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Abstract 
NoSQL databases have become the preferred option for storing and 

processing data in cloud computing   as they are capable of providing high 

data availability, scalability and efficiency. But in order to achieve these 

attributes, NoSQL databases make certain trade-offs. First, NoSQL 

databases cannot guarantee strong consistency of data. They only 

guarantee a weaker consistency which is based on eventual consistency 

model. Second, NoSQL databases adopt a simple data model which makes 

it easy for data to be scaled across multiple nodes. Third, NoSQL databases 

do not support table joins and referential integrity which by implication, 

means they cannot implement complex queries. The combination of these 

factors implies that NoSQL databases cannot support transactions. 

Motivated by these crucial issues this thesis investigates into the 

transactions and data management in NoSQL databases.  

It presents a novel approach that implements transactional support for 

NoSQL databases in order to ensure stronger data consistency and provide 

appropriate level of performance. The novelty lies in the design of a Multi-

Key transaction model that guarantees the standard properties of 

transactions in order to ensure stronger consistency and integrity of data. 

The model is implemented in a novel loosely-coupled architecture that 

separates the implementation of transactional logic from the underlying 

data thus ensuring transparency and abstraction in cloud and NoSQL 

databases. The proposed approach is validated through the development 

of a prototype system using real MongoDB system. An extended version of 

the standard Yahoo! Cloud Services Benchmark (YCSB) has been used in 

order to test and evaluate the proposed approach. Various experiments 

have been conducted and sets of results have been generated. The results 

show that the proposed approach meets the research objectives. It 

maintains stronger consistency of cloud data as well as appropriate level of 

reliability and performance.  
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CHAPTER 1  
 

INTRODUCTION 
 

Cloud computing technologies feature among the top ten most disruptive 

technological trends of this era [1]. Cloud computing offers a lot more flexibility 

than the traditional legacy systems and at a cheaper cost, making it more 

attractive to consumers as well as service providers.  

Cloud service providers such as Google (Google Apps), Microsoft (Azure), Amazon 

(Amazon web services), and Salesforce (Salesforce CRM tools) provide 

infrastructure, platform and software services which are generally deployed (and 

run) on inexpensive commodity computing infrastructure. Such infrastructure is 

generally composed of tens of thousands of servers and network components 

which are located in different data centres around the world.  

There has been rapid development in cloud and NoSQL (Not Only SQL) databases 

in order to store large volume of data and to make such data highly available and 

efficient for cloud service provisioning. However, there still exist important 

challenges such as security, privacy, network QoS, data consistency, availability, 

reliability, performance, environmental issues, economical and business related 

issues [2] [3] [4] that need further research. This thesis investigates into the 

transaction management of NoSQL databases in order to ensure consistency of 

cloud data and to provide appropriate level of reliability and performance.  

This chapter is organised as follows. Section 1.1 describes background and 

fundamentals of cloud computing. Section 1.2 explains the characteristics of 

NoSQL databases and the properties of transactions. Section 1.3 explains the 

motivation and rationale for this research. It also specifies the scope of the 

research problem addressed in this thesis. Section 1.4 explains the aim and 

objectives of this research. Section 1.5 explains the research methodology. 
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Section 1.6 identifies the contributions of this research. Section 1.7 explains the 

structure of this thesis. 

 

1.1 CLOUD COMPUTING 
 

Cloud computing is defined as “a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction” [5] . 

Cloud computing follows architectural designs and service provisioning models 

that deviate from the conventional perspectives, design and services of traditional 

information technology. Cloud computing offers information technology 

resources provisioned (mainly through the Internet) in a Service Oriented 

Architecture (SOA) [6] where users only pay for the resources they consume. 

Compared to classical Internet and distributed computing systems, cloud 

computing has various distinguishing features, including pay-as-you-go business 

model, virtualization, large scale storage facilities, support for big data, high 

compute power, and support for exploiting the strength of both powerful as well 

as commodity computers [7]. This model of pay-as-you-go services offered by 

cloud computing vendors gives consumers the illusion of access to infinite 

computing resources. Resources are completely elastic and can be provided for as 

and when needed. Organisations and individuals therefore do not need to make 

capital investments in computing resources. These features have empowered 

cloud computing technologies to become an attractive service hosting and 

delivery platform for various organisations, educational institutions, public sector 

and industries such as Google, Microsoft, Amazon and Facebook amongst others. 

Generally, cloud computing services are broadly categorized into three different 

types [2] including: 

Software-as-a-service (SaaS): SaaS is a multi-tenant platform where users buy a 

subscription from the publisher or service provider. Publishers of software that 
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make use of SaaS have the advantage of deploying new features in their software 

as soon as they are released, while this may be very difficult to implement in 

traditional software. SalesForce is a major provider of SaaS. 

Platform-as-a-service (PaaS) – PaaS provides developers with operating systems 

and environment (application development frameworks) comprising of end-to-

end lifecycle of developing, testing, deploying and hosting of a web application as 

a service. Google (App Engine) and Microsoft (Azure platform) are major providers 

of this service. 

Infrastructure-as-a-service (IaaS) – IaaS refers to on-demand provisioning of 

infrastructural resources, usually in terms of Virtual Machines. IaaS providers 

include Amazon (AWS), Dimension data and RackSpace. 

As mentioned earlier, cloud service providers provide infrastructure, platform and 

software services which are deployed on inexpensive commodity computing 

infrastructure located in many data centres across the world. This level of service 

provisioning introduces challenges of security, consistency, availability and 

performance among other issues. 

 

1.2 NoSQL DATABASES and TRANSACTIONS 
 

Cloud service provisioning can handle large volume of data (referred to as Big 

Data) in order to support large scale applications and a large population of 

users/clients. For example, managing data related to millions of Facebook, Twitter 

or Google mail users needs effective data management and processing 

capabilities to achieve data consistency and high availability but in a reliable and 

efficient way.  

NoSQL databases are most commonly used to process and manage Big Data which 

has distinguishing characteristics such as large volume, different variety and high 

velocity. NoSQL databases offer a paradigm shift from the complex query 

processing capabilities and monolithic architecture of the relational databases [8] 
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to simple queries but with parallel processing capabilities so as to increase 

performance.  

However, this shift in paradigm and design has some negative effects on data 

consistency which makes NoSQL databases impractical for use in certain 

application domains that need strong consistency of data such as financial or 

banking applications. This is due to the fact that NoSQL systems do not offer 

support for transactions which is a classic feature of the relational databases. 

Different models and techniques have been developed by different cloud 

computing and NoSQL database vendors in order to effectively manage the (large 

amount of) Big Data. Majority of the existing techniques focus on improving 

efficiency and availability of big data but do not give appropriate attention to 

ensuring data consistency. This research focuses on transaction processing in 

cloud computing and NoSQL databases with particular attention to the data 

consistency and the implementation of transactions in NoSQL databases. 

TRANSACTIONS 

A transaction is defined as an execution of a software program which contains 

multiple ‘read’ and ‘write or update’ operations in order to read data from and 

update data in a database. In traditional databases, operations in transactions are 

concurrently executed in an interleaved fashion in order to make optimal use of 

computing resources [9]. Therefore, to ensure correctness and integrity of a 

database, transactions must obey the rules set by ACID (Atomicity, Consistency, 

Isolation and Durability) properties. Atomicity means all the operations in a 

transaction must be completely carried out otherwise none of the operations 

must be carried out. Consistency means after the completion of a transaction, the 

database must remain in a valid state. Isolation requires that transactions must 

not interfere with each other and durability ensures that changes made after a 

transaction remain permanent in a database [10]. 
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1.3 MOTIVATION AND RATIONALE OF THE RESEARCH 
 

In order for NoSQL databases to effectively scale data across multiple nodes, 

certain trade-offs have been made in their design [11]. These include: 

• Simple data model which means data entities do not have to be 

normalized and can be spread across different nodes. 

• No support for join or referential integrity which is easily achieved 

because of the simple data model. 

• Relaxing the consistency guarantees and a lack of support for transactions 

The above mentioned trade-offs have implications on the way NoSQL databases 

process and manage data. The simple model of the data means that there can be 

no complex operations or queries in NoSQL database. Most NoSQL databases 

have simple ‘get’ or ‘put’ requests and they do not support online transaction 

processing (OLTP) applications [12]. The lack of support for ‘joins’ and ‘referential 

integrity’ means that there can be no interaction between rows or tables in the 

database. Finally, managing consistency across replicated data is non-trivial. 

Replication could either be synchronous or asynchronous. In choosing 

synchronous replication, there is a risk of compromising data availability. If any of 

the replicas is not available, the data item is not available. On the other hand, 

with asynchronous replication, data consistency might be sacrificed. This means 

that a replica can be outdated and would still be allowed to respond requests (or 

read by applications). There are diverse adaptations of quorum based protocols 

[13] that are used to manage replicas such as paxos [14] [15], read one write all 

(ROWA) and read one write all available (ROWAA). Though there are various 

issues involved, the following section defines the research problem which is to be 

addressed in this thesis.  

1.3.1 Statement of the Research Problem 
 

It is observed from the above discussion that NoSQL databases completely avoid 

the need to support multi-row operations. A multi-row operation is a group of 

operations affecting multiple key items (also referred to as multi-key). NoSQL 
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databases also do not implement ACID-based transactions. This decision is also 

supported by the fact that applications that make use of NoSQL databases such as 

Facebook, twitter, and emails do not necessarily need ACID level consistency [94]. 

Also, research shows that the rigidity of ACID transactions in relational database 

makes it unfit for certain large scale and complex applications [16]. 

Even so, enterprise users, whose applications are mainly driven by transaction 

processes, have shown little or no interest in NoSQL databases because of its lack 

of support for ACID transactions [17] [18]. Also, NoSQL databases are inadequate 

for future applications such as online gaming applications that make use of multi-

user collaborations because such games need ACID transactional properties 

during the execution of a game. This has necessitated the need for research into 

how transactions can be implemented in NoSQL databases. Implementing 

transactions in NoSQL databases will definitely increase the functional 

applications of NoSQL databases which will in turn increase its use among 

enterprise users. Some of the existing research [19] also advocates the support of 

ACID transactions in NoSQL databases stating that it would not be wise to sacrifice 

the support for transactions and the “golden standard” ACID consistency of SQL 

databases. However, the major strength of NoSQL databases is their ability to 

scale seamlessly to a large volume of data by taking advantage of parallel 

processing. This research proposes an approach that combines the advantages of 

the two worlds i.e. taking advantage of the parallel processing power of NoSQL 

databases and at the same time not sacrificing the support for transactions and 

consistency in NoSQL databases. 

 

1.4 AIM and OBJECTIVES 
 

The aim of this research is to investigate into the transaction processing and data 

management of NoSQL cloud databases in order to develop a new framework that 

enhances the efficiency, consistency and reliability of NoSQL cloud databases. To 

achieve this aim, the following objectives are defined: 
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I. Conduct an in-depth study of the literature and current state-of-the-art 
methods related to the data management and transactions in the cloud, 
including both NoSQL and classical SQL databases:  The objective is to 
identify current challenges and to explore potential research issues in cloud 
computing and NoSQL data processing. This will also explore ways in which 
the current methods used in transaction processing can be optimized in 
terms of efficiency, reliability and availability of cloud data. 

II. Design a new framework for transaction management in NoSQL 
databases: A new framework is to be designed which has the potential of 
addressing main research issues and to improve data consistency, reliability 
and efficiency in NoSQL databases.  

III. Develop and implement the proposed framework as a prototype system 
using cloud data management tools and technologies: The proposed 
framework is to be developed and implemented using cloud architecture 
and appropriate NoSQL database technologies.  

IV. Test and evaluate the prototype system using cloud benchmarks: 
Appropriate cloud testing benchmark will be followed in order to test the 
validity of the proposed framework in the transaction management of 
NoSQL cloud databases. 

In order to achieve the above aim and objectives, this research will follow 

appropriate methodological approach, which is described in the following section.  

 

1.5 RESEARCH METHODS 
 

A research method is defined as all the techniques used during the course of a 

research to perform operations with the aim of providing a solution to the given 

research problem [20]. This research is carried out over a period of three (3) years 

and the approach followed which was adopted from a combination of methods 

[20] [21] [22] are outlined below. 

Define research problem – The problem area is first identified and defined. From 

the definition of the problem, the aim and objectives of the research is clearly 

spelt out. 

Literature survey – The approach to the literature review starts from a holistic 

study of the broader cloud computing technologies and service oriented 

architecture combined with a review of existing techniques of used in relational 
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database transactions. The study was then narrowed down to a study of big data 

management techniques, NoSQL databases as well as the CAP Theorem. Finally, 

this phase ends with an in-depth study of the state of the art techniques of 

implementing transactions in NoSQL database. From this study, the short-comings 

of existing systems and gap in knowledge are identified. 

Modelling and Specification – having identified the short-comings of the current 

state-of-the-art systems, and with a proper understanding of the research area, 

this thesis proposes a model that aims to solve the problem of implementing 

transactions in NoSQL databases. Putting into consideration existing theorems 

and techniques, the thesis specifies the theoretical scope of the problem. This 

theoretical specification enables the components of the proposed transaction 

model to be formally verified [21]. 

Develop Proposed Design – Based on the specification of the model, the 

proposed design is implemented as a prototype using relevant tools of and 

techniques. 

Experimental Evaluation – The Evaluation is carried out using benchmarks that 

are relevant to the transaction and cloud computing environments. The 

evaluation involved using a set of experiments which tests the performance and 

correctness of the system under load. The system is also compared with existing 

systems to evaluate its strengths and advantages [22]. From the Evaluation, the 

results are collected, analysed and interpreted to identify the strengths and 

weaknesses of the system.  

 

1.6 MAIN CONTRIBUTIONS 
 

This thesis designs and develops a new approach, called NoSQL-TX (NoSQL 

Transactions). The main contributions of NoSQL-TX approach are as follows.  

1. An in-depth study of the architecture of NoSQL databases and clearer 

definitions of the factors that limit them from supporting transactions 
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2. The design and definition of a new Multi-Key transaction model for NoSQL 

databases that guarantee ACID properties of transactions in order to 

ensure stronger consistency and integrity of data. 

3. The development of a loosely-coupled novel architecture that separates 

the implementation of transactional logic from the underlying data thus 

ensuring transparency and abstraction in cloud and NoSQL databases. 

4. The design and implementation of a novel protocol for managing 

consistency across asynchronous replication in NoSQL databases. 

5. The definition and implementation of new types of database operations 

(‘read’ and ‘write’) which provide flexibility for adjusting data consistency 

based on user requirements. 

6. The development of a prototype system using real NoSQL system, 

MongoDB, which is evaluated using the YCSB+T benchmark based on 

standard Yahoo! Cloud Services Benchmark (YCSB). The proposed system 

is believed to enhance consistency and performance of NoSQL databases. 

 

1.7 STRUCTURE OF THE THESIS 
 

The rest of the thesis is structured as follows. : 

• Chapter 2 reviews fundamental techniques in transactions and distributed 
transactions processing such as two phase commit and two phase locks. 
Furthermore, existing literature on the validity of CAP theorem and it’s 
implication on distributed databases is also critically analysed. The 
characteristics of big data and techniques used in managing big data are 
explained.  
 

• Chapter 3 gives an overview of various NoSQL databases and their 
characteristics. A brief overview of various approaches to implementing 
transactions in NoSQL databases is given and finally, a review of state of 
the art NoSQL systems that support transaction is given with their short-
comings identified. 
 

• Chapter 4 builds on top of the various system designs reviewed in chapter 
3 and presents a theoretical modelling of the proposed solution. The 
architecture of the proposed system as well as the scope of the proposed 
NoSQL transaction are clearly explained and defined. The details of how 
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the system components interact to implement consistency are also 
explained.  
 

• Chapter 5 explains the implementation details used to develop the 
prototype system. The application domain which is used to implement the 
system is explained along with the tools used in implementing the system. 
The algorithms which each of the operations follow during their execution 
are presented. 
 

• Chapter 6 evaluates the proposed solution and the implemented 
prototype system. The justification behind the chosen workloads used to 
evaluate the system is also explained. From the evaluation results, the 
short-comings and trade-offs of the proposed system is deduced. The 
performance overhead of implementing transactions is clearly identified. 
 

• Chapter 7 concludes this thesis with a summary of the contributions of 
this thesis and a critical analysis of the proposed system. The chapter also 
provides possible areas of improvement for the proposed system which 
can serve as direction for future research. 
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CHAPTER 2  

BACKGROUND 
 

Cloud based NoSQL databases and their transactional systems follow some of the 

principles and techniques of the classical (or standard) databases and transaction 

management. This chapter therefore reviews the fundamentals of classical 

database management systems in section 2.1 and explains database transactions 

in section 2.2. Section 2.3 explains transaction management in distributed 

databases and section 2.4 examines various transaction models and protocols. 

Section 2.5 describes the characteristics of big data and NoSQL databases while 

section 2.6 illustrates the techniques used in managing big data 

Finally, section 2.7 describes and critically reviews the CAP theorem, which is the 

motivation behind the design of the NoSQL databases, and its implications on 

distributed system, cloud and NoSQL databases. 

 

2.1 DATABASE MANAGEMENT SYSTEMS 
 

A database management system (DBMS) is defined as “a software 

designed to assist in maintaining and utilizing large collections of data” 

[23].  

A database is “a well-organized collection of data that are related in a 

meaningful way, which can be accessed in different logical orders” [24]. 

The objectives of using a DBMS are as follows [24]. 

Data availability – Database can be queried to retrieve information that would be 

meaningful to the user.  

Data integrity – This means that the integrity of data must be preserved. The 

consistency and accuracy of data stored in a database must be maintained. 
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Data security – Only users who have been granted authority may be allowed to 

access the data stored in a database. 

Data independence and transparency – Users should not necessarily be 

concerned with how the data is physically represented on the database. 

The most widely used DBMS is the Relational Database Management System 

(RDBMS) that was designed according to the above objectives. The RDBMS was 

designed based on strong mathematical principles [25] (set theory) that makes 

use of normalization and strong referential integrity in order to represent 

relationship among data entities. These characteristics, including the objectives 

stated above have influenced the way RDBMS support transaction management. 

However, as explained later, the relational databases are monolithic in their 

design and therefore cannot scale out to host large volume of data and a large 

population of users (as in cloud) [12]. 

 

2.2 DATABASE TRANSACTION MANAGEMENT 
 

In database systems, one of the main strategies, to maintain the consistency of 

shared data during the concurrent execution of multiple requests (from multiple 

users), is the transactional management technique. Database systems group 

multiple read and write operations into (atomic) transactions that follow ACID 

(Atomicity, Consistency, Isolation, Durability) properties. In order to preserve data 

consistency, the execution of transactions must be serializable. A serializable 

execution of transactions is an execution whose output would yield the same 

result as when the transactions are executed serially. In relational databases, a 

scheduler is used to ensure that the executions of transactions are serializable. A 

scheduler is normally used in conjunction with a technique called locking [26]. 

Before a transaction starts, it acquires locks on all the data items involved in a 

transaction and holds the locks until all the operations in a transaction have been 

processed. During this period, no other transaction can change the data that has 

been locked. This would guarantee that transactions are isolated from each other. 

After processing the operations, a transaction releases all the locks. This process is 
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called two phase locking (2PL). In the first phase, a transaction acquires locks for 

all the data items involved in a transaction. In the second phase, all acquired locks 

are released. After locks have been released, the transaction is not allowed to 

request for any other locks. This activity put in place to ensure that transactions 

would always leave the database in a consistent state, is known as concurrency 

control. However, the mechanism of concurrency control gets more complex in 

distributed database environment. The schedulers in each participating database 

are responsible for managing the subset of data which it stores. Distributed 

transaction is explained in section 2.3. Essentially, cloud computing technologies 

fall into the category of distributed computing.  

2.2.1 ACID Properties 
 

The following scenarios describe two simple but crucial examples about databases 

and transactions. Consider a database that manages data of a banking application. 

Assume that the initial balance of a user X is £1,000 and the initial balance of a 

user Y is £1,000. Consider the following basic scenarios. 

SCENARIO 1: A user X intends to transfer an amount of money (say £100) from 

his account to user Y. 

User X initiates a transaction to carry out the transfer which should leave his 

account with a balance of £900 while user Y’s balance should be £1,100. 

The transaction begins by reading the initial balances of users X and Y. Assume 

that £100 was deducted user X’s account but a failure occurred before that 

money was credited to user Y’s account. This will leave the database in an 

inconsistent state. The database should have a way to react to this sort of failure 

and preserve the integrity of the data. 

SCENARIO 2: Two users A and B intend to transfer different amounts to the 

account of user X. 

Assume a user X has an initial account balance of £1,000. User A initiates a 

transaction Ta to transfer £5,000 to the account of user X and user B also initiates 



BACKGROUND 

 

14 
 

another transaction Tb to transfer £1000 to user X. These two transactions Ta and 

Tb , occur concurrently. Each transaction involves read and write operations. 

After successful execution of the two transactions, the correct outcome is that 

user X should have a balance of £7,000. However, as stated in section 1.2, 

operations in a computer system are carried out in an inter-leaved fashion i.e. 

they can be in any order so as to make substantial performance gains; as such the 

operations in scenario 2 can be carried out in the following order: 

 

1) Reada  (Account X)  returns £1000 
2) Readb (Account X)  returns £1000 
3) Writea (Account X, + £5000) balances account X at £6,000 
4) Writeb (Account X + £1000) balances account X at £2,000 

 

Thus account X ends up with a balance of £2,000 instead of £7,000. If this scenario 

occurs, then Ta and Tb are said to be in conflict. Two transactions are in conflict if 

they concurrently operate on the same data item and at least one of them is a 

write [27]. Two transactions are said to be concurrent if their executions are 

overlapping, for instance, if the commit-time of one of them is in the interval 

between the start time and commit-time of the other transaction.  

The above scenarios, though basic, forms the bedrock of transaction management 

in relational database systems. In order to preserve the consistency of a database, 

ACID properties of transactions were defined. The Atomicity property will prevent 

the scenario 1 from occurring because atomicity will mean that all operations of a 

transaction must occur or none of them. This would force a rollback in which the 

database is returned to its initial state before the transaction took place.  

Database systems recognize certain key words that define the scope of the 

atomicity of operations in a transaction. These key words include: 

Begin – This determines where the set of operations to be carried out as part of a 

transaction when it starts. Operations may be read or write operations.  



BACKGROUND 

 

15 
 

Commit – This is the point where the operations end and are committed 

atomically meaning that all operations between a ‘begin’ and a ‘commit’ must be 

successful. Failure of any operation in this scope would lead to a Rollback 

operation.  

Rollback – The rollback operation is activated when there is a failure in any of the 

operations in a transaction. This means that all operations that have been 

executed must be undone to restore the database to its initial state. 

The consistency property ensures that the database remains in a consistent state 

after the execution of transactions. For example, in scenario 1, the sum of both 

accounts should be the same before and after the transaction. The isolation 

property would prevent the occurrence of scenario 2. Isolation ensures that if two 

transactions are executed concurrently, the effect will be the same as if they are 

performed one after the other i.e. serially. For transactions to be isolated from 

each other, they have to be serializable. Durability would prevent loss of data and 

can be used for recovery from failures. In order to maintain these ACID properties, 

the DBMS employs certain techniques which are explained later in this chapter. 

Before going further, the concept of serializable execution of transactions and 

some of the anomalies caused by non-serializable execution of transactions are 

explained below. 

2.2.2 Serializability  
 

As explained earlier, a serializable execution of transactions is an execution whose 

output would yield the same result as when transactions are executed serially. 

Serializability is a technique used to preserve the isolation property of 

transactions. Without serialization, the executions of transactions are prone to 

certain errors identified below [28]. 

Lost Updates - Lost update occurs when two concurrently running transactions 

read a data and both of them write (or update) the same data. The effect of one 

transaction can cancel the effect of the other leading to a lost update. Scenario 2 

(as above) demonstrates this error. 
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Inconsistent Reads - An inconsistent read occurs when one transaction contains 

multiple write operations that modify (update) multiple data items. If this 

transaction has only executed some of the write operations and if another 

transaction reads the same set of data then it would see only a partial update of 

the initial transaction. 

Dirty Reads - Dirty reads occur when a transaction makes changes to a data item 

and another transaction reads the changes made. The first transaction is then 

aborted and rolled back. This would mean that the second transaction has read a 

data item value that does not exist. 

The next section explains certain concurrency control techniques implemented by 

DBMSs to achieve serializability and to maintain ACID properties in transaction 

execution of transactions. 

2.2.3 Concurrency Control Techniques 
 

Commonly used concurrency control techniques are as follows. 

Scheduling – Database management systems have schedulers which manages the 

execution of transactions. The main function of a scheduler is to ensure that 

concurrent execution of transactions results in a serializable execution. To achieve 

this, when a scheduler receives an operation request, it can either execute the 

operation, delay or reject the operation depending on the state of concurrent 

transactions in a database. Schedulers help to reduce the possibility of conflicting 

operations. Schedulers make use of different techniques to guarantee isolation 

and consistency. Some of the main techniques include: 

Locking – Locking implies that data items involved in an active (running) 

transaction are locked in order to prevent other transactions from accessing the 

same data items. This prevents transaction conflicts. Relational databases 

employs locking [26] to enforce isolation and consistency. Locking can also be 

referred to as pessimistic concurrency control mechanism. Most DBMSs use two 

phase locking [9] in order to implement locking in of data items. There are two 

variations of two phase locks namely conservative and strict. A conservative two 

phase lock requires that a transaction must obtain all the locks before it can 
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proceed to carry out operations. On the other hand strict two phase locks 

requires that transaction do not need to retrieve all needed locks before it 

proceeds but locks held can only be released after the transaction aborts or 

commits. 

Write-ahead logging - To enforce durability, DBMSs make use of a technique 

called logging. Logs are used for recovery purposes in the event of a failure [29]. 

The write-ahead log (WAL) protocol [30] [31] ensures that changes made to a data 

must be recorded on into a file on stable storage before the data is changed in 

memory. This ensures that in the event of a failure, the changes made to data can 

be replayed from the log file.   

Non – Locking Schedulers – Aside from locking, other techniques such as 

Timestamp Ordering (TO), are used to ensure transaction isolation. In TO, each 

transaction is issued a unique timestamp. Transactions are then ordered 

according to their timestamps. If two transactions T1 and T2 conflict on a shared 

data item x, then operations in T1 must be processed before operations in T2 if 

and only if transaction T1 receives its unique timestamp before transaction T2. 

 

2.3 DISTRIBUTED TRANSACTION MANAGEMENT 
 

Distributed transaction management has been conventionally implemented in 

distributed databases. According to [32], “a distributed database is a collection of 

multiple, logically interrelated databases distributed over a computer network”. A 

distributed database management system (DDBMS) is also defined in [32] as “a 

software system that permits the management of the distributed database and 

makes the distribution transparent to the users”. 

The process of enforcing ACID across transactions in distributed database 

management systems (DDBMS) adds more complexity to concurrency control 

mechanisms than non-distributed databases. In distributed databases, the users 

are abstracted from the complexities of interactions among computers. To 

achieve this, it is important to create standards on which computer interactions 
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are based. The keywords identified in section 2.2 are often wrapped up in remote 

procedure calls [33] (RPC) in what is known as Transactional RPC1 [34] and are 

used as a method for computer interactions. Various protocols are used to 

implement ACID transactions across in distributed database systems. Some of the 

techniques highlighted in section 2.2.2 are also applied in distributed transactions 

howbeit somewhat modified. Below is a brief explanation of the techniques. 

Distributed Two Phase Locking – As stated earlier, locking ensures that conflicting 

transactions that are executed serially. In a single stand-alone DBMS, locking is 

implemented by a protocol called two phase locking (2PL) earlier discussed. 

However, the mechanism for implementing two phase locking is more 

complicated in a distributed DBMS. Each DBMS has a local scheduler that is 

responsible for managing data stored on it. When a distributed transaction is 

initiated, the transaction sends its operations (read and write) to each DBMS 

involved in the transaction. The local scheduler of each DBMS then allocates locks 

for each of the data item stored in its local site. The lock information is sent to the 

scheduler of all the participating sites.  

Distributed Timestamp Ordering - In this technique, each site (component 

database) also has its own schedulers that issues timestamps to transactions. The 

decisions taken on each transaction is entirely left to the scheduler of that system 

Deadlock Management – A deadlock occurs when two transactions are waiting 

for each other to release their locks on data items. Consider a scenario where two 

transactions Ta and Tb are concurrently running and both involves two data items 

X and Y. Ta locks data item X and Tb locks data item Y. In this situation, Ta would 

have to wait for Tb to commit so it can obtain lock on Y while Tb would have to 

wait for Ta to commit before Tb can obtain a lock on X. This leads to a deadlock 

since both transactions are waiting for each other. One way to detect deadlocks is 

to use timeouts. 

 

                                                           
1 Transactional RPCs page 21  
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2.4 TRANSACTION RECOVERY PROTOCOLS  
 

Recovery is defined as “the activity of ensuring that software and hard-ware 

failures do not corrupt persistent data” [9]. The Atomic Commit Protocol (ACP) is a 

procedure that ensures that all participants involved in a transaction either 

commits or aborts that transaction in their local sites. In order words, it 

guarantees that all the participants in a transaction reach the same decision to 

preserve data integrity. This is very important because in distributed 

environments, any of the participating sites can fail. It is important that on 

recovery, a failed site must reach the same decision as the other sites.  The ACP  

which are discussed in the next sections guarantees the following criteria [9]: 

• All sites must reach the same decision 
• Once a decision has been made, it cannot be changed 
• The decision to commit can only stand if all sites agree 

 

There exist various ACPs such as two-phase commit, three-phase commit, 

presume abort, presumed commit and so on [34]. In the following, two-phase 

commit is explained given that it is a widely used protocol. However, detailed 

description and analysis of such protocols are beyond the scope of this thesis. 

2.4.1 Two Phase Commit 
 

The two phase commit protocol (2PC) is a protocol used to guarantee ACID 

consistency in a distributed database as well as web-databases. The 2PC aims to 

achieve a form of consensus among participating systems. In 2PC  [35] 

• Each site has the responsibility of logging the actions that takes place at 

that site. There is no notion of a global log.  

• Exactly one site must play the special role of coordinator which is usually 

the site where the transaction originates. The coordinator site makes the 

final decision on whether the transaction should commit or abort. 
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• Messages are exchanged between the coordinator and the other 

participants. Each participant logs the message that it sends out to help it 

recover from a failure. 

Under normal circumstances when there is no failure, the protocol is completed in 

the two phases stated: 

Phase 1: This phase, also known as the voting phase, involves the following steps: 

• The coordinator sends a message (vote request) to each of the participant 

asking if they are ready to vote. After sending this message, the 

coordinator enters a state known as a WAIT stage. This message is also 

logged at the coordinator site. 

• Once the message has been sent, each site that receives the message 

responds to the coordinator with a YES or NO message after the individual 

decisions have been logged at each individual site. If any of the 

participants decides a NO, that participant automatically aborts the 

transaction otherwise the participants enter a READY state. 

Phase 2: Phase 2 which is called the commit phase or decision phase is carried out 

as follows. 

• The coordinator receives the decision made by all the participants 

involved in the transaction. 

• If all the participants responded with a YES vote, the coordinator sends 

out a message instructing all the participants to commit the changes 

made by the transaction and enters a COMMIT state. If one or any of the 

participants responded with a NO message, then the coordinator instructs 

all participants to abort and enters a state of ABORT. 

• Each of the participants that voted YES awaits the decision from the 

coordinator. If they receive a commit message from the coordinator, they 

commit the operations at their local site and responds with an 

acknowledgement to the coordinator. The coordinator then completes 

the transaction. If on the other hand they receive an abort message from 

the coordinator, they begin a rollback of all the operations performed and 

respond with an acknowledgement to the coordinator.  
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As stated earlier, each of this steps taken by any of the participants are logged 

locally at the participant site. A participant is in a period of uncertainty when it 

responds with a vote YES to the coordinator and is yet to receive an instruction 

from the coordinator in other words when it is in the READY state. See Figure 2.1. 

 

Figure 2.1: Two Phase Commit State Diagram 

During the execution of a 2PC protocols, failures can occur. Such failure can be as 

a result of the following 

1) Loss of messages as a result of network failures 
2) Duplication of messages 
3) Failure of any of the servers involved in the protocol 

During a 2PC protocol, the participants and coordinator have to wait for 

messages. To prevent a transaction from unnecessary delays, timeouts actions are 

introduced. In phase one, the participants wait for a vote-request from the 

coordinator. Also, the coordinator has to wait for a response from the participant 
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after sending a vote-request (i.e. during its WAIT state). In the second phase, 

participants that voted YES after receiving the vote-request from the coordinator 

also have to wait for a commit or abort message from the coordinator (i.e. when 

they are in a READY state). At this point, the participants are said to be in an 

uncertain state. This is because the participant has voted a YES to commit but 

cannot take a decision to commit or abort until it waits for the coordinator. 

However, if the participant had voted NO, the participant can as well proceed to 

abort the transaction on its site knowing fully well that the transaction cannot 

proceed on other sites because it has voted a NO. Also, according to the rules that 

guide an ACP, once a participant has made a voted to commit, it cannot change its 

mind. If a participant at this point is unable to reach the coordinator, the restart 

and termination protocols determine the behaviour of a system after a failure or 

timeout. A restart protocol specifies how a protocol should be restarted in event 

of a failure. A termination protocol specifies the procedure a transaction should 

follow in event of a time out. The termination and restart protocol has several 

implementations depending on the state of the transaction when time-out occurs. 

The following are the various implementations of the protocol [36] 

Coordinator Restart Protocol - specifies how a coordinator should restart in the 

events of its failure. If a coordinator fails either before sending a vote-request 

message or at a WAIT state and cannot recall the responses of the participant, it 

can either re-send the request or abort the transaction. If it however fails after 

sending a commit or abort message, it must send the commit or aborted message 

again (as the case may be) and wait for the participants response. 

Coordinator Termination Protocol - specifies how the coordinator should behave 

in the event of a time out due to failure of a participant or loss of message from a 

participant. In the event of a time-out, the coordinator resends the message 

according to the current state of the transaction. 

Participant Restart Protocol – Specifies how a participant should proceed after it 

recovers from a failure. If a participant fails before receiving a vote-request, it can 

decide to respond with a NO when it receives the request. If the failure occurs 

during the prepared state, in other words, after it has responded with a YES 
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message (Uncertainty period), it must wait for the coordinator to resend the 

commit or abort message.  

In particular cases, where a participant cannot establish a connection with the 

coordinator, it can be allowed to contact other participants to know the final 

decision of the coordinator. The participant in this scenario, also known as the 

initiator, sends a Decision-request message to some other participant, known as 

the responder. If the responder has received a commit or abort message from the 

coordinator, then the participant commits or aborts as the case may be. If the 

responder has not voted, then it can decide to vote a NO and respond to the 

initiator with a NO message.  However, if the responder has voted YES but has not 

received a commit or abort message from the coordinator, then the initiator 

would have to wait in this uncertain state. This protocol is referred to as the 

Cooperative Termination Protocol. 

Participant Termination Protocol - specifies how a participant should terminate in 

the event of a coordinator failure. If a participant times out while waiting a vote-

request, it can decide to abort and respond with a NO when it receives the 

request. Its behaviour in other scenarios is essentially the same as the participant 

restart protocol. 

Therefore, from the above, when a participant is in a state of uncertainty and it is 

unable to contact other participants or the coordinator, it is said to be in a blocked 

state. To prevent transactions from entering a blocked state, the three phase 

commit protocol was proposed. 

Similar to 2PC, other protocols (such as 3PC, presumed abort, presumed commit, 

etc) ensure that database systems in distributed environment reach an agreement 

during concurrent implementation of transactions in order to preserve the 

consistency of data and correctness of applications. 

SUMMARY OF (CONVENTIONAL) DATABASES AND TRANSACTIONS 

The above sections provided an overview of the conventional databases and 

related models and protocols of transaction management. Such databases have 

been dependent on relational database model. Relational databases are 

predominant for storing structured data and following ACID properties in order to 
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maintain consistency of data. They also support relationships, associations and 

normalization of data. With all such features relational databases have proved 

very useful for applications that require strong consistency such as banking 

applications, e-commerce and online shopping, etc.  

Despite the above benefits, relational databases are no longer sufficient for the 

needs of modern (Internet and Cloud) applications such as social media, business 

analytics, and online reviews. The speed and scale at which data is generated/ 

processed is beyond the processing capabilities of the relational databases and 

transaction management techniques. These applications (or services) generally do 

not need well-structured and normalized data nor do they need strict consistency 

and ACID style transactions. They demand new ways of managing data and 

transactions in an easy and efficient manner. This has resulted into the new 

theories, techniques and technologies such as NoSQL databases and big data, CAP 

theorem, BASE properties, etc. 

 

2.5 BIG DATA and NoSQL DATABASES 
 

Big data is characterised by 3Vs (Volume, Velocity and Variety) [37][38] or 4Vs 

(Volume, Variety, Velocity, and Value) model. Volume refers to large size of data 

that is possibly beyond the processing capabilities of conventional database; 

Variety means that big data may have structured, semi-structured and 

unstructured formats. Velocity indicates the speed at which data is generated 

which is usually high; Value refers to benefits that can be derived from the data. 

Various techniques are employed to manage Big data efficiently. These 

techniques are explained in section 2.6. Big Data is generated on daily basis from 

a number of sources which include data warehouses, sensor networks, text 

search, scientific databases and XML databases [39]. Commerce and business, 

society administration and scientific research are three identified areas that 

currently produce and make use of big data and data intensive applications [40]. 

Also, the increase in the use of online services has led to the design of a variety of 

web applications (e.g., social media, road traffic, etc) that generate a large volume 
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of data.  However, traditional databases are inappropriate to meet the demands 

of such applications [41], for example processing data of millions of tweets in real 

time. The concept of “One size fits all” in the database industry is no longer 

sufficient [39]. This has led to the design of specialized databases called NoSQL 

databases which are well explained in the next chapter. Processing Big data have 

certain requirements that are lacking in the traditional database. These 

requirements include elasticity, scalability, flexibility and fault tolerance [42] [43]. 

The fault tolerance feature prevents any single point of failure across the system. 

As stated earlier, failure is a norm in these environments and should not prevent 

the smooth running of the database. Even so, the difference between elasticity 

feature and scalability is emphasized. Elasticity requires that the system should be 

able to scale up or scale down as the need requires while scalability refers to the 

ability for a database to be scale across multiple systems. The 3/4Vs 

characteristics of Big data make NoSQL databases better suited for processing big 

data. NoSQL databases are have simple data models and can process unstructured 

data without the need for normalization [44]. However, most NoSQL databases 

can only perform simple operations and single key transactions. The various 

NoSQL databases and their characteristics are explained in the next chapter. 

However, below is a brief explanation of some of the main techniques employed 

in NoSQL systems to process big data.  

 

2.6 BIG DATA MANAGEMENT IN NOSQL DATABASES 

 

There are various techniques involved in managing big data in the cloud 

environment. Some of the commonly used techniques are explained below 

2.6.1 Partitioning 

 

Partitioning involves splitting a database into smaller parts called partitions [7]. 

There are two types of partitions namely: Vertical partitions and Horizontal 

partition. In vertical partitioning, a database table is split along the column 

attributes while in horizontal partitioning, the database is split by the rows. When 
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a single database is partitioned and split (or scaled) across multiple servers, each 

server that manages a section of the database is known as a database shards [45]. 

This process is known as sharding. Shardiing is a form of partitioning and both 

partitioning and sharding involves splitting the database into partitions (or 

sections). In partitioning, each section of the split database may or may not be 

managed by a separate server. However, in sharding, each section is managed by 

a separate server. There are three types of partitioning namely Hash partitioning, 

Range partitioning and Robin-round partitioning [46].   

Hash partitioning – To implement hashing partitioning, a hash function is applied 

on each data key. The output of the hash function would determine the node that 

hosts the key. Hash partitioning is more suitable for applications that make 

extensive use of random scans. To find any data item, the hash function is applied 

to the key of the data. The result would yield the location of the data item. 

Range partitioning – In range partitioning, each node stores a distinct range of 

data keys.  Range partitions works efficiently with applications that mainly need 

sequential scan as most data items whose keys are closely related will be stored 

on the same node.  

Round-Robin Partition – In round robin partitioning, key items are distributed 

evenly (in a ring fashion) according to the number of nodes. For instance, if there 

are 3 nodes, key items 1 to 3 will spread across node 1 to 3, key items 4 to 6 will 

spread across node 1 to 3 and so on.  

2.6.2 Scaling  
 

Scaling is a technique used to increase the processing capability of a database 

node and is of two types namely vertical scaling and horizontal scaling. In vertical 

scaling, the number of processors, memory size and disk size of a machine is 

increased to enable the machine process more data. Horizontal scaling on the 

other hand means adding more machines or increasing the number of nodes 

involved in processing data. The rationale behind horizontal scaling is in two 

dimensions. Firstly, doubling the hardware will reduce the time taken to perform 

a task by half and secondly, doubling the hardware will perform twice as much 
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task in the same time [46]. In vertical scaling, there is limitation to how much a 

single node can scale vertically [47]. Also, to make a case for parallel processing 

(horizontal scaling), recent research [48] has shown that Moores law (which states 

that “the number of transistors on a microprocessor chip will double about every 

two years"), is fast becoming unachievable. This makes horizontal scaling more 

practical in big data processing than vertical scaling. NoSQL databases are 

designed to scale horizontally while relational databases are designed to scale 

vertically. This gives the NoSQL databases a greater advantage as there is no limit 

to the number of nodes that can be added to the database cluster. 

2.6.3 Replication 
  

Replication is a process of maintaining multiple copies of a database in different 

locations to provide fault tolerance. This results in higher levels of availability but 

introduces a new set of challenges. Replication is classified into two types namely 

Eager (synchronous) and Lazy (asynchronous) replications [49]. In eager 

replication, replicas are updated during the transaction while in lazy replication, 

replicas are updated at a later time. Keeping the replicas consistent introduces a 

set of problems and may involve certain trade-offs. Eager replication reduces 

performance, involves higher bandwidth and increases latency of transactions. 

Lazy replication on the other hand, means that data on some replicas can be stale 

and out-of-date. Out-of-date replicas may not be allowed to respond to client 

requests in applications that need high level of data consistency. The number of 

replicas implemented by a database system also has contradicting effect on the 

system. For instance, a high number of replicas imply that the system is able to 

provide stronger tolerance to fault. However, a high number of replicas also imply 

that more effort (in terms of bandwidth and latency) will be needed to keep the 

replicas consistent. There are various protocols and techniques used by 

developers to optimize their replication processes. One of such techniques 

includes primary – secondary replication where secondary replicas can process 

reads while only a primary replica can process writes (or updates). Also there are 

various quorum or consensus protocols used to guarantee consistency across 

replicas. The replication model adopted is dependent on application specific 

needs. All NoSQL databases make use of some form of replication for fault 
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tolerance. Dynamo [50] uses consistent hashing for replica placement and 

eventual consistency model for replica management. Google Megastore [51] uses 

Paxos [15] to synchronously manage writes across replica. 

2.6.4 Failure Detection and Recovery  
 

As explained earlier, in cloud computing environment, failure is a norm. This is 

because hundreds to thousands of machines are used to process data in parallel 

and these machines are mainly commodity machines. There has to be an efficient 

mechanism to detect machines that have failed in order to bring them up to date 

to guarantee availability and consistency. Most clusters have algorithms for 

detecting failure. Dynamo uses gossip based protocol (explained later in section 

3.2.3). BigTable uses heartbeat messages which are exchanged between master 

server and slave servers. If there is no response from a particular node within a 

set timeout period, that node is assumed to have failed. Each of these systems 

implements various techniques for recovering a failed node after detecting its 

failures. 

2.6.5 Load Balancing  
 

Load balancing [52] is a technique used to manage, distribute and re-distribute 

data across nodes to ensure that no single node is overloaded. The objectives of 

load balancing and distribution are to achieve high throughput, efficient resource 

utilization, low latency and to avoid hotspots across the cluster. Load balancing 

also aims to improve fault tolerance and to optimize the process of replica 

distribution in a cluster system. For instance, shard aware or rack awareness is a 

load balancing technique that ensures that replicas are distributed in such a way 

that network failures on a single rack do not affect availability. A common known 

rack aware technique is that used in HDFS [53] where two replicas are placed on 

two different nodes in a local rack while the third replica is placed on a different 

node in a different rack. That way, a network partition to a rack will not affect the 

availability of any data item. 
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2.6.6 Garbage collection  
 

Most cloud databases tend to keep more than one version of all data items to 

guarantee availability even at the expense of consistency. There is need to have 

an effective garbage collection process to effectively manage computing 

resources (storage/memory) and to prevent the database from storing 

unnecessary / unused data. Also, garbage collection of log files must be carried 

out with care to ensure that only logs that would not be needed are deleted. The 

process of garbage collection should not affect the smooth running of the system. 

In [54], garbage collection is carried out in batch when the master is in a quiescent 

state. 

The above techniques are used in various degrees when managing big data. The 

overall combination of these techniques implemented by a database 

management system determines how suitable that database is for any 

application. 

 

2.7 ANALYSIS OF CAP THEOREM 

 

The CAP Theorem [55] states that a distributed system can offer at most two of 

the three desirable properties, Consistency, Availability and tolerance to network 

Partition (CAP). The cloud computing environment is characteristically a 

distributed environment and therefore the NoSQL databases are built to scale 

across multiple nodes. Techniques such as partitioning, horizontal scaling and 

replication are used to achieve high availability which is one of the unique 

characteristic of NoSQL databases. NoSQL databases cannot provide the three 

afore-mentioned properties simultaneously and are designed to trade-off either 

one of consistency and availability. However, the implication of the CAP theorem 

is that if the high availability characteristic of the NoSQL databases is to be 

guaranteed, consistency must be sacrificed. However, consistency is an important 

feature of transactions in relational databases. The CAP Theorem thus implies that 

NoSQL systems cannot support ACID level consistent transactions. 
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Three fundamental requirements to provide scalable network services needed in 

cloud computing are identified [56] . They include  

1 incremental scalability and overflow growth provisioning  

2 “24/7 availability through fault masking” and 

3 Cost effectiveness 

The three points to note in these requirements include: 

Scalability - The ability for resource provisioning to be increased as user 

needs increases. 

Availability - The promise of uninterrupted access to resources 

Cost Effectiveness - Services must be economically justifiable. 

Cloud computing services promise high availability and the make-belief that 

computing resources are inexhaustible and available on demand.  In order to 

provide high availability, replication is needed. Cloud service providers / vendors 

make use of highly distributed systems, replicated on a global scale.  This normally 

would involve the use of hundreds or even thousands of machines and in these 

environments, failures are not a rare occurrence. These systems aim to achieve 

high availability, low latency, partition-tolerance and high scalability. 

In distributed systems, enforcing ACID properties require substantial effort. 

Moreover, achieving ACID level guarantees in a distributed environment where 

data is replicated over large geographical area is a highly demanding and non-

trivial task. Some of these systems are expected to handle a very high write 

throughput, billions of writes per day and are also expected to scale with the 

number of users [57]. In the presence of these failures, availability must be 

preserved because it is a key component of cloud computing as consumers must 

have access to computing resources. Implementing complex techniques like 2PC 

in cloud environment can be counter-productive. The cost of resolving the conflict 

between data consistency, system state and high availability is made more 

complex by the magnitude and robustness requirements of present day 

applications used by businesses. 
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However, the ability to be able to scale data comes with its own challenges. 

Distributed environment face the problems of network reliability, system failures, 

network security and latency. If there is a partition in the network, data servers 

may become unavailable. All these led to the formulation of the CAP Theorem 

which has been proven formally [58]. However, there have been some questions 

raised about the validity of the CAP Theorem. The variance in the meaning of the 

consistency in ACID and the consistency in the CAP theorem also led to some 

misconceptions. Consistency in ACID means that a transaction leaves the database 

in a consistent state and obeys all integrity rules. On the other hand, consistency 

in CAP refers to maintaining a single copy consistency across replicas. In [59], the 

author argues that CAP is confusing because it implies that systems are restricted 

to only two of the three properties. This can imply that distributed systems cannot 

be available and consistent at the same time, a situation which is clearly 

impractical. The timeline consistency model of PNUTS [60] (a NoSQL database 

designed by Yahoo), provides the basis for this argument.  PNUTS relaxes its 

consistency and only guarantees that updates on replicas will be applied in the 

same order at all replicas but does not guarantee that all replicas will be up-to-

date. Also, if the master replica for a particular data item is unavailable, then that 

data item is altogether not reachable. This would imply that the system gives up 

or relaxes both availability and consistency. The choice of relaxing consistency 

across replicas was as a result of the cost of implementing synchronous updates 

over a wide area network. PNUTS rather reduces the latency of updates by 

implementing an asynchronous model of replication. This model ensures that 

application developers do not need to worry much about implementing 

consistency. However, as can be seen, consistency is still relaxed. A model called 

PACELC has been suggested as a substitute for the CAP Theorem [61] [12]. PACELC 

means that “if there is a partition (P), how does the system trade-off between 

availability and consistency (A and C); else (E) when the system is running as 

normal in the absence of partitions, how does the system trade-off between 

latency (L) and consistency (C)?” [61]. This argument was also put forward in [62] 

with the author stating that “the CAP theorem only prevents everybody from 

being consistent and available”. This seems to imply that even when there is no 

partition, distributed databases cannot experience both consistency and 

availability at the same time. There have also been other arguments about the 
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confusion caused by the CAP theorem [63], [64] which was acknowledged by the 

proponent of the CAP theorem [65]. However, the CAP theorem was the basis for 

the design of the NoSQL databases and justifying the semantics of the grammar 

used in the CAP theorem is not the focus of this work. With this understanding, 

the classification of NoSQL databases according to their characteristics on the CAP 

spectrum is described below. 

 

Figure 2.2: CAP Theorem classification of NoSQL Databases 

As an outcome of the CAP theorem, various other models of consistencies were 

proposed. BASE as a consistency model for distributed systems was proposed by 

the proponent of the CAP theorem and is discussed in the next section. 

2.7.1 BASE 
 

The Basically Available Soft-state Eventual consistency model (BASE), suggested 

by Brewer, guarantees that after a specific time, all replicas would have received 

the update [66]. In BASE, the consistency part of the ACID properties of 

transactions is deliberately relaxed. Replicas do not necessarily need to have a 

consistent view of a data item. To guarantee that after a specific time, replicas 
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would have received all updates, there is usually exchange of messages between 

the replicas. There are various protocols used to implement this exchange of 

messages. These protocols are discussed in later sections. The NoSQL databases 

adopt this model of consistency. Under the BASE, various levels of consistency 

guarantees exist. The following are examples illustrating the different consistency 

levels that can be applied [67].  

Strong consistency – After an update, all replicas immediately return updated 

value. This provides ACID level consistency guarantees. It is usually achieved by 

ensuring synchronous replication.  

Weak consistency – The system does not guarantee that subsequent access will 

return updated value until a number of conditions are met which could be a time 

frame in which all replicas would have been updated. These systems offer BASE 

level guarantee. 

Eventual consistency – This is a form of weak consistency. In the absence of 

failures, the maximum time allowed for replicas to have inconsistent values can 

be determined based on certain factors like number of replicas. In this work, a 

different type of consistency model which follows the eventual consistency model 

(for asynchronous replication), but provides a stronger consistency guarantee for 

operations is proposed. 

In [67], a quorum model for measuring the trade-of between availability and 

consistency among replicas is defined and explained. The following definitions 

hold: 

N = No of replicas 

W = Number of replicas needed to accept writes 

R = Number of replicas needed to reach a read quorum 

A distributed storage systems that need high availability and performance uses 

the configuration N = 3 (W=2, R=2). For such systems, a read quorum would 

always overlap with write quorums thus guaranteeing a stronger consistency. 

However, for systems that serve very high reads and want to ensure a high 

tolerance to partitions and high availability, N can be as high as 10 while R can be 

as low as 1. This way availability is always guaranteed but consistency is very 
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weak. If R=1 and N=W, the system is highly optimized for reads, and if W=1 and 

R=N, the system optimize for a very fast write. In summary, for most eventual 

consistent databases, the configuration used is W+R<=N. This configuration would 

imply that read and write sets do not necessarily overlap. 

2.7.2 Other Consistency Models 
 

There are various other models of consistency that has been suggested in 

literature. A consistency model that allows users to determine the level of 

transaction consistency is proposed in [68]. Users are provided with three levels 

of consistency from which they can choose. Users are also not restricted to a 

particular consistency guarantee and they can switch their consistency guarantees 

at runtime depending on their needs. In timeline consistency, [60] the order of 

updates is preserved on all replicas, albeit asynchronously. 

 

2.8 SUMMARY 
 

Though conventional databases and transaction management techniques are 

different, they do provide the basis for the cloud and NoSQL databases and their 

transaction management. 

This chapter therefore discussed the fundamentals of database systems and 

transaction management techniques and protocols. The chapter also explained 

how transactional properties are guaranteed in distributed database systems 

particularly focussing on the two phase commit protocol (used to guarantee 

transaction recovery). The characteristics of Big data as well as the techniques 

used to manage big data were also discussed. Finally, an analysis of the CAP 

theorem was explained.  

Table 1 summarises the main differences in techniques employed by NoSQL cloud 

databases and classical relational databases. 
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Table 2.1: Main Differences between NoSQL and Classical Databases 

 FEATURES 
NOSQL DATABASES CLASSICAL RELATIONAL 

DATABASES 

CONSISTENCY Eventual Consistency Strong consistency 
SCALABILITY Horizontally scalable Vertically scalable 

REPLICATION Multiple replicas                         
Primary - Secondary 
replication 

AVAILABILITY Always available 
Can be unavailable during 
upgrades 

TARGET 
APPLICATION 

Social networking, emails, big 
data  

Banking applications, OLTP 
applications 

DATA MODEL 
Unstructured data with dynamic 
schema 

Structured Data with 
defined schema and 
referential integrity 
between tables 

QUERY 
LANGUAGE 

Varies with databases (mainly 
programming languages) 

Structured Query Language 
(SQL) 

TRANSACTION 
PROCESSING No Transactions YES- ACID Transactions 

QUERY 
COMPLEXITY 

Simple 'get' and 'put' 
operations. No Support for table 
joins 

Support complex query and 
supports table joins 

TOLERANCE TO 
PARTITION YES NO 
ARCHITECTURE Loosely Coupled Tightly coupled - Monolithic 

 

The next chapter reviews related work on cloud and NoSQL databases and 

transaction management techniques and protocols. 
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CHAPTER 3  
 

DATA PROCESSING IN CLOUD COMPUTING 
 

One of the key characteristics of cloud computing is the make-belief to consumers 

that computing resources are inexhaustible and available on demand [69]. 

Providing these kinds of services involve the use of hundreds or even thousands of 

commodity machines. In these environments, failures are not a rare occurrence as 

some of these systems are expected to handle a very high write throughput such 

as billions of writes per day. They are also expected to scale with the number of 

users. In the presence of these failures, availability must be preserved because it 

is a key component of cloud computing as consumers must have access to 

computing resources and data. To guarantee availability, these systems make use 

of techniques such as partitioning and replication. As described in Chapter two, 

traditional databases do not scale due to the complexity of their data model [70] 

The characteristic of a database that allows it to scale across multiple systems is 

called scalability. NoSQL databases are highly scalable and as such, a perfect fit for 

cloud environment. They are designed to scale up and scale down as and when 

the need arises. However, for a database to be scalable, certain design trade-offs 

are made.  

This chapter therefore examines in section 3.1 the various architectural designs 

that cloud database vendors consider when designing their database. Section 3.2 

gives examples of how these designs are implemented in some of the popular 

NoSQL databases highlighting their strengths and weaknesses. Furthermore, 

section 3.3 explains the state of the art approaches used in implementing 

transactions in NoSQL databases. Finally, section 3.4 gives a comparative analysis 

of the existing implementations and identifies the main research issues which are 

to be addressed in this thesis.  
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3.1 ACHITECTURAL CONSIDERATIONS of CLOUD DATABASES 
 

In designing a cloud or NoSQL database (in this thesis, ‘cloud databases and 

NoSQL databases are used interchangeably), certain architectural considerations 

are to be put into perspective based on the requirements of an application which 

is to be hosted in a cloud. Different cloud vendors have come up with different 

decisions about cloud set-up, databases and related cloud applications. Thus, the 

various design decisions taken by cloud vendors on the operations of their 

systems have implications on the characteristics and properties of their databases 

and the kind of applications that can be managed by such databases. Also, the 

design decisions taken by the vendors determine factors such as the consistency 

of the system and the types of operation the database can handle. This will have 

an impact on the ability of the database to be able to manage transactions.  

Some of the commonly adopted architectures and models are discussed below. 

3.1.1 Loose Coupling VS Tight Coupling 
 

Traditional databases are monolithic (i.e. tightly coupled) in their design. Being 

monolithic means there is no separation of nodes or components of the database. 

For instance the file system, database engine, transaction manager, metadata and 

storage are all tightly coupled in a single node. Such a design decision makes it 

difficult to shard the system and can result in system downtime (unavailability) 

during an upgrade or maintenance [43]. NoSQL databases tend to separate 

system state from application state in order to provide high scalability [71]. 

System state includes metadata management which is crucial to the functioning 

of the system, while application state refers to the actual data of the application 

being managed [72]. For instance, the Google stack maintains a loosely coupled 

architecture consisting of GFS (File tier) [54], BigTable (record manager) [73], 

Megastore [51] (for transaction) and makes use of Chubby lock service [74] to 

manage the system state. Also, each cluster has a master server that manages 

placement of data on the other chunk (tablet) servers. Google also makes use of 

MapReduce [75] to process data on a large scale.  PNUTS [60] also makes use of a 

loosely coupled architecture consisting of a tablet controller and message broker 
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to manage system state. The tablet controller manages location and relocation of 

tablets (shards) while message broker manages mapping of tablets with their 

replica. MongoDB consists of three server roles which include the router - called 

mongos which is used for routing requests to the cluster; the configuration server 

– saves cluster metadata; and the database server – called mongod which is used 

to store application data.  

However, loose coupling also has its disadvantages. Communication and 

interaction among various components of the system can introduce network 

latencies, network partitions, and high traffic that may consume network 

bandwidth. However, this overhead is considered to be inconsequential when the 

performance gains of parallel processing are put into consideration. 

3.1.2 Share Nothing VS Shared Disk 
 

Most cloud databases run shared-nothing architecture. In shared-nothing 

architecture, each node is responsible for a subset of the entire data and does not 

share any hardware component with other nodes. This enhances scalability and 

parallel processing. Shared-Nothing systems are known to scale faster and 

increase availability as there is no single point of failure [76]. Alternative, it is 

possible to have multiple processing nodes sharing a single storage disk which is 

known as shared disk. In-spite of its advantages, shared-nothing architecture 

comes with numerous maintenance issues which include load balancing among 

nodes, complex 2-phase commit algorithm across nodes, and request routing 

amongst others [77]. 

3.1.3 Data Model 
 

As an implication of horizontal scale-out (sharding), NoSQL databases generally 

implement simple data models and can support only simple single-key operations 

[78]. There are no table joins or referential integrity between the entities stored in 

NoSQL databases. The choice of data model has a crucial implication in 

determining the type of queries (operations) that the application would be able to 
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perform. It is therefore important to consider the application domain which 

would best suit the database when designing a NoSQL data model. 

 

3.1.4 Concurrency Control Techniques 
 

As stated earlier, concurrency control techniques help to maintain consistency 

and isolation in a database. NoSQL databases generally follow an eventual 

consistency model which means replicas could be out of date for a specified 

period of time. Resolving conflicts among replicas is therefore important for the 

system to achieve consistency – but eventually. The choice of where and how to 

resolve conflict is a critical issue. Key-value NoSQL databases tend to leave the 

task of conflict resolution to the application. This leaves a lot of burden to 

application designers. Dynamo [50] uses object versioning [79] to manage 

conflicts at application level. Spanner, a transactional database designed at 

Google, uses paxos protocol [15] to manage concurrency and prevent conflict, GFS 

uses namespace locking to manage concurrency. Some systems like ReTSO uses 

snapshot isolation (discussed later section 5.1.1) to avoid conflict. 

3.1.5 Replication 
 

In cloud environment, there is a choice to be made on whether database systems 

should use synchronous (eager) or Asynchronous (lazy) replication mechanism 

[80]. Synchronous replication ensures that all replicas have the same view of data 

at all times. This ensures strong consistency across replicas (i.e. 1-copy 

serializability) but can affect availability if any one of the replicas is not available. 

Also replication can either be local or geographic. Cloud database vendors need to 

decide which of them will best suit their applications. PNUTS uses asynchronous 

geographic replication while BigTable supports eventually consistent replication 

across geographic clusters. There is also a decision to be made about which or 

how many servers can respond to ‘read’ and ‘write’ requests. Relational 

databases mainly make use of a primary-secondary replication algorithm in which 

case the primary server responds to read and write requests. The secondary 

replica only becomes active when the primary replica is down. In distributed 
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databases where replication factor is usually higher (say 3 or more), quorum 

approach is implemented. There are various mechanisms used to arrive at a 

quorum so as to guarantee consistency when responding to read requests [14] 

[81] [82].   

3.1.6 Master-Slave VS Peer to Peer Architecture 
 

Generally, there are two main architectures used in cloud databases which 

include master-slave and peer-to-peer [83]. In a master/slave approach, the 

master manages the systems state, request routing and is aware of changes 

across all the nodes in the cluster. The master is also responsible for deciding the 

location of data and failure detection. In peer-to-peer architecture, all servers 

have the same roles and each server manages its meta-data and system state. 

Peer-to-peer servers are usually aware of information on other servers. Google 

systems make use of a Master-Slave approach with one server (Master) managing 

both metadata and data lease during updates on behalf of the system. Cassandra 

[57] and Dynamo [50] on the other hand, make use of peer-to-peer approach 

where all servers have equal role and duties. Dynamo controls traffic by storing 

routing information in each node. A request is sent to any node in the cluster and 

re-routed to the node that manages the data. Cassandra stores the node 

information also in Zookeeper [84] for recovery in the event of a failure. Master-

Slave approach is prone to certain issues such as bottleneck issues when traffic is 

high [85] and outages in the event of a master failure. However, master/slave 

approach is able to easily manage consistency and it guarantees that requests are 

directed to the replica that has the most recent version. Systems that implement 

a peer-to-peer architecture on the other hand find it more challenging to 

guarantee consistency. The only way to guarantee that operations are directed 

towards the replica with the most recent version of data is by implementing 

synchronous replication which requires more effort [83]. 

3.1.7 Query Processing Approach 
 

In relational databases, the standard query language (SQL) is recognized as 

generalized language for querying all databases. In NoSQL databases, there is no 
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generally accepted query language. Also, NoSQL databases leave complex query 

processing to the application level and only offer simple operations. For instance, 

BigTable makes use of MapReduce [75] for processing jobs which is implemented 

using different programming language. Key-value databases tend to implement 

simple (put, get and delete) operation because of their data model. MongoDB [86] 

makes use of JSON statements for querying collections (Tables) via a JavaScript 

shell and also has driver support for querying the database using the API of other 

programing languages [37]. In NoSQL databases, data processing paradigms are 

categorized into three main groups namely batch processing, real-time processing 

and hybrid computation. The batch processing paradigms is appropriate when 

dealing with large volumes of data while the real-time processing is appropriate 

for dealing with data coming in at high speeds and in real time. The hybrid 

computation is a combination of real-time and batch processing loads.  

Another important issue is how queries are routed to individual nodes. Since 

NoSQL databases make use of shared-nothing architecture and a single database 

can be scaled across thousands of nodes, there must be a proper and efficient 

mechanism for routing requests. In BigTable, queries are routed through the 

master server which stores information of node location. The master then directs 

the request to the specific node hosting the requested data item. In MongoDB 

cluster, requests are handled by the routing server which is also known as the 

mongos. The mongos receives and directs incoming requests to the appropriate 

shard or node. This is not usually the case with relational databases. Relational 

databases are monolithic and there are no specific roles among database nodes. 

Requests and metadata management are handled by the same node hosting the 

database. 

3.1.8 Read Optimised VS Write Optimised 
 

The method of writing to disk affects performance and determines if the system is 

optimised for reads or writes. In BigTable, writes are appended to a single file 

(SSTables) per server and these files are immutable. This decision implies that 

writes BigTable is optimized for writes as a write operation is appended to the end 

of a single file. A read operation, on the other hand, would have to scan through 



DATA PROCESSING IN CLOUD COMPUTING 

 

42 
 

the file to be able to locate the data. Indeed, the results in [73] shows that 

BigTable has a higher write throughput than reads. Dynamo [50] is optimized for 

reads because writes always involved disk seeks whereas a read request does not 

always involve disk access. 

 

3.1.9 Latency VS Durability 
 

When data is persisted to disk, it achieves durability. However, the overhead 

associated with disk I/O incurs higher level of latency.  If data is not persisted to 

disk first, the throughput increases but this can have an effect on the durability of 

transactions.  However, some databases are designed to store their data 

permanently in memory in order to achieve high speed. Such databases are 

known as main memory databases (MMDB) [87]. In MMDBs, a copy of the 

database is usually stored in disk also. Most web applications make use of 

Memcached [88], an open source distributed memory caching system which 

reduces the load on a disk-based database by caching some of the information in 

memory. 

The NoSQL database vendors generally implement a combination of the 

architectures discussed above, in their database designs. This combination 

determines the characteristics and properties of the database. It also determines 

the availability and consistency guarantees that the database can provide which in 

turn determines the suitability of a database for an application. The next section 

analyses a few of the popular NoSQL databases, their architectural 

implementation and the impact of these designs on their properties. 

 

3.2 NOSQL DATABASES AND BIG DATA 
 

One of the primary objectives of NoSQL databases is to store and manage big 

data. But as data increases, it becomes more difficult for a single node (of a 

NoSQL database) to process big data [89]. To efficiently process data, NoSQL 

databases make use of the parallel processing paradigm (i.e. horizontal scaling). 
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To be able to scale data, the data is de-normalized and spread across multiple 

systems. In order to ensure that requests are always served (high availability), 

NoSQL databases implement weak consistency models. These decisions have the 

following implications on the operations of NoSQL databases [11]. 

• De-normalization of data implies that there is no referential integrity 

among data entities. Thus, simple data model is adopted. 

• Unlike relational databases, there is lack of support for join operations in 

NoSQL databases. This prevents implementing complex queries. NoSQL 

databases generally offer only simple queries. 

• Flexible schema adopted by NoSQL means rows can have different 

attributes i.e. with no strict table or database schema. This allows NoSQL 

to be ideal for supporting unstructured data but not structured data. 

• The relaxed consistency models means there can be no support for 

transactions. NoSQL databases cannot support the ACID properties of 

transactions and are therefore inappropriate for applications that need 

strong consistency. 

NoSQL databases are generally classified into four main types which are explained 
below [90].  

Document-Oriented databases – Document databases store data in XML, JSON or 

BSON formats. Tables are referred to as collections and each row is called a 

document. Documents can contain multiple field attributes and each document 

can have different attributes implying that document databases have a flexible 

schema. Every document is indexed and has an associated key which is used to 

identify the document. Examples of document databases include MongoDB, 

CouchDB. 

Key-Value stores – These are the most basic forms of NoSQL database. Each 

record is stored as a key-value pair where the value could be a BLOB object that 

the database stores without necessary knowing what type of data or what is 

inside the value. Example of Key-value stores includes Dynamo, Riak, Redis. Key 

value stores support only basic operations such as get and put. 
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Column stores - Column databases store data in columns and each row can have 

different number of columns. Furthermore, column stores introduce what is 

known as column families where data that is associated together can be grouped 

together to form a column family. Column databases can be used to store 

structured and semi-structured data. Examples of column databases include 

BigTable, HBase and Cassandra. 

Graph databases – These databases are used to represent objects and 

relationships that exist between the objects. A node represents an object and the 

edges represent the relationship between objects. In graph databases, the 

relationships represent an important aspect of the database and provide the 

value that can be derived from the database. 

Each of these classes of NoSQL database are more ideal for some applications 

than others [91]. The next section examines some of the common NoSQL 

databases and their characteristics. 

3.2.1 BIGTABLE 
 

BigTable is a NoSQL database designed by Google that stores data for applications 

such as Google Earth and Google Finance. It belongs to the column-oriented class 

of NoSQL databases. In BigTable, data is ordered lexicographically by row key and 

partitioned into different nodes on the row keys using range-partitions. This 

makes it suitable for applications that make use of sequential reads and writes. 

Data is indexed by row key, column key and timestamp and tables are stored in 

SSTable file format in GFS. The application state is managed by the Google file 

system (GFS). GFS divides its files into large chunks of 64MB and uses Master-

Slave architecture. Files are also replicated across multiple slave servers. The 

master monitors the activities of other servers, detects failures among nodes (e.g. 

using regular HeartBeat messages) [54] and manages meta-data. But it is not 

directly involved in reads and writes. During failures, the process of re-replication 

is prioritized based on factors, such as, how many replicas of the data are alive.  

GFS uses a relaxed consistency model that supports most of its applications. 

BigTable also uses chubby service [74] to manage its system state. BigTable allows 

users to group sets of columns frequently accessed together into locality groups 
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to speed up data scans. When a client makes a request, the request is forwarded 

to the master. The master is aware of the location of all data items and it 

responds to the client with the location information of the needed data item. The 

clients then push all the updates to the required node and replicas and proceeds 

to write the data.  

A perceived weakness in BigTable is that it is not very efficient for applications 

that have complex and evolving schemas. It is also limited in providing wide area 

replication [32, 49]. Due to these limitations, Spanner was designed. Also, 

BigTable implements an eventually consistent model across replicas. Hence it is 

not ideal for applications that need strong consistency requirements. 

3.2.2 MONGODB 
 

MongoDB belongs to the document class of NoSQL databases. It stores data as 

documents in binary representation called BSON. Documents are organized into 

table structure, which is referred to as a collection. MongoDB like most other 

NoSQL databases has flexible schema model. MongoDB supports three types of 

partitioning (or sharding) namely: Range-based, Hash-based and Tag-aware 

sharding. In tag-aware sharding, the user specifies a configuration for grouping 

key ranges together. MongoDB automatically balances load in the cluster. Each 

data item (document) has an ID which can be indexed to enable faster queries. A 

MongoDB cluster consists of three server roles which are the router (Mongos), 

configuration server and the database shards (mongod) or replica set. A database 

shard stores a subset of the data, the config server stores metadata and 

information on data locations while the mongos server acts as a router and routes 

requests (read and write) from the application to the shards. During operations, 

queries are sent to the router server (mongos). The mongos server then directs 

the query or update to the shard that stores the data. The mongos gets 

information of data location from the configuration server and caches it. The 

mongos itself has no persistent state. MongoDB uses write-ahead logs called 

journal to ensure durability and recovery. The number of replicas is configurable 

and mongodb sets one of the replicas to be the primary while the others are 

secondary. 
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3.2.3 DYNAMO 
 

Dynamo [50] is a key-value store designed as a storage solution for the Amazon 

Simple Storage Service (Amazon S3). It provides a BASE level consistency model 

but no isolation guarantees. Dynamo uses a peer-to-peer architecture where all 

nodes have equal responsibility and as a result, there is no single point of failure. 

Each node has information about some other node in its range. Dynamo uses 

consistent hashing as partitioning algorithm [92] and depends on the client for 

reconciling different versions of an object. It uses 3 replicas by default and uses a 

gossip-based membership protocol [93] for failure detection. In gossip-based 

protocol, nodes exchange information with each other allowing for failure 

detection when there is no response from any node. Operations in Dynamo are 

limited to single key operations which include get (key) and put (key, context, 

object) where context represents metadata and Dynamo does not support 

transactions. This is in sharp contrast with BigTable [73] which stores system 

metadata at the Master. Dynamo is used to manage Amazons shopping cart 

application and it ensures that customer never lose any item they place in a 

shopping cart. To achieve this, each key item has a preference list of top N nodes 

that host replicas of that key. When there is a node failure, read and write 

operations would still continue on any of the nodes in the preferences list for that 

key item. Dynamo then makes use of a form of object versioning technique that 

merges data in divergent replicas (which could be as a result of failure) to ensure 

that no item is lost. Dynamo uses the formula R + W > N to maintain consistency 

among replicas (N = minimum number of nodes that stores the object, R = 

minimum number of nodes involved in a read and W = minimum number of nodes 

involved in a write). 

Dynamo has some perceived weaknesses. It was designed to be an in-house 

database to be used only in trusted environment and hence has limited security 

mechanism. Another weakness of Dynamo is that it relies on application logic to 

resolve conflicts as it can only provide eventual consistency. The designers have 

chosen to view this as strength because it allows application designers the 

flexibility to determine the logic that works for their applications. But in reality, it 

is a weakness as application designers have extra responsibility of programming 
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consistency logic. Also, operations in Dynamo are optimized to handle small data 

objects typically less than 1 MB. 

 

3.2.4 CASSANDRA  
 

Cassandra is another storage solution designed by Facebook to meet reliability 

and scalability needs as well as to handle very high write throughputs which is 

typical of Facebook application. It belongs to the column class category of NoSQL 

databases. It also runs on cheap commodity hardware. Cassandra uses a form of 

weak consistency model. Its architectural feature is a mixture of features from 

BigTable and Dynamo. Its data model is very similar to BigTable but it uses peer to 

peer architecture like Dynamo. It also makes use of consistent hashing as its 

partitioning algorithm (as in Dynamo). Cassandra introduces certain features like 

super-column and column family and data is accessed using the arrangement 

column-family: super-column: column. Cassandra uses a system called zookeeper 

that stores data placement information and metadata in a fault tolerant manner. 

This will help a recovering node know the ranges of data it is responsible for. 

3.2.5 PNUTS 
 

PNUTS [60] is a distributed database system used for Yahoo!’s web application. 

PNUTS uses a data model similar to relational databases. The design requirements 

for this system was to achieve high scalability (a key requirement for web 

applications), low latency in accordance with Yahoo!’s SLA, high availability and 

fault tolerance. Therefore, to achieve high scalability, there is no referential 

integrity enforcement across tables. Most of Yahoo!’s applications manipulate 

one record at a time and supports a relaxed consistency model. In PNUTS, data is 

asynchronously replicated over geographic locations. Therefore on the CAP 

spectrum, PNUTS is Partition tolerant and high availability sacrificing consistency. 

The implementation of PNUTs requires two additional machines to serve as 

configuration server and router. The router server directs request to the particular 

server that hosts the data. The configuration server also called tablet controller 

stores and manages the mapping of data to the respective servers. PNUTS uses 
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the Yahoo Message Broker (YMB) to manage consistency. When a data item is 

published to the YMB, it is considered as committed. Updates are then 

asynchronously propagated to other replicas. To manage inconsistencies across 

replicas, PNUTS uses timeline consistency earlier discussed in section 2.7.2. To 

achieve this, each data item has a nominated master replica. Only a master can 

accept updates request from clients. Each version of a data item also has an 

increasing sequence number to identify the outdated data. 

As mentioned earlier, NoSQL databases do not offer support for transactions. 

Also, a review of the existing databases show that each of these systems show 

that they can only support simple operations [94]. However, in recent times, 

efforts have been made to implement transaction in NoSQL databases. The next 

section examines the various ways in which this has been achieved. 

 

3.3 TRANSACTIONS IN CLOUD DATABASES  
 

In cloud environments, partitioning a database into shards improves performance 

and availability. But it also makes transaction processing more complex, 

particularly transactions involving multiple data items. This is because, a single 

database is split up across multiple nodes and each node is responsible for 

processing its own data (shared-nothing) without a centralised coordinator that 

can coordinate between different nodes of a NoSQL database. This is contrary to 

the classical distributed database wherein operations can take place between two 

or more different database management systems and are usually coordinated by 

a single database (known as the coordinator)  using protocols such as two phase 

commit protocol. In cloud, coordinating operations in a single database that scales 

across multiple systems (or nodes) is a challenging task [95].   

Various approaches have been developed in order to solve the problem of 

transactions involving multiple data items in NoSQL databases. These approaches 

can be divided into three main categories [96] which include: (i) integrated 

approach, (ii) middleware approach and (iii) API approach. These approaches are 

discussed and analysed in the following sections. 
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3.3.1 The Integrated Approach 
  

This approach involves building transaction support into the cloud data store. In 

other words, NoSQL databases should be designed such that there is a support for 

transactions. Examples of cloud databases that use this approach include Spanner 

[97] and COPS [98]. These are discussed below. 

3.3.1.1 Google Spanner 
 

Spanner [97] is a globally distributed database built by Google to support 

consistent transactions across a globally distributed environment.  Spanner was 

designed to improve on the shortcomings of BigTable [73] and to be able to 

manage applications that have complex structure and need strong consistency. 

Spanner is accessed through an API that implements read-only, read-write and 

snapshot reads transactions. It provides support for externally consistent reads 

and writes and globally consistent reads at a specific timestamp. Externally 

consistent transactions guarantee that they will always receive current 

information [99]. Every deployment of Spanner is implemented in an abstraction 

called the Universe. A universe is divided into zones. Each universe consists of a 

universe master and a placement driver while the zones consist of one 

zonemaster, one location proxy and up to thousands of spanservers. The universe 

master provides status on zones and the placement driver oversees movement of 

data across zones. A timestamp is ascribed to data on commit (meaning that there 

can be multiple versions of a data item) and every Spanserver in each replica 

maintains a lock table for concurrency control. Spanner implements a timing 

mechanism API called TrueTime which uses GPS and atomic clocks to measure 

timing. Each datacentre contains one time master and each machine in a 

datacentre has a timeslave daemon. Time master machines regularly compare 

their times against each other to ensure synchronization between them. The 

timeslave on each machine would check its time against a number of masters and 

any machine whose local clock is larger than a given threshold is evicted. With this 
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timing in place, Spanner can control transactions between spanservers using the 

start timestamp and commit timestamp of transactions. Each set of replica is 

referred to as a paxos group and each group has a leader. During transactions, a 

leader among participant leaders replica is chosen as the coordinator of that 

transaction. Spanner introduces the concept of hierarchy at the level of the table 

to enforce relationships. The top level table is referred to as a directory table and 

each row key in a descendant table starts with the key of the directory table. 

3.3.1.2 Cluster of Order Preserving Servers (COPS) 
 

COPS [98], is a database that provides causal+ consistency over a wide-area 

distribution. Causal+ is defined as a combination of causal consistency and a 

convergent conflict handling mechanism. Causal consistency ensures that the 

causal dependencies between the data (keys) in a database are preserved. The 

conflict handling mechanisms guarantees that replicas never remain permanently 

divergent by applying, update operations in the same order across all replicas. In 

order to achieve this, COPS introduces two variables known as ‘versions’ and 

‘dependency’. Each data key can have multiple versions and is denoted as 

Keyversion. Updates to replicas always produce an increasing (or later) version of a 

key to preserve causal consistency. This is referred to as progressing property in 

COPS. The dependency variable on the other hand refers to the ordering. For 

instance, if in a data store, Xi precedes Yj, then Yj depends on Xi. COPS can then 

enforce causal consistency by ensuring that updates are written only after all its 

dependencies/ dependent keys have been written. Therefore, the key version is 

used to enforce ordering among different versions of a data (or key) item, while 

the dependency is used to enforce order across different keys. Convergent 

conflict handling ensures that conflicting operations are handled in the same 

manner across all replicas ensuring that the outcome of the conflict must be the 

same across all replicas. This is achieved by using well know techniques such as 

last-writer-wins rule. 

Each cluster is operated as a strongly consistent key-value store with key spaces 

partitioned among nodes. A datacentre contains two replicas of the cluster. One 

of the replicas is known as the local (primary) cluster of a datacentre and the 
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other is a secondary replica. The local cluster is a strongly consistent with its 

replica (synchronous replication) in the datacentre while replication between 

clusters in different datacentres is asynchronous. The term ‘Equivalent nodes’, is 

used to refer to the set of primary nodes across all clusters. When a write (or 

update) operation is performed on a local primary node, the updates are sent 

asynchronously in a queue to all equivalent nodes in other data centres. The 

equivalent nodes then enforce causal+ consistency in their update operations 

based on the information provided from the dependency list. COPS is 

implemented as a loosely coupled architecture which consist of two components. 

They include: (i) Key-value database and (ii) a client library that exports ‘get’ and 

‘put’ operations. The key-value database also stores metadata such as the key 

version number and implements slightly more complex operations such as 

‘get_by_version’, ‘put_after’ and ‘dep_check’. These features enable COPS to 

maintain causal+ consistency despite its asynchronous model of replication. COPS-

GT, is a flavour of COPS with an extra operation referred to as ‘get_transaction’. In 

COPS-GT, each key is mapped to a version and a dependency value in the form: 

key  <version, value, dependency>. The dependency, which is of the form <key, 

version> tells the node which key that a data item depends on. This helps it to 

implement ordering across keys. The client library of COPS-GT keeps information 

about dependencies in a ‘context’ parameter which is associated with every 

operation and is identified by a ‘context_id’ attribute. The context parameter is 

stored in a table and used to track dependency across operations. A ‘get’ request 

will normally include a key and a dependency while a put request stores the 

version number to the ‘context’ parameter.  

COPS, like most systems, has its short comings. The process of enforcing causal 

ordering over a wide area network is non-trivial and bandwidth intensive. This will 

make it impractical when the number of data centres involved is high. Also, 

failures in a datacentre could mean that updates not yet propagated to remote 

datacentres could be permanently lost since COPS uses asynchronous replication 

across datacentres. 
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3.3.2 The Middleware Approach 
 

A second approach is to execute transactions on cloud database using a 

middleware. Megastore [51], G-Store [100], CloudTPS [101] and Deuteronomy 

[102] are examples of this approach. The implementations of Megastore and G-

store are explained below. 

3.3.2.1 Megastore 
 

Megastore [51] was built by Google with the objectives of achieving the scalability 

capabilities of NoSQL databases and the consistency guarantees of traditional 

database. The requirements that led to the design of Megastore include high 

scalability, consistent view of data, low latency and high availability. Megastore 

uses Paxos [15] algorithm to provide fault tolerance among replicas. In 

Megastore, data is partitioned into ‘entity groups’ and each entity group contain a 

set of keys which are synchronously replicated over wide geographic area. Within 

an entity group, ACID properties are enforced. Operations across groups are 

asynchronous and are sent in a queue. For example, an email account forms an 

entity group in Megastore. Thus, operations within an email account would be 

ACID level transaction but operations across email accounts make use of 

asynchronous messaging. Megastore uses BigTable as its back-end NoSQL 

database. To enforce relationships amongst tables in an entity group, Megastore 

makes use of child-root table schema. Therefore, each child table must have a key 

that references its root table. Megastore tends to cluster keys that are read 

together and maps each entity to a single row arranged in contiguous order in 

BigTable. The major difference in the data models of Megastore and traditional 

relational database is in the way keys are physically stored. Since BigTable does 

not support table joins, the key of each row is derived by concatenating the keys 

of the child and parent tables in a row. Megastore exposes two types of indexes 

namely; Local index, used within an entity group and Global index, used to search 

for entities when the entity group is not known in advance. Reads and writes can 

be processed from any replica; and as such there is no notion of a fixed primary 

replica. This allows for higher availability, faster read and write operations thereby 
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reducing latency since applications can easily access the replica closer to them. 

This is achievable because Megastore makes use of Paxos to manage updates to 

replicas. The accessed replica represents the leader for that transaction and the 

logs are then replicated synchronously to a quorum of replica.  

As noted earlier, ACID transactions are only achievable within an entity group. 

This is a known limitation of Megastore. Also, Megastore entity group 

membership is static in nature and as such, keys that belong to an entity group 

must remain a member of that entity throughout their life time. This means that 

there can be no ACID transactions between keys that belong to different entity 

group. This makes it impractical for certain applications that need ACID operations 

across different keys that don’t belong to the same entity group. It is also 

unsuitable for applications that need dynamic grouping over the period of their 

life time. An example of such application includes online game applications that 

need grouping of keys for the duration of the game alone. G-store attempts to 

address this limitation. Megastore is also known to have relatively poor write 

throughput because of its synchronous replication within entity groups [97]. 

3.3.2.2 G-Store 
 

The design consideration for G-Store includes high scalability, high availability and 

fault tolerance as well as multi-key transactional access. G-Store uses the same 

concept as Megastore which uses a Key Grouping protocol [100] to group keys for 

applications that need multi-key transactional access. One feature however of G-

Store is that grouping of keys is dynamic and a key can belong to different groups 

during its life time but only one group at any given time. Groups are formed by 

the applications. Keys of the same group are transferred into a single node for the 

period of their membership. This is to prevent the complexity involved in 

distributed synchronization. In G-Store, there is a concept of leader and follower 

keys. Every group formed has a leader while other keys of the group are known as 

follower keys. There are two phases involved namely: Group creation phase and 

Group deletion phase. The group creation phase is initiated when an application 

client chooses a leader. The leader in turn sends a join request to all members of 

the group after it has logged the list of members. The node where the leader is 
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located is known as the owner of the group. Like the 2PC, the group creation 

phase occurs in two phases.  The basic protocol is highlighted below. 

• Leader sends a Join Request {J} to the followers – To acquire ownership 

• Followers respond with a Join Ack {JA} message 

When all members have joined, the group creation phase terminates. After a 

group has been created, transactions can take place during the life time of the 

group. G-store can only provide ACID transactions within the group and 

transactions need not span more than one node. During the group deletion phase, 

ownership of individual keys is transferred from the leader back to each of the 

followers. The client sends a group delete request to the leader, the leader then 

logs the request and sends a delete request to all the followers. In the basic 

protocol, the followers do not need to respond to a delete request. The protocol 

was further optimized to deal with failure, concurrent group creation and 

recovery. In the optimised protocol, every group has a group id and a yield id for 

every operation and G-Store logs this information using write-ahead logs which is 

useful for recovery. 

G-store can be implemented as a client based implementation and also as a 

middleware to a Key-Value store. One limitation of G-store implementation of 

transactions is that there is a high level of overhead during the group formation 

stages. 

3.3.3 The API Approach  
 

A third approach is to provide transactional access to the data i.e. client 

applications access the data through an API that implements transaction 

semantics. Examples of this implementation include Percolator [103] and ReTSO 

[104] . 

3.3.3.1 Percolator 
 

Percolator was built at Google partly to address the short-comings of BigTable 

[18] which lacks support for multi-key transactions [32]. Percolator is designed to 
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process incremental update for web indexing. Percolator provides ACID 

transaction support with incremental computation. Percolator itself is made up of 

three components namely: (i) Percolator worker, (ii) BigTable server and (iii) GFS 

chunk-server. Every node in a Percolator cluster contains these three 

components. Percolator uses snapshot isolation to implement multi-key 

transactions and stores multiple version of each key using Bigtable’s timestamp to 

identify versions. Transactions make use of a distributed lock system and a 

timestamp oracle (TO). The timestamp oracle is a server that issues an always 

increasing timestamp which guarantees that transactions are properly ordered. To 

perform a write operation, a lock is requested on all the rows involved in the 

write. The client then uses a timestamp oracle to retrieve its commit time after 

which it releases its lock. A transaction will abort if it can see a lock or a write that 

has occurred after its own start timestamp. Therefore, every transaction must 

contact the timestamp oracle twice and the highest allocated timestamp is kept in 

stable storage. This increasing timestamp will guarantee that a ‘get’ request will 

return only writes that committed before the transaction start timestamp.  

Percolator lacks a global deadlock detector. This can cause an increase in latency 

when there are conflicting transactions. Therefore, Percolator is not ideal for 

environments that need extremely low latency. 

3.3.3.2 ReTSO 
 

ReTSO [104] is used to support client side transactions for large scale storage 

systems. ReTSO makes use of a centralized Transaction Status Oracle (TSO) to 

implement Snapshot Isolation. In Snapshot Isolation, transactions are carried out 

on a snapshot of the data as at the time of the transaction. ReTSO uses a system 

called BookKeeper [105] to persist write-ahead logs in order to achieve higher 

availability. Before a transaction starts, it must receive a start timestamp request 

from the TSO. The TSO manages incoming transaction request and checks for 

conflicts between transactions. ReTSO generates a start timestamp and commit 

timestamp for all transactions on all servers using a Timestamp Oracle to 

guarantee integrity of the timestamp (i.e. timestamps ordering must be unique 

and incremental). The TSO stores the status of all active transactions and can be 
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queried to verify the status of any transaction. A write request generates a start 

timestamp on the TSO (the timestamp represents the version number of that 

data) and is saved in a ‘PendingWrite’ Column in memory. Once the data is 

committed on the Key value store, the TSO generates a commit timestamp which 

is sent to the client. The client can then clean up its ‘PendingWrite’ Column after 

updating its commit timestamp. In the case of an abort, the client deletes the data 

and also cleans up the ‘PendingWrite’ column. A read operation observes the last 

committed data before its own start timestamp. 

Using a centralized Transaction Status Oracle can be a bottleneck in distributed 

systems. More importantly, when a transaction is trying to retrieve a commit 

time, the TSO may need to check its memory to be sure that there are no 

conflicting transactions. This can lead to long and unnecessary waits. ReTSO 

addresses this by limiting the amount of information kept in memory. ReTSO also 

uses replicated write-ahead log across multiple dedicated storage devices 

(BookKeeper) to prevent loss of data. It should be noted that the BookKeeper is 

dedicated to this task alone to achieve high performance. 

 

3.4 ANALYSIS OF OTHER TRANSACTION MODELS AND PROTOCOLS 
 

In addition to the above, various other approaches have been developed in order 

to implement transactions in high scalable cloud databases. This section reviews 

and analyses some of the common approaches.  In [106], transactions are 

implemented by adapting a relational database into a shared-nothing architecture 

used in NoSQL systems. In their approach, they limit transactions to execute on a 

single node thereby avoiding the need for two-phase commit protocol. A 

database contains a group of tables called a table group. Each node contains a 

subset of the entire database which is a group of tables that are joined by a 

column. The column is known as the partitioning key. Each table group must be 

able to fit into a single node, such that the system can only provide ACID 

transactions support for data within a single node. Data is replicated in the cluster 

but one replica serves as the primary replica. The primary replica is also used to 

handle updates.  
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A Deuteronomy approach is proposed in [102].The architecture used in [102] is 

similar to the architecture proposed in this thesis, however Deuteronomy makes 

use of data locks which incurs considerable overhead [107]. Deuteronomy system 

contains two components which include the transactional component (TC) and 

the data component (DC). The TC manages transactions and concurrency control 

while data is stored on the DC. Transactions in Deuteronomy can span multiple 

DCs. Applications send their requests to the TC. Since the TC stores table 

information (meta-data) and manages session, the TC knows which DC is hosting 

the requested data. When requests are submitted to the TC, the TC sends the 

operations to the required DCs. The DCs perform the necessary operations and 

the TC logs the operations after they have been concluded. 

ElasTras [108] [109] consist of three components which include the Transaction 

Manager (TM), Metadata manager and the distributed storage layer which does 

not support transactions. The storage layer manages issues such as replication 

and fault-tolerance and implements an eventually consistent model of replication. 

The transaction manager is further divided into two layers namely the Higher 

Level Transaction Manager (HTM) and the Owning Transaction Manager (OTM). 

The OTM has exclusive access rights to a subset of data in the distributed storage 

layer and caches some of the data. Requests are sent to a HTM, the HTM then 

routes the request to the appropriate OTM in charge of the requested data. If the 

data is in the OTMs cache, the OTM performs the updates, otherwise, it requests 

for the required data. The OTM also uses write-ahead logging to perform 

recovery. However, Elastras can support only mini transactions defined in [110]. A 

mini transaction allows users to atomically batch together updates and to 

conditionally modify data in multiple nodes. For instance, with mini transactions,  

a transaction can be regarded as committed transaction on the condition all the 

operations of that transaction will be successful. If any of the operations are 

aborted, the transaction can then be rolled back. This is called a conditional 

commit and can only work for certain types of applications. 

Warp [111] provides a one-copy serializable transaction support implemented via 

a client library that supports linearizable transactions, i.e., transactions are 

executed in the order they arrive. The system consists of a client library, storage 

servers and a coordinator server which maps key ranges to storage servers. It 
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implements a protocol that identifies conflicts in transactions by maintaining a 

dependency graph across transactions. 

All of the systems described above have some limitations in their ability to 

perform transactions. Most of the systems are unable to provide ACID 

transactions. They only provide some form of limited properties of transactions 

which makes them unsuitable for applications that need ACID. 

 

3.5 DISCUSSION AND CONCLUSION 
 

This chapter investigated into the existing literature in order to provide an insight 

into the different aspects of data processing in cloud environment which include: 

architectural consideration and data models of cloud or NoSQL databases, the 

different types and characteristics of NoSQL databases, and the transaction 

management techniques developed for NoSQL databases. It is observed that 

multiple factors (such as architecture, data models, classes of databases, 

transactions models, etc) have impact on the performance, reliability, availability, 

and consistency of NoSQL databases.  It is also examined that each of the classes 

of NoSQL database are more ideal for some applications than others. For instance, 

BigTable, a column-oriented database, is used in Google Earth and Google 

Finance. Similarly, MongoDB, is used in retail and online news applications such as 

Ebay and Forbes online magazine. 

This chapter then critically reviewed existing transaction management techniques 

which have been implemented in various industry (commercial) NoSQL databases 

as well as prototypical or research-based NoSQL databases. The review of the 

existing techniques showed that there is not a single transaction management 

technique that provides all the features such as improved performance, 

availability, consistency and so on.  

All of the approaches reviewed above have the main shortcoming (or trade-off) 

that these systems were designed with particular applications in mind. According 

to [94], the NoSQL databases will not replace the relational databases but will be 

better fit for certain applications. The NoSQL databases generally offer only 
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simple operations and will definitely work with certain applications. Dynamo [50] 

for instance offers no data integrity guarantee and employs a very weak model of 

consistency. BigTable [73] has poor write performances and very limited query 

capabilities (as with dynamo). Cassandra [57] is inefficient for processing ad hoc 

queries. A review of NoSQL systems to offer transaction support shows that most 

of the existing systems have limitations which will make them unsuitable for 

certain applications [112]. These trades-offs however have an impact on the 

performance of the systems. In  [113], the system makes use of data locks which 

is a pessimistic concurrency control mechanisms that reduces throughput and 

involves a high level of overhead. Megastore [51] requires data to be partitioned 

into groups and can only provide ACID transactions within groups. CloudTPS [101] 

makes use of two phase commit which could be cumbersome. G-Store [100] 

improves on megastore by making groups more dynamic such that any group can 

contain different data at different times reducing the need for two phase commit 

protocols. However, transactions are still limited to within entity groups. All these 

systems have certain performance issues that our proposed system intends to 

improve on. 

As discussed above there exist a number of research challenges in cloud and 

NoSQL databases. But the work in this thesis focuses on the following main 

research issues. 

• It has been observed that current research approaches and commercial 

NoSQL databases do not enforce strict consistency in big data processing 

and management. This is a consequence of providing high performance 

and high availability of big data in the current solutions. 

• It has been identified that current designs of NoSQL databases do not 

support normalization and integrity constraints. This leads to the facts the 

complex queries and transactions are not supported by the current NoSQL 

databases. 

• It has also been observed that current solutions scarify the support of 

transactions and the implementation of ACID properties in NoSQL 

databases for achieving scalability and efficiency. 



DATA PROCESSING IN CLOUD COMPUTING 

 

60 
 

The remaining chapters describe the proposed approach that aims to address the 

above research issues. 
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CHAPTER 4  
 

MODELLING AND DESIGN OF THE PROPOSED APPROACH – 
NoSQL-TX 

 

This chapter explains the theoretical model and design of the proposed 

transaction approach which is referred to as NoSQL-TX. The acronym NoSQL-TX is 

inspired from WS-TX which is used to describe web services transactions [114]. 

Section 4.1 defines and specifies the constraints of the proposed model. Section 

4.2 explains snapshot isolation which is the technique implemented by the 

proposed system. Section 4.3 describes the architecture of the system as well as 

the various components that make up the system. The approach of NoSQL-TX 

follows the middle ware approach explained in section 3.3.2. The transaction state 

diagram which models a transaction life-cycle and the protocols for a commit 

operation in the multi-key transaction model is explained in section 4.4. 

Section 4.5 explains the interactions that take place among the components of 

the system to execute a transaction. Section 4.6 explains the protocol followed by 

the system to perform a transaction commit and section 4.7 explains the various 

scenarios that can cause a transaction to abort. Finally, section 4.8 explains the 

protocol for replica management implemented by the prototype system. 

 

4.1 NoSQL TRANSACTIONS 
 

The ACID properties of transactions are the standard and most commonly used 

properties of database transactions. One of the objectives of the proposed model 

is to implement ACID properties in NoSQL databases. Before specifying the 

constraints and definitions of our NoSQL transaction model, a brief summary of 

ACID properties is re-emphasized. 
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Atomicity: Implies that all the operations in a transaction must be successfully 

executed or none of them must execute at all. In other words, a transaction is 

considered as an atomic unit of operations and the failure of any operation in a 

transaction means that all successful operations must be rolled back. 

Consistency: The database must remain in a consistent state after the execution 

of a transaction. Therefore any updates made to data by a transaction must 

transform the database from one consistent state to another consistent state.  

Isolation: Transactions must not expose their intermediate results to other 

concurrently running transactions. This means that the activities of a transaction 

must not affect the result of other on-going transactions. 

Durability: Results of a completed transaction must be made permanent in the 

database store in order to provide fault tolerance in the event of failures. 

Fundamental definitions of the proposed transaction model are illustrated as 

follow. 

 

Definition 4.1: A NoSQL transaction NST is defined as the execution of a 

(cloud) application which comprises different operations that provide transitions 

between (partially) consistent states of the shared data. Therefore, NST is a 

sequence of operations which are executed in a way such that all of them are 

successfully completed or none at all. 

Definition 4.2: A NST is a multi-key transaction as it involves more than one 

data key item and one or more operations. 

Recall that NoSQL databases do not perform multi-key operations. Rather, they 

support only simple single key operations such as a get() or put(). 

Based on the above, NST is formally defined as a tuple, NST = (OP, PaO), where OP 

is a set of operations, OP = {OPi | i = 1...n}, and PaO is a partial ordering of the 

operations which determines their order of execution. For instance, OPi > OPj 

represents that OPi is executed before OPj. The partial ordering comes from the 
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fact that transactions do not necessarily commit in the order in which they arrive. 

Order is only enforced when there is a conflict between two transactions. 

In the proposed model, OP1
r[DE] represents a read operation of NST; meaning 

that NST reads data entity, DE, from a NoSQL database. Similarly, OP1
w[DE] 

represents a write operation of NST; meaning that NST writes (updates) a data 

entity, DE to a NoSQL database. The read and write operations above (OP1
r[DE] 

and OP1
w[DE]) are used to model the CRUD (Create, Read, Update and Delete) 

operations which are most commonly implemented in NoSQL systems. Note that 

NoSQL databases adopt CRUD operations from traditional databases.  

In the proposed model OP1
r[DE] represents the Read (of CRUD) and OP1

w[DE] 

represents the Create, Update and Delete operations (of CRUD). OP1
r[DE] is simply 

to read data without any modification to the data. OP1
w[DE] is to write data 

meaning that data can be modified through Create, Update or Delete operation. 

In addition, to data read/write operations, NST is also associated with (control) 

operations, begin or start, commit and abort. These are explained as follow. 

Begin or start operation: The execution of each NST must be marked through a 

begin or start operation. That is, NST should begin first before any of its 

operations (OP = {OP1 | i = 1...n} ∈ NST ) can be executed.   

Commit and Abort operations: Each NST terminates with either a commit or an 

abort operation. If NST is successfully executed then it terminates with a commit 

operation. If NST cannot be successfully executed then it terminates with an abort 

operation.  

NST can be of type seq (Begin | OPi | Cmt | Abt) but with the condition that either 

Cmt (commit) or abort (Abt) occurs only once within the sequence. The 

events/scenarios that can lead to the system aborting a transaction are explained 

in later sections. Based on the above, the constraints on NST and it’s (begin, read, 

write, commit and abort) operations are specified below. 

A NST comprises of different read/write operations but can have either one 

commit or abort operation. This is denoted as: 

• NSTi = {Begin} ∪ {OP1
r[DE], …,OPn

r[DE]} ∪ {OP1
w[DE], …,OPn

w[DE]} ∪ {Cmti, Abti} 
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Where DE is Data Entity. 

• Cmti, ∈ NSTi iff Abti ∉ NSTi i.e., If NSTi is committed then abort operation 

cannot be executed. 

• Assume a (control) operation, cti, is Cmti or Abti (transaction commits or 

aborts), then for any read/write operation OP 
i[DE] ∈ NST i , OP1[DE] > cti. In 

other words, commit or abort operation must be after the read/write 

operation.   

• If OP1
r[DE], OP1

w[DE] ∈ NSTi, then such read/write operations should be 

ordered either as OP1
r[DE] < OP1

w[DE]or OP1
w[DE] < OP1

r[DE]. That is, data 

entity, DE, should be read and written in a proper order. 

• If Transaction A contains a data entity [DEα] and Transaction B also contains 

the same data entity [DEα], then both transactions cannot commit at the same 

time. In order words, the commit time, T, of Transaction A cannot be equal to 

the commit time of Transaction B, i.e., TA commit ≠ TB commit 

 

4.2 SYSTEM DESIGN APPROACH 
 

The proposed design aims to achieve high availability, and efficiency (or 

performance) but without sacrificing consistency of data. To achieve high 

efficiency,  the proposed design takes advantage of proven database concurrency 

control techniques such as Snapshot Isolation [115]. But this is enhanced with the 

strength of scalable shared-nothing architecture of NoSQL databases. Before 

proceeding to explain the architectural decisions, the technique of snapshot 

isolation is explained in details below. 

4.2.1 Snapshot Isolation 
 

As stated earlier, snapshot isolation is an optimistic concurrency control 

mechanism that ensures that transactions are never blocked. In snapshot 

isolation, transactions perform read and write operations on a snapshot of the 

data. This means that a read operation can only read data that has been 
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committed at the time of the read. A write operation can only succeed if no other 

write operation has committed on the same data during its lifetime. The lifetime 

of a transaction is the period between the transactions start time and commit 

time. Each transaction has a start timestamp and a commit timestamp.  A 

transaction Ti starts by obtaining a start timestamp Ti start-time. Before Ti 

commits, it tries to obtain a commit timestamp Ti commit-time. In this scenario, the 

transaction Ti would be successfully committed only if there has not been any 

other transaction Tj whose commit timestamp falls within the period/interval of 

start timestamp and commit timestamp (transaction lifetime) of Ti. If the 

following situation happens: 

Ti start-time   Tj commit-time   Ti commit-time, and both transactions write to the 

same data, then Ti must abort (Where  represents control /order of flow). 

Time

A

B

C
 

Figure 4.1: Snapshot Isolation 

To explain further, assume that three transactions A and B and C (see Figure 4.1 

above) are trying to modify a data entity [DEα]. Transaction A would commit even 

though it conflicts with B. This is because snapshot isolation follows the “First-

Committer-Wins” rule. Transaction B reads data entity [DEα] which may (or may 

not) reflect the latest update written by transaction A. Transaction B tries to 

commit a modification on the data entity [DEα] but A has updated the data item 

data entity [DEα] and committed before transaction B commits, then B must abort 

(notwithstanding the start time of A). This way, consistency among different 

transactions is preserved. Note that transaction B will only abort if it is in conflict 

with transaction A (see definition of conflict in section 2.2). The commit time for 

every data item is also stored alongside with the data item as a parameter. This 
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will enable the system to maintain consistency in the presence of concurrently 

running transactions.  

Systems implementing snapshot isolation in cloud environment would normally 

have a form of time ordering among nodes to be able to determine the start time 

and commit time of transactions. Spanner [97], ReTSO [104] and Walter [116] all 

make use of various forms of snapshot isolation.  

4.2.2 Rationale for Snapshot Isolation 
 

The decision to implement snapshot isolation as a concurrency control 

mechanism is due to the fact that it provides a much higher concurrency than 

using classical locking systems. Snapshot Isolation never delays or blocks any read. 

Also, locking imposes high processing overheads [41] [117] on databases since any 

write operation must obtain a lock first even if there are no conflicting 

transactions.  

Also, snapshot isolation avoids the following three anomalies [118]. 

Dirty reads - This occurs when a transaction A updates a data item and another 

transaction B reads the data item before A commits or rollbacks. If A rollbacks, 

transaction B would have read a wrong data since transaction A did not commit. 

Non-repeatable reads - As the name implies, non-repeatable reads means that a 

repeated read by a single transaction returns different value. Assume a 

transaction A reads a data item and another transaction B either modifies or 

deletes that data item. If transaction A performs another read on the same item, 

it will yield a different result from the initial read of transaction A. This means that 

a transaction that contains multiple read operations can return different results 

for a given item. 

Phantom reads - Assume that a transaction A reads a set of data which satisfies a 

predicate condition supplied by a user. Another transaction B then inserts new 

data items that also matches the predicate conditions stated in transaction A and 

is committed. This introduces new sets of data that also satisfy the conditions 

stated in transaction A. Repeating read in transaction A would produce a set of 

items that differ from the initial read of A. This is called a Phantom reads. 
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4.3 ARCHITECTURE OF THE NoSQL-TX 
 
 

The architecture of the proposed system – NoSQL-TX, follows a loosely coupled 

architecture described in section 3.1.1. The loosely coupled architecture separates 

the mechanisms of transaction processing from data storage (see Figure 4.3). As 

mentioned earlier, the system comprises of three main components which include 

the Data Management Store (DMS), Transaction Processing Engine (TPE) and the 

Time Stamp Manager (TSM). The functions of each of these components are 

explained in next section. The architecture allows the system to be scalable in two 

dimensions. First, as the size of data increases, the number of nodes at the data 

management store can be increased. Second, as the number of transactions 

increase, the number of transaction processing engines can also be increased in 

order to meet up with the demand. 

4.3.1 Transaction Processing Engine (TPE) 
 

The TPE is responsible for processing transactions in the system. The TPE operates 

like a normal relational database which stores schema information, allows for 

relationships and joins between entities and can also compute aggregate 

functions. The difference however is that the TPE does not store data. Rather, the 

TPE depends on the DMS to store data persistently. To execute a transaction, 

clients send requests directly to the TPE. The TPE requests for the required data 

items from the DMS. This is similar to the approach followed in [102] and [101]. 

The relationship between the TPE and the DMS can be implemented in two 

different ways. The first option is that each TPE can be responsible for a disjoint 

set of data on the DMS, in which case, each data item can only be accessed by the 

specific TPE assigned to it. In the second implementation, each TPE has access to 

all data on cluster such that the TPE acts as a transaction service to the DMS layer 

below. In this implementation, any TPE can have access to any data on any node 

in the DMS. As expected, the two implementations have different performance 

implications on the system. In the first approach, assigning TPEs to a disjoint set of 
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data would mean that a transaction that involves two or more data items 

assigned to different TPEs would span more than one TPE. In such cases, ACID 

transactions can only be implemented with two -phase commit protocol discussed 

in section 2.4.1. All TPEs involved in the transaction would typically take part in 

the two-phase commit protocol. The TPE to which the transaction is submitted to, 

will act as the coordinator of the transaction. Two-phase commit protocol is an 

expensive process. In the second approach, using the TPE as a service would mean 

that the system can totally avoid two-phase commit protocol. Thus for each 

transaction, the TPE handling the transaction requests for the data items involved 

in the transaction from all the DMS nodes that stores each of the data. The 

transaction takes place in only one TPE. In both implementations, to improve 

performance, the TPE also stores information about the location of data on DMS. 

However, the evaluation of the difference in performance cost between these 

two approaches is beyond the scope of this thesis. The main functions of the TPE 

are summarized below: 

• Receiving transactional requests from clients and managing such 
transactions 

• Storing of schema information as NoSQL systems do not provide facilities 
for schema information 

• Defining relationships between different entities of data 
• Provide support for join operations as NoSQL do not support such 

operations 

 

4.3.2 Data Management Store 
 

The Data Management Store (DMS) component represents the actual NoSQL 

cloud database such as MongoDB [86]. It stores all (Big) data persistently for the 

system. The DMS component is highly scalable in order to meet Big Data storage 

requirements. Further, it replicates data in terms of different replicas in order to 

ensure improved efficiency, high availability and fault tolerance. Replication is the 

common approach across all NoSQL systems. In the proposed system, the DMS 

layer, in collaboration with the Time stamp manager (TSM), implements the 

snapshot isolation protocol as a concurrency control mechanism for transactions 

in the system. When a transaction starts, the TPE requests the data items involved 
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in the transaction from the DMS. Before a data item is sent to the TPE, the DMS 

registers the transaction ID as well as the key of the data items at the Time stamp 

manager (TSM). The function of the TSM is to issue transaction timestamps. The 

DMS can then send the data to the TPE only after the start timestamp has been 

issued. The TPE can then perform updates on the data item. To commit data on 

the DMS, the DMS also uses the transaction ID registered with the TSM to retrieve 

a commit timestamp. If the TSM refuses to issue a commit timestamp, the 

transaction is then aborted and all changes made are rolled back. Whatever the 

case may be, the DMS notifies the TPE of the decision. The TPE then sends to 

relevant information as a response to the client. 

In addition, the system introduces a new attribute called lastModified. Every data 

item stored on the DMS has an associated attribute called lastModified .This 

attribute stores the commit timestamp issued by the TSM for the most recently 

committed transaction on that data item. This is used to guarantee stronger 

consistency across replica and concurrent transaction execution explained in 

detail in section 4.8. Since the TSM issues the commit timestamp, the TSM always 

has the most recent commit timestamp for each data item. A transaction can then 

use the information to confirm that it has read the latest version of that data 

item. 

4.3.3 Time Stamp Manager  
 

The TSM component is central to managing consistency across nodes in the 

system. It manages the ordering and scheduling of transactions in the system. The 

TSM also interacts with DSM and TPE in order to schedule the execution of the 

different operations of a transaction. The TSM can also store transaction 

information in memory in order to reduce latency due disk I/O thus improving 

performance. Storing information in memory will allow the TSM process 

information much faster since it will reduce the need to perform a disk seek. This 

will improve the overall performance of the system as the TSM will be able to 

process transaction start and commit time faster. The TSM also keeps track of all 

active transactions. To do this, the TSM itself stores the transaction ID, key of data 

items involved in transactions as well as the start timestamps and commit 



MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX 

 

70 
 

timestamps of each of these transactions. That way, the TSM is aware of the 

status of all ongoing transactions. 

The main objective is to maintain consistency of data when concurrently accessed 

by different transactions. The proposed concurrency technique is to implement 

snapshot isolation which is non-blocking and provides higher concurrency and 

high efficiency in transactions processing. When a transaction request is made to 

the DMS, the DMS contacts the TSM for a start timestamp. Once granted, the TPE 

can begin to process transaction. After the transaction has completed, the DMS 

applies the changes and again requests for a commit timestamp from the TSM. If 

there has been any other transaction whose commit timestamp falls between the 

interval of the initial transactions start timestamp and commit timestamp and 

they both write or update the same data, the TSM refuses to issue a commit 

timestamp. Failure to issue a commit timestamp implies that there is a conflicting 

transaction and the on-going transaction must initiate an abort and rollback. This 

is how the First-writer-wins policy is implemented in this system. It is important to 

note the differences in read and writes when implementing Snapshot Isolation. If 

the committed transaction contains only read operations, then the on-going 

transaction need not abort. 

Apart from issuing start time, TSM checks that a replica is up-to-date before it can 

grant that replica a transaction start time. The system employs an asynchronous 

model of replication. This means that replicas can be outdated for a very limited 

period; however, outdated replicas cannot be involved in transactions. Also, there 

is no notion of a master or primary replica in this system. Any replica can be 

involved in any transaction. The TSM in collaboration with the DMS has a 

mechanism for identifying out-of-date replicas. This process is explained in detail 

in section 4.8. 

 

4.4 TRANSACTION STATE TRANSITION MODEL 
 

In order for a transaction to execute and access/modify a NoSQL database, it has 

to go through (or transition between) different states. This section explains the 
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process of state transitioning of transactions in the proposed model. This process 

helps the design of the execution of transaction protocols as well as their 

implementation, which are described in the next chapter.  

As describe above, the proposed system is made up of three major components 

which include the TPE, DMS and TSM. The main duty of TPE is to process NST 

transactions on behalf of the system while the DMS serves as a stable storage for 

the database. The TSM works in collaboration with the other two systems to issue 

timestamps during transactions. It is necessary to add that the following 

constraints hold for NSTs that no two transactions that have a data item in 

common can have the same start timestamp or commit timestamp.  

An active transaction that has not been aborted can be in one of the following 

four different states namely, (i) initial (ii) pending (iii) applied and (iv) done.  

The transaction state is managed by the TPE. When a transaction is initiated by a 

client, the transaction state is set to initial. The initial state signifies that a 

transaction request has been initiated by a client. The transaction then proceeds 

to retrieve a start-time from the TSM. If it is successful, the transaction state is 

updated to pending. The (CRUD) operations are then carried out. If there is no 

failure in any part of the operation, the transaction state progresses to an applied 

state. Otherwise, the transaction is set to a cancelling state where rollback 

operation begins. A transaction in an applied state implies that all the enclosed 

operations in that transaction have been successfully executed. This does not 

however mean that the transaction would commit as there could be other 

conflicting transactions. Once a transaction state has been set to applied, the TPE 

will request for a commit-time from the TSM. If the commit-time is issued, the 

transaction state is set to done. At this point, a transaction is said to have 

committed and cannot be aborted. If a transaction is not issued a commit-time, 

the transaction is set to a cancelling state where rollback operation begins. As 

soon as the rollback operation is completed, the transaction state is set to 

cancelled. A transaction in a cancelled state is deemed aborted and cannot 

commit. The state diagram for a transaction is shown in Figure 4.2 below  
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Figure 4.2: Transaction State Diagram 

 

Under normal circumstances (without failures), a transaction state should follow 

the sequence below: 

initial  pending  applied  done (commit) 

However, there are a few scenarios which can cause a transaction to abort. They 

are explained in section 4.7. 

 

4.5 INTERACTION BETWEEN SYSTEM COMPONENTS 
 

The three components of the proposed system interact with each other in order 

to coordinate different transactions. Figure 4.3 shows the various components 

and their interaction which each other. The TPE is the main component that 

carries out transactions in collaboration with the TSM. Each of these components 

has sub-components that carry out certain functions. The next section describes 

the functions of each of the sub-components in the TPE and the TSM. 
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Figure 4.3: Component of Proposed System- NoSQL-TX 

 

The TPE which manages transactions contains the following sub-components. 

Request Manager - The request manager handles requests from clients. It 

provides an interface between client applications and the TPE. The request 

manager establishes a connection and maintains a session between applications 

and the transaction manager. The request manager also ensures that applications 

receive an acknowledgement or response from the TPE. 

Transaction Manager - The transaction manager is an essential module in the TPE 

and is central to transaction processing. The transaction manager processes CRUD 

operations on the data items. It receives details of the operations to be 

performed from the request manager and generates a transaction ID for each 

operation. The transaction ID is a set of alphanumeric characters which forms a 

unique key used to identify each transaction known as the unique transaction 

identifier (UTID). The transaction manager also uses the transaction ID to manage 

the transaction states (explained in section 4.4). The transaction manager 

interacts with other components of the system to effectively perform 

transactions. For instance, before a transaction can operate on data item, the 

transaction manager requests the required data from the DMS. It stores data 

location information in the location cache. This way, the transaction manager can 
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know where each data item is located. The transaction manager also interacts 

with the schema manager to get information about the relationships that exists 

between the data entities. It is the duty of the transaction manager to ensure 

correctness in transaction processing.  

Meta-data manager – The Metadata manager contains two sub-components 

which include the Location cache and the schema manager. The schema manager 

stores information about tables, relationships between the table entities specifies 

constraints that exist among the data objects. The schema manager also 

determines the level of permissions and accesses granted to data items. The 

location cache stores information about data location. This information is 

persisted on disk in the TPE but is also loaded into the location cache in memory 

to reduce disk I/O latency. 

TSM Controller – the TSM manages interactions between components of the 

system (Transaction processing engine - TPE and Data management store - DMS) 

and the TSM. It guarantees that the components receive transaction start and 

commit timestamps issued by the TSM. The DMS and the TPE both contain TSM 

controllers as they both interact with the TSM. However, it is the DMS that makes 

requests for both start and commit timestamps from the TSM. But the TSM 

interacts with both the DMS and the TPE using the TSM controller. 

The Time Stamp Manager (TSM) contains the following sub-components/ 

Timestamp Issuer - The main duty of the TSM is to issues timestamps. The 

timestamp issuer works as an issuing authority in collaboration with the 

Transaction Information Processor. The transaction information processor 

determines if the timestamp issuer will issue a timestamp or not. 

Transaction Information Processor - The transaction information processor is a 

component of the timestamp manager whose function is to implement the 

snapshot isolation. The transaction information processor has a component which 

is called the transaction information cache. This is where it stores the transaction 

ID, transaction start and commit timestamps as well as the key identifier of data 

items involved in ongoing and recently committed transactions. Based on the 

stored information, the transaction information processor is able to identify any 



MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX 

 

75 
 

conflicts in transactions.  This in-turn determines if the Timestamp issuer would 

issue a commit timestamp or if the transaction should be aborted.  

The diagram in Figure 4.4 shows communication and interaction between the 

different components of the proposed architecture.  It depicts the flow of 

requests which are communicated between the client, TPE, DMS and TSM. Client 

represents user’s cloud application that submits transactions to the proposed 

system. 

 

Figure 4.4: Interaction between Components of the System(NoSQL-TX) 

Based on the above, the commit protocol for transactions in the proposed system 

is described as follows. 

 

4.6 COMMIT PROTOCOL 
 

The different steps (see Figure 4.4) involved in the protocol are explained as 

follows.  

1. A client initiates a request to start a new NoSQL transaction (NST). Recall, that 

NST is a set of begin, read, OP1
r[DE], write, OPn

r[DE], commit, Cmti,, and abort, 

Abti, operations (Section IV). 
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2. TPE receives client’s request and generates an ID for the NST which is to be 

executed on NoSQL data. TPE then sends the NST’s ID and related information 

the DMS. 

3. DMS receives the NST’s ID and related information in order to know which 

data entities are to be accessed (read/updated) by the NST. DMS then sends 

the NST’s ID and related information about data entities to the TSM in order to 

ensure scheduling of NST and other transactions. 

4. TSM saves the information about NST and it responds with a start-time of a 

transaction. This time serves as a start time-stamp, which is to determine the 

order of execution and also the commitment of the NST. 

As in Section 4.1, if OPi
r[DE], OPi

w[DE] ∈ NSTi, then these read/write operations 

should be ordered either as OPi
r[DE] < OPi

w[DE] or OPi
w[DE] < OPi

r[DE]. That is, 

data entity, DE, should be read and written in a proper order following the 

time-stamp information. 

5. Based on the above, DMS releases the required data entities to the TPE where 

NST is actually taken place. Note that the proposed architecture separates 

transaction processing from the actual NoSQL database system in order to 

ensure abstraction and transparency. 

6. Once NST is completed, TPE sends the updates (made to data entities) to the 

DMS. This means that if NST updates a data entity (modify, delete) then DMS 

has to reflect this in the data store in order to ensure that data is consistent. 

7. The DMS contacts the TSM to request a commit timestamp. The TSM checks if 

another transaction has updated the data after its start timestamp of the 

requesting transaction. If this happens, then the NST aborts and sends the 

information to the client through the TPE. Otherwise, it continues. 

8. The TSM responds to the DMS with a commit timestamp. The DMS then stores 

the data in the data store. 

9. The DMS responds with a commit message to the TPE. This means that NST is 

successfully committed using the commit operation, Cmti. 
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The algorithm below shows the process involved in issuing a commit time to a 

transaction Ti 

getCommittime algorithm 
 

1. Send ID of Ti  to TSM 
2. for each data item α in Ti , do: 
3. if α exists in any Transaction Tj in TSMs record, do: 
4. If Tj commit-time between Ti start-time  and Tnow (where Tnow 

is current-time) 
5. Send abort Ti 
6. End Transaction Ti 
7. Else 
8. commit Ti 
9. Else 
10. commit Ti 
11.  End  

 

Note that the protocol above applies to transactions that have reached the 

applied state i.e. any transaction whose operations have all been executed to 

satisfy the atomicity property of transactions. Once the protocol is completed, the 

transaction state is changed to done.  

 

4.7 ABORT SCENARIOS 
 

At each of the component, failures can occur at different stages of a transaction 

which can cause a transaction to abort.  Three forms of aborts are defined below. 

The abort scenarios are as follows: 

• Ab-S1 – In this scenario, a transaction fails to collect a start timestamp.  

This can happen as a result of a connection failure, an error at the TPE or 

some other error. This then leads to a situation whereby the TSM is 

unable to issue a start time. In this scenario, the transaction state follows 

the sequence (see State Transition in, Figure 4.2). 

initial  (abort) 
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• Ab-S2 – This is a scenario when any part of a transaction fails or does not 

complete. This can only happen at the TPE. There are several possible 

causes such as a problem or error at the TSM, or the data not being 

reachable on the DMS (see State Transition, Figure 4.2). 

initial  pending  cancelling (rollback)  cancelled (abort) 

 

• Ab-S3 – This is scenario when a transaction fails to collect a commit 

timestamp. Like in Ab-S1, this can also be as a result of a connection 

failure, an error at the TPE or some other error. All such errors can 

prevent the TSM from issuing a start time. In addition, scenario Ab-S3 is 

also caused by conflicting transactions. In the transaction state diagram 

(see Figure 4.2), the path followed is described below. 

initial  pending  applied  cancelling (rollback)  cancelled (abort) 

Besides the above stated abort scenarios, the system assumes a failure free 

environment. This work does not consider system or network failures. When an 

exception or failure occurs, the transaction halts and commences a rollback which 

ultimately leads to an abort.  An exception is an event that causes a failure 

thereby forcing a transaction to abort. It can be anything from the failure of the 

TSM to issue a start-time or commit-time to conflicting transactions, which lead to 

an abort. Recall from section 4.1, “a transaction must end in a commit or an abort 

i.e. a transaction follows the sequence (Begin | OPi | Cmt | Abt) but with the 

condition that either Cmt (commit) or abort (Abt) occurs only once within the 

sequence (where OPi is a set of operations that can occur during the transaction)”. 

A rollback operation would commence if a transaction is aborted mid-way so as to 

preserve consistency. However, the rollback operation will be pre-determined by 

the state of the transactions when the abort took place. 

The next section explains how the proposed system uses the TSM to maintain 

consistency among replicas in the presence of concurrent transactions using the 

TSM  
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4.8 A PROTOCOL FOR MANAGING TRANSACTIONS ACROSS 
ASYNCHRONOUS DATA REPLICATION 

 

Replication is a commonly used technique used to guarantee high availability in 

NoSQL databases. As explained in section 2.6.3, replication is a process of 

maintaining multiple copies of a database in different locations to provide fault 

tolerance and guarantee higher levels of availability. In asynchronous data 

replication, replicas are updated at a later time after the transaction is committed. 

This means that a replica can have outdated data for a short period of time. 

This thesis has introduced a new model for managing consistency across replicas 

using the TSM. In this section, a protocol for ensuring that only up-to-date replicas 

are involved in transactions to guarantee consistency is explained. The goals of 

replication in NoSQL databases include: 

Availability - Replication increases availability in that during node failures or 

network partitions, other replicas can still continue to process read and write 

requests. 

Read / Write latency - Many NoSQL systems such as PNUTS, Spanner use wide 

area (geographic) replication in order to lower response times. When requests are 

made, the replica that is closer to the client responds to its request. This is used to 

guarantee lower latencies. 

Scalability - Replication is also used to balance load across multiple nodes (of 

NoSQL databases) such that each node is not under heavy traffic. When the 

number of requests on a replica increases, the requests exceeding the capacity 

can be directed to other replicas. 

Fault tolerance and Data persistence - Replication guarantees that data is not lost 

during failures by providing multiple copies of the same data. Fault tolerance 

allows a system to continue operating as normal in the event of a failure. 
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Therefore, if one server is down, replication ensures that there one or more other 

servers that can still respond to user requests. 

However, implementing replication introduces the challenge of maintaining 

consistency among replicas. Generally replication is classified into two main 

categories which include Lazy and Eager replication. These are explained in 

section 2.6.3. Implementing Eager replication is non-trivial and as such most 

systems implement various forms of lazy replication. However, implementing lazy 

replication has breached consistency guarantees. This is because Lazy replication 

will allow transactions to see stale data versions [49]. As a result, most NoSQL 

databases use some form of quorum based replication. In such replication, an 

agreed number of replicas (usually less than the total number of replica) can 

accept read and write requests. Also, to reduce bandwidth traffic, most replicated 

environments makes use of a master-slave replication which is also known as 

primary – secondary replication. 

This section explains how the proposed system achieves consistency across 

transactions. The proposed system implements an asynchronous (lazy) replication 

model. However, unlike most systems, in the proposed model, the notion of a 

primary or master replica does not exist. In the proposed model, any server can 

attend to requests such as reads and writes.  The system depends on the TSM to 

identify replicas that are out of date and prevents transactions from accessing 

such replicas.  As part of the protocol, the proposed system enforces the following 

constraints and conditions: 

1. Recall the constraint of the proposed system in section 4.1  

“No two transactions can have the same commit time” 

Therefore, the constraint below applies such that  

If {DEα ∈ Ta and DEα ∈ Tb}, and ({Ta commit < Tb commit · Ta commit > Tb 

start} | {Tb commit < Ta commit · Tb commit > Ta start}) 

Then Ta commit ≠ Tb commit 

(Where DEα is a data entity α, () represents ‘and’, (|) represents ‘or’) 
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The expression above implies that if two concurrent transactions Ta and Tb 

operate on the same data item DEα and are in conflict, then Ta cannot have 

the same commit timestamp as Tb. This constraint is used to enforce 

ordering across concurrent transactions. 

2. The lastModified attribute (explained briefly in section 4.3.2) for each data 

item is the same across all replicas and is equal to the last commit 

timestamp issued by the TSM for the most recent transaction committed on 

the data item. If a data entity DEα is replicated on three servers A, B and C, 

then the lastModified attribute (which is a commit timestamp) of DEα should 

be the same across the three servers A, B and C. Therefore lastModifiedαA = 

lastModifiedαB =   lastModifiedαC 

(Where lastModifiedα A is the ‘lastModified’ attribute of data entity DEα on 

server A) 

3. If the commit timestamp on a data item, α, from a replica A is different from 

the commit timestamp for the last transaction on α at the TSM, then either 

replica A is outdated or another transaction as committed on replica A 

The steps involved in the protocol are explained as follows 

1. A transaction retrieves a commit timestamp from the TSM before it 

commits. This commit timestamp is stored in the lastModified attribute of 

all the data entities involved in the transaction. 

2. The commit timestamp is sent along with the updated data to all the 

replica servers of the data entities after the transaction has committed on 

the server involved in the transaction. This is asynchronous replication. 

3. The commit timestamp is also stored in the lastModified attribute of each 

of the replica servers. Therefore, the lastModified attribute for a 

particular data entity should always contain the same timestamp across 

all replicas. This is because the timestamp that is saved in the lastModified 

attribute is not the time which the update reaches the replica but the 

commit time issued by the TSM to the replica that sends the transaction 

request. 
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4. When a new transaction is initiated, the TPE consults with the TSM to 

verify that the data items from the DMS are not outdated and that no 

other transaction has committed on another replica of any of those data 

items. It can verify this by comparing the lastModified attribute with the 

most recent commit timestamps issued by the TSM for each of the data 

entities.  

5. If the lastModified attribute is not the same time as the last commit time 

issued by the TSM for each of the data entities, the TPE knows that the 

data is outdated. This way, the TPE can guarantee the consistency of the 

data items involved in the transaction. 

By following these steps, transactions can identify stale replicas and 

transaction requests are redirected to the most current replica. 

 

4.9 SUMMARY 
 

This chapter explained the approach (which is referred to as NoSQL-TX) of the 

proposed system to implement transactions in NoSQL cloud databases. The 

theoretical model of the NoSQL-TX is also defined in this chapter. The approach 

makes use of snapshot isolation as a concurrency control technique. This means 

that the system avoids the overhead involved in locking data and improves 

availability. Snapshot isolation also helps to avoid anomalies such as dirty reads, 

phantom reads and non-repeatable reads.  

The architecture of NoSQL-TX was described in this chapter as a loosely coupled 

architecture with three components which include the Data management Store, 

Transaction Processing Engine and the Time Stamp Manager. Each of these 

components performs certain roles that are critical to the health of the system.  

An ongoing transaction passes through four different phases during its life time. 

They include: initial, pending, applied and done phases. The events that trigger a 

transaction to change from one phase to another were explained in this chapter. 

When an abort occurs, the transaction moves to a cancelling phase. During this 
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phase, all the changes made are rolled back before the transaction state moves to 

a cancelled phase.  

To execute an operation successfully, all the components of the system must 

interact with each other. The protocol followed by their interaction is explained in 

this chapter. 

Finally, the chapter explains the protocol for managing consistency when the data 

in the system is replicated. Most cloud databases make use of replication to 

improve availability. This chapter introduces a new protocol for guaranteeing 

consistency among replicas. 

The next chapter explains in detail, the implementation of the proposed system. 
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CHAPTER 5  
 

IMPLEMENTATION OF THE NoSQL-TX SYSTEM 
 

This chapter discusses the implementation of the proposed system as a 

prototype. Section 5.1 outlines and explains the design objectives of the proposed 

NoSQL-TX system. The tools and technologies used in implementing the system 

are described in section 5.2. Section 5.3 explains the different types of operations 

supported by the system and the algorithm of each of these operations. Section 

5.4 explains the application domain used to implement and test the proposed 

system. 

 

5.1 DESIGN OBJECTIVES 
 

In line with requirements of transactional systems highlighted in [119], the 

primary requirement for design of the prototype system is to provide 

transactional support which guarantees that ACID properties are preserved in 

NoSQL databases. The design also put performance metrics into consideration. As 

such, the following characteristics represent non-functional requirements of the 

prototype system.   

• High-throughput which reflects a high rate of successful transactions per 

unit time. 

• High concurrency that do not violate the consistency and isolation 

properties of transactions. 

• Low latency and shorter response times in responding to client request. 

These design objectives are in line with objectives II and III of this thesis outlined 

in section 1.4 which include: 

• Design a new framework for transaction management in NoSQL databases 
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• Develop and implement the proposed framework as a prototype system 

using cloud data management tools and technologies 

 

5.2 IMPLEMENTATION TOOLS AND TECHNOLOGIES 
 

The prototype implementation makes use of different tools and technologies in 

order to implement the various components of the proposed system such as TPE, 

TSM, DMS, etc. The rationale for the choices of the various tools and technologies 

are explained and justified as follows: 

MongoDB –NoSQL Database: 

The proposed system uses MongoDB to implement the cloud storage part or the 

DMS layer.  MongoDB is a NoSQL database that belongs to the document family 

of NoSQL Databases (see section 3.2). It uses JavaScript Object Notation (JSON) as 

its implementation language. MongoDB does not support multi-key transactions.  

The prototype system can be implemented using other NoSQL databases. This 

research chooses MongoDB for the implementation of some of the components 

of the proposed system due to the following reasons: 

First MongoDB is widely used in real applications and in industry. For instance 

Ebay uses MongoDB to store metadata for all items advertised on their website2. 

The UK Met office also uses MongoDB for storing climate data used in weather 

forecasts3. 

Second, the JSON notation of MongoDB allows relationships amongst data entities 

to be expressed. However, MongoDB does not enforce this relationship i.e. it has 

a flexible schema which is a key characteristic of NoSQL databases. Third, 

MongoDB databases have a relatively higher speed (for simple operations) when 

compared with relational databases [120]. This will help to achieve low latency for 

operations. This is in line with the design objectives set out for the proposed 

system.  

                                                           
2 https://www.mongodb.com/industries/retail 
3 https://www.mongodb.com/industries/government 
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Programming Language: 

The proposed system uses Python as a programming language in order to 

implement the proposed system using the middleware architectural approach. In 

the implementation, the TPE layer code is written in python language.  The code 

in the python modules defines a programing abstraction that implements the 

different operations of a transaction (which are explained in section 5.3.1) 

supported by the prototype. The python IDLE version used is Python 2.74. 

MongoDB is written in JSON, therefore, to access the MongoDB database, the 

pymongo api5 was installed. Therefore JSON scripts used to query the MongoDB 

can be embedded into the python programming. 

SQLite Database System: 

The TSM is implemented using a combination of python and a lightweight 

relational database, SQLite. SQLite can store information in memory. This makes it 

faster and easier in processing transactions.  

The python code implements the various constraints and interaction between the 

TSM and the other components. It also generates and issues the transaction 

timestamps. The lightweight relational database serves as a storage system for 

the TSM. It stores transactional information of on-going and recently completed 

transactions such as the transaction timestamps, transaction IDs and data items 

involved in transactions. The lightweight database used is SQLite which can store 

information in memory. This makes it faster and easier for processing 

transactions. To access SQLite from python 2.7, the sqlite3 API6 was installed. To 

update the database, SQL scripts are embedded in python. 

Computer System and Hardware Specification: 

The DMS storage layer is implemented on an 8GB RAM Linux Ubuntu system with 

three replicas. The replicas are hosted on Ubuntu Juju7 which is a cloud hosting 

Linux platform used to deploy, configure, manage, and scale cloud services on 

                                                           
4 https://www.python.org/download/releases/2.7/ 
5 https://api.mongodb.com/python/current/ 
6 https://docs.python.org/2/library/sqlite3.html 
7 https://jujucharms.com/docs/1.24/about-juju 
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physical hardware. The nodes are connected via Ethernet to a MAAS (Metal as a 

Service8) cluster and managed by a cluster master in a local area network. See 

Figure 5.1 for the cluster controller (master) configuration. Figure 5.2 shows the 

nodes in the cluster and their addresses managed in Ubuntu. Figure 5.3 shows the 

configuration of one of the nodes (cgfk6.maas) in the cluster. Figure 5.4 shows a 

putty connection to the MongoDB service running in Juju. 

 
Figure 5.1: MAAS Head Controller Configuration 

 

                                                           
8 http://www.ubuntu.com/cloud/maas 
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Figure 5.2: Nodes in the cluster with their local addresses 

 
Figure 5.3: Configuration of One of the Nodes - Address 10.0.0.110 
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Figure 5.4: MongoDB service running via Putty 

 

The compute nodes on which the TSM and TPE are running have 16GB RAM and 

Intel i7 3.40GHz processors. The diagram below shows the component set-up. 

 

Figure 5.5: Hardware Setup of Proposed System 

 

5.3 IMPLEMENTATION OF TRANSACTION OPERATIONS 
 

This section explains the set of operations which are implemented (and 

supported) – by the prototype system. The decision to implement snapshot 
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isolation using an entirely different component (the TSM) gives the system an 

advantage of being able to centrally monitor the execution of transactions across 

the system. This design also helps the system to easily identify all on-going 

transactions. The TSM can know this by checking all transactions that have not 

been issued a commit time. This feature is very strategic to the system as it allows 

the system to introduce two new types of operations namely (i) read-latest and 

(ii) update-latest. These two operations provide stronger consistency guarantees. 

Also, operations executed in this mode are serializable. The operations supported 

by the proposed system are explained below through various algorithms. 

 

5.3.1 Types of Operations 
 

In general, the operations supported by relational databases include Create, Read, 

Update and Delete (CRUD). The ‘Create’ operation also known as an ‘insert’ adds 

one or more record to a database table.  Read operation is a ‘select’ operation 

which retrieves the result of a query from the database. An Update operation 

changes one or more existing record in a database. Delete operation removes an 

existing record from a database. NoSQL databases support mainly ‘get’ and ‘put’ 

operations. A ‘get’ operation is equivalent to a ‘read’ while a ‘put’ operation can 

be a ‘create’ and ‘update’. The operations supported by the prototype system are 

explained below. 

5.3.1.1 Read 
 

The read operation which is equivalent to a read in CRUD is a simple ‘get’ 

operation. The TPE simply requests for a data item from the DMS using the key 

identifier of the required data item. The DMS responds with the data to the TPE. 

Read transactions may not reflect updates from on-going transactions. Since there 

is no locking, data is always available but it may not always be consistent. This 

means that a read operation does not put into consideration ongoing 

transactions. As such, a read operation would only reflect any data item that has 
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been committed at the time of the operation. Below is the algorithm for a read 

operation. 

Algorithm Read 

1. Function READ key 
2. Generate UTID() (at TPE) 
3. Send (UTID, key) to DMS 
4. Value    Return (key, data_item) 
5. Return Value  
6. End function 

An example of a read operation is retrieving a customer record from a banking 

application. The user supplies an account ID which the system uses to identify the 

record in the database. The Figure 5.6 shows a snippet of the read operation. 

 
Figure 5.6: Read Operation Codes in Python 

 

5.3.1.2 Read-latest 
 

This research introduces a new type of read operation called the read-latest in 

order to guarantee stronger consistency. The read-latest operation is also a form 

of read operation albeit more complex than the simple read operation. The read-

latest operation aims to get the most recently committed value of requested data 

and puts on-going transactions into consideration. Most concurrency control 

techniques do not put into consideration ongoing transactions. Even in Locking, 

systems still allow locked data, which may be stale due to ongoing transactions, to 

be read. Before it responds to a request, a read-latest transaction checks the TSM 

to ensure that there is no on-going transaction for that data item. The TPE sends a 

request to the DMS. The DMS then contacts the TSM to confirm that there is no 

on-going transaction on the data item requested. Recall from section 4.5 that the 
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TSM stores information on all running transaction and is able to monitor the 

activities of each transaction. If there is none, the DMS responds to the TPE with 

the data. If on the other hand there is an on-going transaction on the data item, 

the DMS waits for the transaction to complete before responding to the TPE. The 

read-latest operation may incur a slightly higher latency but it guarantees a 

stronger level of consistency for read operations. To prevent unnecessary waits, 

there is a maximum (configurable) upper bound time limit for every read-latest 

operation. Once this is reached, the transaction would timeout and the DMS must 

respond with a simple read-transaction or set the data unavailable in which case 

the client can request a simple read operation. A read-latest operation will incur a 

slightly higher latency than a read operation even if there are no on-going 

transactions. This is because the read-latest operation makes an extra journey to 

the TSM. To optimize the process of executing this operation, the TPE can 

communicate directly with the TSM through its TSM controller. It can do this 

simultaneously while requesting for the needed data from the DMS.  

Using the earlier example, to retrieve an account, a user supplies the user account 

ID. The transaction uses the ID to verify from the TSM if there is any ongoing 

transaction on the user supplied ID. If there is, the transaction waits for a 

specified amount of time. Otherwise, it returns the account details. 
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Read-latest algorithm 

 
1. Function READ-LATEST key 

2. Generate UTID() for Ti 
3. Send key to DMS 
4. For each data item α in a read Ti, do: 

5. If α exists in any on-going transaction Tj  in TSMs record, 
do: 

6. Start counter 
7. while counter < upper-bound time 
8. wait for all Tj to commit 
9. if counter >= upper-bound 
10. respond α is unavailable 
11. exit 
12. else 
13. once all Tj committed, respond with latest 

value for α 
14. else 
15. respond with latest value for α 
16.  End Function 

 

Below is a snippet of the code that implements the read-latest operation. 

 

Figure 5.7: Read-latest operation 

 

5.3.1.3 Write-New 
 

Write-New operation is equivalent to create in the CRUD operations of a 

database. It is a simple write issued to the DMS by the TPE. Since NoSQL 
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databases are schema-less, inserting a new record will automatically succeed even 

if the table (or collection as the case may be) did not initially exist. A write-new 

operation does not necessarily need to contact the TSM. The client sends the 

request to the TPE and the TPE sends that data item to the DMS.  

 
Write-New algorithm 
 

1. Function WRITE-NEW (key, data-item) 
2. Generate UTID() (at TPE) 
3. Send (key, data-item) to DMS 
4. Return (Ack) 
5. End Function 

 
 

5.3.1.4 Update 
 

The update operation is a write operation that changes the value of an existing 

data item. For an update to succeed, the data item must exist already. An update 

operation starts with a read of the existing value of the data item. Therefore, an 

update operation takes the key and the data item (provided by the client) as 

arguments. The TPE requests for the data item from the DMS using the key to 

identify the requested data item. The DMS then sends a start-time request to the 

TSM. The TSM responds with the start time and the DMS then sends the data item 

to the TPE, where the update takes place. The updates are then sent to the DMS. 

As explained earlier, when an update takes place, and before it can commit, the 

DMS must check with the TSM that no other transaction has occurred on that key 

item. Otherwise the transaction aborts. Once the TSM guarantees that there are 

no conflicting transactions, the TSM sends the commit timestamp. The data is 

committed and an acknowledgement message is sent to the TPE. Below is the 

algorithm for the update operation. 
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Update algorithm  

 
1. Function UPDATE (key, data-item) 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. DMS releases the data-item to the TPE 
6. TPE performs all the updates and sends back to DMS 
7. DMS applies update and proceeds to TSM 
8. For each data item α in update Ti, do: 

9. If α exists in any on-going transaction Tj  in TSMs record, do: 

10. If Tj commit-time between Ti start-time  and Tnow (where 
Tnow is current-time)  

11. Send abort Ti 
12. End Transaction 
13. Else 
14. Issue Ti commit-time 

15. Commit Ti 
16. Else 
17. Commit Ti 
18. End Function 

 

Using the same banking application as an example, to perform an Update 

operation, a user supplies the account ID of the account to be updated. The 

system performs a read operation described in section 5.3.1.1 to retrieve the 

data. The user then supplies the update information. The system then performs a 

commit using the protocol explained in section 4.6. 

5.3.1.5 Update-Latest 
 

Like the read-latest, the update-latest is also a new type of operation that has 

been implemented in the proposed system. The update-latest provides a stronger 

consistency guarantee and it reduces the probability that a write operation would 

abort. The TPE issues a write request with the key of the data-item to be updated. 

The DMS checks that the data item exists and then reads that data item. It then 

consults the TSM to know if there is any on-going transaction on that key-item. If 
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there is no transaction, the DMS responds to the TPE with the data and the TPE 

performs the necessary update and sends it to the DMS. The DMS proceeds to 

commit the data using the commit protocol highlighted in section 4.6. If on the 

other hand, there is an on-going transaction, again, the DMS must wait for the 

transaction to complete before the TSM issues a transaction start-time. Once a 

transaction start-time is issued, the DMS can then proceed to send the requested 

data item to the TPE. As in the read-latest operation, the proposed system sets a 

maximum (configurable) upper bound time limit for every update-latest operation 

in order to prevent unnecessary waits. Once this time is reached, the DMS must 

respond with a ‘data unavailable’ message. Again, an update-latest operation may 

also incur a higher latency than an update operation even if there are no on-going 

transactions. This is because of the extra time it may take to wait for on-going 

transactions to commit. 
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Update Latest algorithm  

 
1. Function UPDATE-LATEST (key, data-item) 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items) to DMS and TSM 
4. DMS sends the UTID to the TSM to retrieve a start-time 
5. For each data item α in a read Ti, do: 

6. If α exists in any on-going transaction Tj  in TSMs record, do: 
7. Start counter 
8. while counter < upper-bound time 
9. wait for all Tj to commit 
10. if counter >= upper-bound 
11. respond α is unavailable 
12. exit 
13. else 
14. DMS releases the data-item to the TPE 
15. TPE performs all the updates and sends back 

to DMS 
16. DMS applies update and proceeds to TSM 
17. For each data item α in update Ti, do: 

18. If Tj commit-time between Ti start-time  and Tnow 

(where Tnow is current-time)  
19. Send abort Ti 
20. End Transaction 
21. Else 
22. Commit Ti 
23. Else 
24. Commit Ti 
25. End Function 

 

5.3.1.6 Multi Key Transactions 
 

A Multi-key transaction is a transaction that involves more than one data key 

item. As discussed extensively in chapter 2, NoSQL databases, because of their 

simple data model (de-normalized data model), do not support multi-key 

transactions. Thus, because of the lack of support for table joins, they do not 

support multi-key transactions. Note that joins essentially involves multiple keys 

from one or more tables. This shows that the support for multi-key transactions 
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represents a novel contribution of this work. The multi-key operation follows the 

pattern of the update operation but involves an exchange of information between 

two or more data items such as a transfer of funds from one account to another. 

To perform this operation, a user follows the scenario 1 given in section 2.2. A 

user supplies his account ID, the account ID of another user and the amount to be 

transferred. The system performs a read operation on both accounts and applies 

an update operation by deducting the amount from one account and adding it to 

another account. The system also verifies that sum of both accounts before the 

transaction is equal to the sum of both accounts after the transaction.  

Recall, from section 4.3.1 and section 4.5, the TPE stores schema information in 

the schema manager. Therefore, the TPE understands the application logic and 

the relationships that exist between the entities data stored at the DMS. 

Therefore the system can support applications to perform operations among 

multiple keys. The multi-key operation pseudocode is shown below. 

Multi-Key algorithm 

 
1. Function Multi-Key (key, data-item) 1..n 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items 1..n) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. DMS releases the data-item(1..n) to the TPE 
6. TPE performs all the updates and sends back to DMS 
7. DMS applies update and proceeds to TSM 
8. For each data item α in multi-key Ti, do: 

9. If α exists in any on-going transaction Tj  in TSMs record, do: 

10. If Tj commit-time between Ti start-time  and Tnow (where 
Tnow is current-time)  

11. Send abort Ti 
12. End Transaction 
13. Else 
14. Commit Ti 
15. Else 
16. Commit Ti 
17. End Function 
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As can be seen from these operations, the system considers consistency as a very 

important aspect of transactions that cannot be violated. As such there are 

consistency checks on most types of writes. The system relies on the performance 

of the TSM to perform operations. The multi-key operation is a novel operation 

that most NoSQL databases do not support. The operation allows applications 

logic to be expressed at the level of the database and also ensures that the 

consistency property of the database is preserved. The protocol explained in 

section 4.8 guarantee that stale replicas are not involved in transactions.  

The next section explains the various scenarios that can cause a transaction to 

abort and how the system handles aborts to preserve consistency. 

5.3.2 Aborts Scenarios for Operation 
 

Recall that from the definition of snapshot isolation (section 4.2.1), that it does 

not block operations of a transaction. Furthermore, read operations would always 

be successful, i.e., read operations would always return a value. However, as an 

exception, the read-latest operation introduced in this model may not necessarily 

return a value due to its consistency guarantee. For each of the operations 

described in section 5.3.1, an abort protocol can be triggered. Section 4.7 explains 

three types of scenarios which can lead to aborts. This section would explain the 

algorithm that each of the operations (with the exception of read operations) 

would follow to implement any of the three types of aborts. A brief description of 

the abort scenarios is reiterated as follows. 

Ab-S1 – Occurs when a transaction is unable to retrieve a start timestamp. 

Ab-S2 – Occurs when one part of the operations in a transaction fails thus violating 

the atomic properties of transactions 

Ab-S3 – Refers to when a transaction fails to get a commit timestamp from the 

TSM. 

The algorithms to implement the above mentioned scenarios in each of the 

operations are explained in the next section. The Read-Latest and Write-New 
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operations do not implement any of the three abort scenarios because they do 

not require a start or commit timestamp in their execution. 

 

5.3.2.1 Abort Scenario Ab-S1 

Update (and Update Latest) Operation 

The protocol below shows how an update operation executes abort scenario Ab-

S1. Essentially, the update and update latest operations follow the same steps in 

implementing this algorithm. 

Update algorithm – Abort Ab-S1 

 
1. Function UPDATE-LATEST (key, data-item) 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items) to DMS and TSM 
4. DMS sends the UTID to the TSM to retrieve a start-time 
5. If start-time is not issued 
6. Execute abort  
7. exit 

 

Multi-key Operation 

The algorithm for abort Ab-S1 followed by the multi-key operation is detailed 
below. 

Multi-Key algorithm – Abort Ab-S1 

 
1. Function Multi-Key (key, data-item) 1..n 
2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items 1..n) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. If start-time is not issued 
6. Execute abort 
7. exit 
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5.3.2.2 Abort Scenario Ab-S2 
 

The Ab-S2 is executed when any of the operations of a transaction fails.  

 

Multi-Key algorithm Abort Ab-S2 

 
1. Function Multi-Key (key, data-item) 1..n 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items 1..n) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. DMS releases the data-item(1..n) to the TPE 
6. TPE performs all the updates and sends back to DMS 
7. DMS applies update and proceeds to TSM 
8. If any operation fails, do: 
9. Initiate rollback on all successful operations 
10. Once rollback complete, execute abort 
11. Exit operation 

 

5.3.2.3 Abort Scenario Ab-S3 

 

Update (and Update Latest) Operation 

The abort Ab-S3 occurs when a transaction is unable to retrieve a commit time. As 

in abort Ab-S1, the algorithm for Update and Update-Latest follows the same 

procedure.  
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Update Latest algorithm – Ab-S3 

 
1. Function UPDATE-LATEST (key, data-item) 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items) to DMS and TSM 
4. DMS sends the UTID to the TSM to retrieve a start-time 
5. For each data item α in a read Ti, do: 

6. If α exists in any on-going transaction Tj  in TSMs record, do: 
7. Start counter 
8. while counter < upper-bound time 
9. wait for all Tj to commit 
10. if counter >= upper-bound 
11. respond α is unavailable 
12. exit 
13. else 
14. DMS releases the data-item to the TPE 
15. TPE performs all the updates and sends back 

to DMS 
16. DMS applies update and proceeds to TSM 
17. For each data item α in update Ti, do: 

18. If Tj commit-time between Ti start-time  and Tnow 

(where Tnow is current-time)  
19. Initiate rollback operation 
20. Send abort Ti 
21. End Transaction 
22. Else 
23. Issue Ti commit-time 

24. if (Ti commit-time)  failed 
25. initiate rollback operation 
26. Send abort Ti 
27. End Transaction 
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Update algorithm – Ab-S3 

 
1. Function UPDATE (key, data-item) 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. DMS releases the data-item to the TPE 
6. TPE performs all the updates and sends back to DMS 
7. DMS applies update and proceeds to TSM 
8. For each data item α in update Ti, do: 

9. If α exists in any on-going transaction Tj  in TSMs record, do: 

10. If Tj commit-time between Ti start-time  and Tnow (where 
Tnow is current-time)  

11. Initiate rollback operation 
12. Send abort Ti 
13. End Transaction 
14. Else 
15. Issue Ti commit-time 

16. if (Ti commit-time)  failed 
17. initiate rollback operation 
18. Send abort Ti 
19. End Transaction 
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Multi-key Operation 

 

Multi-Key algorithm- Abort Ab-S3 

 
1. Function Multi-Key (key, data-item) 1..n 

2. Generate UTID Ti, (at TPE) 
3. Send (UTID, key items 1..n) to DMS and TSM 
4. DMS sends the UTID to the TSM and gets a start-time 
5. DMS releases the data-item(1..n) to the TPE 
6. TPE performs all the updates and sends back to DMS 
7. DMS applies update and proceeds to TSM 
8. For each data item α in multi-key Ti, do: 

9. If α exists in any on-going transaction Tj  in TSMs record, do: 

10. If Tj commit-time between Ti start-time  and Tnow (where 
Tnow is current-time)  

11. Initiate rollback operation 
12. Send abort Ti 
13. End Transaction 
14. Else 
15. Issue Ti commit-time 

16. if (Ti commit-time)  failed 
17. initiate rollback operation 
18. Send abort Ti 
19. End Transaction 

 

5.3.3 Optimisation Decisions 
 

In order to improve the performance of the system, certain design considerations 

have been taken in the implementation of the proposed system. For instance, to 

limit the number of aborts (or cascading aborts),  the system introduces a variable 

known as max-trax which is the maximum number of allowed (concurrent) 

transactions that can take place on a key-item. Since the system makes use of 

snapshot isolation, it implies that operations are never blocked. This can lead to a 

high number of aborts when a particular data item is involved in many 

transactions. However, in such situations, the conflict would only be detected 

when requesting for a commit time. This can lead to a degrading performance 
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since transactions in this scenario have reached an advanced phase (applied 

phase). When too many transactions are aborting at this phase, it becomes a 

waste of processing resources. Once the number of on-going transactions 

involving a particular data item is equal to the max-trax value (which is 

configurable by application), the system would prevent transactions from 

accessing that data item till some of the transactions are completed. 

Also, the decision to put TSM controllers in both DMS and TPE means that both 

components have access to the TSM. This decision is strategic as it means that the 

TPE can also interact with the TSM. This will improve the performance of the 

systems because when there is loss of information (such as a transaction 

timestamp) on the TPE, the TPE can retrieve that information directly from the 

TSM.  

 

5.4 APPLICATION DOMAIN 
 

The application domain is used to test and evaluate the proposed system. The 

system designed implements a banking application known as the closed economy 

workload similar to the implementation in [121] which is evaluated in the next 

chapter. 

Typically, a banking application will have multiple bank accounts and allow for 

banking transactions to take place across bank accounts. Operations that can take 

place on a bank account include checking accounts, cash deposits, cash transfers 

and deductions. Operations in the application must be atomic and consistent i.e. 

they must follow the ACID properties. These operations allows users to insert, 

update and delete records i.e., users can perform CRUD operations. In addition, 

users can perform multi-key operations such as transferring funds from one 

account to the other. The application data is stored persistently at the DMS layer 

which is the MongoDB database. Transactions take place at the TPE layer. So 

when a user makes a transfer operation (which is a multi-key transaction), the 

transaction takes the account details of both user and the amount to be 

transferred as arguments. The TPE receives the operation from the client and 
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requests for the user accounts details from the DMS following the protocol in 

section 4.6. After the transaction, the updates are sent back to the DMS. There 

are two collections (tables are known as collections in MongoDB) in the DMS 

which include: (i) accounts and (ii) transaction collections. Each document 

(records are referred to as documents in MongoDB) in the database has multiple 

attributes. The accounts collection contains the following attributes: 

_id: This is a unique identifier for each document in MongoDB. Every document in 

MongoDB must have an identifier attribute. When a new document is inserted in 

MongoDB, the value of the identifier must be specified. If it is not specified, 

MongoDB automatically assigns a value to the identifier (_id) attribute. In the 

proposed system, this attribute is used as a unique identifier for each account 

record. The unique identifier was generated using python codes. 

Balance: The balance attribute is a user account attribute that stores the account 

balance for each record.  

PendingTransactions: This attribute is an array type that stores the unique 

identifier for any ongoing transaction on that record i.e. it stores the transaction 

ID for ongoing transactions on that data item. Once a transaction is completed, its 

ID is pulled from the array of transaction IDs stored in this attribute. Since it is an 

array type, it can store multiple values. When there is no ongoing transaction, the 

value is an empty array ([]). 

lastModified: As explained in section 4.8, every record contains the lastModified 

attribute which is a timestamp data type. The attribute stores the commit 

timestamp issued by the TSM for the most recently committed transaction on that 

record.  

Figure 5.8 below shows the record for a user account stored at the DMS. 

 
Figure 5.8: Account Details for an Account User 



IMPLEMENTATION OF THE NoSQL-TX SYSTEM 

 

107 
 

 

The second collection stored in the DMS is called the transactions collection. This 

collection stores information of all transactions that takes place in the system. The 

collection contains the following attribute. 

_id: This attribute, as mentioned earlier, is a unique attribute used to identify 

each document. For the transactions collection, the value of this attribute is not 

supplied by the user but automatically issued by MongoDB.  This value is used to 

identify each transaction and represents the transaction ID for the application.  

State: This attribute stores the state of the transaction which was explained in 

section 4.4. It is updated anytime the transaction state changes. The value of this 

attribute is used to know the current state of any transaction. This includes 

aborted transactions. 

Value: The value attribute stores either the amount of money to be transferred 

from one account to another in a multi-key transaction. However, for an update 

operation, the attribute stores the new value supplied by the user which will be 

set as the new balance for an account in the accounts table. 

Source: The Source attribute, stores the account ID of the user account from 

which the value would be deducted.  

Destination: This attribute stores the account ID of the user account to which the 

value would be added. 

lastModified: The lastmodified attribute in the transactions document stores the 

timestamp of the last time the transaction state was changed. This also allows the 

system to monitor the time in which each operation in a transaction was 

executed. 

Figure 5.9 below shows the record for a transaction in the done state. The records 

are also stored at the DMS. 
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Figure 5.9: Transaction Records 

The operations were implemented in the following methods.  

ReadOp() – The ReadOp method takes a user account ID as an argument, and 

returns the account details record for that account ID. 

Read-LatestOp() – This method also takes a user account ID as an argument and 

returns the account details  for that account if there is no ongoing transaction.  

UpdateOp() – The UpdateOp methods takes two arguments which includes the 

account identifier and the new balance for that account. It returns a success 

message or a failure message depending on the outcome of the transaction. 

Update-LatestOp() – The Update-LatestOp methods also takes two arguments 

which includes the account identifier and the new balance for that account. It 

returns a success message or a failure message depending on the outcome of the 

transaction. If there is an ongoing transaction, it waits for a user-specified time 

before. 

MultiKkeyTransactionOp() – The multikeyTransactionOp is a method that invokes 

transaction that involves multiple key items and operations. It involves the 

transfer of money from one account to the other and also maintains ACID 

properties of a NST transaction (see section 4.1).  

In order to maintain consistency in the operation of multi-key transactions, the 

constraint holds that the total money in the closed economy is an invariant i.e. 

when money is transferred from one account to the other, the transaction must 

be atomic, leaving the database in a consistent state. 

 

 



IMPLEMENTATION OF THE NoSQL-TX SYSTEM 

 

109 
 

5.5 SUMMARY 
 

This chapter provided an analysis of the proposed system. The design objectives 

which guided the approach taken in this system were clearly explained. The 

proposed approach aimed to provide consistency and to maintain the ACID 

properties of transaction. The system design put into perspective the fact that 

cloud database systems need high availability and efficiency. Therefore, the 

implementation ensured that availability was not sacrificed while trying to achieve 

consistency. The implementation makes use of well-known industry tools and 

technologies such as MongoDB and SQLite. The programming language used in 

implementation, Python 2.7, includes libraries that can interact with MongoDB, 

SQLite and a host of other cloud and relational databases. This provided a 

seamless interaction between the components of the system. The cloud layer was 

managed by Ubuntu Juju which is a cloud hosting platform that allows users to 

easily manage nodes in a cluster.  

The chapter also explained the different types of operation that is supported by 

the prototype system. Three of these operations which are novel to cloud systems 

include the read-latest operation, update-latest operation and the multi-key 

operation. The algorithm followed in the implementation of these operations are 

outlined and explained. Operations in any database can abort and the system 

must have a way to handle such scenarios to preserve consistency. This chapter 

explained the different scenarios that can cause an operation to abort. The 

chapter then explains the procedure followed by the proposed system to handle 

these scenarios for each of the operations.  

Finally, this chapter explained the application domain which was used to 

implement the prototype system. The domain simulates a banking application 

which allows users to perform CRUD operations. The different components and 

attributes used in the implementation were explained. Since the system uses 

MongoDB to implement the DMS, the application stores its data persistently in 

MongoDB. The different data entities used in the implementation were explained. 

The next chapter explains the various experimentation and metrics used to 

evaluate the system. The chapter also analyses the results of the experimentation. 
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CHAPTER 6  
 

EXPERIMENTAL EVALUATION 
 

This chapter evaluates the proposed system using workloads derived from well-

known standard cloud benchmarks which include the YCSB (Yahoo! Cloud Service 

Benchmark) and the YCSB+T (Yahoo! Cloud Service Benchmark and Transaction). 

The results of the evaluation are documented in this chapter. The proposed 

system is also evaluated in comparison to existing systems. 

The evaluation of the proposed system is carried out by taking into account failure 

free environment. That is, failures such as system, network communication, etc., 

are not considered. This is in line with most of the existing approaches which 

consider failure free environment in the evaluation of transaction processing both 

in the classical databases as well as cloud databases.  

Section 6.1 explains the benchmark and the workloads used to evaluate the 

proposed system. Section 6.2 explains the various experiments carried out and 

presents the results of the experiment. Section 6.3 analyses the proposed system 

in comparison with other similar systems. 

 

6.1 EVALUATION BENCHMARKS AND WORKLOADS 
 

The evaluation of the prototype system was carried out using a combination of  

the two widely used benchmarks, YCSB [122]  and YCSB+T [123] cloud 

benchmarks. The YCSB benchmark is recognised as a standard benchmark used to 

evaluate cloud database while the YCSB+T benchmark was developed as an 

extension to the YCSB benchmark. The next section explains the two benchmarks 

as well as the workloads used in the evaluation 

 



EXPERIMENTAL EVALUATION 

 

112 
 

6.1.1 YCSB and YCSB+T Benchmark  
 

The workloads developed for evaluating the proposed system, (explained in the 

next section) were adopted from a combination of the YCSB and the YCSB+T 

benchmarks. The YCSB is the most widely accepted cloud data benchmark and 

was developed to evaluate performance of cloud data serving (distributed) 

systems. The YCSB benchmark evaluates performance by focussing on the latency 

of requests to the cloud database. The benchmark also aims to measure the 

trade-off between latency and throughput in cloud systems. As such, some of the 

workloads implemented in this evaluation were adopted from this benchmark. 

However, the benchmark was not designed to evaluate transactions and 

consistency, since most cloud databases do not provide transaction support. The 

YCSB+T benchmark was therefore designed as an extension of the YCSB 

benchmark to evaluate cloud databases that offer support for transactions. The 

YCSB+T take into consideration, the need to preserve ACID properties during the 

execution of operations in a transaction. Therefore, the YCSB+T benchmark is 

designed to detect consistency anomalies introduced during the execution of the 

transactions. 

Therefore, the approach used in this evaluation is a combination of both 

benchmarks. The next section explains the workloads. 

 

6.1.2 Workloads for Experiments 
 

The proposed system has five (5) types of operations which were explained in 

section 5.3.1. The operations evaluated include the following:  

Read: The read operation takes a data key identifier as an argument and returns 

the details for that key. Read operations are never blocked and will always return 

a result. 

Read-Latest: This also takes a data key identifier as an argument and returns the 

details for that key if there is no running transaction on that key item. If there is, it 
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waits for a specified amount of time and returns a fail if the specified time is 

elapsed and the transaction is still running. 

Update: This takes a data key identifier and the detail to be updated as 

arguments. It retrieves the data and performs an update on the data. 

Update-Latest: Update-Latest also performs an update on a data item if there are 

no running transactions involving that data item. 

Multi-key: The multi-key transaction involves more than one data items and 

operations. The execution of a multi-key transaction follows the constraints of a 

NST transaction defined in section 4.1 and preserves the ACID properties of 

transactions. 

For read-latest and update-latest operations, an upper-limit value is arbitrarily 

chosen by a user, explained in (section 5.3.1.2 and section 5.3.1.5). The upper 

limit value determines how long an each of these two operations must wait for an 

ongoing transaction before it times-out and decides to abort. This is similar to 

timeout mechanisms applied in existing transactional protocols. For instance, in 

the 2PC protocol, the coordinator and participants have to wait for message from 

each other. To prevent unnecessary delays, the system protocol times out after a 

certain amount of time. The termination and restart protocol (explained in section 

2.4.1) determines how the system behaves when such timeouts occurs. 

In choosing upper limit values for the Read-Latest and Update-Latest operations, 

the following factors were put into consideration.  

(1) A very high upper limit time means transactions may have a higher 

latency which is not ideal for applications 

(2) A very high upper limit time would mean that there would hardly be any 

abort due to conflicts since the transactions would wait longer for on-

going transactions to complete. This will defeat the purpose of evaluating 

the system as it would be difficult to evaluate how the system reacts to 

conflicting operations. 

(3) A very low upper limit time will make it difficult to see the difference 

between an ordinary read (or update) transaction and a read-latest (or 

update-latest) transaction. 
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Putting these into consideration, the upper-limit time was set to two (2) seconds 

and three (3) seconds for read-latest and update latest operations respectively. 

The values were different for the two operations because it is expected that an 

update operation would normally take longer to process than a read operation. 

There is no generally accepted standard for setting transaction timeouts. It may 

vary from one protocol (or application) to another. 

As stated earlier, the workloads adopted for this thesis were a combination of the 

workloads used in the YCSB and YCSB+T benchmarks. Workload A, B and C were 

adopted from the YCSB benchmark. Workload E and G were adopted from YCSB+T 

benchmark and was used in this thesis to evaluate performance difference 

between strictly read operations and strictly write operations. Workloads D and F 

were developed for the purpose of this research as both workloads are made up 

of operations that novel to cloud database systems. The YCSB and YCSB+T 

benchmarks do not contain these operations. The application domain used to 

evaluate this system is closely similar to the YCSB+T benchmark which simulates a 

banking application. Table 7.1 shows the workloads mixture used to evaluate the 

system. 

Table 6.1: Workloads for Evaluation 

WORK LOAD TYPE OPERATIONS 
A  Read only Read 100% 
B Read-heavy Read 90%, Update 10% 
C Update heavy Read 50%, Update 50% 
D Read Latest heavy Read latest 90%, Update 

10% 
E Update Only Update 100% 
F Multi-key heavy Multi-key 50 % and 

Update-latest 50% 
G Multi-key transaction Multi key transactions 

100% 
 

The explanation of the operations in each workload is as follows. 

Workload A: This workload contains only read operations. Therefore all the client 

operations generated by this workload are limited to read operation i.e., 100% 

read operation. 



EXPERIMENTAL EVALUATION 

 

115 
 

Workload B: This workload contains a mixture of read and update operations. 

This would help to assess if the system is optimized for read or for write 

operations. 90% of the operations generated are read operations and the 

remaining 10% are update operations. Therefore it is called Read-heavy. 

Workload C: This workload also contains a mixture of read and writes operations. 

However, the ratio of read to write operation is 1:1. Therefore, 50% of the 

operations are read operations while update operations also represent 50%. 

Workload D: Workload D aimed to assess the impact of the read-latest operation 

on performance and latency. As stated earlier, the upper-limit time for read-latest 

operation was set to two (2) seconds. Therefore, this workload was made up of 

90% read-latest and 10% update operations. 

Workload E: This workload is made up of only update operations. The Workload is 

compared with workload A to compare read versus write performance. The 

workload is therefore 100% update operations. 

Workload F: This workload is a mixture of multi-key operations and update latest 

operations. Both operations a write operations and is designed to see the 

performance of the system under heavy writes. 

Workload G: Workload G is 100% multi-key operations. This workload is carried 

out to assess the impact of maintaining ACID properties on the system. 

Each of these workloads was run on various experiments based on certain metrics 

which are explained in the next section. These metrics are used to evaluate the 

system.  

The data to be used for the evaluation was loaded into the data management 

store (DMS). For workloads A, B, C, D and E, one thousand (1000) unique data 

items were loaded into the system while for workloads F and G, two thousand 

(2000) unique data key items were loaded into the system. Workloads F and G 

both contain two thousand data items because these workloads include multi-key 

operations which involves multiple key items. For a cloud system, one thousand 

(or two thousand) key items are relatively low. However, this number was chosen 

because the lower the number of data items involved in transactions, the higher 
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the chances of a conflict. This would allow us to evaluate the consistency of the 

system. For each of the workloads, one thousand requests per client are 

generated. The requests are randomly generated to perform operations on the 

pool of data loaded into the system. The requests are generated for 1, 2, 4, 8, 16 

and 32 clients to check the performances of the system under load (each client 

generates one thousand requests). Therefore, at 32 clients, with each client 

generating one thousand requests, total workload generated will be thirty two 

thousand (32,000) requests. Table 7.2 shows the total number of operations 

generated by the clients. In the YCSB+T benchmark, performance of transactions 

were measured from one (1) to sixteen 16 clients. However, for this thesis, each 

experiment is extended to thirty-two (32) clients. This is to add extra load to the 

system. 

Table 6.2: Number of Clients and Operations Executed 

Number of Clients Operations Generated per 

Clients 

Total Number of 

Operations Executed 

1 1,000 1,000 

2 1,000 2,000 

4 1,000 4,000 

8 1,000 8,000 

16 1,000 16,000 

32 1,000 32,000 

 

 

6.2 EXPERIMENTS AND RESULTS 
 

Based on the above workloads, various experiments have been conducted in 

order to evaluate the proposed approach in relation to the objectives of this 

research set out in Chapter 1.  

Different sets of experiments are conducted by taking into account different 

factors. These include: 
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Set 1: Number of transactions per second: 

This experiment measures the throughput (i.e. number of completed transactions 

per second) that the proposed system can handle for each of the workloads. All 

the workloads are run, and the number of completed transaction per second is 

recorded. 

 

Set 2: Latency of each operation 

This set of experiments measure the latency each operation in each of the 

workloads while varying the number of client threads. The latency of each 

operation measures the average time it takes to complete an operation. 

Set 3: Percentage of total completed transactions 

As stated earlier, the experiments assume a failure free environment. However, 

the evaluation also considered that there are situations which would lead to 

transaction aborts. This set of experiment measures the percentage of operations 

in each workload that ends with a successful commit. 

Set 4: Number of failed transactions 

This experiment measures the total number of transactions that were aborted for 

each of the workloads.  

Set 5: Distribution of failed transactions 

This set of experiments measures the distribution of aborted transactions. Recall 

from section 5.3.2, that there are three scenarios which can lead to aborts. This 

experiment measures the percentage distribution of each of these scenarios that 

caused the aborts. 

Set 6: Overall latency of each workload 

These experiment measures the total time it takes for each of the workloads to 

complete executions. Table 6.2 shows the total number of operations that are 

executed for each operation. 
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Set 7: Consistency Overhead  

The consistency overhead measures the performance cost (measured by latency 

of workloads) of implementing consistency in the system. The experiment 

compares the latency of an update operation performed directly on the DMS with 

the latency of update operations performed via the TPE. Operations performed 

via the TPE implements snapshot isolation and provides stronger consistency 

guarantees. 

 

Set 8: Anomaly scores 

The consistency of the system is evaluated by measuring the correctness multi-

key transactions (workload G). The correctness of transactions will be evaluated 

on varying number of clients (using 1, 2, 4, 8, 16 and 32, client threads). This will 

involve a consistency check on the records in the DMS to determine if there is any 

anomaly. An anomaly is scenario in which the system deviates from the expected 

behaviour which could affect the consistency of the system. For instance, if a 

transaction fails to complete a roll back before it aborts, this represents an 

anomaly and leaves the database in an inconsistent state. The calculation for the 

anomaly score is adopted from the YCSB+T benchmark. An anomaly score is 

defined in [119] as the number of anomalies that is introduced into the system 

during the run of the workloads. This evaluation is carried out after each run of 

workload G. The expectation is that a consistent system should have an anomaly 

score of zero.  

6.2.1 Experiment – Set 1 
 

This experiment evaluates the ‘number of transactions per second’. The following 

table (Table 6.3) shows the throughput (i.e. number of transactions per second) 

that the prototype system can handle for each of the workloads.  
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Table 6.3: Total Number of Completed Transactions per Second 

 

Note that the YCSB+T and YCSB benchmarks do not specify the size of data use for 

transactions. However, the average size of each key item (or document as in 

MongoDB) used in each operation is 112 bytes. Each multi-key transaction 

contains two key items (and 4 read and write interleaved operations). The data in 

the table above is expressed as a graph below to show the relationships between 

the workloads.   

 
Figure 6.1: Transactions per Second 

 

Figure 6.1 above shows the number of operations (and transactions) per second 

the prototype system can handle. The figure also shows that the system is highly 

optimised for reads. Other operations such as the Update, Read-latest, Update-

Latest and Multi-key transactions are relatively slower because they provide a 

stronger consistency guarantee. In order to achieve that, they incur extra message 

Workload A Workload B Workload C Workload D Workload E Workload F Workload G
(Read 100%) (90% read, 10% Update) Update heavy (90% read-latest, Update 10%) (Update 100%) (50% multi -key, Multi key (100%)

1 128 28 8 31 4 5 3
2 207 56 10 52 5 8 4
4 206 59 11 57 5 6 4
8 164 46 9 54 5 8 5

16 146 39 11 52 5 5 6
32 134 47 11 42 5 5 5

No of Clients
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communication and processing delays. Each of these operations must contact the 

TSM for information on previous transactions and wait for the response of the 

TSM before they can progress. This introduces some form of latency to the 

system. However, this is a trade-off that must be made for the system to 

guarantee consistency. For example, a simple update operation without any 

consistency check will take an average of 0.009s/ operation while adding 

consistency check will increase the average time for a transaction to 0.2s. This is 

because adding consistency will mean every transaction must make at least 2 trips 

to the TSM. The additional latency, Lu, incurred by an update (update and update 

latest) operation with consistency is explained with the equation below. 

Lu = [4 Ttsm + Tst + Tct] (6.1) 

Where Ttsm is the time taken for a network message trip between the DMS and 

the TSM (i.e. Each round trip to receive a timestamp from the TSM represents 2 

network messages journeys to and fro), Tst is the time taken for the TSM to 

process and issue a start time and Tct is the time taken for the TSM to process and 

issue a commit time. Ideally, it is expected that Tct would be greater than Tct 

because before Tct is issued, the TSM must check all on-going operations as well as 

operations that started after the current operation start time to ensure that there 

are no conflicting operations. For read operations, the latency is lower because a 

read operation does not need any form of contact with the TSM. 

The equation is slightly more complex with multi-key transaction because a multi-

key transaction involves multiple data items.  It involves a new variable Nd which 

is the number of data items involved in a transaction. Therefore, for a multi-key 

transaction, equation (1) above is modified as follows: 

Lu = [(Nd * 4 Ttsm) + Tst + Tct] (6.2) 

The system is able to handle roughly 207 read operations per second at its peak. 

For write operations (update, update-latest and multi-key), the number of 

transactions in a second is reduced. For instance, the result shows that the 

throughput of Workload G is about six transactions per second. This is expected as 

a write operation would definitely incur higher latency that read operations due 

to the forced-writes or logs involved. Also, the new operations read-latest and 
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update latest have lower level of throughput than read update operations 

consecutively. Again this is an expected behaviour. These two operations give 

users the power to determine the level of consistency that they fill would be 

suitable for their application. Thus, a higher value for the upper-limit would lead 

to a stronger the consistency guarantee. However as stated earlier on, this would 

be a trade-off on latency as the transaction can be slower depending on the 

number of ongoing transactions on that data item. This approach to calculating 

the network latencies has been used in previous research. For instance in [16], the 

latency various protocols were calculated using this approach. The performance 

of 2PC is measured using the number of messages exchanged, forced-write 

operation, etc. 

 

 

 

 

Figure 6.2: Workload F vs. Workload G 

 

6.2.2 Experiment – Set 2 
 

This experiment measures the average time taken to complete an operation for 
each of the workloads. 
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Figure 6.3: Average latency per transaction 

 
The Figure 6.3 above shows that a read transaction will take an average of 0.006 

seconds, an update transaction will take an average of 0.2 seconds and a multi-

key transaction will take an average of 0.3 seconds to complete. This shows that 

the system is able to provide a lower latency than some existing systems. For 

instance, Megastore [51] has a latency of about 0.4 seconds for a write operation 

and up to tens of milliseconds for read operations which is relatively higher than 

the proposed system.  

6.2.3 Experiment – Set 3: 
 

This experiment evaluates the “Percentage of Total Completed Transactions”. As 

stated earlier, for each of the workloads, one thousand requests were generated 

per client. The graph in Figure 6.4 shows the percentage of requests that were 

completed for workloads A - F. A completed request means operations and 

transactions that were committed i.e. read operations that returned a result and 

successful write operations (and transactions). Recall from the definitions and 

constraints of a NST in section 4.1 that a NST is of type seq (Begin | OPi | Cmt | 

Abt) with the condition that either Cmt (commit) or abort (Abt) occurs only once 

within the sequence. The formula below shows the calculation for the percentage 

transaction completion rate PTcr. 

    PTcr = [(Nct / Nr ) * 100]  (eq. 3) 
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Where Nct is the total number of completed transaction per workload and Nr is the 
total number of client requests issued.  

 
Figure 6.4: Percentage of completed transactions 

 

For read operations (workload A), all requests were completed without any 

aborts. This is in line with the operations in snapshot isolation as explained in 

section 5.1.1. However, for other workloads, there were a few aborted operations 

due to failure of the TSM to issue start-time or commit-time. However, most of 

the transactions were able to maintain above 99% of completion with the 

exception of workload G which is in Figure 6.5 below. 

 
Figure 6.5: Percentage throughput of Multi-key transactions 
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Workload G had relatively lower percentage throughput (PTcr) when compared to 

other workloads. Again, this is expected as the multi-key operation is a 

transaction involving more than one data items and multiple operations. Also 

recall from definition one in chapter four, a NST is a sequence of operations which 

are executed in a way such that all of them are successfully completed or none at 

all. This is to preserve the atomicity property of transactions. As such, it is 

expected that a multi-key operation will have a lower throughput than other 

operations. However, even with thirty-two clients (32,000 operations) the system 

is able to process to completion over 80% of transactions.  

6.2.4 Experiment – Set 4 
 

The figure below shows the total number of aborted transactions for workloads A 

to F. 

 
Figure 6.6: Total Number of Aborted Transactions 

 

 
The figure 6.6 shows that there were no aborted operations in workloads A. All 

other workloads show relatively low numbers of aborted transactions. The Figure 

6.7 below shows that multi-key transactions have a relatively higher number of 

aborted transactions when compared to other workloads. Figure 6.7 also shows a 
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comparison between the number of aborted transactions in workload A (read 

only operations) and workload G (multi-key operations). 

 

Figure 6.7: Workload A vs Workload G (Aborted Transaction) 

 

Generally, most of the aborts were as a result of the inability of the TSM to meet 

up with the speed of incoming request when issuing transaction start-times. 

When an operation is unable to receive a start timestamp, it will lead to an abort 

type Ab-S1 explained in section 4.7. This caused a very high percentage of the 

aborts as most of the aborted transactions occurred when the transaction was in 

the initial state. Also, because the multi-key transactions involved multiple data 

items, each of these data items could be involved in other transactions which 

would lead to a higher number of aborts in workload G. Future work will 

implement queues to control the rate at which the client requests arrive at the 

TSM. This can improve the rate of transaction completion but will however incur a 

higher latency. 

The number of Ab-S2 and Ab-S3 aborts was very low.  The main cause of an Ab-S3 

abort is when one part of a transaction should fail leading to a total abort of the 

operation. On the other hand an A3 abort occurs when a transaction is not issued 

with a commit timestamp mainly as a result of a conflicting transaction. The rate 

of data conflict occurrence (transactions aborted at “applied” state) was very low 

as such; transactions that aborted at the point of retrieving transaction commit-
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time were very rare. This is because for this type of failure to occur, another 

transaction must have its commit-time in the interval between the start-time and 

commit time of an ongoing transaction. For instance, for an abort Ab-S3 to occur 

on a transaction Ti, then a transaction Tj must have its commit time in the interval 

S (see figure below) and must contain one or more data items in transaction Ti.  

 

 

Figure 6.8: Period between transaction start time and commit time 

  

        

Where S is interval/period where the transaction Ti takes place, Ti start is 

transaction i start time and Ti commit is transaction i commit time. 

As Figure 6.8 above shows, for a multi-key transaction which has the highest 

latency, S = 0.3s. Since our request was pulled randomly from a set of one 

thousand data, the probability of Ab-S3 happening was very low. The next reading 

shows the distribution of the aborted transactions. 

6.2.5 Experiment – Set 5 
 

This set of experiments measures the distribution of aborted transactions. As 

mentioned earlier, the three types of aborts that can occur include Ab-S1, Ab-S2 

and Ab-S3. Abort Ab-S1 has the highest frequency. As explained, an abort Ab-S1 

occurs when a transaction (or operation) does not get a start timestamp. At this 

stage, the transaction is in an initial phase. As soon as a start time is issued, a 

transaction enters into a pending state where write operations take place. If any 

part of the write operation fils, then a rollback would begin, followed by an abort. 

This is abort Ab-S2. If all operations are successful, the transaction moves into an 

applied state and proceeds to retrieve a commit time from the TSM. Failure of a 

transaction to retrieve a commit time will lead to abort type Ab-S3. Most of the 

aborts however are caused by the TSM. As such, for workloads B and C, result 

showed that most of the aborts occurred when the transaction was still at initial 

Ti start Ti commit 
S 
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stage. This was because the transactions were unable to receive a start-time 

because the TSM could not meet up with the speed of the request. The TSM 

therefore represents a bottle neck and a single point of failure for the system. 

Future work will look at ways in which the TSM can be further optimised, in order 

to ensure proper synchronization across replicas of the TSM. The table 6.4 below 

shows the state at which trasactions were when they were aborted. 

 

State Workload A Workload B Workload C Workload D Workload E Workload F Workload G 

Initial 0 99.4 % 99.6% 98.3% 95.5% 93.37% 99.7% 
Pending 0 0.6% 0.4% 1.7% 0.5% 6.34% 0.3% 
Applied 0 0 0 0 0 0.29% 0 
 0 100 100% 100% 100% 100% 100% 

Table 6.4: Percentage distribution of Transaction state when abort took place 

The diagram above shows that a very high percentage of the total aborted 

transactions in each workload took place when the transactions were still in their 

initial state. Though this affects the throughput but it does not affect the 

consistency of data. That is, in the initial state, transactions do not manipulate 

(update) data and thus there is no risk of data inconsistency. 

6.2.6 Experiment – Set 6 
 

This reading evaluates the total time taken for each of the workloads to complete 

one thousand requests per client. The latency measured includes a combination 

of both committed and aborted requests. The Figure 6.9 below displays the 

results for latency of total request for each of the workloads. The results show 

that the system is able to process clients request at relatively low latencies. The 

system can complete thirty-two thousand (32,000) read transactions in about 236 

seconds. For a single client, the system can process one thousand read operations 

in just less than 8 seconds. 
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Figure 6.9: Latency of Workload Requests 

6.2.7 Experiment – Set 7 
 

This experiment measures the performance cost of implementing consistency. 

The Figure 6.10 below compares the latency of a simple update operation on the 

DMS (with no consistency) with the latency of our update operation which is able 

to guarantee stronger consistency by implementing snapshot isolation (using the 

TSM). This result shows the overhead (in terms of latency cost) involved in 

guaranteeing consistency. The Figure 6.10 shows that in order to maintain 

consistency, the system incurs a higher level of latency due to the extra 

processing and messaging time. See equation (6.1) of section 6.2.1. However, this 

is a trade-off between latency/performance and guaranteeing stronger 

consistency. 

 
Figure 6.10: Transactional Overhead of Update Operations 
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6.2.8 Experiment – Set 8 
 

 

An anomaly occurs when the system deviates from its expected behaviour leading 

to errors and violating consistency guarantee provided by the system. As 

mentioned earlier, the method for calculation for anomaly was adopted from the 

YCSB+T benchmark and was also adopted in [121]. An example of anomaly in this 

case is if a transaction aborts mid-way and the rollback does not occur. Another 

anomaly that can occur is the failure of the TSM to detect conflicts in transactions. 

As mentioned section 5.4, the implementation domain used to evaluate the 

prototype system known as the closed-economy workload. This is also adopted 

from the YCSB+T benchmark that models a banking environment. The formula for 

calculating the anomaly score is given below.  

 

Where ϒ = simple anomaly score, Sinitial = initial sum of all the accounts, Sfinal = 

final sum of all the accounts and ɳ = number of operations executed. The table 

below shows the anomaly score for multi-key workloads.  

Number of 
Clients 

Number of 
operations 

Initial sum Final sum Anomaly 
score 

1 1000 400000000 400000000 0 
2 2000 400000000 400000000 0 
4 4000 400000000 400000000 0 
8 8000 400000000 400000000 0 
16 16000 400000000 400000000 0 
32 32000 400000000 400000000 0 

Table 6.5: Anomaly Score 

 

The formula is a perfect fit for evaluating the consistency of multi-key transactions 

as a multi-key transaction must leave the database in a consistent state. In the 

banking application domain, the total amount of money in the economy is an 

invariant. Therefore, during transfer of funds from one account to the other 

(which is essentially a multi-key transaction), the amount deducted from one 
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account must be added to another account to complete the transaction 

atomically and leave the database in a consistent state. As such, the sum of all 

accounts must remain an invariant irrespective of the number of operations (or 

transfers in this case) executed. Therefore, any difference between the initial sum 

of accounts and the final sum of the accounts after the execution of the workload 

would imply that the database is in an inconsistent state. The anomaly score is 

however calculated in relation to the number of operations because the higher 

the number of request, the higher the possibility of inconsistencies. Table 6.5 

shows that our system maintains an anomaly score of zero irrespective of the 

number of clients or number of operations. This shows that the system has a 

strong consistency guarantee with no errors. The price of this however is a slightly 

higher latency for transactions. A comparison of the anomaly scores derived from 

this evaluation with anomaly scores for ReTSO in [121] shows that this system 

does better than ReTSO with respect to consistency guarantees. The experiments 

were designed to identify the anomalies present in the execution of operations. 

The results show that 11% of the total number of failed transactions was due to 

consistency anomalies in ReTSO. 

 

6.3 ANALYSIS OF THE PROPOSED SYSTEM AND EXISTING 
APPROACHES 

 

In this thesis, the evaluation of the proposed system is carried out using two 

standard benchmarks, YCSB and YCSB+T, rather than comparing it to a single 

existing approach. The evaluation therefore provided an in-depth analysis of the 

various features of the proposed approach and has determined that the proposed 

approach has met the objectives set for this research. 

Further, the decision of not restricting the evaluation of the proposed approach to 

a single existing approach is that there are significant differences in the 

transaction models, protocols, design and implementation of the proposed 

system and those of existing systems. 

The architecture of the system implemented in this thesis is similar to the 

architecture in Deuteronomy [102] and Megastore [51] which follows the 
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middleware approach explained in section 3.3.2. The rationale behind the choice 

of this middleware architecture is that it allows our system to separate 

transactional functionalities from storage functionalities. However, the method of 

implementing transactional semantics deviates from the implementation in 

Deuteronomy [102] [113]. Deuteronomy makes use of data locking which adds 

extra overheads and reduces concurrency.  

The proposed system implements transactional semantics in a way similar to 

[104] using an optimistic concurrency control technique which allows for higher 

level of concurrency. Compared to the approach in [104] , the critical and novel 

aspect of the implementation in this thesis is the commit ("lastmodified") 

timestamp parameter which is associated with every data item – a commit 

timestamp that allows the proposed system to identify the replica with the latest 

version of any key item. Since the prototype system does not follow the one-copy 

serializable transaction model in [111], the “lastmodified” timestamp parameter 

becomes an important aspect of our system for maintaining consistency. This 

removes the extra effort required to maintain one-copy serializable transactions 

and does not jeopardize the consistency of the database. Maintaining one-copy 

serialization can affect availability negatively since replicas are not allowed to be 

out of date. This can lead to rejecting transactions when a replica is failed.  

 Moreover, the proposed system incorporates a Timestamp Manager, similar to 

ReTSO [104] which allows the system to manage transactions across the system. 

ReTSO also makes use of snapshot isolation but has a different architecture and 

different set of operations. The proposed system design has taken advantage of 

this centralized time manager to introduce new types of operations called update-

latest and read-latest.  A brief comparison with ReTSO shows that ReTSO has a 

higher throughput than the proposed system [104]. However, ReTSO stops short 

of providing multi-key transactions and cannot guarantee consistency at the level 

of our system.  

Megastore [51], G-store [100] and [106] all implement transactions using the 

middleware architecture as in our system, however, transactions can only occur 

among data in a subset of the total data in the system (typically among data that 

share  a common boundary). The proposed system can implement transaction 
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across all the data items in the system and does not limit transactional capabilities 

to a subset of data (or entity groups). As stated earlier, experimental results also 

shows that the proposed system has a lower latency per operation than 

Megastore [51]. The results show that Megastore has a write latency of about 0.4 

seconds and read latency of up to tens of milliseconds. The proposed system has a 

write latency of between 0.2 and 0.3 seconds and a read latency of 0.006 seconds. 

 

6.4 SUMMARY  
 

The aim of this research was to implement transactions in a NoSQL cloud 

database. In line with the design objectives highlighted in section 5.1, the 

prototype implementation aimed at achieving high availability, high concurrency 

control without sacrificing consistency. This evaluation has been able to prove 

that these objectives were met. The above results show that this system is able to 

provide multi-key transaction support on a cloud database.  

In summary, the system is able to reliably manage transactions with ACID level 

consistency. When a failure occurs or a conflict happens in a transaction, the 

system is able to detect it. It sends the transaction into a “cancelling” state and 

initiates rollback action. Rollbacks have been designed to be idempotent. On 

completion of a rollback action, the system changes the transactions state to 

“cancelled”. Also, as shown in [111], the prototype model can also be 

implemented using other key-value stores. 
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CHAPTER 7  
 

CONCLUSION AND FUTURE WORK 
 

This thesis researched into cloud computing technologies, in general, and NoSQL 

databases, in particular. NoSQL databases were designed mainly to solve 

problems of big data such as efficiency, availability and scalability.  Though 

classical relational databases ensure strong consistency of data and support 

transactions they were found to be inappropriate to meet the requirements of big 

data. The architectural style and design of NoSQL databases allow them to store 

large volume of big data and to provide high efficiency, availability and scalability 

in the processing of big data but at the cost of data consistency and a lack of 

support for transactions. The research carried out in this thesis has clearly 

identified the need and importance of transactional support for NoSQL databases. 

Further, existing research [19] has stressed for the support of transactions in 

NSQL databases and the golden standard of ACID properties. 

This research addressed the problem of implementing ACID transactions in NoSQL 

databases. In order to address this problem the research followed appropriate 

methodological approach.  

The challenges with NoSQL databases and their design decisions were thoroughly 

analysed and understood. The research problems were identified based on an 

extensive review of existing literature and state-of-the-art systems. With an in-

depth understanding and appreciation of the problem area, the research 

proceeded to propose a solution to implementing ACID transactions in NoSQL 

databases. The constraints of the proposed systems were clearly defined and 

specified. Based on these constraints, the prototype system was developed, 

implemented and tested. The system was then evaluated using standard cloud 

database benchmarks. The results of evaluation show that the system was able to 

process transaction efficiently and maintain high level of consistency.  
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This chapter outlines the contributions made by this research and critically 

analyses the system and highlights its limitations. Finally, this chapter suggests 

ways in which the system can be improved. These improvements serve as a basis 

for future research opportunities. 

 

7.1 CONTRIBUTIONS 
 

The following are the contributions made by this thesis. 

1. The definition of a new Multi-Key transaction model for NoSQL systems: 

This thesis defined a model for implementing transactions in NoSQL 

databases (see chapter 4). The approach is different to others in that it does 

not sacrifice consistency of the system as most NoSQL databases do. The 

theoretical model for the implementation of this model was defined in 

section 4.1. 

2. Development of a loosely-coupled architecture that implements 

transaction logic using a middleware approach: To be able to achieve the 

defined multi-key transaction model, this thesis developed and 

implemented an architecture which contains different components that 

interact with each other to achieve the defined model. Each of these 

components has specific duties and functions which were explained in 

section 4.3.  

3. A new protocol for asynchronous replica management: Maintaining 

consistency among replicas of a database is non-trivial. Section 4.8 explains 

a new protocol for managing replicas designed and implemented in this 

thesis. The protocol makes use of the Time Stamp Manager (TSM) 

component of the system to monitor and identify replicas that are stale. The 

stale replicas are not allowed to be involved in transactions until they are up 

to date. 

4. The development of new types of operations (read and write) that have 

stronger consistency guarantee which can be adjusted based on user 



CONCLUSION AND FUTURE WORK 

 

135 
 

requirement: Each of these novel operations allows users/application to 

determine their level of consistency and latency. This thesis outlined the 

protocol followed by these operations in section 5.3.1. 

5. The development of a prototype system using real NoSQL system, 

MongoDB, which is evaluated using the YCSB+T benchmark based on 

standard Yahoo! Cloud Services Benchmark (YCSB). The proposed approach 

(NoSQL-TX) was implemented using cloud technologies and languages which 

include MongoDB, Python, SQL and JavaScript. The results show enhanced 

consistency and performance. 

The proposed approach is suitable for applications that need transactions and 

strong consistency. The approach can also work with applications that have 

interactions between different key items. For instance, an online application that 

allows multiple users to buy and sell their items. In such applications, there would 

be interaction among user IDs. Also, the system can be used to manage an online 

shopping application where users can bid for certain items. In such applications, 

an item remains available even when a user has put in a bid for it. However, as 

soon as the user buys the item, it becomes unavailable. The Time Stamp Manager 

(TSM) can help the system to determine which user has paid for the item first 

(using the commit timestamp) and then reject all other bids. The TSM can also 

make bidders aware about the number of bids currently on that system. This is 

similar to an application that is used to book seats on a flight during checking in. 

Multiple passengers can see a seat as available until the first passenger books the 

seat. 

 

7.2 CRITICAL ANALYSIS 
 

This section provides a critical analysis of the system being developed in this 

research. The analysis on one hand provides a critique of the proposed system 

and on other hand it sets the directions for future work.  

First, the proposed system is built around a single NoSQL database, called 

MongoDB. Though this research provided a justification of the choice for using 
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MongoDB, the proposed system could have been validated using some other 

NoSQL databases. As mentioned earlier, MongoDB is a document class NoSQL 

database and allows relationships among data entities to be expressed. As a 

result, the model implemented in this work may not necessarily work with all 

NoSQL databases. Some NoSQL databases do not allow relationships among data 

objects to be expressed and this model may not be suitable for such databases. 

This represents a limitation of the system.  

Second, some of the components of the prototype system could have been 

implemented in a way so that they can cope with increasing number of incoming 

transactions. For instance, the Time Stamp Manager was not fully optimised to 

keep up with the speed of incoming requests especially when the number of 

requests has increased. The reason for this is that before the TSM issues a commit 

time, it has some processing work to do. It must check for conflicts among 

ongoing transaction as well as recently completed transaction. Ideally, when two 

or more transactions approach the TSM at the same time, the TSM tends to 

queue the transactions. However, when the number of concurrent transactions 

gets very high, the TSM tends to reject requests.   In addition, the TSM could have 

been replicated in order to survive possible failures. Currently the proposed 

system uses a single TSM which is susceptible to failures.  

To mitigate these limitations, the next section outlines possible solutions that 

future research can explore. 

 

7.3 FUTURE WORK 
 

This section explores the various options that can be implemented to optimise the 

model of transaction processing proposed by this research. The suggestions are 

explained below.  

Controller - Implementing a queuing system that can manage traffic between 

components of the TSM can improve the transaction throughput (rate of 

completion) of the system. The requests can be sent through a queue in such a 

way that as the speed of incoming request increases, the requests are sent 
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through queues to prevent loss of transactions. This can have a slight effect on 

latency but can improve the rate of completion of request. One of such 

technologies that can be implemented in our system includes rabbitMQ [124]. 

RabbitMQ is a messaging system that allows applications to connect to each other 

and scale.  

Optimization of messaging processes – In implementing transactions, there are 

message exchanges between components of the system. The process of 

messaging (and information exchange between the DMS, TPE and TSM) increases 

latency of operations, particularly write (updates and multi-key) operations. 

Future research should look into how this information exchange can be optimised 

in order to reduce the number of network trips. 

Main Memory processing for TSM – To help the TSM speed up its processing, the 

TSM can be designed to store and process its data from main memory. This will 

reduce disk latency and overheads caused by disk I/O. The design of the system 

included this feature however the prototype system stored its components on 

hard disk to prevent failures and loss of data. Also, the prototype system was 

implemented on commodity servers. It is believed that if the time stamp manager 

(TSM) is implemented on a high performance system, it will improve the 

throughput and performance of the system. 

Replicating TSM – As mentioned earlier, the TSM represent a single point of 

failure for the system. If the TSM should fail, transactions will never be issued with 

a start-time or commit-time and therefore cannot progress. Future work should 

consider implementing multiple TSMs to process transactions when the rate of 

client requests gets very high. The TSM can also be replicated for fault tolerance. 
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