactions is listed in the column on the right.

<table>
<thead>
<tr>
<th>Reaction name</th>
<th>Similarity Measure</th>
<th>Metabolic context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactions with higher flux in the diel model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastidic ADPglucose pyrophosphorylase</td>
<td>0</td>
<td>Starch synthesis</td>
</tr>
<tr>
<td>Plastidic starch synthase</td>
<td>0</td>
<td>Starch synthesis</td>
</tr>
<tr>
<td>Plastidic phosphoglucosamine isomerase</td>
<td>0</td>
<td>Starch synthesis</td>
</tr>
<tr>
<td>Plastidic phosphoglucomutase</td>
<td>0</td>
<td>Starch synthesis</td>
</tr>
<tr>
<td>Tonoplast citrate/H+ antiporter</td>
<td>0</td>
<td>Storage in the vacuole</td>
</tr>
<tr>
<td>Tonoplast malate/H+ antiporter</td>
<td>0</td>
<td>Storage in the vacuole</td>
</tr>
<tr>
<td>Tonoplast fumarate/H+ antiporter</td>
<td>0</td>
<td>Storage in the vacuole</td>
</tr>
<tr>
<td>Tonoplast nitrate transporter</td>
<td>0</td>
<td>Storage in the vacuole</td>
</tr>
<tr>
<td>Tonoplast PPiase</td>
<td>0</td>
<td>Storage in the vacuole</td>
</tr>
<tr>
<td>Plastidic alkaline pyrophosphatase</td>
<td>0.015</td>
<td>Related to starch synthesis</td>
</tr>
<tr>
<td>Reactions with higher flux in the continuous-light model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroxisomal inorganic pyrophosphatase</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal phosphate transporter</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal citrate synthase</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal acetyl-CoA synthetase</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal AMP/ATP antiporter</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal acetate transporter</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Peroxisomal citrate transporter</td>
<td>0</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Cytosolic threonine aldolase</td>
<td>0.019</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Cytosolic aldehyde dehydrogenase</td>
<td>0.019</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic ATP/ADP antiporter</td>
<td>0.093</td>
<td>Export of ATP from the chloroplast</td>
</tr>
<tr>
<td>Plastidic threonine transporter</td>
<td>0.123</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic threonine synthase</td>
<td>0.145</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic homoserine kinase</td>
<td>0.153</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic homoserine dehydrogenase</td>
<td>0.161</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic aspartate kinase</td>
<td>0.180</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic aspartate semialdehyde dehydrogenase</td>
<td>0.180</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Mitochondrial ATP/AMP antiporter</td>
<td>0.202</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Mitochondrial aldenylate kinase</td>
<td>0.202</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
<tr>
<td>Plastidic aspartate transporter</td>
<td>0.208</td>
<td>Related to Glu and Gln synthesis</td>
</tr>
</tbody>
</table>

Table II. Constraints applied for modelling leaf metabolism in C₃ and various subtypes of CAM

<table>
<thead>
<tr>
<th>Constraints for different modes of photosynthesis</th>
<th>C₃ generic</th>
<th>CAM starch-PePCK</th>
<th>CAM starch-ME</th>
<th>CAM sugars-PePCK</th>
<th>CAM sugars-ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ exchange</td>
<td>CO₂ exchange in light</td>
<td>Free</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photorespiration</td>
<td>Rubisco CO₂:O₂</td>
<td>3:1</td>
<td>Unconstrained in light, 3:1 in dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transporter</td>
<td>chloroplast G6P-Pi</td>
<td>0</td>
<td>Free</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30
<table>
<thead>
<tr>
<th>Metabolic reactions</th>
<th>PEPCK ME pyruvate, P_i dikinase</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>0</th>
<th>Free</th>
<th>0</th>
<th>Free</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage compounds</td>
<td>Starch</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>0</td>
<td>Free</td>
<td>0</td>
<td>Free</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Soluble sugars</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>0</td>
<td>Free</td>
<td>0</td>
<td>Free</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1. Flux-balance framework for integrated metabolic modelling of the day and night phases of a mature leaf. The light dark phases are represented by the white and grey backgrounds of the diagram respectively. Metabolites shown in the dashed rectangles between the two phases represent potential storage compounds. Starch, glucose, fructose, malate, fumarate, citrate and nitrate were allowed to accumulate in the light and in the dark as denoted by the arrows pointing towards the light and dark states. Twenty common amino-acids were allowed to accumulate in the light but not in the dark as denoted by the arrow pointing from the light phase to the dark phase. Export to the phloem was set to four sucrose to one amino-acid, with 18 different amino-acids in the proportions shown in Supplemental Table 1. The export rate was set to be three times greater in the light than in the dark. Nitrate was set as the sole nitrogen source with the ratio of nitrate uptake from the phloem in the light to that in the dark set to 3 to 2. Cellular maintenance costs in the dark were set to a fixed value where the carbon exported during the night roughly equalled the carbon released as CO₂ in the dark phase. Maintenance costs were assumed to be the same in the light and the dark. The ratio of ATP maintenance cost to NADPH maintenance cost was set to 3 to 1.
Figure 2. Metabolic routes for glutamate biosynthesis from two modelling approaches. A single steady-state model in constant light is shown on the left and the diel modelling framework on the right. In constant light, the carbon skeletons for glutamine synthesis were predicted to be supplied via a metabolic route in which threonine is metabolised in the cytosol to acetate, transported to the peroxisome and metabolised to citrate which is exported to the cytosol and converted to 2-oxoglutarate. Using the diel modelling framework, the model predicted the use of citrate stored in the dark to provide the carbon skeletons for glutamate synthesis in the light. Abbreviations: PEP, phosphoenolpyruvate; OAA, oxaloacetate. The thickness of the arrows is scaled to indicate relative flux magnitudes (in molar units).
Figure 3. Predicted flux map of metabolism for a mature C₃ leaf over a day-night cycle. The light dark phases are represented by the white grey backgrounds respectively. Metabolites shown in the dashed rectangles between the two phases represent storage compounds. The thickness of the arrows is proportional to the metabolic flux through the reactions (in molar units). Metabolic processes listed within rounded rectangles carry fluxes too large to be represented on the flux map. Abbreviations: ETC, electron transport chain; OPPP, oxidative pentose phosphate pathway; TCA, tricarboxylic acid.
Figure 4. Flux predictions through the TCA cycle and pyruvate dehydrogenase in a
C₃ leaf in the light and the dark. A non-cyclic mode with two separate branches,
citrate to 2-oxoglutarate and oxaloacetate and fumarate to malate, was predicted to
operate in the light. A cyclic mode of the TCA cycle was predicted to operate in the
dark, mainly to produce ATP via oxidative phosphorylation. Fluxes illustrated are net
conversion between metabolites over all subcellular compartments. The thickness of
the arrows is proportional to the metabolic fluxes through the reactions (in molar
units). Citrate stored in the dark is represented by an arrow pointing from the dark
phase to the light phase. Malate storage is not illustrated in this diagram.
Figure 5. Reductant shuttling between subcellular compartments and the production and consumption of NADH in mitochondria in the light. Left-pointing arrows represent reductant-consuming reactions; right-pointing arrows represent reductant-producing reactions. The thickness of the solid arrows is proportional to the metabolic flux through the reactions (in molar units), except for the conversion between 3PGA and GAP in the chloroplast where the zig-zag line across the arrow indicates that the flux is too large to be illustrated to scale in the diagram. Reductant shuttles between four subcellular compartments, cytosol, chloroplast, mitochondria and peroxisome, are shown with dashed arrows representing transfer of metabolites between compartments. Abbreviations: 2OG, 2-oxoglutarate; 3PGA, 3-phosphoglycerate; ETC, electron transport chain; GAP, glyceraldehyde 3-phosphate; OAA, oxaloacetate.
Figure 6. Flux predictions through the TCA cycle and related reactions in a CAM leaf. A non-cyclic mode with two distinct branches, citrate to 2-oxoglutarate and succinate to oxaloacetate, was predicted to operate in the light. The two branches of the TCA cycle are connected by isocitrate lyase which converts isocitrate into succinate and glyoxylate. A cyclic mode of the TCA cycle was predicted to operate in the dark, mainly to contribute to ATP production via oxidative phosphorylation. Fluxes illustrated are net conversion between metabolites over all subcellular compartments. The thickness of the arrows is proportional to the metabolic flux through the reactions (in molar units), except for the conversion between malate and oxaloacetate where the zig-zag line across the arrow indicates that the flux is too large to be illustrated to scale in the diagram. Citrate stored in the dark is represented by an arrow pointing from the dark phase to the light phase. Malate storage is not illustrated in this diagram.
Figure 7. Comparison of model predictions between C₃ and the various subtypes of CAM defined in Table II. The model predictions for photon use, Rubisco carboxylase flux, Rubisco oxygenase flux, total flux through Rubisco and the total flux in the metabolic model are shown with values scaled as a percentage of the value in the C₃ leaf model.