

Transactions and Data Management in
NoSQL Cloud Databases

Adewole Conrad Ogunyadeka

November, 2016

Oxford Brookes University

 A dissertation submitted to the Faculty of Technology, Design and Environment in
partial fulfilment of the requirements of the award of Doctor of Philosophy.

Department of Computing and Communications Technologies

Faculty of Technology, Design and Environment

Oxford Brookes University

Abstract
NoSQL databases have become the preferred option for storing and

processing data in cloud computing as they are capable of providing high

data availability, scalability and efficiency. But in order to achieve these

attributes, NoSQL databases make certain trade-offs. First, NoSQL

databases cannot guarantee strong consistency of data. They only

guarantee a weaker consistency which is based on eventual consistency

model. Second, NoSQL databases adopt a simple data model which makes

it easy for data to be scaled across multiple nodes. Third, NoSQL databases

do not support table joins and referential integrity which by implication,

means they cannot implement complex queries. The combination of these

factors implies that NoSQL databases cannot support transactions.

Motivated by these crucial issues this thesis investigates into the

transactions and data management in NoSQL databases.

It presents a novel approach that implements transactional support for

NoSQL databases in order to ensure stronger data consistency and provide

appropriate level of performance. The novelty lies in the design of a Multi-

Key transaction model that guarantees the standard properties of

transactions in order to ensure stronger consistency and integrity of data.

The model is implemented in a novel loosely-coupled architecture that

separates the implementation of transactional logic from the underlying

data thus ensuring transparency and abstraction in cloud and NoSQL

databases. The proposed approach is validated through the development

of a prototype system using real MongoDB system. An extended version of

the standard Yahoo! Cloud Services Benchmark (YCSB) has been used in

order to test and evaluate the proposed approach. Various experiments

have been conducted and sets of results have been generated. The results

show that the proposed approach meets the research objectives. It

maintains stronger consistency of cloud data as well as appropriate level of

reliability and performance.

Declaration

ii

Declaration

Some parts of the work presented in this thesis have previously appeared in the

following published paper:

Ogunyadeka A, Younas M, Zhu H, Aldea A. “A Multi-Key Transactions Model for

NoSQL Cloud Database Systems”, Proc. of the 2nd IEEE International

Conference on Big Data Computing Service and Applications (BigDataService

2016), Oxford, England, UK, 29 March -1 April 2016.

Acknowledgements

iii

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisor

and Director of Studies Dr. Muhammad Younas, for his exceptional leadership,

patience and mentoring. His guidance and support was unwavering throughout

the period of this thesis. I could not have wished for a better supervisor.

I would also like to thank my co-supervisors Dr Arantza Aldea and Professor Hong

Zhu, for their support, encouragement and insightful comments in the period of

this research. I am truly grateful for such a wonderful team.

I will also like to thank my church family, members of Holding Forth the Word

Ministry, Milton Keynes and in particular Revd. Biyi Ajala, for his support during

the period of this study. I will also like to appreciate my first boss, Mr Isaac

Orolugbagbe, for his support and for encouraging me to aim higher.

Also, my appreciation goes to my family members who have stayed by me the last

few years and to my brothers Soji, Gbolahan and Bolaji.

I will particularly like to thank my father Mr Ayo Ogunyadeka for his immense

support and also for bearing the entire financial burden of this research.

Finally, I will like to thank my wife Ibijoke for her patience and understanding
during this period and to my wonderful son, Olufemi. God bless you both.

To God be all the Glory, great things He has done, greater things He will do!

TABLE OF CONTENTS

iv

TABLE OF CONTENTS

Abstract .. i

Declaration .. ii

Acknowledgements ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... viii

LIST OF TABLES ... x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 CLOUD COMPUTING .. 2

1.2 NoSQL DATABASES and TRANSACTIONS ... 3

1.3 MOTIVATION AND RATIONALE OF THE RESEARCH 5

1.3.1 Statement of the Research Problem ... 5

1.4 AIM and OBJECTIVES ... 6

1.5 RESEARCH METHODS ... 7

1.6 MAIN CONTRIBUTIONS .. 8

1.7 STRUCTURE OF THE THESIS .. 9

CHAPTER 2 ... 11

BACKGROUND ... 11

2.1 DATABASE MANAGEMENT SYSTEMS .. 11

2.2 DATABASE TRANSACTION MANAGEMENT.. 12

2.2.1 ACID Properties ... 13

2.2.2 Serializability ... 15

2.2.3 Concurrency Control Techniques .. 16

2.3 DISTRIBUTED TRANSACTION MANAGEMENT 17

2.4 TRANSACTION RECOVERY PROTOCOLS ... 19

2.4.1 Two Phase Commit ... 19

2.5 BIG DATA and NoSQL DATABASES .. 24

2.6 BIG DATA MANAGEMENT IN NOSQL DATABASES 25

TABLE OF CONTENTS

v

2.6.1 Partitioning .. 25

2.6.2 Scaling ... 26

2.6.3 Replication .. 27

2.6.4 Failure Detection and Recovery .. 28

2.6.5 Load Balancing .. 28

2.6.6 Garbage collection .. 29

2.7 ANALYSIS OF CAP THEOREM .. 29

2.7.1 BASE .. 32

2.7.2 Other Consistency Models .. 34

2.8 SUMMARY .. 34

CHAPTER 3 ... 36

DATA PROCESSING IN CLOUD COMPUTING ... 36

3.1 ACHITECTURAL CONSIDERATIONS of CLOUD DATABASES 37

3.1.1 Loose Coupling VS Tight Coupling ... 37

3.1.2 Share Nothing VS Shared Disk ... 38

3.1.3 Data Model.. 38

3.1.4 Concurrency Control Techniques .. 39

3.1.5 Replication .. 39

3.1.6 Master-Slave VS Peer to Peer Architecture 40

3.1.7 Query Processing Approach .. 40

3.1.8 Read Optimised VS Write Optimised .. 41

3.1.9 Latency VS Durability .. 42

3.2 NOSQL DATABASES AND BIG DATA .. 42

3.2.1 BIGTABLE ... 44

3.2.2 MONGODB .. 45

3.2.3 DYNAMO ... 46

3.2.4 CASSANDRA ... 47

3.2.5 PNUTS .. 47

3.3 TRANSACTIONS IN CLOUD DATABASES... 48

3.3.1 The Integrated Approach .. 49

3.3.2 The Middleware Approach ... 52

3.3.3 The API Approach .. 54

3.4 ANALYSIS OF OTHER TRANSACTION MODELS AND PROTOCOLS 56

TABLE OF CONTENTS

vi

3.5 DISCUSSION AND CONCLUSION ... 58

CHAPTER 4 ... 61

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX 61

4.1 NoSQL TRANSACTIONS .. 61

4.2 SYSTEM DESIGN APPROACH .. 64

4.2.1 Snapshot Isolation ... 64

4.2.2 Rationale for Snapshot Isolation ... 66

4.3 ARCHITECTURE OF THE NoSQL-TX .. 67

4.3.1 Transaction Processing Engine (TPE) .. 67

4.3.2 Data Management Store ... 68

4.3.3 Time Stamp Manager .. 69

4.4 TRANSACTION STATE TRANSITION MODEL 70

4.5 INTERACTION BETWEEN SYSTEM COMPONENTS 72

4.6 COMMIT PROTOCOL .. 75

4.7 ABORT SCENARIOS .. 77

4.8 A PROTOCOL FOR MANAGING TRANSACTIONS ACROSS
ASYNCHRONOUS DATA REPLICATION ... 79

4.9 SUMMARY .. 82

CHAPTER 5 ... 84

IMPLEMENTATION OF THE NoSQL-TX SYSTEM .. 84

5.1 DESIGN OBJECTIVES ... 84

5.2 IMPLEMENTATION TOOLS AND TECHNOLOGIES 85

5.3 IMPLEMENTATION OF TRANSACTION OPERATIONS 89

5.3.1 Types of Operations .. 90

5.3.2 Aborts Scenarios for Operation .. 99

5.3.3 Optimisation Decisions ... 104

5.4 APPLICATION DOMAIN .. 105

5.5 SUMMARY .. 109

CHAPTER 6 ... 111

EXPERIMENTAL EVALUATION ... 111

6.1 EVALUATION BENCHMARKS AND WORKLOADS 111

6.1.1 YCSB and YCSB+T Benchmark ... 112

6.1.2 Workloads for Experiments .. 112

TABLE OF CONTENTS

vii

6.2 EXPERIMENTS AND RESULTS .. 116

6.2.1 Experiment – Set 1 .. 118

6.2.2 Experiment – Set 2 .. 121

6.2.3 Experiment – Set 3: ... 122

6.2.4 Experiment – Set 4 .. 124

6.2.5 Experiment – Set 5 .. 126

6.2.6 Experiment – Set 6 .. 127

6.2.7 Experiment – Set 7 .. 128

6.2.8 Experiment – Set 8 .. 129

6.3 ANALYSIS OF THE PROPOSED SYSTEM AND EXISTING APPROACHES 130

6.4 SUMMARY .. 132

CHAPTER 7 ... 133

CONCLUSION AND FUTURE WORK .. 133

7.1 CONTRIBUTIONS ... 134

7.2 CRITICAL ANALYSIS .. 135

7.3 FUTURE WORK .. 136

REFERENCES ... 138

LIST OF FIGURES

viii

LIST OF FIGURES

Figure 2.1: Two Phase Commit State Diagram 21

Figure 2.2: CAP Theorem classification of NoSQL Databases 32

Figure 4.1: Snapshot Isolation 65

Figure 4.2: Transaction State Diagram 72

Figure 4.3: Component of Proposed System- NoSQL-TX 73

Figure 4.4: Interaction between Components of the System(NoSQL-TX) 75

Figure 5.1: MAAS Head Controller Configuration 87

Figure 5.2: Nodes in the cluster with their local addresses 88

Figure 5.3: Configuration of One of the Nodes - Address 10.0.0.110 88

Figure 5.4: MongoDB service running via Putty 89

Figure 5.5: Hardware Setup of Proposed System 89

Figure 5.6: Read Operation Codes in Python 91

Figure 5.7: Read-latest operation 93

Figure 5.8: Account Details for an Account User 106

Figure 5.9: Transaction Records 108

Figure 6.1: Transactions per Second 119

Figure 6.2: Workload F vs. Workload G 121

Figure 6.3: Average latency per transaction 122

LIST OF FIGURES

ix

Figure 6.4: Percentage of completed transactions 123

Figure 6.5: Percentage throughput of Multi-key transactions 123

Figure 6.6: Total Number of Aborted Transactions 124

Figure 6.7: Workload A vs Workload G (Aborted Transaction) 125

Figure 6.8: Period between transaction start time and commit time 126

Figure 6.9: Latency of Workload Requests 128

Figure 6.10: Transactional Overhead of Update Operations 128

LIST OF TABLES

x

LIST OF TABLES

Table 2.1: Main Differences between NoSQL and Classical Databases 35

Table 6.1: Workloads for Evaluation 114

Table 6.2: Number of Clients and Operations Executed 116

Table 6.3: Total Number of Completed Transactions per Second 119

Table 6.4: Percentage distribution of Transaction 127

Table 6.5: Anomaly Score 129

LIST OF ABBREVIATIONS

xi

LIST OF ABBREVIATIONS

2PC: Two Phase Commit

2PL: Two Phase Lock

ACID: Atomicity, Consistency, Isolation and Durability

ACP: Atomic Commit Protocol

BASE: Basically Available, Soft-state Eventual Consistency

CAP: Consistency, Availability and Partition tolerance

DBMS: Database Management System

DDBMS: Distributed Database Management System

DMS: Data Management Store

GFS: Google File System

IaaS: Infrastructure as a Service

JSON: JavaScript Object Notation

MAAS: Metal As A Service

MMDB: Main Memory Database

NoSQL: Not Only SQL

NoSQL-TX: Not Only SQL Transaction

PaaS: Platform as a Service

PNUTS: Platform for Nimble Universal Table Storage

QoS: Quality of Service

RDBMS: Relational Database Management System

ROWA: Read One Write All

SaaS: Software as a Service

SOA: Service Oriented Architecture

TPE: Transaction Processing Engine

TSM: Time Stamp Manager

1

CHAPTER 1

INTRODUCTION

Cloud computing technologies feature among the top ten most disruptive

technological trends of this era [1]. Cloud computing offers a lot more flexibility

than the traditional legacy systems and at a cheaper cost, making it more

attractive to consumers as well as service providers.

Cloud service providers such as Google (Google Apps), Microsoft (Azure), Amazon

(Amazon web services), and Salesforce (Salesforce CRM tools) provide

infrastructure, platform and software services which are generally deployed (and

run) on inexpensive commodity computing infrastructure. Such infrastructure is

generally composed of tens of thousands of servers and network components

which are located in different data centres around the world.

There has been rapid development in cloud and NoSQL (Not Only SQL) databases

in order to store large volume of data and to make such data highly available and

efficient for cloud service provisioning. However, there still exist important

challenges such as security, privacy, network QoS, data consistency, availability,

reliability, performance, environmental issues, economical and business related

issues [2] [3] [4] that need further research. This thesis investigates into the

transaction management of NoSQL databases in order to ensure consistency of

cloud data and to provide appropriate level of reliability and performance.

This chapter is organised as follows. Section 1.1 describes background and

fundamentals of cloud computing. Section 1.2 explains the characteristics of

NoSQL databases and the properties of transactions. Section 1.3 explains the

motivation and rationale for this research. It also specifies the scope of the

research problem addressed in this thesis. Section 1.4 explains the aim and

objectives of this research. Section 1.5 explains the research methodology.

INTRODUCTION

2

Section 1.6 identifies the contributions of this research. Section 1.7 explains the

structure of this thesis.

1.1 CLOUD COMPUTING

Cloud computing is defined as “a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction” [5] .

Cloud computing follows architectural designs and service provisioning models

that deviate from the conventional perspectives, design and services of traditional

information technology. Cloud computing offers information technology

resources provisioned (mainly through the Internet) in a Service Oriented

Architecture (SOA) [6] where users only pay for the resources they consume.

Compared to classical Internet and distributed computing systems, cloud

computing has various distinguishing features, including pay-as-you-go business

model, virtualization, large scale storage facilities, support for big data, high

compute power, and support for exploiting the strength of both powerful as well

as commodity computers [7]. This model of pay-as-you-go services offered by

cloud computing vendors gives consumers the illusion of access to infinite

computing resources. Resources are completely elastic and can be provided for as

and when needed. Organisations and individuals therefore do not need to make

capital investments in computing resources. These features have empowered

cloud computing technologies to become an attractive service hosting and

delivery platform for various organisations, educational institutions, public sector

and industries such as Google, Microsoft, Amazon and Facebook amongst others.

Generally, cloud computing services are broadly categorized into three different

types [2] including:

Software-as-a-service (SaaS): SaaS is a multi-tenant platform where users buy a

subscription from the publisher or service provider. Publishers of software that

INTRODUCTION

3

make use of SaaS have the advantage of deploying new features in their software

as soon as they are released, while this may be very difficult to implement in

traditional software. SalesForce is a major provider of SaaS.

Platform-as-a-service (PaaS) – PaaS provides developers with operating systems

and environment (application development frameworks) comprising of end-to-

end lifecycle of developing, testing, deploying and hosting of a web application as

a service. Google (App Engine) and Microsoft (Azure platform) are major providers

of this service.

Infrastructure-as-a-service (IaaS) – IaaS refers to on-demand provisioning of

infrastructural resources, usually in terms of Virtual Machines. IaaS providers

include Amazon (AWS), Dimension data and RackSpace.

As mentioned earlier, cloud service providers provide infrastructure, platform and

software services which are deployed on inexpensive commodity computing

infrastructure located in many data centres across the world. This level of service

provisioning introduces challenges of security, consistency, availability and

performance among other issues.

1.2 NoSQL DATABASES and TRANSACTIONS

Cloud service provisioning can handle large volume of data (referred to as Big

Data) in order to support large scale applications and a large population of

users/clients. For example, managing data related to millions of Facebook, Twitter

or Google mail users needs effective data management and processing

capabilities to achieve data consistency and high availability but in a reliable and

efficient way.

NoSQL databases are most commonly used to process and manage Big Data which

has distinguishing characteristics such as large volume, different variety and high

velocity. NoSQL databases offer a paradigm shift from the complex query

processing capabilities and monolithic architecture of the relational databases [8]

INTRODUCTION

4

to simple queries but with parallel processing capabilities so as to increase

performance.

However, this shift in paradigm and design has some negative effects on data

consistency which makes NoSQL databases impractical for use in certain

application domains that need strong consistency of data such as financial or

banking applications. This is due to the fact that NoSQL systems do not offer

support for transactions which is a classic feature of the relational databases.

Different models and techniques have been developed by different cloud

computing and NoSQL database vendors in order to effectively manage the (large

amount of) Big Data. Majority of the existing techniques focus on improving

efficiency and availability of big data but do not give appropriate attention to

ensuring data consistency. This research focuses on transaction processing in

cloud computing and NoSQL databases with particular attention to the data

consistency and the implementation of transactions in NoSQL databases.

TRANSACTIONS

A transaction is defined as an execution of a software program which contains

multiple ‘read’ and ‘write or update’ operations in order to read data from and

update data in a database. In traditional databases, operations in transactions are

concurrently executed in an interleaved fashion in order to make optimal use of

computing resources [9]. Therefore, to ensure correctness and integrity of a

database, transactions must obey the rules set by ACID (Atomicity, Consistency,

Isolation and Durability) properties. Atomicity means all the operations in a

transaction must be completely carried out otherwise none of the operations

must be carried out. Consistency means after the completion of a transaction, the

database must remain in a valid state. Isolation requires that transactions must

not interfere with each other and durability ensures that changes made after a

transaction remain permanent in a database [10].

INTRODUCTION

5

1.3 MOTIVATION AND RATIONALE OF THE RESEARCH

In order for NoSQL databases to effectively scale data across multiple nodes,

certain trade-offs have been made in their design [11]. These include:

• Simple data model which means data entities do not have to be

normalized and can be spread across different nodes.

• No support for join or referential integrity which is easily achieved

because of the simple data model.

• Relaxing the consistency guarantees and a lack of support for transactions

The above mentioned trade-offs have implications on the way NoSQL databases

process and manage data. The simple model of the data means that there can be

no complex operations or queries in NoSQL database. Most NoSQL databases

have simple ‘get’ or ‘put’ requests and they do not support online transaction

processing (OLTP) applications [12]. The lack of support for ‘joins’ and ‘referential

integrity’ means that there can be no interaction between rows or tables in the

database. Finally, managing consistency across replicated data is non-trivial.

Replication could either be synchronous or asynchronous. In choosing

synchronous replication, there is a risk of compromising data availability. If any of

the replicas is not available, the data item is not available. On the other hand,

with asynchronous replication, data consistency might be sacrificed. This means

that a replica can be outdated and would still be allowed to respond requests (or

read by applications). There are diverse adaptations of quorum based protocols

[13] that are used to manage replicas such as paxos [14] [15], read one write all

(ROWA) and read one write all available (ROWAA). Though there are various

issues involved, the following section defines the research problem which is to be

addressed in this thesis.

1.3.1 Statement of the Research Problem

It is observed from the above discussion that NoSQL databases completely avoid

the need to support multi-row operations. A multi-row operation is a group of

operations affecting multiple key items (also referred to as multi-key). NoSQL

INTRODUCTION

6

databases also do not implement ACID-based transactions. This decision is also

supported by the fact that applications that make use of NoSQL databases such as

Facebook, twitter, and emails do not necessarily need ACID level consistency [94].

Also, research shows that the rigidity of ACID transactions in relational database

makes it unfit for certain large scale and complex applications [16].

Even so, enterprise users, whose applications are mainly driven by transaction

processes, have shown little or no interest in NoSQL databases because of its lack

of support for ACID transactions [17] [18]. Also, NoSQL databases are inadequate

for future applications such as online gaming applications that make use of multi-

user collaborations because such games need ACID transactional properties

during the execution of a game. This has necessitated the need for research into

how transactions can be implemented in NoSQL databases. Implementing

transactions in NoSQL databases will definitely increase the functional

applications of NoSQL databases which will in turn increase its use among

enterprise users. Some of the existing research [19] also advocates the support of

ACID transactions in NoSQL databases stating that it would not be wise to sacrifice

the support for transactions and the “golden standard” ACID consistency of SQL

databases. However, the major strength of NoSQL databases is their ability to

scale seamlessly to a large volume of data by taking advantage of parallel

processing. This research proposes an approach that combines the advantages of

the two worlds i.e. taking advantage of the parallel processing power of NoSQL

databases and at the same time not sacrificing the support for transactions and

consistency in NoSQL databases.

1.4 AIM and OBJECTIVES

The aim of this research is to investigate into the transaction processing and data

management of NoSQL cloud databases in order to develop a new framework that

enhances the efficiency, consistency and reliability of NoSQL cloud databases. To

achieve this aim, the following objectives are defined:

INTRODUCTION

7

I. Conduct an in-depth study of the literature and current state-of-the-art
methods related to the data management and transactions in the cloud,
including both NoSQL and classical SQL databases: The objective is to
identify current challenges and to explore potential research issues in cloud
computing and NoSQL data processing. This will also explore ways in which
the current methods used in transaction processing can be optimized in
terms of efficiency, reliability and availability of cloud data.

II. Design a new framework for transaction management in NoSQL
databases: A new framework is to be designed which has the potential of
addressing main research issues and to improve data consistency, reliability
and efficiency in NoSQL databases.

III. Develop and implement the proposed framework as a prototype system
using cloud data management tools and technologies: The proposed
framework is to be developed and implemented using cloud architecture
and appropriate NoSQL database technologies.

IV. Test and evaluate the prototype system using cloud benchmarks:
Appropriate cloud testing benchmark will be followed in order to test the
validity of the proposed framework in the transaction management of
NoSQL cloud databases.

In order to achieve the above aim and objectives, this research will follow

appropriate methodological approach, which is described in the following section.

1.5 RESEARCH METHODS

A research method is defined as all the techniques used during the course of a

research to perform operations with the aim of providing a solution to the given

research problem [20]. This research is carried out over a period of three (3) years

and the approach followed which was adopted from a combination of methods

[20] [21] [22] are outlined below.

Define research problem – The problem area is first identified and defined. From

the definition of the problem, the aim and objectives of the research is clearly

spelt out.

Literature survey – The approach to the literature review starts from a holistic

study of the broader cloud computing technologies and service oriented

architecture combined with a review of existing techniques of used in relational

INTRODUCTION

8

database transactions. The study was then narrowed down to a study of big data

management techniques, NoSQL databases as well as the CAP Theorem. Finally,

this phase ends with an in-depth study of the state of the art techniques of

implementing transactions in NoSQL database. From this study, the short-comings

of existing systems and gap in knowledge are identified.

Modelling and Specification – having identified the short-comings of the current

state-of-the-art systems, and with a proper understanding of the research area,

this thesis proposes a model that aims to solve the problem of implementing

transactions in NoSQL databases. Putting into consideration existing theorems

and techniques, the thesis specifies the theoretical scope of the problem. This

theoretical specification enables the components of the proposed transaction

model to be formally verified [21].

Develop Proposed Design – Based on the specification of the model, the

proposed design is implemented as a prototype using relevant tools of and

techniques.

Experimental Evaluation – The Evaluation is carried out using benchmarks that

are relevant to the transaction and cloud computing environments. The

evaluation involved using a set of experiments which tests the performance and

correctness of the system under load. The system is also compared with existing

systems to evaluate its strengths and advantages [22]. From the Evaluation, the

results are collected, analysed and interpreted to identify the strengths and

weaknesses of the system.

1.6 MAIN CONTRIBUTIONS

This thesis designs and develops a new approach, called NoSQL-TX (NoSQL

Transactions). The main contributions of NoSQL-TX approach are as follows.

1. An in-depth study of the architecture of NoSQL databases and clearer

definitions of the factors that limit them from supporting transactions

INTRODUCTION

9

2. The design and definition of a new Multi-Key transaction model for NoSQL

databases that guarantee ACID properties of transactions in order to

ensure stronger consistency and integrity of data.

3. The development of a loosely-coupled novel architecture that separates

the implementation of transactional logic from the underlying data thus

ensuring transparency and abstraction in cloud and NoSQL databases.

4. The design and implementation of a novel protocol for managing

consistency across asynchronous replication in NoSQL databases.

5. The definition and implementation of new types of database operations

(‘read’ and ‘write’) which provide flexibility for adjusting data consistency

based on user requirements.

6. The development of a prototype system using real NoSQL system,

MongoDB, which is evaluated using the YCSB+T benchmark based on

standard Yahoo! Cloud Services Benchmark (YCSB). The proposed system

is believed to enhance consistency and performance of NoSQL databases.

1.7 STRUCTURE OF THE THESIS

The rest of the thesis is structured as follows. :

• Chapter 2 reviews fundamental techniques in transactions and distributed
transactions processing such as two phase commit and two phase locks.
Furthermore, existing literature on the validity of CAP theorem and it’s
implication on distributed databases is also critically analysed. The
characteristics of big data and techniques used in managing big data are
explained.

• Chapter 3 gives an overview of various NoSQL databases and their
characteristics. A brief overview of various approaches to implementing
transactions in NoSQL databases is given and finally, a review of state of
the art NoSQL systems that support transaction is given with their short-
comings identified.

• Chapter 4 builds on top of the various system designs reviewed in chapter
3 and presents a theoretical modelling of the proposed solution. The
architecture of the proposed system as well as the scope of the proposed
NoSQL transaction are clearly explained and defined. The details of how

INTRODUCTION

10

the system components interact to implement consistency are also
explained.

• Chapter 5 explains the implementation details used to develop the
prototype system. The application domain which is used to implement the
system is explained along with the tools used in implementing the system.
The algorithms which each of the operations follow during their execution
are presented.

• Chapter 6 evaluates the proposed solution and the implemented
prototype system. The justification behind the chosen workloads used to
evaluate the system is also explained. From the evaluation results, the
short-comings and trade-offs of the proposed system is deduced. The
performance overhead of implementing transactions is clearly identified.

• Chapter 7 concludes this thesis with a summary of the contributions of
this thesis and a critical analysis of the proposed system. The chapter also
provides possible areas of improvement for the proposed system which
can serve as direction for future research.

11

CHAPTER 2

BACKGROUND

Cloud based NoSQL databases and their transactional systems follow some of the

principles and techniques of the classical (or standard) databases and transaction

management. This chapter therefore reviews the fundamentals of classical

database management systems in section 2.1 and explains database transactions

in section 2.2. Section 2.3 explains transaction management in distributed

databases and section 2.4 examines various transaction models and protocols.

Section 2.5 describes the characteristics of big data and NoSQL databases while

section 2.6 illustrates the techniques used in managing big data

Finally, section 2.7 describes and critically reviews the CAP theorem, which is the

motivation behind the design of the NoSQL databases, and its implications on

distributed system, cloud and NoSQL databases.

2.1 DATABASE MANAGEMENT SYSTEMS

A database management system (DBMS) is defined as “a software

designed to assist in maintaining and utilizing large collections of data”

[23].

A database is “a well-organized collection of data that are related in a

meaningful way, which can be accessed in different logical orders” [24].

The objectives of using a DBMS are as follows [24].

Data availability – Database can be queried to retrieve information that would be

meaningful to the user.

Data integrity – This means that the integrity of data must be preserved. The

consistency and accuracy of data stored in a database must be maintained.

BACKGROUND

12

Data security – Only users who have been granted authority may be allowed to

access the data stored in a database.

Data independence and transparency – Users should not necessarily be

concerned with how the data is physically represented on the database.

The most widely used DBMS is the Relational Database Management System

(RDBMS) that was designed according to the above objectives. The RDBMS was

designed based on strong mathematical principles [25] (set theory) that makes

use of normalization and strong referential integrity in order to represent

relationship among data entities. These characteristics, including the objectives

stated above have influenced the way RDBMS support transaction management.

However, as explained later, the relational databases are monolithic in their

design and therefore cannot scale out to host large volume of data and a large

population of users (as in cloud) [12].

2.2 DATABASE TRANSACTION MANAGEMENT

In database systems, one of the main strategies, to maintain the consistency of

shared data during the concurrent execution of multiple requests (from multiple

users), is the transactional management technique. Database systems group

multiple read and write operations into (atomic) transactions that follow ACID

(Atomicity, Consistency, Isolation, Durability) properties. In order to preserve data

consistency, the execution of transactions must be serializable. A serializable

execution of transactions is an execution whose output would yield the same

result as when the transactions are executed serially. In relational databases, a

scheduler is used to ensure that the executions of transactions are serializable. A

scheduler is normally used in conjunction with a technique called locking [26].

Before a transaction starts, it acquires locks on all the data items involved in a

transaction and holds the locks until all the operations in a transaction have been

processed. During this period, no other transaction can change the data that has

been locked. This would guarantee that transactions are isolated from each other.

After processing the operations, a transaction releases all the locks. This process is

BACKGROUND

13

called two phase locking (2PL). In the first phase, a transaction acquires locks for

all the data items involved in a transaction. In the second phase, all acquired locks

are released. After locks have been released, the transaction is not allowed to

request for any other locks. This activity put in place to ensure that transactions

would always leave the database in a consistent state, is known as concurrency

control. However, the mechanism of concurrency control gets more complex in

distributed database environment. The schedulers in each participating database

are responsible for managing the subset of data which it stores. Distributed

transaction is explained in section 2.3. Essentially, cloud computing technologies

fall into the category of distributed computing.

2.2.1 ACID Properties

The following scenarios describe two simple but crucial examples about databases

and transactions. Consider a database that manages data of a banking application.

Assume that the initial balance of a user X is £1,000 and the initial balance of a

user Y is £1,000. Consider the following basic scenarios.

SCENARIO 1: A user X intends to transfer an amount of money (say £100) from

his account to user Y.

User X initiates a transaction to carry out the transfer which should leave his

account with a balance of £900 while user Y’s balance should be £1,100.

The transaction begins by reading the initial balances of users X and Y. Assume

that £100 was deducted user X’s account but a failure occurred before that

money was credited to user Y’s account. This will leave the database in an

inconsistent state. The database should have a way to react to this sort of failure

and preserve the integrity of the data.

SCENARIO 2: Two users A and B intend to transfer different amounts to the

account of user X.

Assume a user X has an initial account balance of £1,000. User A initiates a

transaction Ta to transfer £5,000 to the account of user X and user B also initiates

BACKGROUND

14

another transaction Tb to transfer £1000 to user X. These two transactions Ta and

Tb , occur concurrently. Each transaction involves read and write operations.

After successful execution of the two transactions, the correct outcome is that

user X should have a balance of £7,000. However, as stated in section 1.2,

operations in a computer system are carried out in an inter-leaved fashion i.e.

they can be in any order so as to make substantial performance gains; as such the

operations in scenario 2 can be carried out in the following order:

1) Reada (Account X) returns £1000
2) Readb (Account X) returns £1000
3) Writea (Account X, + £5000) balances account X at £6,000
4) Writeb (Account X + £1000) balances account X at £2,000

Thus account X ends up with a balance of £2,000 instead of £7,000. If this scenario

occurs, then Ta and Tb are said to be in conflict. Two transactions are in conflict if

they concurrently operate on the same data item and at least one of them is a

write [27]. Two transactions are said to be concurrent if their executions are

overlapping, for instance, if the commit-time of one of them is in the interval

between the start time and commit-time of the other transaction.

The above scenarios, though basic, forms the bedrock of transaction management

in relational database systems. In order to preserve the consistency of a database,

ACID properties of transactions were defined. The Atomicity property will prevent

the scenario 1 from occurring because atomicity will mean that all operations of a

transaction must occur or none of them. This would force a rollback in which the

database is returned to its initial state before the transaction took place.

Database systems recognize certain key words that define the scope of the

atomicity of operations in a transaction. These key words include:

Begin – This determines where the set of operations to be carried out as part of a

transaction when it starts. Operations may be read or write operations.

BACKGROUND

15

Commit – This is the point where the operations end and are committed

atomically meaning that all operations between a ‘begin’ and a ‘commit’ must be

successful. Failure of any operation in this scope would lead to a Rollback

operation.

Rollback – The rollback operation is activated when there is a failure in any of the

operations in a transaction. This means that all operations that have been

executed must be undone to restore the database to its initial state.

The consistency property ensures that the database remains in a consistent state

after the execution of transactions. For example, in scenario 1, the sum of both

accounts should be the same before and after the transaction. The isolation

property would prevent the occurrence of scenario 2. Isolation ensures that if two

transactions are executed concurrently, the effect will be the same as if they are

performed one after the other i.e. serially. For transactions to be isolated from

each other, they have to be serializable. Durability would prevent loss of data and

can be used for recovery from failures. In order to maintain these ACID properties,

the DBMS employs certain techniques which are explained later in this chapter.

Before going further, the concept of serializable execution of transactions and

some of the anomalies caused by non-serializable execution of transactions are

explained below.

2.2.2 Serializability

As explained earlier, a serializable execution of transactions is an execution whose

output would yield the same result as when transactions are executed serially.

Serializability is a technique used to preserve the isolation property of

transactions. Without serialization, the executions of transactions are prone to

certain errors identified below [28].

Lost Updates - Lost update occurs when two concurrently running transactions

read a data and both of them write (or update) the same data. The effect of one

transaction can cancel the effect of the other leading to a lost update. Scenario 2

(as above) demonstrates this error.

BACKGROUND

16

Inconsistent Reads - An inconsistent read occurs when one transaction contains

multiple write operations that modify (update) multiple data items. If this

transaction has only executed some of the write operations and if another

transaction reads the same set of data then it would see only a partial update of

the initial transaction.

Dirty Reads - Dirty reads occur when a transaction makes changes to a data item

and another transaction reads the changes made. The first transaction is then

aborted and rolled back. This would mean that the second transaction has read a

data item value that does not exist.

The next section explains certain concurrency control techniques implemented by

DBMSs to achieve serializability and to maintain ACID properties in transaction

execution of transactions.

2.2.3 Concurrency Control Techniques

Commonly used concurrency control techniques are as follows.

Scheduling – Database management systems have schedulers which manages the

execution of transactions. The main function of a scheduler is to ensure that

concurrent execution of transactions results in a serializable execution. To achieve

this, when a scheduler receives an operation request, it can either execute the

operation, delay or reject the operation depending on the state of concurrent

transactions in a database. Schedulers help to reduce the possibility of conflicting

operations. Schedulers make use of different techniques to guarantee isolation

and consistency. Some of the main techniques include:

Locking – Locking implies that data items involved in an active (running)

transaction are locked in order to prevent other transactions from accessing the

same data items. This prevents transaction conflicts. Relational databases

employs locking [26] to enforce isolation and consistency. Locking can also be

referred to as pessimistic concurrency control mechanism. Most DBMSs use two

phase locking [9] in order to implement locking in of data items. There are two

variations of two phase locks namely conservative and strict. A conservative two

phase lock requires that a transaction must obtain all the locks before it can

BACKGROUND

17

proceed to carry out operations. On the other hand strict two phase locks

requires that transaction do not need to retrieve all needed locks before it

proceeds but locks held can only be released after the transaction aborts or

commits.

Write-ahead logging - To enforce durability, DBMSs make use of a technique

called logging. Logs are used for recovery purposes in the event of a failure [29].

The write-ahead log (WAL) protocol [30] [31] ensures that changes made to a data

must be recorded on into a file on stable storage before the data is changed in

memory. This ensures that in the event of a failure, the changes made to data can

be replayed from the log file.

Non – Locking Schedulers – Aside from locking, other techniques such as

Timestamp Ordering (TO), are used to ensure transaction isolation. In TO, each

transaction is issued a unique timestamp. Transactions are then ordered

according to their timestamps. If two transactions T1 and T2 conflict on a shared

data item x, then operations in T1 must be processed before operations in T2 if

and only if transaction T1 receives its unique timestamp before transaction T2.

2.3 DISTRIBUTED TRANSACTION MANAGEMENT

Distributed transaction management has been conventionally implemented in

distributed databases. According to [32], “a distributed database is a collection of

multiple, logically interrelated databases distributed over a computer network”. A

distributed database management system (DDBMS) is also defined in [32] as “a

software system that permits the management of the distributed database and

makes the distribution transparent to the users”.

The process of enforcing ACID across transactions in distributed database

management systems (DDBMS) adds more complexity to concurrency control

mechanisms than non-distributed databases. In distributed databases, the users

are abstracted from the complexities of interactions among computers. To

achieve this, it is important to create standards on which computer interactions

BACKGROUND

18

are based. The keywords identified in section 2.2 are often wrapped up in remote

procedure calls [33] (RPC) in what is known as Transactional RPC1 [34] and are

used as a method for computer interactions. Various protocols are used to

implement ACID transactions across in distributed database systems. Some of the

techniques highlighted in section 2.2.2 are also applied in distributed transactions

howbeit somewhat modified. Below is a brief explanation of the techniques.

Distributed Two Phase Locking – As stated earlier, locking ensures that conflicting

transactions that are executed serially. In a single stand-alone DBMS, locking is

implemented by a protocol called two phase locking (2PL) earlier discussed.

However, the mechanism for implementing two phase locking is more

complicated in a distributed DBMS. Each DBMS has a local scheduler that is

responsible for managing data stored on it. When a distributed transaction is

initiated, the transaction sends its operations (read and write) to each DBMS

involved in the transaction. The local scheduler of each DBMS then allocates locks

for each of the data item stored in its local site. The lock information is sent to the

scheduler of all the participating sites.

Distributed Timestamp Ordering - In this technique, each site (component

database) also has its own schedulers that issues timestamps to transactions. The

decisions taken on each transaction is entirely left to the scheduler of that system

Deadlock Management – A deadlock occurs when two transactions are waiting

for each other to release their locks on data items. Consider a scenario where two

transactions Ta and Tb are concurrently running and both involves two data items

X and Y. Ta locks data item X and Tb locks data item Y. In this situation, Ta would

have to wait for Tb to commit so it can obtain lock on Y while Tb would have to

wait for Ta to commit before Tb can obtain a lock on X. This leads to a deadlock

since both transactions are waiting for each other. One way to detect deadlocks is

to use timeouts.

1 Transactional RPCs page 21

BACKGROUND

19

2.4 TRANSACTION RECOVERY PROTOCOLS

Recovery is defined as “the activity of ensuring that software and hard-ware

failures do not corrupt persistent data” [9]. The Atomic Commit Protocol (ACP) is a

procedure that ensures that all participants involved in a transaction either

commits or aborts that transaction in their local sites. In order words, it

guarantees that all the participants in a transaction reach the same decision to

preserve data integrity. This is very important because in distributed

environments, any of the participating sites can fail. It is important that on

recovery, a failed site must reach the same decision as the other sites. The ACP

which are discussed in the next sections guarantees the following criteria [9]:

• All sites must reach the same decision
• Once a decision has been made, it cannot be changed
• The decision to commit can only stand if all sites agree

There exist various ACPs such as two-phase commit, three-phase commit,

presume abort, presumed commit and so on [34]. In the following, two-phase

commit is explained given that it is a widely used protocol. However, detailed

description and analysis of such protocols are beyond the scope of this thesis.

2.4.1 Two Phase Commit

The two phase commit protocol (2PC) is a protocol used to guarantee ACID

consistency in a distributed database as well as web-databases. The 2PC aims to

achieve a form of consensus among participating systems. In 2PC [35]

• Each site has the responsibility of logging the actions that takes place at

that site. There is no notion of a global log.

• Exactly one site must play the special role of coordinator which is usually

the site where the transaction originates. The coordinator site makes the

final decision on whether the transaction should commit or abort.

BACKGROUND

20

• Messages are exchanged between the coordinator and the other

participants. Each participant logs the message that it sends out to help it

recover from a failure.

Under normal circumstances when there is no failure, the protocol is completed in

the two phases stated:

Phase 1: This phase, also known as the voting phase, involves the following steps:

• The coordinator sends a message (vote request) to each of the participant

asking if they are ready to vote. After sending this message, the

coordinator enters a state known as a WAIT stage. This message is also

logged at the coordinator site.

• Once the message has been sent, each site that receives the message

responds to the coordinator with a YES or NO message after the individual

decisions have been logged at each individual site. If any of the

participants decides a NO, that participant automatically aborts the

transaction otherwise the participants enter a READY state.

Phase 2: Phase 2 which is called the commit phase or decision phase is carried out

as follows.

• The coordinator receives the decision made by all the participants

involved in the transaction.

• If all the participants responded with a YES vote, the coordinator sends

out a message instructing all the participants to commit the changes

made by the transaction and enters a COMMIT state. If one or any of the

participants responded with a NO message, then the coordinator instructs

all participants to abort and enters a state of ABORT.

• Each of the participants that voted YES awaits the decision from the

coordinator. If they receive a commit message from the coordinator, they

commit the operations at their local site and responds with an

acknowledgement to the coordinator. The coordinator then completes

the transaction. If on the other hand they receive an abort message from

the coordinator, they begin a rollback of all the operations performed and

respond with an acknowledgement to the coordinator.

BACKGROUND

21

As stated earlier, each of this steps taken by any of the participants are logged

locally at the participant site. A participant is in a period of uncertainty when it

responds with a vote YES to the coordinator and is yet to receive an instruction

from the coordinator in other words when it is in the READY state. See Figure 2.1.

Figure 2.1: Two Phase Commit State Diagram

During the execution of a 2PC protocols, failures can occur. Such failure can be as

a result of the following

1) Loss of messages as a result of network failures
2) Duplication of messages
3) Failure of any of the servers involved in the protocol

During a 2PC protocol, the participants and coordinator have to wait for

messages. To prevent a transaction from unnecessary delays, timeouts actions are

introduced. In phase one, the participants wait for a vote-request from the

coordinator. Also, the coordinator has to wait for a response from the participant

BACKGROUND

22

after sending a vote-request (i.e. during its WAIT state). In the second phase,

participants that voted YES after receiving the vote-request from the coordinator

also have to wait for a commit or abort message from the coordinator (i.e. when

they are in a READY state). At this point, the participants are said to be in an

uncertain state. This is because the participant has voted a YES to commit but

cannot take a decision to commit or abort until it waits for the coordinator.

However, if the participant had voted NO, the participant can as well proceed to

abort the transaction on its site knowing fully well that the transaction cannot

proceed on other sites because it has voted a NO. Also, according to the rules that

guide an ACP, once a participant has made a voted to commit, it cannot change its

mind. If a participant at this point is unable to reach the coordinator, the restart

and termination protocols determine the behaviour of a system after a failure or

timeout. A restart protocol specifies how a protocol should be restarted in event

of a failure. A termination protocol specifies the procedure a transaction should

follow in event of a time out. The termination and restart protocol has several

implementations depending on the state of the transaction when time-out occurs.

The following are the various implementations of the protocol [36]

Coordinator Restart Protocol - specifies how a coordinator should restart in the

events of its failure. If a coordinator fails either before sending a vote-request

message or at a WAIT state and cannot recall the responses of the participant, it

can either re-send the request or abort the transaction. If it however fails after

sending a commit or abort message, it must send the commit or aborted message

again (as the case may be) and wait for the participants response.

Coordinator Termination Protocol - specifies how the coordinator should behave

in the event of a time out due to failure of a participant or loss of message from a

participant. In the event of a time-out, the coordinator resends the message

according to the current state of the transaction.

Participant Restart Protocol – Specifies how a participant should proceed after it

recovers from a failure. If a participant fails before receiving a vote-request, it can

decide to respond with a NO when it receives the request. If the failure occurs

during the prepared state, in other words, after it has responded with a YES

BACKGROUND

23

message (Uncertainty period), it must wait for the coordinator to resend the

commit or abort message.

In particular cases, where a participant cannot establish a connection with the

coordinator, it can be allowed to contact other participants to know the final

decision of the coordinator. The participant in this scenario, also known as the

initiator, sends a Decision-request message to some other participant, known as

the responder. If the responder has received a commit or abort message from the

coordinator, then the participant commits or aborts as the case may be. If the

responder has not voted, then it can decide to vote a NO and respond to the

initiator with a NO message. However, if the responder has voted YES but has not

received a commit or abort message from the coordinator, then the initiator

would have to wait in this uncertain state. This protocol is referred to as the

Cooperative Termination Protocol.

Participant Termination Protocol - specifies how a participant should terminate in

the event of a coordinator failure. If a participant times out while waiting a vote-

request, it can decide to abort and respond with a NO when it receives the

request. Its behaviour in other scenarios is essentially the same as the participant

restart protocol.

Therefore, from the above, when a participant is in a state of uncertainty and it is

unable to contact other participants or the coordinator, it is said to be in a blocked

state. To prevent transactions from entering a blocked state, the three phase

commit protocol was proposed.

Similar to 2PC, other protocols (such as 3PC, presumed abort, presumed commit,

etc) ensure that database systems in distributed environment reach an agreement

during concurrent implementation of transactions in order to preserve the

consistency of data and correctness of applications.

SUMMARY OF (CONVENTIONAL) DATABASES AND TRANSACTIONS

The above sections provided an overview of the conventional databases and

related models and protocols of transaction management. Such databases have

been dependent on relational database model. Relational databases are

predominant for storing structured data and following ACID properties in order to

BACKGROUND

24

maintain consistency of data. They also support relationships, associations and

normalization of data. With all such features relational databases have proved

very useful for applications that require strong consistency such as banking

applications, e-commerce and online shopping, etc.

Despite the above benefits, relational databases are no longer sufficient for the

needs of modern (Internet and Cloud) applications such as social media, business

analytics, and online reviews. The speed and scale at which data is generated/

processed is beyond the processing capabilities of the relational databases and

transaction management techniques. These applications (or services) generally do

not need well-structured and normalized data nor do they need strict consistency

and ACID style transactions. They demand new ways of managing data and

transactions in an easy and efficient manner. This has resulted into the new

theories, techniques and technologies such as NoSQL databases and big data, CAP

theorem, BASE properties, etc.

2.5 BIG DATA and NoSQL DATABASES

Big data is characterised by 3Vs (Volume, Velocity and Variety) [37][38] or 4Vs

(Volume, Variety, Velocity, and Value) model. Volume refers to large size of data

that is possibly beyond the processing capabilities of conventional database;

Variety means that big data may have structured, semi-structured and

unstructured formats. Velocity indicates the speed at which data is generated

which is usually high; Value refers to benefits that can be derived from the data.

Various techniques are employed to manage Big data efficiently. These

techniques are explained in section 2.6. Big Data is generated on daily basis from

a number of sources which include data warehouses, sensor networks, text

search, scientific databases and XML databases [39]. Commerce and business,

society administration and scientific research are three identified areas that

currently produce and make use of big data and data intensive applications [40].

Also, the increase in the use of online services has led to the design of a variety of

web applications (e.g., social media, road traffic, etc) that generate a large volume

BACKGROUND

25

of data. However, traditional databases are inappropriate to meet the demands

of such applications [41], for example processing data of millions of tweets in real

time. The concept of “One size fits all” in the database industry is no longer

sufficient [39]. This has led to the design of specialized databases called NoSQL

databases which are well explained in the next chapter. Processing Big data have

certain requirements that are lacking in the traditional database. These

requirements include elasticity, scalability, flexibility and fault tolerance [42] [43].

The fault tolerance feature prevents any single point of failure across the system.

As stated earlier, failure is a norm in these environments and should not prevent

the smooth running of the database. Even so, the difference between elasticity

feature and scalability is emphasized. Elasticity requires that the system should be

able to scale up or scale down as the need requires while scalability refers to the

ability for a database to be scale across multiple systems. The 3/4Vs

characteristics of Big data make NoSQL databases better suited for processing big

data. NoSQL databases are have simple data models and can process unstructured

data without the need for normalization [44]. However, most NoSQL databases

can only perform simple operations and single key transactions. The various

NoSQL databases and their characteristics are explained in the next chapter.

However, below is a brief explanation of some of the main techniques employed

in NoSQL systems to process big data.

2.6 BIG DATA MANAGEMENT IN NOSQL DATABASES

There are various techniques involved in managing big data in the cloud

environment. Some of the commonly used techniques are explained below

2.6.1 Partitioning

Partitioning involves splitting a database into smaller parts called partitions [7].

There are two types of partitions namely: Vertical partitions and Horizontal

partition. In vertical partitioning, a database table is split along the column

attributes while in horizontal partitioning, the database is split by the rows. When

BACKGROUND

26

a single database is partitioned and split (or scaled) across multiple servers, each

server that manages a section of the database is known as a database shards [45].

This process is known as sharding. Shardiing is a form of partitioning and both

partitioning and sharding involves splitting the database into partitions (or

sections). In partitioning, each section of the split database may or may not be

managed by a separate server. However, in sharding, each section is managed by

a separate server. There are three types of partitioning namely Hash partitioning,

Range partitioning and Robin-round partitioning [46].

Hash partitioning – To implement hashing partitioning, a hash function is applied

on each data key. The output of the hash function would determine the node that

hosts the key. Hash partitioning is more suitable for applications that make

extensive use of random scans. To find any data item, the hash function is applied

to the key of the data. The result would yield the location of the data item.

Range partitioning – In range partitioning, each node stores a distinct range of

data keys. Range partitions works efficiently with applications that mainly need

sequential scan as most data items whose keys are closely related will be stored

on the same node.

Round-Robin Partition – In round robin partitioning, key items are distributed

evenly (in a ring fashion) according to the number of nodes. For instance, if there

are 3 nodes, key items 1 to 3 will spread across node 1 to 3, key items 4 to 6 will

spread across node 1 to 3 and so on.

2.6.2 Scaling

Scaling is a technique used to increase the processing capability of a database

node and is of two types namely vertical scaling and horizontal scaling. In vertical

scaling, the number of processors, memory size and disk size of a machine is

increased to enable the machine process more data. Horizontal scaling on the

other hand means adding more machines or increasing the number of nodes

involved in processing data. The rationale behind horizontal scaling is in two

dimensions. Firstly, doubling the hardware will reduce the time taken to perform

a task by half and secondly, doubling the hardware will perform twice as much

BACKGROUND

27

task in the same time [46]. In vertical scaling, there is limitation to how much a

single node can scale vertically [47]. Also, to make a case for parallel processing

(horizontal scaling), recent research [48] has shown that Moores law (which states

that “the number of transistors on a microprocessor chip will double about every

two years"), is fast becoming unachievable. This makes horizontal scaling more

practical in big data processing than vertical scaling. NoSQL databases are

designed to scale horizontally while relational databases are designed to scale

vertically. This gives the NoSQL databases a greater advantage as there is no limit

to the number of nodes that can be added to the database cluster.

2.6.3 Replication

Replication is a process of maintaining multiple copies of a database in different

locations to provide fault tolerance. This results in higher levels of availability but

introduces a new set of challenges. Replication is classified into two types namely

Eager (synchronous) and Lazy (asynchronous) replications [49]. In eager

replication, replicas are updated during the transaction while in lazy replication,

replicas are updated at a later time. Keeping the replicas consistent introduces a

set of problems and may involve certain trade-offs. Eager replication reduces

performance, involves higher bandwidth and increases latency of transactions.

Lazy replication on the other hand, means that data on some replicas can be stale

and out-of-date. Out-of-date replicas may not be allowed to respond to client

requests in applications that need high level of data consistency. The number of

replicas implemented by a database system also has contradicting effect on the

system. For instance, a high number of replicas imply that the system is able to

provide stronger tolerance to fault. However, a high number of replicas also imply

that more effort (in terms of bandwidth and latency) will be needed to keep the

replicas consistent. There are various protocols and techniques used by

developers to optimize their replication processes. One of such techniques

includes primary – secondary replication where secondary replicas can process

reads while only a primary replica can process writes (or updates). Also there are

various quorum or consensus protocols used to guarantee consistency across

replicas. The replication model adopted is dependent on application specific

needs. All NoSQL databases make use of some form of replication for fault

BACKGROUND

28

tolerance. Dynamo [50] uses consistent hashing for replica placement and

eventual consistency model for replica management. Google Megastore [51] uses

Paxos [15] to synchronously manage writes across replica.

2.6.4 Failure Detection and Recovery

As explained earlier, in cloud computing environment, failure is a norm. This is

because hundreds to thousands of machines are used to process data in parallel

and these machines are mainly commodity machines. There has to be an efficient

mechanism to detect machines that have failed in order to bring them up to date

to guarantee availability and consistency. Most clusters have algorithms for

detecting failure. Dynamo uses gossip based protocol (explained later in section

3.2.3). BigTable uses heartbeat messages which are exchanged between master

server and slave servers. If there is no response from a particular node within a

set timeout period, that node is assumed to have failed. Each of these systems

implements various techniques for recovering a failed node after detecting its

failures.

2.6.5 Load Balancing

Load balancing [52] is a technique used to manage, distribute and re-distribute

data across nodes to ensure that no single node is overloaded. The objectives of

load balancing and distribution are to achieve high throughput, efficient resource

utilization, low latency and to avoid hotspots across the cluster. Load balancing

also aims to improve fault tolerance and to optimize the process of replica

distribution in a cluster system. For instance, shard aware or rack awareness is a

load balancing technique that ensures that replicas are distributed in such a way

that network failures on a single rack do not affect availability. A common known

rack aware technique is that used in HDFS [53] where two replicas are placed on

two different nodes in a local rack while the third replica is placed on a different

node in a different rack. That way, a network partition to a rack will not affect the

availability of any data item.

BACKGROUND

29

2.6.6 Garbage collection

Most cloud databases tend to keep more than one version of all data items to

guarantee availability even at the expense of consistency. There is need to have

an effective garbage collection process to effectively manage computing

resources (storage/memory) and to prevent the database from storing

unnecessary / unused data. Also, garbage collection of log files must be carried

out with care to ensure that only logs that would not be needed are deleted. The

process of garbage collection should not affect the smooth running of the system.

In [54], garbage collection is carried out in batch when the master is in a quiescent

state.

The above techniques are used in various degrees when managing big data. The

overall combination of these techniques implemented by a database

management system determines how suitable that database is for any

application.

2.7 ANALYSIS OF CAP THEOREM

The CAP Theorem [55] states that a distributed system can offer at most two of

the three desirable properties, Consistency, Availability and tolerance to network

Partition (CAP). The cloud computing environment is characteristically a

distributed environment and therefore the NoSQL databases are built to scale

across multiple nodes. Techniques such as partitioning, horizontal scaling and

replication are used to achieve high availability which is one of the unique

characteristic of NoSQL databases. NoSQL databases cannot provide the three

afore-mentioned properties simultaneously and are designed to trade-off either

one of consistency and availability. However, the implication of the CAP theorem

is that if the high availability characteristic of the NoSQL databases is to be

guaranteed, consistency must be sacrificed. However, consistency is an important

feature of transactions in relational databases. The CAP Theorem thus implies that

NoSQL systems cannot support ACID level consistent transactions.

BACKGROUND

30

Three fundamental requirements to provide scalable network services needed in

cloud computing are identified [56] . They include

1 incremental scalability and overflow growth provisioning

2 “24/7 availability through fault masking” and

3 Cost effectiveness

The three points to note in these requirements include:

Scalability - The ability for resource provisioning to be increased as user

needs increases.

Availability - The promise of uninterrupted access to resources

Cost Effectiveness - Services must be economically justifiable.

Cloud computing services promise high availability and the make-belief that

computing resources are inexhaustible and available on demand. In order to

provide high availability, replication is needed. Cloud service providers / vendors

make use of highly distributed systems, replicated on a global scale. This normally

would involve the use of hundreds or even thousands of machines and in these

environments, failures are not a rare occurrence. These systems aim to achieve

high availability, low latency, partition-tolerance and high scalability.

In distributed systems, enforcing ACID properties require substantial effort.

Moreover, achieving ACID level guarantees in a distributed environment where

data is replicated over large geographical area is a highly demanding and non-

trivial task. Some of these systems are expected to handle a very high write

throughput, billions of writes per day and are also expected to scale with the

number of users [57]. In the presence of these failures, availability must be

preserved because it is a key component of cloud computing as consumers must

have access to computing resources. Implementing complex techniques like 2PC

in cloud environment can be counter-productive. The cost of resolving the conflict

between data consistency, system state and high availability is made more

complex by the magnitude and robustness requirements of present day

applications used by businesses.

BACKGROUND

31

However, the ability to be able to scale data comes with its own challenges.

Distributed environment face the problems of network reliability, system failures,

network security and latency. If there is a partition in the network, data servers

may become unavailable. All these led to the formulation of the CAP Theorem

which has been proven formally [58]. However, there have been some questions

raised about the validity of the CAP Theorem. The variance in the meaning of the

consistency in ACID and the consistency in the CAP theorem also led to some

misconceptions. Consistency in ACID means that a transaction leaves the database

in a consistent state and obeys all integrity rules. On the other hand, consistency

in CAP refers to maintaining a single copy consistency across replicas. In [59], the

author argues that CAP is confusing because it implies that systems are restricted

to only two of the three properties. This can imply that distributed systems cannot

be available and consistent at the same time, a situation which is clearly

impractical. The timeline consistency model of PNUTS [60] (a NoSQL database

designed by Yahoo), provides the basis for this argument. PNUTS relaxes its

consistency and only guarantees that updates on replicas will be applied in the

same order at all replicas but does not guarantee that all replicas will be up-to-

date. Also, if the master replica for a particular data item is unavailable, then that

data item is altogether not reachable. This would imply that the system gives up

or relaxes both availability and consistency. The choice of relaxing consistency

across replicas was as a result of the cost of implementing synchronous updates

over a wide area network. PNUTS rather reduces the latency of updates by

implementing an asynchronous model of replication. This model ensures that

application developers do not need to worry much about implementing

consistency. However, as can be seen, consistency is still relaxed. A model called

PACELC has been suggested as a substitute for the CAP Theorem [61] [12]. PACELC

means that “if there is a partition (P), how does the system trade-off between

availability and consistency (A and C); else (E) when the system is running as

normal in the absence of partitions, how does the system trade-off between

latency (L) and consistency (C)?” [61]. This argument was also put forward in [62]

with the author stating that “the CAP theorem only prevents everybody from

being consistent and available”. This seems to imply that even when there is no

partition, distributed databases cannot experience both consistency and

availability at the same time. There have also been other arguments about the

BACKGROUND

32

confusion caused by the CAP theorem [63], [64] which was acknowledged by the

proponent of the CAP theorem [65]. However, the CAP theorem was the basis for

the design of the NoSQL databases and justifying the semantics of the grammar

used in the CAP theorem is not the focus of this work. With this understanding,

the classification of NoSQL databases according to their characteristics on the CAP

spectrum is described below.

Figure 2.2: CAP Theorem classification of NoSQL Databases

As an outcome of the CAP theorem, various other models of consistencies were

proposed. BASE as a consistency model for distributed systems was proposed by

the proponent of the CAP theorem and is discussed in the next section.

2.7.1 BASE

The Basically Available Soft-state Eventual consistency model (BASE), suggested

by Brewer, guarantees that after a specific time, all replicas would have received

the update [66]. In BASE, the consistency part of the ACID properties of

transactions is deliberately relaxed. Replicas do not necessarily need to have a

consistent view of a data item. To guarantee that after a specific time, replicas

BACKGROUND

33

would have received all updates, there is usually exchange of messages between

the replicas. There are various protocols used to implement this exchange of

messages. These protocols are discussed in later sections. The NoSQL databases

adopt this model of consistency. Under the BASE, various levels of consistency

guarantees exist. The following are examples illustrating the different consistency

levels that can be applied [67].

Strong consistency – After an update, all replicas immediately return updated

value. This provides ACID level consistency guarantees. It is usually achieved by

ensuring synchronous replication.

Weak consistency – The system does not guarantee that subsequent access will

return updated value until a number of conditions are met which could be a time

frame in which all replicas would have been updated. These systems offer BASE

level guarantee.

Eventual consistency – This is a form of weak consistency. In the absence of

failures, the maximum time allowed for replicas to have inconsistent values can

be determined based on certain factors like number of replicas. In this work, a

different type of consistency model which follows the eventual consistency model

(for asynchronous replication), but provides a stronger consistency guarantee for

operations is proposed.

In [67], a quorum model for measuring the trade-of between availability and

consistency among replicas is defined and explained. The following definitions

hold:

N = No of replicas

W = Number of replicas needed to accept writes

R = Number of replicas needed to reach a read quorum

A distributed storage systems that need high availability and performance uses

the configuration N = 3 (W=2, R=2). For such systems, a read quorum would

always overlap with write quorums thus guaranteeing a stronger consistency.

However, for systems that serve very high reads and want to ensure a high

tolerance to partitions and high availability, N can be as high as 10 while R can be

as low as 1. This way availability is always guaranteed but consistency is very

BACKGROUND

34

weak. If R=1 and N=W, the system is highly optimized for reads, and if W=1 and

R=N, the system optimize for a very fast write. In summary, for most eventual

consistent databases, the configuration used is W+R<=N. This configuration would

imply that read and write sets do not necessarily overlap.

2.7.2 Other Consistency Models

There are various other models of consistency that has been suggested in

literature. A consistency model that allows users to determine the level of

transaction consistency is proposed in [68]. Users are provided with three levels

of consistency from which they can choose. Users are also not restricted to a

particular consistency guarantee and they can switch their consistency guarantees

at runtime depending on their needs. In timeline consistency, [60] the order of

updates is preserved on all replicas, albeit asynchronously.

2.8 SUMMARY

Though conventional databases and transaction management techniques are

different, they do provide the basis for the cloud and NoSQL databases and their

transaction management.

This chapter therefore discussed the fundamentals of database systems and

transaction management techniques and protocols. The chapter also explained

how transactional properties are guaranteed in distributed database systems

particularly focussing on the two phase commit protocol (used to guarantee

transaction recovery). The characteristics of Big data as well as the techniques

used to manage big data were also discussed. Finally, an analysis of the CAP

theorem was explained.

Table 1 summarises the main differences in techniques employed by NoSQL cloud

databases and classical relational databases.

BACKGROUND

35

Table 2.1: Main Differences between NoSQL and Classical Databases

 FEATURES
NOSQL DATABASES CLASSICAL RELATIONAL

DATABASES

CONSISTENCY Eventual Consistency Strong consistency
SCALABILITY Horizontally scalable Vertically scalable

REPLICATION Multiple replicas
Primary - Secondary
replication

AVAILABILITY Always available
Can be unavailable during
upgrades

TARGET
APPLICATION

Social networking, emails, big
data

Banking applications, OLTP
applications

DATA MODEL
Unstructured data with dynamic
schema

Structured Data with
defined schema and
referential integrity
between tables

QUERY
LANGUAGE

Varies with databases (mainly
programming languages)

Structured Query Language
(SQL)

TRANSACTION
PROCESSING No Transactions YES- ACID Transactions

QUERY
COMPLEXITY

Simple 'get' and 'put'
operations. No Support for table
joins

Support complex query and
supports table joins

TOLERANCE TO
PARTITION YES NO
ARCHITECTURE Loosely Coupled Tightly coupled - Monolithic

The next chapter reviews related work on cloud and NoSQL databases and

transaction management techniques and protocols.

36

CHAPTER 3

DATA PROCESSING IN CLOUD COMPUTING

One of the key characteristics of cloud computing is the make-belief to consumers

that computing resources are inexhaustible and available on demand [69].

Providing these kinds of services involve the use of hundreds or even thousands of

commodity machines. In these environments, failures are not a rare occurrence as

some of these systems are expected to handle a very high write throughput such

as billions of writes per day. They are also expected to scale with the number of

users. In the presence of these failures, availability must be preserved because it

is a key component of cloud computing as consumers must have access to

computing resources and data. To guarantee availability, these systems make use

of techniques such as partitioning and replication. As described in Chapter two,

traditional databases do not scale due to the complexity of their data model [70]

The characteristic of a database that allows it to scale across multiple systems is

called scalability. NoSQL databases are highly scalable and as such, a perfect fit for

cloud environment. They are designed to scale up and scale down as and when

the need arises. However, for a database to be scalable, certain design trade-offs

are made.

This chapter therefore examines in section 3.1 the various architectural designs

that cloud database vendors consider when designing their database. Section 3.2

gives examples of how these designs are implemented in some of the popular

NoSQL databases highlighting their strengths and weaknesses. Furthermore,

section 3.3 explains the state of the art approaches used in implementing

transactions in NoSQL databases. Finally, section 3.4 gives a comparative analysis

of the existing implementations and identifies the main research issues which are

to be addressed in this thesis.

DATA PROCESSING IN CLOUD COMPUTING

37

3.1 ACHITECTURAL CONSIDERATIONS of CLOUD DATABASES

In designing a cloud or NoSQL database (in this thesis, ‘cloud databases and

NoSQL databases are used interchangeably), certain architectural considerations

are to be put into perspective based on the requirements of an application which

is to be hosted in a cloud. Different cloud vendors have come up with different

decisions about cloud set-up, databases and related cloud applications. Thus, the

various design decisions taken by cloud vendors on the operations of their

systems have implications on the characteristics and properties of their databases

and the kind of applications that can be managed by such databases. Also, the

design decisions taken by the vendors determine factors such as the consistency

of the system and the types of operation the database can handle. This will have

an impact on the ability of the database to be able to manage transactions.

Some of the commonly adopted architectures and models are discussed below.

3.1.1 Loose Coupling VS Tight Coupling

Traditional databases are monolithic (i.e. tightly coupled) in their design. Being

monolithic means there is no separation of nodes or components of the database.

For instance the file system, database engine, transaction manager, metadata and

storage are all tightly coupled in a single node. Such a design decision makes it

difficult to shard the system and can result in system downtime (unavailability)

during an upgrade or maintenance [43]. NoSQL databases tend to separate

system state from application state in order to provide high scalability [71].

System state includes metadata management which is crucial to the functioning

of the system, while application state refers to the actual data of the application

being managed [72]. For instance, the Google stack maintains a loosely coupled

architecture consisting of GFS (File tier) [54], BigTable (record manager) [73],

Megastore [51] (for transaction) and makes use of Chubby lock service [74] to

manage the system state. Also, each cluster has a master server that manages

placement of data on the other chunk (tablet) servers. Google also makes use of

MapReduce [75] to process data on a large scale. PNUTS [60] also makes use of a

loosely coupled architecture consisting of a tablet controller and message broker

DATA PROCESSING IN CLOUD COMPUTING

38

to manage system state. The tablet controller manages location and relocation of

tablets (shards) while message broker manages mapping of tablets with their

replica. MongoDB consists of three server roles which include the router - called

mongos which is used for routing requests to the cluster; the configuration server

– saves cluster metadata; and the database server – called mongod which is used

to store application data.

However, loose coupling also has its disadvantages. Communication and

interaction among various components of the system can introduce network

latencies, network partitions, and high traffic that may consume network

bandwidth. However, this overhead is considered to be inconsequential when the

performance gains of parallel processing are put into consideration.

3.1.2 Share Nothing VS Shared Disk

Most cloud databases run shared-nothing architecture. In shared-nothing

architecture, each node is responsible for a subset of the entire data and does not

share any hardware component with other nodes. This enhances scalability and

parallel processing. Shared-Nothing systems are known to scale faster and

increase availability as there is no single point of failure [76]. Alternative, it is

possible to have multiple processing nodes sharing a single storage disk which is

known as shared disk. In-spite of its advantages, shared-nothing architecture

comes with numerous maintenance issues which include load balancing among

nodes, complex 2-phase commit algorithm across nodes, and request routing

amongst others [77].

3.1.3 Data Model

As an implication of horizontal scale-out (sharding), NoSQL databases generally

implement simple data models and can support only simple single-key operations

[78]. There are no table joins or referential integrity between the entities stored in

NoSQL databases. The choice of data model has a crucial implication in

determining the type of queries (operations) that the application would be able to

DATA PROCESSING IN CLOUD COMPUTING

39

perform. It is therefore important to consider the application domain which

would best suit the database when designing a NoSQL data model.

3.1.4 Concurrency Control Techniques

As stated earlier, concurrency control techniques help to maintain consistency

and isolation in a database. NoSQL databases generally follow an eventual

consistency model which means replicas could be out of date for a specified

period of time. Resolving conflicts among replicas is therefore important for the

system to achieve consistency – but eventually. The choice of where and how to

resolve conflict is a critical issue. Key-value NoSQL databases tend to leave the

task of conflict resolution to the application. This leaves a lot of burden to

application designers. Dynamo [50] uses object versioning [79] to manage

conflicts at application level. Spanner, a transactional database designed at

Google, uses paxos protocol [15] to manage concurrency and prevent conflict, GFS

uses namespace locking to manage concurrency. Some systems like ReTSO uses

snapshot isolation (discussed later section 5.1.1) to avoid conflict.

3.1.5 Replication

In cloud environment, there is a choice to be made on whether database systems

should use synchronous (eager) or Asynchronous (lazy) replication mechanism

[80]. Synchronous replication ensures that all replicas have the same view of data

at all times. This ensures strong consistency across replicas (i.e. 1-copy

serializability) but can affect availability if any one of the replicas is not available.

Also replication can either be local or geographic. Cloud database vendors need to

decide which of them will best suit their applications. PNUTS uses asynchronous

geographic replication while BigTable supports eventually consistent replication

across geographic clusters. There is also a decision to be made about which or

how many servers can respond to ‘read’ and ‘write’ requests. Relational

databases mainly make use of a primary-secondary replication algorithm in which

case the primary server responds to read and write requests. The secondary

replica only becomes active when the primary replica is down. In distributed

DATA PROCESSING IN CLOUD COMPUTING

40

databases where replication factor is usually higher (say 3 or more), quorum

approach is implemented. There are various mechanisms used to arrive at a

quorum so as to guarantee consistency when responding to read requests [14]

[81] [82].

3.1.6 Master-Slave VS Peer to Peer Architecture

Generally, there are two main architectures used in cloud databases which

include master-slave and peer-to-peer [83]. In a master/slave approach, the

master manages the systems state, request routing and is aware of changes

across all the nodes in the cluster. The master is also responsible for deciding the

location of data and failure detection. In peer-to-peer architecture, all servers

have the same roles and each server manages its meta-data and system state.

Peer-to-peer servers are usually aware of information on other servers. Google

systems make use of a Master-Slave approach with one server (Master) managing

both metadata and data lease during updates on behalf of the system. Cassandra

[57] and Dynamo [50] on the other hand, make use of peer-to-peer approach

where all servers have equal role and duties. Dynamo controls traffic by storing

routing information in each node. A request is sent to any node in the cluster and

re-routed to the node that manages the data. Cassandra stores the node

information also in Zookeeper [84] for recovery in the event of a failure. Master-

Slave approach is prone to certain issues such as bottleneck issues when traffic is

high [85] and outages in the event of a master failure. However, master/slave

approach is able to easily manage consistency and it guarantees that requests are

directed to the replica that has the most recent version. Systems that implement

a peer-to-peer architecture on the other hand find it more challenging to

guarantee consistency. The only way to guarantee that operations are directed

towards the replica with the most recent version of data is by implementing

synchronous replication which requires more effort [83].

3.1.7 Query Processing Approach

In relational databases, the standard query language (SQL) is recognized as

generalized language for querying all databases. In NoSQL databases, there is no

DATA PROCESSING IN CLOUD COMPUTING

41

generally accepted query language. Also, NoSQL databases leave complex query

processing to the application level and only offer simple operations. For instance,

BigTable makes use of MapReduce [75] for processing jobs which is implemented

using different programming language. Key-value databases tend to implement

simple (put, get and delete) operation because of their data model. MongoDB [86]

makes use of JSON statements for querying collections (Tables) via a JavaScript

shell and also has driver support for querying the database using the API of other

programing languages [37]. In NoSQL databases, data processing paradigms are

categorized into three main groups namely batch processing, real-time processing

and hybrid computation. The batch processing paradigms is appropriate when

dealing with large volumes of data while the real-time processing is appropriate

for dealing with data coming in at high speeds and in real time. The hybrid

computation is a combination of real-time and batch processing loads.

Another important issue is how queries are routed to individual nodes. Since

NoSQL databases make use of shared-nothing architecture and a single database

can be scaled across thousands of nodes, there must be a proper and efficient

mechanism for routing requests. In BigTable, queries are routed through the

master server which stores information of node location. The master then directs

the request to the specific node hosting the requested data item. In MongoDB

cluster, requests are handled by the routing server which is also known as the

mongos. The mongos receives and directs incoming requests to the appropriate

shard or node. This is not usually the case with relational databases. Relational

databases are monolithic and there are no specific roles among database nodes.

Requests and metadata management are handled by the same node hosting the

database.

3.1.8 Read Optimised VS Write Optimised

The method of writing to disk affects performance and determines if the system is

optimised for reads or writes. In BigTable, writes are appended to a single file

(SSTables) per server and these files are immutable. This decision implies that

writes BigTable is optimized for writes as a write operation is appended to the end

of a single file. A read operation, on the other hand, would have to scan through

DATA PROCESSING IN CLOUD COMPUTING

42

the file to be able to locate the data. Indeed, the results in [73] shows that

BigTable has a higher write throughput than reads. Dynamo [50] is optimized for

reads because writes always involved disk seeks whereas a read request does not

always involve disk access.

3.1.9 Latency VS Durability

When data is persisted to disk, it achieves durability. However, the overhead

associated with disk I/O incurs higher level of latency. If data is not persisted to

disk first, the throughput increases but this can have an effect on the durability of

transactions. However, some databases are designed to store their data

permanently in memory in order to achieve high speed. Such databases are

known as main memory databases (MMDB) [87]. In MMDBs, a copy of the

database is usually stored in disk also. Most web applications make use of

Memcached [88], an open source distributed memory caching system which

reduces the load on a disk-based database by caching some of the information in

memory.

The NoSQL database vendors generally implement a combination of the

architectures discussed above, in their database designs. This combination

determines the characteristics and properties of the database. It also determines

the availability and consistency guarantees that the database can provide which in

turn determines the suitability of a database for an application. The next section

analyses a few of the popular NoSQL databases, their architectural

implementation and the impact of these designs on their properties.

3.2 NOSQL DATABASES AND BIG DATA

One of the primary objectives of NoSQL databases is to store and manage big

data. But as data increases, it becomes more difficult for a single node (of a

NoSQL database) to process big data [89]. To efficiently process data, NoSQL

databases make use of the parallel processing paradigm (i.e. horizontal scaling).

DATA PROCESSING IN CLOUD COMPUTING

43

To be able to scale data, the data is de-normalized and spread across multiple

systems. In order to ensure that requests are always served (high availability),

NoSQL databases implement weak consistency models. These decisions have the

following implications on the operations of NoSQL databases [11].

• De-normalization of data implies that there is no referential integrity

among data entities. Thus, simple data model is adopted.

• Unlike relational databases, there is lack of support for join operations in

NoSQL databases. This prevents implementing complex queries. NoSQL

databases generally offer only simple queries.

• Flexible schema adopted by NoSQL means rows can have different

attributes i.e. with no strict table or database schema. This allows NoSQL

to be ideal for supporting unstructured data but not structured data.

• The relaxed consistency models means there can be no support for

transactions. NoSQL databases cannot support the ACID properties of

transactions and are therefore inappropriate for applications that need

strong consistency.

NoSQL databases are generally classified into four main types which are explained
below [90].

Document-Oriented databases – Document databases store data in XML, JSON or

BSON formats. Tables are referred to as collections and each row is called a

document. Documents can contain multiple field attributes and each document

can have different attributes implying that document databases have a flexible

schema. Every document is indexed and has an associated key which is used to

identify the document. Examples of document databases include MongoDB,

CouchDB.

Key-Value stores – These are the most basic forms of NoSQL database. Each

record is stored as a key-value pair where the value could be a BLOB object that

the database stores without necessary knowing what type of data or what is

inside the value. Example of Key-value stores includes Dynamo, Riak, Redis. Key

value stores support only basic operations such as get and put.

DATA PROCESSING IN CLOUD COMPUTING

44

Column stores - Column databases store data in columns and each row can have

different number of columns. Furthermore, column stores introduce what is

known as column families where data that is associated together can be grouped

together to form a column family. Column databases can be used to store

structured and semi-structured data. Examples of column databases include

BigTable, HBase and Cassandra.

Graph databases – These databases are used to represent objects and

relationships that exist between the objects. A node represents an object and the

edges represent the relationship between objects. In graph databases, the

relationships represent an important aspect of the database and provide the

value that can be derived from the database.

Each of these classes of NoSQL database are more ideal for some applications

than others [91]. The next section examines some of the common NoSQL

databases and their characteristics.

3.2.1 BIGTABLE

BigTable is a NoSQL database designed by Google that stores data for applications

such as Google Earth and Google Finance. It belongs to the column-oriented class

of NoSQL databases. In BigTable, data is ordered lexicographically by row key and

partitioned into different nodes on the row keys using range-partitions. This

makes it suitable for applications that make use of sequential reads and writes.

Data is indexed by row key, column key and timestamp and tables are stored in

SSTable file format in GFS. The application state is managed by the Google file

system (GFS). GFS divides its files into large chunks of 64MB and uses Master-

Slave architecture. Files are also replicated across multiple slave servers. The

master monitors the activities of other servers, detects failures among nodes (e.g.

using regular HeartBeat messages) [54] and manages meta-data. But it is not

directly involved in reads and writes. During failures, the process of re-replication

is prioritized based on factors, such as, how many replicas of the data are alive.

GFS uses a relaxed consistency model that supports most of its applications.

BigTable also uses chubby service [74] to manage its system state. BigTable allows

users to group sets of columns frequently accessed together into locality groups

DATA PROCESSING IN CLOUD COMPUTING

45

to speed up data scans. When a client makes a request, the request is forwarded

to the master. The master is aware of the location of all data items and it

responds to the client with the location information of the needed data item. The

clients then push all the updates to the required node and replicas and proceeds

to write the data.

A perceived weakness in BigTable is that it is not very efficient for applications

that have complex and evolving schemas. It is also limited in providing wide area

replication [32, 49]. Due to these limitations, Spanner was designed. Also,

BigTable implements an eventually consistent model across replicas. Hence it is

not ideal for applications that need strong consistency requirements.

3.2.2 MONGODB

MongoDB belongs to the document class of NoSQL databases. It stores data as

documents in binary representation called BSON. Documents are organized into

table structure, which is referred to as a collection. MongoDB like most other

NoSQL databases has flexible schema model. MongoDB supports three types of

partitioning (or sharding) namely: Range-based, Hash-based and Tag-aware

sharding. In tag-aware sharding, the user specifies a configuration for grouping

key ranges together. MongoDB automatically balances load in the cluster. Each

data item (document) has an ID which can be indexed to enable faster queries. A

MongoDB cluster consists of three server roles which are the router (Mongos),

configuration server and the database shards (mongod) or replica set. A database

shard stores a subset of the data, the config server stores metadata and

information on data locations while the mongos server acts as a router and routes

requests (read and write) from the application to the shards. During operations,

queries are sent to the router server (mongos). The mongos server then directs

the query or update to the shard that stores the data. The mongos gets

information of data location from the configuration server and caches it. The

mongos itself has no persistent state. MongoDB uses write-ahead logs called

journal to ensure durability and recovery. The number of replicas is configurable

and mongodb sets one of the replicas to be the primary while the others are

secondary.

DATA PROCESSING IN CLOUD COMPUTING

46

3.2.3 DYNAMO

Dynamo [50] is a key-value store designed as a storage solution for the Amazon

Simple Storage Service (Amazon S3). It provides a BASE level consistency model

but no isolation guarantees. Dynamo uses a peer-to-peer architecture where all

nodes have equal responsibility and as a result, there is no single point of failure.

Each node has information about some other node in its range. Dynamo uses

consistent hashing as partitioning algorithm [92] and depends on the client for

reconciling different versions of an object. It uses 3 replicas by default and uses a

gossip-based membership protocol [93] for failure detection. In gossip-based

protocol, nodes exchange information with each other allowing for failure

detection when there is no response from any node. Operations in Dynamo are

limited to single key operations which include get (key) and put (key, context,

object) where context represents metadata and Dynamo does not support

transactions. This is in sharp contrast with BigTable [73] which stores system

metadata at the Master. Dynamo is used to manage Amazons shopping cart

application and it ensures that customer never lose any item they place in a

shopping cart. To achieve this, each key item has a preference list of top N nodes

that host replicas of that key. When there is a node failure, read and write

operations would still continue on any of the nodes in the preferences list for that

key item. Dynamo then makes use of a form of object versioning technique that

merges data in divergent replicas (which could be as a result of failure) to ensure

that no item is lost. Dynamo uses the formula R + W > N to maintain consistency

among replicas (N = minimum number of nodes that stores the object, R =

minimum number of nodes involved in a read and W = minimum number of nodes

involved in a write).

Dynamo has some perceived weaknesses. It was designed to be an in-house

database to be used only in trusted environment and hence has limited security

mechanism. Another weakness of Dynamo is that it relies on application logic to

resolve conflicts as it can only provide eventual consistency. The designers have

chosen to view this as strength because it allows application designers the

flexibility to determine the logic that works for their applications. But in reality, it

is a weakness as application designers have extra responsibility of programming

DATA PROCESSING IN CLOUD COMPUTING

47

consistency logic. Also, operations in Dynamo are optimized to handle small data

objects typically less than 1 MB.

3.2.4 CASSANDRA

Cassandra is another storage solution designed by Facebook to meet reliability

and scalability needs as well as to handle very high write throughputs which is

typical of Facebook application. It belongs to the column class category of NoSQL

databases. It also runs on cheap commodity hardware. Cassandra uses a form of

weak consistency model. Its architectural feature is a mixture of features from

BigTable and Dynamo. Its data model is very similar to BigTable but it uses peer to

peer architecture like Dynamo. It also makes use of consistent hashing as its

partitioning algorithm (as in Dynamo). Cassandra introduces certain features like

super-column and column family and data is accessed using the arrangement

column-family: super-column: column. Cassandra uses a system called zookeeper

that stores data placement information and metadata in a fault tolerant manner.

This will help a recovering node know the ranges of data it is responsible for.

3.2.5 PNUTS

PNUTS [60] is a distributed database system used for Yahoo!’s web application.

PNUTS uses a data model similar to relational databases. The design requirements

for this system was to achieve high scalability (a key requirement for web

applications), low latency in accordance with Yahoo!’s SLA, high availability and

fault tolerance. Therefore, to achieve high scalability, there is no referential

integrity enforcement across tables. Most of Yahoo!’s applications manipulate

one record at a time and supports a relaxed consistency model. In PNUTS, data is

asynchronously replicated over geographic locations. Therefore on the CAP

spectrum, PNUTS is Partition tolerant and high availability sacrificing consistency.

The implementation of PNUTs requires two additional machines to serve as

configuration server and router. The router server directs request to the particular

server that hosts the data. The configuration server also called tablet controller

stores and manages the mapping of data to the respective servers. PNUTS uses

DATA PROCESSING IN CLOUD COMPUTING

48

the Yahoo Message Broker (YMB) to manage consistency. When a data item is

published to the YMB, it is considered as committed. Updates are then

asynchronously propagated to other replicas. To manage inconsistencies across

replicas, PNUTS uses timeline consistency earlier discussed in section 2.7.2. To

achieve this, each data item has a nominated master replica. Only a master can

accept updates request from clients. Each version of a data item also has an

increasing sequence number to identify the outdated data.

As mentioned earlier, NoSQL databases do not offer support for transactions.

Also, a review of the existing databases show that each of these systems show

that they can only support simple operations [94]. However, in recent times,

efforts have been made to implement transaction in NoSQL databases. The next

section examines the various ways in which this has been achieved.

3.3 TRANSACTIONS IN CLOUD DATABASES

In cloud environments, partitioning a database into shards improves performance

and availability. But it also makes transaction processing more complex,

particularly transactions involving multiple data items. This is because, a single

database is split up across multiple nodes and each node is responsible for

processing its own data (shared-nothing) without a centralised coordinator that

can coordinate between different nodes of a NoSQL database. This is contrary to

the classical distributed database wherein operations can take place between two

or more different database management systems and are usually coordinated by

a single database (known as the coordinator) using protocols such as two phase

commit protocol. In cloud, coordinating operations in a single database that scales

across multiple systems (or nodes) is a challenging task [95].

Various approaches have been developed in order to solve the problem of

transactions involving multiple data items in NoSQL databases. These approaches

can be divided into three main categories [96] which include: (i) integrated

approach, (ii) middleware approach and (iii) API approach. These approaches are

discussed and analysed in the following sections.

DATA PROCESSING IN CLOUD COMPUTING

49

3.3.1 The Integrated Approach

This approach involves building transaction support into the cloud data store. In

other words, NoSQL databases should be designed such that there is a support for

transactions. Examples of cloud databases that use this approach include Spanner

[97] and COPS [98]. These are discussed below.

3.3.1.1 Google Spanner

Spanner [97] is a globally distributed database built by Google to support

consistent transactions across a globally distributed environment. Spanner was

designed to improve on the shortcomings of BigTable [73] and to be able to

manage applications that have complex structure and need strong consistency.

Spanner is accessed through an API that implements read-only, read-write and

snapshot reads transactions. It provides support for externally consistent reads

and writes and globally consistent reads at a specific timestamp. Externally

consistent transactions guarantee that they will always receive current

information [99]. Every deployment of Spanner is implemented in an abstraction

called the Universe. A universe is divided into zones. Each universe consists of a

universe master and a placement driver while the zones consist of one

zonemaster, one location proxy and up to thousands of spanservers. The universe

master provides status on zones and the placement driver oversees movement of

data across zones. A timestamp is ascribed to data on commit (meaning that there

can be multiple versions of a data item) and every Spanserver in each replica

maintains a lock table for concurrency control. Spanner implements a timing

mechanism API called TrueTime which uses GPS and atomic clocks to measure

timing. Each datacentre contains one time master and each machine in a

datacentre has a timeslave daemon. Time master machines regularly compare

their times against each other to ensure synchronization between them. The

timeslave on each machine would check its time against a number of masters and

any machine whose local clock is larger than a given threshold is evicted. With this

DATA PROCESSING IN CLOUD COMPUTING

50

timing in place, Spanner can control transactions between spanservers using the

start timestamp and commit timestamp of transactions. Each set of replica is

referred to as a paxos group and each group has a leader. During transactions, a

leader among participant leaders replica is chosen as the coordinator of that

transaction. Spanner introduces the concept of hierarchy at the level of the table

to enforce relationships. The top level table is referred to as a directory table and

each row key in a descendant table starts with the key of the directory table.

3.3.1.2 Cluster of Order Preserving Servers (COPS)

COPS [98], is a database that provides causal+ consistency over a wide-area

distribution. Causal+ is defined as a combination of causal consistency and a

convergent conflict handling mechanism. Causal consistency ensures that the

causal dependencies between the data (keys) in a database are preserved. The

conflict handling mechanisms guarantees that replicas never remain permanently

divergent by applying, update operations in the same order across all replicas. In

order to achieve this, COPS introduces two variables known as ‘versions’ and

‘dependency’. Each data key can have multiple versions and is denoted as

Keyversion. Updates to replicas always produce an increasing (or later) version of a

key to preserve causal consistency. This is referred to as progressing property in

COPS. The dependency variable on the other hand refers to the ordering. For

instance, if in a data store, Xi precedes Yj, then Yj depends on Xi. COPS can then

enforce causal consistency by ensuring that updates are written only after all its

dependencies/ dependent keys have been written. Therefore, the key version is

used to enforce ordering among different versions of a data (or key) item, while

the dependency is used to enforce order across different keys. Convergent

conflict handling ensures that conflicting operations are handled in the same

manner across all replicas ensuring that the outcome of the conflict must be the

same across all replicas. This is achieved by using well know techniques such as

last-writer-wins rule.

Each cluster is operated as a strongly consistent key-value store with key spaces

partitioned among nodes. A datacentre contains two replicas of the cluster. One

of the replicas is known as the local (primary) cluster of a datacentre and the

DATA PROCESSING IN CLOUD COMPUTING

51

other is a secondary replica. The local cluster is a strongly consistent with its

replica (synchronous replication) in the datacentre while replication between

clusters in different datacentres is asynchronous. The term ‘Equivalent nodes’, is

used to refer to the set of primary nodes across all clusters. When a write (or

update) operation is performed on a local primary node, the updates are sent

asynchronously in a queue to all equivalent nodes in other data centres. The

equivalent nodes then enforce causal+ consistency in their update operations

based on the information provided from the dependency list. COPS is

implemented as a loosely coupled architecture which consist of two components.

They include: (i) Key-value database and (ii) a client library that exports ‘get’ and

‘put’ operations. The key-value database also stores metadata such as the key

version number and implements slightly more complex operations such as

‘get_by_version’, ‘put_after’ and ‘dep_check’. These features enable COPS to

maintain causal+ consistency despite its asynchronous model of replication. COPS-

GT, is a flavour of COPS with an extra operation referred to as ‘get_transaction’. In

COPS-GT, each key is mapped to a version and a dependency value in the form:

key  <version, value, dependency>. The dependency, which is of the form <key,

version> tells the node which key that a data item depends on. This helps it to

implement ordering across keys. The client library of COPS-GT keeps information

about dependencies in a ‘context’ parameter which is associated with every

operation and is identified by a ‘context_id’ attribute. The context parameter is

stored in a table and used to track dependency across operations. A ‘get’ request

will normally include a key and a dependency while a put request stores the

version number to the ‘context’ parameter.

COPS, like most systems, has its short comings. The process of enforcing causal

ordering over a wide area network is non-trivial and bandwidth intensive. This will

make it impractical when the number of data centres involved is high. Also,

failures in a datacentre could mean that updates not yet propagated to remote

datacentres could be permanently lost since COPS uses asynchronous replication

across datacentres.

DATA PROCESSING IN CLOUD COMPUTING

52

3.3.2 The Middleware Approach

A second approach is to execute transactions on cloud database using a

middleware. Megastore [51], G-Store [100], CloudTPS [101] and Deuteronomy

[102] are examples of this approach. The implementations of Megastore and G-

store are explained below.

3.3.2.1 Megastore

Megastore [51] was built by Google with the objectives of achieving the scalability

capabilities of NoSQL databases and the consistency guarantees of traditional

database. The requirements that led to the design of Megastore include high

scalability, consistent view of data, low latency and high availability. Megastore

uses Paxos [15] algorithm to provide fault tolerance among replicas. In

Megastore, data is partitioned into ‘entity groups’ and each entity group contain a

set of keys which are synchronously replicated over wide geographic area. Within

an entity group, ACID properties are enforced. Operations across groups are

asynchronous and are sent in a queue. For example, an email account forms an

entity group in Megastore. Thus, operations within an email account would be

ACID level transaction but operations across email accounts make use of

asynchronous messaging. Megastore uses BigTable as its back-end NoSQL

database. To enforce relationships amongst tables in an entity group, Megastore

makes use of child-root table schema. Therefore, each child table must have a key

that references its root table. Megastore tends to cluster keys that are read

together and maps each entity to a single row arranged in contiguous order in

BigTable. The major difference in the data models of Megastore and traditional

relational database is in the way keys are physically stored. Since BigTable does

not support table joins, the key of each row is derived by concatenating the keys

of the child and parent tables in a row. Megastore exposes two types of indexes

namely; Local index, used within an entity group and Global index, used to search

for entities when the entity group is not known in advance. Reads and writes can

be processed from any replica; and as such there is no notion of a fixed primary

replica. This allows for higher availability, faster read and write operations thereby

DATA PROCESSING IN CLOUD COMPUTING

53

reducing latency since applications can easily access the replica closer to them.

This is achievable because Megastore makes use of Paxos to manage updates to

replicas. The accessed replica represents the leader for that transaction and the

logs are then replicated synchronously to a quorum of replica.

As noted earlier, ACID transactions are only achievable within an entity group.

This is a known limitation of Megastore. Also, Megastore entity group

membership is static in nature and as such, keys that belong to an entity group

must remain a member of that entity throughout their life time. This means that

there can be no ACID transactions between keys that belong to different entity

group. This makes it impractical for certain applications that need ACID operations

across different keys that don’t belong to the same entity group. It is also

unsuitable for applications that need dynamic grouping over the period of their

life time. An example of such application includes online game applications that

need grouping of keys for the duration of the game alone. G-store attempts to

address this limitation. Megastore is also known to have relatively poor write

throughput because of its synchronous replication within entity groups [97].

3.3.2.2 G-Store

The design consideration for G-Store includes high scalability, high availability and

fault tolerance as well as multi-key transactional access. G-Store uses the same

concept as Megastore which uses a Key Grouping protocol [100] to group keys for

applications that need multi-key transactional access. One feature however of G-

Store is that grouping of keys is dynamic and a key can belong to different groups

during its life time but only one group at any given time. Groups are formed by

the applications. Keys of the same group are transferred into a single node for the

period of their membership. This is to prevent the complexity involved in

distributed synchronization. In G-Store, there is a concept of leader and follower

keys. Every group formed has a leader while other keys of the group are known as

follower keys. There are two phases involved namely: Group creation phase and

Group deletion phase. The group creation phase is initiated when an application

client chooses a leader. The leader in turn sends a join request to all members of

the group after it has logged the list of members. The node where the leader is

DATA PROCESSING IN CLOUD COMPUTING

54

located is known as the owner of the group. Like the 2PC, the group creation

phase occurs in two phases. The basic protocol is highlighted below.

• Leader sends a Join Request {J} to the followers – To acquire ownership

• Followers respond with a Join Ack {JA} message

When all members have joined, the group creation phase terminates. After a

group has been created, transactions can take place during the life time of the

group. G-store can only provide ACID transactions within the group and

transactions need not span more than one node. During the group deletion phase,

ownership of individual keys is transferred from the leader back to each of the

followers. The client sends a group delete request to the leader, the leader then

logs the request and sends a delete request to all the followers. In the basic

protocol, the followers do not need to respond to a delete request. The protocol

was further optimized to deal with failure, concurrent group creation and

recovery. In the optimised protocol, every group has a group id and a yield id for

every operation and G-Store logs this information using write-ahead logs which is

useful for recovery.

G-store can be implemented as a client based implementation and also as a

middleware to a Key-Value store. One limitation of G-store implementation of

transactions is that there is a high level of overhead during the group formation

stages.

3.3.3 The API Approach

A third approach is to provide transactional access to the data i.e. client

applications access the data through an API that implements transaction

semantics. Examples of this implementation include Percolator [103] and ReTSO

[104] .

3.3.3.1 Percolator

Percolator was built at Google partly to address the short-comings of BigTable

[18] which lacks support for multi-key transactions [32]. Percolator is designed to

DATA PROCESSING IN CLOUD COMPUTING

55

process incremental update for web indexing. Percolator provides ACID

transaction support with incremental computation. Percolator itself is made up of

three components namely: (i) Percolator worker, (ii) BigTable server and (iii) GFS

chunk-server. Every node in a Percolator cluster contains these three

components. Percolator uses snapshot isolation to implement multi-key

transactions and stores multiple version of each key using Bigtable’s timestamp to

identify versions. Transactions make use of a distributed lock system and a

timestamp oracle (TO). The timestamp oracle is a server that issues an always

increasing timestamp which guarantees that transactions are properly ordered. To

perform a write operation, a lock is requested on all the rows involved in the

write. The client then uses a timestamp oracle to retrieve its commit time after

which it releases its lock. A transaction will abort if it can see a lock or a write that

has occurred after its own start timestamp. Therefore, every transaction must

contact the timestamp oracle twice and the highest allocated timestamp is kept in

stable storage. This increasing timestamp will guarantee that a ‘get’ request will

return only writes that committed before the transaction start timestamp.

Percolator lacks a global deadlock detector. This can cause an increase in latency

when there are conflicting transactions. Therefore, Percolator is not ideal for

environments that need extremely low latency.

3.3.3.2 ReTSO

ReTSO [104] is used to support client side transactions for large scale storage

systems. ReTSO makes use of a centralized Transaction Status Oracle (TSO) to

implement Snapshot Isolation. In Snapshot Isolation, transactions are carried out

on a snapshot of the data as at the time of the transaction. ReTSO uses a system

called BookKeeper [105] to persist write-ahead logs in order to achieve higher

availability. Before a transaction starts, it must receive a start timestamp request

from the TSO. The TSO manages incoming transaction request and checks for

conflicts between transactions. ReTSO generates a start timestamp and commit

timestamp for all transactions on all servers using a Timestamp Oracle to

guarantee integrity of the timestamp (i.e. timestamps ordering must be unique

and incremental). The TSO stores the status of all active transactions and can be

DATA PROCESSING IN CLOUD COMPUTING

56

queried to verify the status of any transaction. A write request generates a start

timestamp on the TSO (the timestamp represents the version number of that

data) and is saved in a ‘PendingWrite’ Column in memory. Once the data is

committed on the Key value store, the TSO generates a commit timestamp which

is sent to the client. The client can then clean up its ‘PendingWrite’ Column after

updating its commit timestamp. In the case of an abort, the client deletes the data

and also cleans up the ‘PendingWrite’ column. A read operation observes the last

committed data before its own start timestamp.

Using a centralized Transaction Status Oracle can be a bottleneck in distributed

systems. More importantly, when a transaction is trying to retrieve a commit

time, the TSO may need to check its memory to be sure that there are no

conflicting transactions. This can lead to long and unnecessary waits. ReTSO

addresses this by limiting the amount of information kept in memory. ReTSO also

uses replicated write-ahead log across multiple dedicated storage devices

(BookKeeper) to prevent loss of data. It should be noted that the BookKeeper is

dedicated to this task alone to achieve high performance.

3.4 ANALYSIS OF OTHER TRANSACTION MODELS AND PROTOCOLS

In addition to the above, various other approaches have been developed in order

to implement transactions in high scalable cloud databases. This section reviews

and analyses some of the common approaches. In [106], transactions are

implemented by adapting a relational database into a shared-nothing architecture

used in NoSQL systems. In their approach, they limit transactions to execute on a

single node thereby avoiding the need for two-phase commit protocol. A

database contains a group of tables called a table group. Each node contains a

subset of the entire database which is a group of tables that are joined by a

column. The column is known as the partitioning key. Each table group must be

able to fit into a single node, such that the system can only provide ACID

transactions support for data within a single node. Data is replicated in the cluster

but one replica serves as the primary replica. The primary replica is also used to

handle updates.

DATA PROCESSING IN CLOUD COMPUTING

57

A Deuteronomy approach is proposed in [102].The architecture used in [102] is

similar to the architecture proposed in this thesis, however Deuteronomy makes

use of data locks which incurs considerable overhead [107]. Deuteronomy system

contains two components which include the transactional component (TC) and

the data component (DC). The TC manages transactions and concurrency control

while data is stored on the DC. Transactions in Deuteronomy can span multiple

DCs. Applications send their requests to the TC. Since the TC stores table

information (meta-data) and manages session, the TC knows which DC is hosting

the requested data. When requests are submitted to the TC, the TC sends the

operations to the required DCs. The DCs perform the necessary operations and

the TC logs the operations after they have been concluded.

ElasTras [108] [109] consist of three components which include the Transaction

Manager (TM), Metadata manager and the distributed storage layer which does

not support transactions. The storage layer manages issues such as replication

and fault-tolerance and implements an eventually consistent model of replication.

The transaction manager is further divided into two layers namely the Higher

Level Transaction Manager (HTM) and the Owning Transaction Manager (OTM).

The OTM has exclusive access rights to a subset of data in the distributed storage

layer and caches some of the data. Requests are sent to a HTM, the HTM then

routes the request to the appropriate OTM in charge of the requested data. If the

data is in the OTMs cache, the OTM performs the updates, otherwise, it requests

for the required data. The OTM also uses write-ahead logging to perform

recovery. However, Elastras can support only mini transactions defined in [110]. A

mini transaction allows users to atomically batch together updates and to

conditionally modify data in multiple nodes. For instance, with mini transactions,

a transaction can be regarded as committed transaction on the condition all the

operations of that transaction will be successful. If any of the operations are

aborted, the transaction can then be rolled back. This is called a conditional

commit and can only work for certain types of applications.

Warp [111] provides a one-copy serializable transaction support implemented via

a client library that supports linearizable transactions, i.e., transactions are

executed in the order they arrive. The system consists of a client library, storage

servers and a coordinator server which maps key ranges to storage servers. It

DATA PROCESSING IN CLOUD COMPUTING

58

implements a protocol that identifies conflicts in transactions by maintaining a

dependency graph across transactions.

All of the systems described above have some limitations in their ability to

perform transactions. Most of the systems are unable to provide ACID

transactions. They only provide some form of limited properties of transactions

which makes them unsuitable for applications that need ACID.

3.5 DISCUSSION AND CONCLUSION

This chapter investigated into the existing literature in order to provide an insight

into the different aspects of data processing in cloud environment which include:

architectural consideration and data models of cloud or NoSQL databases, the

different types and characteristics of NoSQL databases, and the transaction

management techniques developed for NoSQL databases. It is observed that

multiple factors (such as architecture, data models, classes of databases,

transactions models, etc) have impact on the performance, reliability, availability,

and consistency of NoSQL databases. It is also examined that each of the classes

of NoSQL database are more ideal for some applications than others. For instance,

BigTable, a column-oriented database, is used in Google Earth and Google

Finance. Similarly, MongoDB, is used in retail and online news applications such as

Ebay and Forbes online magazine.

This chapter then critically reviewed existing transaction management techniques

which have been implemented in various industry (commercial) NoSQL databases

as well as prototypical or research-based NoSQL databases. The review of the

existing techniques showed that there is not a single transaction management

technique that provides all the features such as improved performance,

availability, consistency and so on.

All of the approaches reviewed above have the main shortcoming (or trade-off)

that these systems were designed with particular applications in mind. According

to [94], the NoSQL databases will not replace the relational databases but will be

better fit for certain applications. The NoSQL databases generally offer only

DATA PROCESSING IN CLOUD COMPUTING

59

simple operations and will definitely work with certain applications. Dynamo [50]

for instance offers no data integrity guarantee and employs a very weak model of

consistency. BigTable [73] has poor write performances and very limited query

capabilities (as with dynamo). Cassandra [57] is inefficient for processing ad hoc

queries. A review of NoSQL systems to offer transaction support shows that most

of the existing systems have limitations which will make them unsuitable for

certain applications [112]. These trades-offs however have an impact on the

performance of the systems. In [113], the system makes use of data locks which

is a pessimistic concurrency control mechanisms that reduces throughput and

involves a high level of overhead. Megastore [51] requires data to be partitioned

into groups and can only provide ACID transactions within groups. CloudTPS [101]

makes use of two phase commit which could be cumbersome. G-Store [100]

improves on megastore by making groups more dynamic such that any group can

contain different data at different times reducing the need for two phase commit

protocols. However, transactions are still limited to within entity groups. All these

systems have certain performance issues that our proposed system intends to

improve on.

As discussed above there exist a number of research challenges in cloud and

NoSQL databases. But the work in this thesis focuses on the following main

research issues.

• It has been observed that current research approaches and commercial

NoSQL databases do not enforce strict consistency in big data processing

and management. This is a consequence of providing high performance

and high availability of big data in the current solutions.

• It has been identified that current designs of NoSQL databases do not

support normalization and integrity constraints. This leads to the facts the

complex queries and transactions are not supported by the current NoSQL

databases.

• It has also been observed that current solutions scarify the support of

transactions and the implementation of ACID properties in NoSQL

databases for achieving scalability and efficiency.

DATA PROCESSING IN CLOUD COMPUTING

60

The remaining chapters describe the proposed approach that aims to address the

above research issues.

61

CHAPTER 4

MODELLING AND DESIGN OF THE PROPOSED APPROACH –
NoSQL-TX

This chapter explains the theoretical model and design of the proposed

transaction approach which is referred to as NoSQL-TX. The acronym NoSQL-TX is

inspired from WS-TX which is used to describe web services transactions [114].

Section 4.1 defines and specifies the constraints of the proposed model. Section

4.2 explains snapshot isolation which is the technique implemented by the

proposed system. Section 4.3 describes the architecture of the system as well as

the various components that make up the system. The approach of NoSQL-TX

follows the middle ware approach explained in section 3.3.2. The transaction state

diagram which models a transaction life-cycle and the protocols for a commit

operation in the multi-key transaction model is explained in section 4.4.

Section 4.5 explains the interactions that take place among the components of

the system to execute a transaction. Section 4.6 explains the protocol followed by

the system to perform a transaction commit and section 4.7 explains the various

scenarios that can cause a transaction to abort. Finally, section 4.8 explains the

protocol for replica management implemented by the prototype system.

4.1 NoSQL TRANSACTIONS

The ACID properties of transactions are the standard and most commonly used

properties of database transactions. One of the objectives of the proposed model

is to implement ACID properties in NoSQL databases. Before specifying the

constraints and definitions of our NoSQL transaction model, a brief summary of

ACID properties is re-emphasized.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

62

Atomicity: Implies that all the operations in a transaction must be successfully

executed or none of them must execute at all. In other words, a transaction is

considered as an atomic unit of operations and the failure of any operation in a

transaction means that all successful operations must be rolled back.

Consistency: The database must remain in a consistent state after the execution

of a transaction. Therefore any updates made to data by a transaction must

transform the database from one consistent state to another consistent state.

Isolation: Transactions must not expose their intermediate results to other

concurrently running transactions. This means that the activities of a transaction

must not affect the result of other on-going transactions.

Durability: Results of a completed transaction must be made permanent in the

database store in order to provide fault tolerance in the event of failures.

Fundamental definitions of the proposed transaction model are illustrated as

follow.

Definition 4.1: A NoSQL transaction NST is defined as the execution of a

(cloud) application which comprises different operations that provide transitions

between (partially) consistent states of the shared data. Therefore, NST is a

sequence of operations which are executed in a way such that all of them are

successfully completed or none at all.

Definition 4.2: A NST is a multi-key transaction as it involves more than one

data key item and one or more operations.

Recall that NoSQL databases do not perform multi-key operations. Rather, they

support only simple single key operations such as a get() or put().

Based on the above, NST is formally defined as a tuple, NST = (OP, PaO), where OP

is a set of operations, OP = {OPi | i = 1...n}, and PaO is a partial ordering of the

operations which determines their order of execution. For instance, OPi > OPj

represents that OPi is executed before OPj. The partial ordering comes from the

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

63

fact that transactions do not necessarily commit in the order in which they arrive.

Order is only enforced when there is a conflict between two transactions.

In the proposed model, OP1
r[DE] represents a read operation of NST; meaning

that NST reads data entity, DE, from a NoSQL database. Similarly, OP1
w[DE]

represents a write operation of NST; meaning that NST writes (updates) a data

entity, DE to a NoSQL database. The read and write operations above (OP1
r[DE]

and OP1
w[DE]) are used to model the CRUD (Create, Read, Update and Delete)

operations which are most commonly implemented in NoSQL systems. Note that

NoSQL databases adopt CRUD operations from traditional databases.

In the proposed model OP1
r[DE] represents the Read (of CRUD) and OP1

w[DE]

represents the Create, Update and Delete operations (of CRUD). OP1
r[DE] is simply

to read data without any modification to the data. OP1
w[DE] is to write data

meaning that data can be modified through Create, Update or Delete operation.

In addition, to data read/write operations, NST is also associated with (control)

operations, begin or start, commit and abort. These are explained as follow.

Begin or start operation: The execution of each NST must be marked through a

begin or start operation. That is, NST should begin first before any of its

operations (OP = {OP1 | i = 1...n} ∈ NST) can be executed.

Commit and Abort operations: Each NST terminates with either a commit or an

abort operation. If NST is successfully executed then it terminates with a commit

operation. If NST cannot be successfully executed then it terminates with an abort

operation.

NST can be of type seq (Begin | OPi | Cmt | Abt) but with the condition that either

Cmt (commit) or abort (Abt) occurs only once within the sequence. The

events/scenarios that can lead to the system aborting a transaction are explained

in later sections. Based on the above, the constraints on NST and it’s (begin, read,

write, commit and abort) operations are specified below.

A NST comprises of different read/write operations but can have either one

commit or abort operation. This is denoted as:

• NSTi = {Begin} ∪ {OP1
r[DE], …,OPn

r[DE]} ∪ {OP1
w[DE], …,OPn

w[DE]} ∪ {Cmti, Abti}

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

64

Where DE is Data Entity.

• Cmti, ∈ NSTi iff Abti ∉ NSTi i.e., If NSTi is committed then abort operation

cannot be executed.

• Assume a (control) operation, cti, is Cmti or Abti (transaction commits or

aborts), then for any read/write operation OP
i[DE] ∈ NST i , OP1[DE] > cti. In

other words, commit or abort operation must be after the read/write

operation.

• If OP1
r[DE], OP1

w[DE] ∈ NSTi, then such read/write operations should be

ordered either as OP1
r[DE] < OP1

w[DE]or OP1
w[DE] < OP1

r[DE]. That is, data

entity, DE, should be read and written in a proper order.

• If Transaction A contains a data entity [DEα] and Transaction B also contains

the same data entity [DEα], then both transactions cannot commit at the same

time. In order words, the commit time, T, of Transaction A cannot be equal to

the commit time of Transaction B, i.e., TA commit ≠ TB commit

4.2 SYSTEM DESIGN APPROACH

The proposed design aims to achieve high availability, and efficiency (or

performance) but without sacrificing consistency of data. To achieve high

efficiency, the proposed design takes advantage of proven database concurrency

control techniques such as Snapshot Isolation [115]. But this is enhanced with the

strength of scalable shared-nothing architecture of NoSQL databases. Before

proceeding to explain the architectural decisions, the technique of snapshot

isolation is explained in details below.

4.2.1 Snapshot Isolation

As stated earlier, snapshot isolation is an optimistic concurrency control

mechanism that ensures that transactions are never blocked. In snapshot

isolation, transactions perform read and write operations on a snapshot of the

data. This means that a read operation can only read data that has been

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

65

committed at the time of the read. A write operation can only succeed if no other

write operation has committed on the same data during its lifetime. The lifetime

of a transaction is the period between the transactions start time and commit

time. Each transaction has a start timestamp and a commit timestamp. A

transaction Ti starts by obtaining a start timestamp Ti start-time. Before Ti

commits, it tries to obtain a commit timestamp Ti commit-time. In this scenario, the

transaction Ti would be successfully committed only if there has not been any

other transaction Tj whose commit timestamp falls within the period/interval of

start timestamp and commit timestamp (transaction lifetime) of Ti. If the

following situation happens:

Ti start-time  Tj commit-time  Ti commit-time, and both transactions write to the

same data, then Ti must abort (Where  represents control /order of flow).

Time

A

B

C

Figure 4.1: Snapshot Isolation

To explain further, assume that three transactions A and B and C (see Figure 4.1

above) are trying to modify a data entity [DEα]. Transaction A would commit even

though it conflicts with B. This is because snapshot isolation follows the “First-

Committer-Wins” rule. Transaction B reads data entity [DEα] which may (or may

not) reflect the latest update written by transaction A. Transaction B tries to

commit a modification on the data entity [DEα] but A has updated the data item

data entity [DEα] and committed before transaction B commits, then B must abort

(notwithstanding the start time of A). This way, consistency among different

transactions is preserved. Note that transaction B will only abort if it is in conflict

with transaction A (see definition of conflict in section 2.2). The commit time for

every data item is also stored alongside with the data item as a parameter. This

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

66

will enable the system to maintain consistency in the presence of concurrently

running transactions.

Systems implementing snapshot isolation in cloud environment would normally

have a form of time ordering among nodes to be able to determine the start time

and commit time of transactions. Spanner [97], ReTSO [104] and Walter [116] all

make use of various forms of snapshot isolation.

4.2.2 Rationale for Snapshot Isolation

The decision to implement snapshot isolation as a concurrency control

mechanism is due to the fact that it provides a much higher concurrency than

using classical locking systems. Snapshot Isolation never delays or blocks any read.

Also, locking imposes high processing overheads [41] [117] on databases since any

write operation must obtain a lock first even if there are no conflicting

transactions.

Also, snapshot isolation avoids the following three anomalies [118].

Dirty reads - This occurs when a transaction A updates a data item and another

transaction B reads the data item before A commits or rollbacks. If A rollbacks,

transaction B would have read a wrong data since transaction A did not commit.

Non-repeatable reads - As the name implies, non-repeatable reads means that a

repeated read by a single transaction returns different value. Assume a

transaction A reads a data item and another transaction B either modifies or

deletes that data item. If transaction A performs another read on the same item,

it will yield a different result from the initial read of transaction A. This means that

a transaction that contains multiple read operations can return different results

for a given item.

Phantom reads - Assume that a transaction A reads a set of data which satisfies a

predicate condition supplied by a user. Another transaction B then inserts new

data items that also matches the predicate conditions stated in transaction A and

is committed. This introduces new sets of data that also satisfy the conditions

stated in transaction A. Repeating read in transaction A would produce a set of

items that differ from the initial read of A. This is called a Phantom reads.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

67

4.3 ARCHITECTURE OF THE NoSQL-TX

The architecture of the proposed system – NoSQL-TX, follows a loosely coupled

architecture described in section 3.1.1. The loosely coupled architecture separates

the mechanisms of transaction processing from data storage (see Figure 4.3). As

mentioned earlier, the system comprises of three main components which include

the Data Management Store (DMS), Transaction Processing Engine (TPE) and the

Time Stamp Manager (TSM). The functions of each of these components are

explained in next section. The architecture allows the system to be scalable in two

dimensions. First, as the size of data increases, the number of nodes at the data

management store can be increased. Second, as the number of transactions

increase, the number of transaction processing engines can also be increased in

order to meet up with the demand.

4.3.1 Transaction Processing Engine (TPE)

The TPE is responsible for processing transactions in the system. The TPE operates

like a normal relational database which stores schema information, allows for

relationships and joins between entities and can also compute aggregate

functions. The difference however is that the TPE does not store data. Rather, the

TPE depends on the DMS to store data persistently. To execute a transaction,

clients send requests directly to the TPE. The TPE requests for the required data

items from the DMS. This is similar to the approach followed in [102] and [101].

The relationship between the TPE and the DMS can be implemented in two

different ways. The first option is that each TPE can be responsible for a disjoint

set of data on the DMS, in which case, each data item can only be accessed by the

specific TPE assigned to it. In the second implementation, each TPE has access to

all data on cluster such that the TPE acts as a transaction service to the DMS layer

below. In this implementation, any TPE can have access to any data on any node

in the DMS. As expected, the two implementations have different performance

implications on the system. In the first approach, assigning TPEs to a disjoint set of

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

68

data would mean that a transaction that involves two or more data items

assigned to different TPEs would span more than one TPE. In such cases, ACID

transactions can only be implemented with two -phase commit protocol discussed

in section 2.4.1. All TPEs involved in the transaction would typically take part in

the two-phase commit protocol. The TPE to which the transaction is submitted to,

will act as the coordinator of the transaction. Two-phase commit protocol is an

expensive process. In the second approach, using the TPE as a service would mean

that the system can totally avoid two-phase commit protocol. Thus for each

transaction, the TPE handling the transaction requests for the data items involved

in the transaction from all the DMS nodes that stores each of the data. The

transaction takes place in only one TPE. In both implementations, to improve

performance, the TPE also stores information about the location of data on DMS.

However, the evaluation of the difference in performance cost between these

two approaches is beyond the scope of this thesis. The main functions of the TPE

are summarized below:

• Receiving transactional requests from clients and managing such
transactions

• Storing of schema information as NoSQL systems do not provide facilities
for schema information

• Defining relationships between different entities of data
• Provide support for join operations as NoSQL do not support such

operations

4.3.2 Data Management Store

The Data Management Store (DMS) component represents the actual NoSQL

cloud database such as MongoDB [86]. It stores all (Big) data persistently for the

system. The DMS component is highly scalable in order to meet Big Data storage

requirements. Further, it replicates data in terms of different replicas in order to

ensure improved efficiency, high availability and fault tolerance. Replication is the

common approach across all NoSQL systems. In the proposed system, the DMS

layer, in collaboration with the Time stamp manager (TSM), implements the

snapshot isolation protocol as a concurrency control mechanism for transactions

in the system. When a transaction starts, the TPE requests the data items involved

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

69

in the transaction from the DMS. Before a data item is sent to the TPE, the DMS

registers the transaction ID as well as the key of the data items at the Time stamp

manager (TSM). The function of the TSM is to issue transaction timestamps. The

DMS can then send the data to the TPE only after the start timestamp has been

issued. The TPE can then perform updates on the data item. To commit data on

the DMS, the DMS also uses the transaction ID registered with the TSM to retrieve

a commit timestamp. If the TSM refuses to issue a commit timestamp, the

transaction is then aborted and all changes made are rolled back. Whatever the

case may be, the DMS notifies the TPE of the decision. The TPE then sends to

relevant information as a response to the client.

In addition, the system introduces a new attribute called lastModified. Every data

item stored on the DMS has an associated attribute called lastModified .This

attribute stores the commit timestamp issued by the TSM for the most recently

committed transaction on that data item. This is used to guarantee stronger

consistency across replica and concurrent transaction execution explained in

detail in section 4.8. Since the TSM issues the commit timestamp, the TSM always

has the most recent commit timestamp for each data item. A transaction can then

use the information to confirm that it has read the latest version of that data

item.

4.3.3 Time Stamp Manager

The TSM component is central to managing consistency across nodes in the

system. It manages the ordering and scheduling of transactions in the system. The

TSM also interacts with DSM and TPE in order to schedule the execution of the

different operations of a transaction. The TSM can also store transaction

information in memory in order to reduce latency due disk I/O thus improving

performance. Storing information in memory will allow the TSM process

information much faster since it will reduce the need to perform a disk seek. This

will improve the overall performance of the system as the TSM will be able to

process transaction start and commit time faster. The TSM also keeps track of all

active transactions. To do this, the TSM itself stores the transaction ID, key of data

items involved in transactions as well as the start timestamps and commit

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

70

timestamps of each of these transactions. That way, the TSM is aware of the

status of all ongoing transactions.

The main objective is to maintain consistency of data when concurrently accessed

by different transactions. The proposed concurrency technique is to implement

snapshot isolation which is non-blocking and provides higher concurrency and

high efficiency in transactions processing. When a transaction request is made to

the DMS, the DMS contacts the TSM for a start timestamp. Once granted, the TPE

can begin to process transaction. After the transaction has completed, the DMS

applies the changes and again requests for a commit timestamp from the TSM. If

there has been any other transaction whose commit timestamp falls between the

interval of the initial transactions start timestamp and commit timestamp and

they both write or update the same data, the TSM refuses to issue a commit

timestamp. Failure to issue a commit timestamp implies that there is a conflicting

transaction and the on-going transaction must initiate an abort and rollback. This

is how the First-writer-wins policy is implemented in this system. It is important to

note the differences in read and writes when implementing Snapshot Isolation. If

the committed transaction contains only read operations, then the on-going

transaction need not abort.

Apart from issuing start time, TSM checks that a replica is up-to-date before it can

grant that replica a transaction start time. The system employs an asynchronous

model of replication. This means that replicas can be outdated for a very limited

period; however, outdated replicas cannot be involved in transactions. Also, there

is no notion of a master or primary replica in this system. Any replica can be

involved in any transaction. The TSM in collaboration with the DMS has a

mechanism for identifying out-of-date replicas. This process is explained in detail

in section 4.8.

4.4 TRANSACTION STATE TRANSITION MODEL

In order for a transaction to execute and access/modify a NoSQL database, it has

to go through (or transition between) different states. This section explains the

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

71

process of state transitioning of transactions in the proposed model. This process

helps the design of the execution of transaction protocols as well as their

implementation, which are described in the next chapter.

As describe above, the proposed system is made up of three major components

which include the TPE, DMS and TSM. The main duty of TPE is to process NST

transactions on behalf of the system while the DMS serves as a stable storage for

the database. The TSM works in collaboration with the other two systems to issue

timestamps during transactions. It is necessary to add that the following

constraints hold for NSTs that no two transactions that have a data item in

common can have the same start timestamp or commit timestamp.

An active transaction that has not been aborted can be in one of the following

four different states namely, (i) initial (ii) pending (iii) applied and (iv) done.

The transaction state is managed by the TPE. When a transaction is initiated by a

client, the transaction state is set to initial. The initial state signifies that a

transaction request has been initiated by a client. The transaction then proceeds

to retrieve a start-time from the TSM. If it is successful, the transaction state is

updated to pending. The (CRUD) operations are then carried out. If there is no

failure in any part of the operation, the transaction state progresses to an applied

state. Otherwise, the transaction is set to a cancelling state where rollback

operation begins. A transaction in an applied state implies that all the enclosed

operations in that transaction have been successfully executed. This does not

however mean that the transaction would commit as there could be other

conflicting transactions. Once a transaction state has been set to applied, the TPE

will request for a commit-time from the TSM. If the commit-time is issued, the

transaction state is set to done. At this point, a transaction is said to have

committed and cannot be aborted. If a transaction is not issued a commit-time,

the transaction is set to a cancelling state where rollback operation begins. As

soon as the rollback operation is completed, the transaction state is set to

cancelled. A transaction in a cancelled state is deemed aborted and cannot

commit. The state diagram for a transaction is shown in Figure 4.2 below

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

72

Figure 4.2: Transaction State Diagram

Under normal circumstances (without failures), a transaction state should follow

the sequence below:

initial  pending  applied  done (commit)

However, there are a few scenarios which can cause a transaction to abort. They

are explained in section 4.7.

4.5 INTERACTION BETWEEN SYSTEM COMPONENTS

The three components of the proposed system interact with each other in order

to coordinate different transactions. Figure 4.3 shows the various components

and their interaction which each other. The TPE is the main component that

carries out transactions in collaboration with the TSM. Each of these components

has sub-components that carry out certain functions. The next section describes

the functions of each of the sub-components in the TPE and the TSM.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

73

Figure 4.3: Component of Proposed System- NoSQL-TX

The TPE which manages transactions contains the following sub-components.

Request Manager - The request manager handles requests from clients. It

provides an interface between client applications and the TPE. The request

manager establishes a connection and maintains a session between applications

and the transaction manager. The request manager also ensures that applications

receive an acknowledgement or response from the TPE.

Transaction Manager - The transaction manager is an essential module in the TPE

and is central to transaction processing. The transaction manager processes CRUD

operations on the data items. It receives details of the operations to be

performed from the request manager and generates a transaction ID for each

operation. The transaction ID is a set of alphanumeric characters which forms a

unique key used to identify each transaction known as the unique transaction

identifier (UTID). The transaction manager also uses the transaction ID to manage

the transaction states (explained in section 4.4). The transaction manager

interacts with other components of the system to effectively perform

transactions. For instance, before a transaction can operate on data item, the

transaction manager requests the required data from the DMS. It stores data

location information in the location cache. This way, the transaction manager can

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

74

know where each data item is located. The transaction manager also interacts

with the schema manager to get information about the relationships that exists

between the data entities. It is the duty of the transaction manager to ensure

correctness in transaction processing.

Meta-data manager – The Metadata manager contains two sub-components

which include the Location cache and the schema manager. The schema manager

stores information about tables, relationships between the table entities specifies

constraints that exist among the data objects. The schema manager also

determines the level of permissions and accesses granted to data items. The

location cache stores information about data location. This information is

persisted on disk in the TPE but is also loaded into the location cache in memory

to reduce disk I/O latency.

TSM Controller – the TSM manages interactions between components of the

system (Transaction processing engine - TPE and Data management store - DMS)

and the TSM. It guarantees that the components receive transaction start and

commit timestamps issued by the TSM. The DMS and the TPE both contain TSM

controllers as they both interact with the TSM. However, it is the DMS that makes

requests for both start and commit timestamps from the TSM. But the TSM

interacts with both the DMS and the TPE using the TSM controller.

The Time Stamp Manager (TSM) contains the following sub-components/

Timestamp Issuer - The main duty of the TSM is to issues timestamps. The

timestamp issuer works as an issuing authority in collaboration with the

Transaction Information Processor. The transaction information processor

determines if the timestamp issuer will issue a timestamp or not.

Transaction Information Processor - The transaction information processor is a

component of the timestamp manager whose function is to implement the

snapshot isolation. The transaction information processor has a component which

is called the transaction information cache. This is where it stores the transaction

ID, transaction start and commit timestamps as well as the key identifier of data

items involved in ongoing and recently committed transactions. Based on the

stored information, the transaction information processor is able to identify any

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

75

conflicts in transactions. This in-turn determines if the Timestamp issuer would

issue a commit timestamp or if the transaction should be aborted.

The diagram in Figure 4.4 shows communication and interaction between the

different components of the proposed architecture. It depicts the flow of

requests which are communicated between the client, TPE, DMS and TSM. Client

represents user’s cloud application that submits transactions to the proposed

system.

Figure 4.4: Interaction between Components of the System(NoSQL-TX)

Based on the above, the commit protocol for transactions in the proposed system

is described as follows.

4.6 COMMIT PROTOCOL

The different steps (see Figure 4.4) involved in the protocol are explained as

follows.

1. A client initiates a request to start a new NoSQL transaction (NST). Recall, that

NST is a set of begin, read, OP1
r[DE], write, OPn

r[DE], commit, Cmti,, and abort,

Abti, operations (Section IV).

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

76

2. TPE receives client’s request and generates an ID for the NST which is to be

executed on NoSQL data. TPE then sends the NST’s ID and related information

the DMS.

3. DMS receives the NST’s ID and related information in order to know which

data entities are to be accessed (read/updated) by the NST. DMS then sends

the NST’s ID and related information about data entities to the TSM in order to

ensure scheduling of NST and other transactions.

4. TSM saves the information about NST and it responds with a start-time of a

transaction. This time serves as a start time-stamp, which is to determine the

order of execution and also the commitment of the NST.

As in Section 4.1, if OPi
r[DE], OPi

w[DE] ∈ NSTi, then these read/write operations

should be ordered either as OPi
r[DE] < OPi

w[DE] or OPi
w[DE] < OPi

r[DE]. That is,

data entity, DE, should be read and written in a proper order following the

time-stamp information.

5. Based on the above, DMS releases the required data entities to the TPE where

NST is actually taken place. Note that the proposed architecture separates

transaction processing from the actual NoSQL database system in order to

ensure abstraction and transparency.

6. Once NST is completed, TPE sends the updates (made to data entities) to the

DMS. This means that if NST updates a data entity (modify, delete) then DMS

has to reflect this in the data store in order to ensure that data is consistent.

7. The DMS contacts the TSM to request a commit timestamp. The TSM checks if

another transaction has updated the data after its start timestamp of the

requesting transaction. If this happens, then the NST aborts and sends the

information to the client through the TPE. Otherwise, it continues.

8. The TSM responds to the DMS with a commit timestamp. The DMS then stores

the data in the data store.

9. The DMS responds with a commit message to the TPE. This means that NST is

successfully committed using the commit operation, Cmti.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

77

The algorithm below shows the process involved in issuing a commit time to a

transaction Ti

getCommittime algorithm

1. Send ID of Ti to TSM
2. for each data item α in Ti , do:
3. if α exists in any Transaction Tj in TSMs record, do:
4. If Tj commit-time between Ti start-time and Tnow (where Tnow

is current-time)
5. Send abort Ti
6. End Transaction Ti
7. Else
8. commit Ti
9. Else
10. commit Ti
11. End

Note that the protocol above applies to transactions that have reached the

applied state i.e. any transaction whose operations have all been executed to

satisfy the atomicity property of transactions. Once the protocol is completed, the

transaction state is changed to done.

4.7 ABORT SCENARIOS

At each of the component, failures can occur at different stages of a transaction

which can cause a transaction to abort. Three forms of aborts are defined below.

The abort scenarios are as follows:

• Ab-S1 – In this scenario, a transaction fails to collect a start timestamp.

This can happen as a result of a connection failure, an error at the TPE or

some other error. This then leads to a situation whereby the TSM is

unable to issue a start time. In this scenario, the transaction state follows

the sequence (see State Transition in, Figure 4.2).

initial  (abort)

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

78

• Ab-S2 – This is a scenario when any part of a transaction fails or does not

complete. This can only happen at the TPE. There are several possible

causes such as a problem or error at the TSM, or the data not being

reachable on the DMS (see State Transition, Figure 4.2).

initial  pending  cancelling (rollback)  cancelled (abort)

• Ab-S3 – This is scenario when a transaction fails to collect a commit

timestamp. Like in Ab-S1, this can also be as a result of a connection

failure, an error at the TPE or some other error. All such errors can

prevent the TSM from issuing a start time. In addition, scenario Ab-S3 is

also caused by conflicting transactions. In the transaction state diagram

(see Figure 4.2), the path followed is described below.

initial  pending  applied  cancelling (rollback)  cancelled (abort)

Besides the above stated abort scenarios, the system assumes a failure free

environment. This work does not consider system or network failures. When an

exception or failure occurs, the transaction halts and commences a rollback which

ultimately leads to an abort. An exception is an event that causes a failure

thereby forcing a transaction to abort. It can be anything from the failure of the

TSM to issue a start-time or commit-time to conflicting transactions, which lead to

an abort. Recall from section 4.1, “a transaction must end in a commit or an abort

i.e. a transaction follows the sequence (Begin | OPi | Cmt | Abt) but with the

condition that either Cmt (commit) or abort (Abt) occurs only once within the

sequence (where OPi is a set of operations that can occur during the transaction)”.

A rollback operation would commence if a transaction is aborted mid-way so as to

preserve consistency. However, the rollback operation will be pre-determined by

the state of the transactions when the abort took place.

The next section explains how the proposed system uses the TSM to maintain

consistency among replicas in the presence of concurrent transactions using the

TSM

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

79

4.8 A PROTOCOL FOR MANAGING TRANSACTIONS ACROSS
ASYNCHRONOUS DATA REPLICATION

Replication is a commonly used technique used to guarantee high availability in

NoSQL databases. As explained in section 2.6.3, replication is a process of

maintaining multiple copies of a database in different locations to provide fault

tolerance and guarantee higher levels of availability. In asynchronous data

replication, replicas are updated at a later time after the transaction is committed.

This means that a replica can have outdated data for a short period of time.

This thesis has introduced a new model for managing consistency across replicas

using the TSM. In this section, a protocol for ensuring that only up-to-date replicas

are involved in transactions to guarantee consistency is explained. The goals of

replication in NoSQL databases include:

Availability - Replication increases availability in that during node failures or

network partitions, other replicas can still continue to process read and write

requests.

Read / Write latency - Many NoSQL systems such as PNUTS, Spanner use wide

area (geographic) replication in order to lower response times. When requests are

made, the replica that is closer to the client responds to its request. This is used to

guarantee lower latencies.

Scalability - Replication is also used to balance load across multiple nodes (of

NoSQL databases) such that each node is not under heavy traffic. When the

number of requests on a replica increases, the requests exceeding the capacity

can be directed to other replicas.

Fault tolerance and Data persistence - Replication guarantees that data is not lost

during failures by providing multiple copies of the same data. Fault tolerance

allows a system to continue operating as normal in the event of a failure.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

80

Therefore, if one server is down, replication ensures that there one or more other

servers that can still respond to user requests.

However, implementing replication introduces the challenge of maintaining

consistency among replicas. Generally replication is classified into two main

categories which include Lazy and Eager replication. These are explained in

section 2.6.3. Implementing Eager replication is non-trivial and as such most

systems implement various forms of lazy replication. However, implementing lazy

replication has breached consistency guarantees. This is because Lazy replication

will allow transactions to see stale data versions [49]. As a result, most NoSQL

databases use some form of quorum based replication. In such replication, an

agreed number of replicas (usually less than the total number of replica) can

accept read and write requests. Also, to reduce bandwidth traffic, most replicated

environments makes use of a master-slave replication which is also known as

primary – secondary replication.

This section explains how the proposed system achieves consistency across

transactions. The proposed system implements an asynchronous (lazy) replication

model. However, unlike most systems, in the proposed model, the notion of a

primary or master replica does not exist. In the proposed model, any server can

attend to requests such as reads and writes. The system depends on the TSM to

identify replicas that are out of date and prevents transactions from accessing

such replicas. As part of the protocol, the proposed system enforces the following

constraints and conditions:

1. Recall the constraint of the proposed system in section 4.1

“No two transactions can have the same commit time”

Therefore, the constraint below applies such that

If {DEα ∈ Ta and DEα ∈ Tb}, and ({Ta commit < Tb commit · Ta commit > Tb

start} | {Tb commit < Ta commit · Tb commit > Ta start})

Then Ta commit ≠ Tb commit

(Where DEα is a data entity α, () represents ‘and’, (|) represents ‘or’)

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

81

The expression above implies that if two concurrent transactions Ta and Tb

operate on the same data item DEα and are in conflict, then Ta cannot have

the same commit timestamp as Tb. This constraint is used to enforce

ordering across concurrent transactions.

2. The lastModified attribute (explained briefly in section 4.3.2) for each data

item is the same across all replicas and is equal to the last commit

timestamp issued by the TSM for the most recent transaction committed on

the data item. If a data entity DEα is replicated on three servers A, B and C,

then the lastModified attribute (which is a commit timestamp) of DEα should

be the same across the three servers A, B and C. Therefore lastModifiedαA =

lastModifiedαB = lastModifiedαC

(Where lastModifiedα A is the ‘lastModified’ attribute of data entity DEα on

server A)

3. If the commit timestamp on a data item, α, from a replica A is different from

the commit timestamp for the last transaction on α at the TSM, then either

replica A is outdated or another transaction as committed on replica A

The steps involved in the protocol are explained as follows

1. A transaction retrieves a commit timestamp from the TSM before it

commits. This commit timestamp is stored in the lastModified attribute of

all the data entities involved in the transaction.

2. The commit timestamp is sent along with the updated data to all the

replica servers of the data entities after the transaction has committed on

the server involved in the transaction. This is asynchronous replication.

3. The commit timestamp is also stored in the lastModified attribute of each

of the replica servers. Therefore, the lastModified attribute for a

particular data entity should always contain the same timestamp across

all replicas. This is because the timestamp that is saved in the lastModified

attribute is not the time which the update reaches the replica but the

commit time issued by the TSM to the replica that sends the transaction

request.

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

82

4. When a new transaction is initiated, the TPE consults with the TSM to

verify that the data items from the DMS are not outdated and that no

other transaction has committed on another replica of any of those data

items. It can verify this by comparing the lastModified attribute with the

most recent commit timestamps issued by the TSM for each of the data

entities.

5. If the lastModified attribute is not the same time as the last commit time

issued by the TSM for each of the data entities, the TPE knows that the

data is outdated. This way, the TPE can guarantee the consistency of the

data items involved in the transaction.

By following these steps, transactions can identify stale replicas and

transaction requests are redirected to the most current replica.

4.9 SUMMARY

This chapter explained the approach (which is referred to as NoSQL-TX) of the

proposed system to implement transactions in NoSQL cloud databases. The

theoretical model of the NoSQL-TX is also defined in this chapter. The approach

makes use of snapshot isolation as a concurrency control technique. This means

that the system avoids the overhead involved in locking data and improves

availability. Snapshot isolation also helps to avoid anomalies such as dirty reads,

phantom reads and non-repeatable reads.

The architecture of NoSQL-TX was described in this chapter as a loosely coupled

architecture with three components which include the Data management Store,

Transaction Processing Engine and the Time Stamp Manager. Each of these

components performs certain roles that are critical to the health of the system.

An ongoing transaction passes through four different phases during its life time.

They include: initial, pending, applied and done phases. The events that trigger a

transaction to change from one phase to another were explained in this chapter.

When an abort occurs, the transaction moves to a cancelling phase. During this

MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX

83

phase, all the changes made are rolled back before the transaction state moves to

a cancelled phase.

To execute an operation successfully, all the components of the system must

interact with each other. The protocol followed by their interaction is explained in

this chapter.

Finally, the chapter explains the protocol for managing consistency when the data

in the system is replicated. Most cloud databases make use of replication to

improve availability. This chapter introduces a new protocol for guaranteeing

consistency among replicas.

The next chapter explains in detail, the implementation of the proposed system.

84

CHAPTER 5

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

This chapter discusses the implementation of the proposed system as a

prototype. Section 5.1 outlines and explains the design objectives of the proposed

NoSQL-TX system. The tools and technologies used in implementing the system

are described in section 5.2. Section 5.3 explains the different types of operations

supported by the system and the algorithm of each of these operations. Section

5.4 explains the application domain used to implement and test the proposed

system.

5.1 DESIGN OBJECTIVES

In line with requirements of transactional systems highlighted in [119], the

primary requirement for design of the prototype system is to provide

transactional support which guarantees that ACID properties are preserved in

NoSQL databases. The design also put performance metrics into consideration. As

such, the following characteristics represent non-functional requirements of the

prototype system.

• High-throughput which reflects a high rate of successful transactions per

unit time.

• High concurrency that do not violate the consistency and isolation

properties of transactions.

• Low latency and shorter response times in responding to client request.

These design objectives are in line with objectives II and III of this thesis outlined

in section 1.4 which include:

• Design a new framework for transaction management in NoSQL databases

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

85

• Develop and implement the proposed framework as a prototype system

using cloud data management tools and technologies

5.2 IMPLEMENTATION TOOLS AND TECHNOLOGIES

The prototype implementation makes use of different tools and technologies in

order to implement the various components of the proposed system such as TPE,

TSM, DMS, etc. The rationale for the choices of the various tools and technologies

are explained and justified as follows:

MongoDB –NoSQL Database:

The proposed system uses MongoDB to implement the cloud storage part or the

DMS layer. MongoDB is a NoSQL database that belongs to the document family

of NoSQL Databases (see section 3.2). It uses JavaScript Object Notation (JSON) as

its implementation language. MongoDB does not support multi-key transactions.

The prototype system can be implemented using other NoSQL databases. This

research chooses MongoDB for the implementation of some of the components

of the proposed system due to the following reasons:

First MongoDB is widely used in real applications and in industry. For instance

Ebay uses MongoDB to store metadata for all items advertised on their website2.

The UK Met office also uses MongoDB for storing climate data used in weather

forecasts3.

Second, the JSON notation of MongoDB allows relationships amongst data entities

to be expressed. However, MongoDB does not enforce this relationship i.e. it has

a flexible schema which is a key characteristic of NoSQL databases. Third,

MongoDB databases have a relatively higher speed (for simple operations) when

compared with relational databases [120]. This will help to achieve low latency for

operations. This is in line with the design objectives set out for the proposed

system.

2 https://www.mongodb.com/industries/retail
3 https://www.mongodb.com/industries/government

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

86

Programming Language:

The proposed system uses Python as a programming language in order to

implement the proposed system using the middleware architectural approach. In

the implementation, the TPE layer code is written in python language. The code

in the python modules defines a programing abstraction that implements the

different operations of a transaction (which are explained in section 5.3.1)

supported by the prototype. The python IDLE version used is Python 2.74.

MongoDB is written in JSON, therefore, to access the MongoDB database, the

pymongo api5 was installed. Therefore JSON scripts used to query the MongoDB

can be embedded into the python programming.

SQLite Database System:

The TSM is implemented using a combination of python and a lightweight

relational database, SQLite. SQLite can store information in memory. This makes it

faster and easier in processing transactions.

The python code implements the various constraints and interaction between the

TSM and the other components. It also generates and issues the transaction

timestamps. The lightweight relational database serves as a storage system for

the TSM. It stores transactional information of on-going and recently completed

transactions such as the transaction timestamps, transaction IDs and data items

involved in transactions. The lightweight database used is SQLite which can store

information in memory. This makes it faster and easier for processing

transactions. To access SQLite from python 2.7, the sqlite3 API6 was installed. To

update the database, SQL scripts are embedded in python.

Computer System and Hardware Specification:

The DMS storage layer is implemented on an 8GB RAM Linux Ubuntu system with

three replicas. The replicas are hosted on Ubuntu Juju7 which is a cloud hosting

Linux platform used to deploy, configure, manage, and scale cloud services on

4 https://www.python.org/download/releases/2.7/
5 https://api.mongodb.com/python/current/
6 https://docs.python.org/2/library/sqlite3.html
7 https://jujucharms.com/docs/1.24/about-juju

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

87

physical hardware. The nodes are connected via Ethernet to a MAAS (Metal as a

Service8) cluster and managed by a cluster master in a local area network. See

Figure 5.1 for the cluster controller (master) configuration. Figure 5.2 shows the

nodes in the cluster and their addresses managed in Ubuntu. Figure 5.3 shows the

configuration of one of the nodes (cgfk6.maas) in the cluster. Figure 5.4 shows a

putty connection to the MongoDB service running in Juju.

Figure 5.1: MAAS Head Controller Configuration

8 http://www.ubuntu.com/cloud/maas

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

88

Figure 5.2: Nodes in the cluster with their local addresses

Figure 5.3: Configuration of One of the Nodes - Address 10.0.0.110

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

89

Figure 5.4: MongoDB service running via Putty

The compute nodes on which the TSM and TPE are running have 16GB RAM and

Intel i7 3.40GHz processors. The diagram below shows the component set-up.

Figure 5.5: Hardware Setup of Proposed System

5.3 IMPLEMENTATION OF TRANSACTION OPERATIONS

This section explains the set of operations which are implemented (and

supported) – by the prototype system. The decision to implement snapshot

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

90

isolation using an entirely different component (the TSM) gives the system an

advantage of being able to centrally monitor the execution of transactions across

the system. This design also helps the system to easily identify all on-going

transactions. The TSM can know this by checking all transactions that have not

been issued a commit time. This feature is very strategic to the system as it allows

the system to introduce two new types of operations namely (i) read-latest and

(ii) update-latest. These two operations provide stronger consistency guarantees.

Also, operations executed in this mode are serializable. The operations supported

by the proposed system are explained below through various algorithms.

5.3.1 Types of Operations

In general, the operations supported by relational databases include Create, Read,

Update and Delete (CRUD). The ‘Create’ operation also known as an ‘insert’ adds

one or more record to a database table. Read operation is a ‘select’ operation

which retrieves the result of a query from the database. An Update operation

changes one or more existing record in a database. Delete operation removes an

existing record from a database. NoSQL databases support mainly ‘get’ and ‘put’

operations. A ‘get’ operation is equivalent to a ‘read’ while a ‘put’ operation can

be a ‘create’ and ‘update’. The operations supported by the prototype system are

explained below.

5.3.1.1 Read

The read operation which is equivalent to a read in CRUD is a simple ‘get’

operation. The TPE simply requests for a data item from the DMS using the key

identifier of the required data item. The DMS responds with the data to the TPE.

Read transactions may not reflect updates from on-going transactions. Since there

is no locking, data is always available but it may not always be consistent. This

means that a read operation does not put into consideration ongoing

transactions. As such, a read operation would only reflect any data item that has

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

91

been committed at the time of the operation. Below is the algorithm for a read

operation.

Algorithm Read

1. Function READ key
2. Generate UTID() (at TPE)
3. Send (UTID, key) to DMS
4. Value  Return (key, data_item)
5. Return Value
6. End function

An example of a read operation is retrieving a customer record from a banking

application. The user supplies an account ID which the system uses to identify the

record in the database. The Figure 5.6 shows a snippet of the read operation.

Figure 5.6: Read Operation Codes in Python

5.3.1.2 Read-latest

This research introduces a new type of read operation called the read-latest in

order to guarantee stronger consistency. The read-latest operation is also a form

of read operation albeit more complex than the simple read operation. The read-

latest operation aims to get the most recently committed value of requested data

and puts on-going transactions into consideration. Most concurrency control

techniques do not put into consideration ongoing transactions. Even in Locking,

systems still allow locked data, which may be stale due to ongoing transactions, to

be read. Before it responds to a request, a read-latest transaction checks the TSM

to ensure that there is no on-going transaction for that data item. The TPE sends a

request to the DMS. The DMS then contacts the TSM to confirm that there is no

on-going transaction on the data item requested. Recall from section 4.5 that the

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

92

TSM stores information on all running transaction and is able to monitor the

activities of each transaction. If there is none, the DMS responds to the TPE with

the data. If on the other hand there is an on-going transaction on the data item,

the DMS waits for the transaction to complete before responding to the TPE. The

read-latest operation may incur a slightly higher latency but it guarantees a

stronger level of consistency for read operations. To prevent unnecessary waits,

there is a maximum (configurable) upper bound time limit for every read-latest

operation. Once this is reached, the transaction would timeout and the DMS must

respond with a simple read-transaction or set the data unavailable in which case

the client can request a simple read operation. A read-latest operation will incur a

slightly higher latency than a read operation even if there are no on-going

transactions. This is because the read-latest operation makes an extra journey to

the TSM. To optimize the process of executing this operation, the TPE can

communicate directly with the TSM through its TSM controller. It can do this

simultaneously while requesting for the needed data from the DMS.

Using the earlier example, to retrieve an account, a user supplies the user account

ID. The transaction uses the ID to verify from the TSM if there is any ongoing

transaction on the user supplied ID. If there is, the transaction waits for a

specified amount of time. Otherwise, it returns the account details.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

93

Read-latest algorithm

1. Function READ-LATEST key

2. Generate UTID() for Ti
3. Send key to DMS
4. For each data item α in a read Ti, do:

5. If α exists in any on-going transaction Tj in TSMs record,
do:

6. Start counter
7. while counter < upper-bound time
8. wait for all Tj to commit
9. if counter >= upper-bound
10. respond α is unavailable
11. exit
12. else
13. once all Tj committed, respond with latest

value for α
14. else
15. respond with latest value for α
16. End Function

Below is a snippet of the code that implements the read-latest operation.

Figure 5.7: Read-latest operation

5.3.1.3 Write-New

Write-New operation is equivalent to create in the CRUD operations of a

database. It is a simple write issued to the DMS by the TPE. Since NoSQL

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

94

databases are schema-less, inserting a new record will automatically succeed even

if the table (or collection as the case may be) did not initially exist. A write-new

operation does not necessarily need to contact the TSM. The client sends the

request to the TPE and the TPE sends that data item to the DMS.

Write-New algorithm

1. Function WRITE-NEW (key, data-item)
2. Generate UTID() (at TPE)
3. Send (key, data-item) to DMS
4. Return (Ack)
5. End Function

5.3.1.4 Update

The update operation is a write operation that changes the value of an existing

data item. For an update to succeed, the data item must exist already. An update

operation starts with a read of the existing value of the data item. Therefore, an

update operation takes the key and the data item (provided by the client) as

arguments. The TPE requests for the data item from the DMS using the key to

identify the requested data item. The DMS then sends a start-time request to the

TSM. The TSM responds with the start time and the DMS then sends the data item

to the TPE, where the update takes place. The updates are then sent to the DMS.

As explained earlier, when an update takes place, and before it can commit, the

DMS must check with the TSM that no other transaction has occurred on that key

item. Otherwise the transaction aborts. Once the TSM guarantees that there are

no conflicting transactions, the TSM sends the commit timestamp. The data is

committed and an acknowledgement message is sent to the TPE. Below is the

algorithm for the update operation.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

95

Update algorithm

1. Function UPDATE (key, data-item)

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. DMS releases the data-item to the TPE
6. TPE performs all the updates and sends back to DMS
7. DMS applies update and proceeds to TSM
8. For each data item α in update Ti, do:

9. If α exists in any on-going transaction Tj in TSMs record, do:

10. If Tj commit-time between Ti start-time and Tnow (where
Tnow is current-time)

11. Send abort Ti
12. End Transaction
13. Else
14. Issue Ti commit-time

15. Commit Ti
16. Else
17. Commit Ti
18. End Function

Using the same banking application as an example, to perform an Update

operation, a user supplies the account ID of the account to be updated. The

system performs a read operation described in section 5.3.1.1 to retrieve the

data. The user then supplies the update information. The system then performs a

commit using the protocol explained in section 4.6.

5.3.1.5 Update-Latest

Like the read-latest, the update-latest is also a new type of operation that has

been implemented in the proposed system. The update-latest provides a stronger

consistency guarantee and it reduces the probability that a write operation would

abort. The TPE issues a write request with the key of the data-item to be updated.

The DMS checks that the data item exists and then reads that data item. It then

consults the TSM to know if there is any on-going transaction on that key-item. If

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

96

there is no transaction, the DMS responds to the TPE with the data and the TPE

performs the necessary update and sends it to the DMS. The DMS proceeds to

commit the data using the commit protocol highlighted in section 4.6. If on the

other hand, there is an on-going transaction, again, the DMS must wait for the

transaction to complete before the TSM issues a transaction start-time. Once a

transaction start-time is issued, the DMS can then proceed to send the requested

data item to the TPE. As in the read-latest operation, the proposed system sets a

maximum (configurable) upper bound time limit for every update-latest operation

in order to prevent unnecessary waits. Once this time is reached, the DMS must

respond with a ‘data unavailable’ message. Again, an update-latest operation may

also incur a higher latency than an update operation even if there are no on-going

transactions. This is because of the extra time it may take to wait for on-going

transactions to commit.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

97

Update Latest algorithm

1. Function UPDATE-LATEST (key, data-item)

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items) to DMS and TSM
4. DMS sends the UTID to the TSM to retrieve a start-time
5. For each data item α in a read Ti, do:

6. If α exists in any on-going transaction Tj in TSMs record, do:
7. Start counter
8. while counter < upper-bound time
9. wait for all Tj to commit
10. if counter >= upper-bound
11. respond α is unavailable
12. exit
13. else
14. DMS releases the data-item to the TPE
15. TPE performs all the updates and sends back

to DMS
16. DMS applies update and proceeds to TSM
17. For each data item α in update Ti, do:

18. If Tj commit-time between Ti start-time and Tnow

(where Tnow is current-time)
19. Send abort Ti
20. End Transaction
21. Else
22. Commit Ti
23. Else
24. Commit Ti
25. End Function

5.3.1.6 Multi Key Transactions

A Multi-key transaction is a transaction that involves more than one data key

item. As discussed extensively in chapter 2, NoSQL databases, because of their

simple data model (de-normalized data model), do not support multi-key

transactions. Thus, because of the lack of support for table joins, they do not

support multi-key transactions. Note that joins essentially involves multiple keys

from one or more tables. This shows that the support for multi-key transactions

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

98

represents a novel contribution of this work. The multi-key operation follows the

pattern of the update operation but involves an exchange of information between

two or more data items such as a transfer of funds from one account to another.

To perform this operation, a user follows the scenario 1 given in section 2.2. A

user supplies his account ID, the account ID of another user and the amount to be

transferred. The system performs a read operation on both accounts and applies

an update operation by deducting the amount from one account and adding it to

another account. The system also verifies that sum of both accounts before the

transaction is equal to the sum of both accounts after the transaction.

Recall, from section 4.3.1 and section 4.5, the TPE stores schema information in

the schema manager. Therefore, the TPE understands the application logic and

the relationships that exist between the entities data stored at the DMS.

Therefore the system can support applications to perform operations among

multiple keys. The multi-key operation pseudocode is shown below.

Multi-Key algorithm

1. Function Multi-Key (key, data-item) 1..n

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items 1..n) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. DMS releases the data-item(1..n) to the TPE
6. TPE performs all the updates and sends back to DMS
7. DMS applies update and proceeds to TSM
8. For each data item α in multi-key Ti, do:

9. If α exists in any on-going transaction Tj in TSMs record, do:

10. If Tj commit-time between Ti start-time and Tnow (where
Tnow is current-time)

11. Send abort Ti
12. End Transaction
13. Else
14. Commit Ti
15. Else
16. Commit Ti
17. End Function

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

99

As can be seen from these operations, the system considers consistency as a very

important aspect of transactions that cannot be violated. As such there are

consistency checks on most types of writes. The system relies on the performance

of the TSM to perform operations. The multi-key operation is a novel operation

that most NoSQL databases do not support. The operation allows applications

logic to be expressed at the level of the database and also ensures that the

consistency property of the database is preserved. The protocol explained in

section 4.8 guarantee that stale replicas are not involved in transactions.

The next section explains the various scenarios that can cause a transaction to

abort and how the system handles aborts to preserve consistency.

5.3.2 Aborts Scenarios for Operation

Recall that from the definition of snapshot isolation (section 4.2.1), that it does

not block operations of a transaction. Furthermore, read operations would always

be successful, i.e., read operations would always return a value. However, as an

exception, the read-latest operation introduced in this model may not necessarily

return a value due to its consistency guarantee. For each of the operations

described in section 5.3.1, an abort protocol can be triggered. Section 4.7 explains

three types of scenarios which can lead to aborts. This section would explain the

algorithm that each of the operations (with the exception of read operations)

would follow to implement any of the three types of aborts. A brief description of

the abort scenarios is reiterated as follows.

Ab-S1 – Occurs when a transaction is unable to retrieve a start timestamp.

Ab-S2 – Occurs when one part of the operations in a transaction fails thus violating

the atomic properties of transactions

Ab-S3 – Refers to when a transaction fails to get a commit timestamp from the

TSM.

The algorithms to implement the above mentioned scenarios in each of the

operations are explained in the next section. The Read-Latest and Write-New

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

100

operations do not implement any of the three abort scenarios because they do

not require a start or commit timestamp in their execution.

5.3.2.1 Abort Scenario Ab-S1

Update (and Update Latest) Operation

The protocol below shows how an update operation executes abort scenario Ab-

S1. Essentially, the update and update latest operations follow the same steps in

implementing this algorithm.

Update algorithm – Abort Ab-S1

1. Function UPDATE-LATEST (key, data-item)

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items) to DMS and TSM
4. DMS sends the UTID to the TSM to retrieve a start-time
5. If start-time is not issued
6. Execute abort
7. exit

Multi-key Operation

The algorithm for abort Ab-S1 followed by the multi-key operation is detailed
below.

Multi-Key algorithm – Abort Ab-S1

1. Function Multi-Key (key, data-item) 1..n
2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items 1..n) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. If start-time is not issued
6. Execute abort
7. exit

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

101

5.3.2.2 Abort Scenario Ab-S2

The Ab-S2 is executed when any of the operations of a transaction fails.

Multi-Key algorithm Abort Ab-S2

1. Function Multi-Key (key, data-item) 1..n

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items 1..n) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. DMS releases the data-item(1..n) to the TPE
6. TPE performs all the updates and sends back to DMS
7. DMS applies update and proceeds to TSM
8. If any operation fails, do:
9. Initiate rollback on all successful operations
10. Once rollback complete, execute abort
11. Exit operation

5.3.2.3 Abort Scenario Ab-S3

Update (and Update Latest) Operation

The abort Ab-S3 occurs when a transaction is unable to retrieve a commit time. As

in abort Ab-S1, the algorithm for Update and Update-Latest follows the same

procedure.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

102

Update Latest algorithm – Ab-S3

1. Function UPDATE-LATEST (key, data-item)

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items) to DMS and TSM
4. DMS sends the UTID to the TSM to retrieve a start-time
5. For each data item α in a read Ti, do:

6. If α exists in any on-going transaction Tj in TSMs record, do:
7. Start counter
8. while counter < upper-bound time
9. wait for all Tj to commit
10. if counter >= upper-bound
11. respond α is unavailable
12. exit
13. else
14. DMS releases the data-item to the TPE
15. TPE performs all the updates and sends back

to DMS
16. DMS applies update and proceeds to TSM
17. For each data item α in update Ti, do:

18. If Tj commit-time between Ti start-time and Tnow

(where Tnow is current-time)
19. Initiate rollback operation
20. Send abort Ti
21. End Transaction
22. Else
23. Issue Ti commit-time

24. if (Ti commit-time)  failed
25. initiate rollback operation
26. Send abort Ti
27. End Transaction

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

103

Update algorithm – Ab-S3

1. Function UPDATE (key, data-item)

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. DMS releases the data-item to the TPE
6. TPE performs all the updates and sends back to DMS
7. DMS applies update and proceeds to TSM
8. For each data item α in update Ti, do:

9. If α exists in any on-going transaction Tj in TSMs record, do:

10. If Tj commit-time between Ti start-time and Tnow (where
Tnow is current-time)

11. Initiate rollback operation
12. Send abort Ti
13. End Transaction
14. Else
15. Issue Ti commit-time

16. if (Ti commit-time)  failed
17. initiate rollback operation
18. Send abort Ti
19. End Transaction

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

104

Multi-key Operation

Multi-Key algorithm- Abort Ab-S3

1. Function Multi-Key (key, data-item) 1..n

2. Generate UTID Ti, (at TPE)
3. Send (UTID, key items 1..n) to DMS and TSM
4. DMS sends the UTID to the TSM and gets a start-time
5. DMS releases the data-item(1..n) to the TPE
6. TPE performs all the updates and sends back to DMS
7. DMS applies update and proceeds to TSM
8. For each data item α in multi-key Ti, do:

9. If α exists in any on-going transaction Tj in TSMs record, do:

10. If Tj commit-time between Ti start-time and Tnow (where
Tnow is current-time)

11. Initiate rollback operation
12. Send abort Ti
13. End Transaction
14. Else
15. Issue Ti commit-time

16. if (Ti commit-time)  failed
17. initiate rollback operation
18. Send abort Ti
19. End Transaction

5.3.3 Optimisation Decisions

In order to improve the performance of the system, certain design considerations

have been taken in the implementation of the proposed system. For instance, to

limit the number of aborts (or cascading aborts), the system introduces a variable

known as max-trax which is the maximum number of allowed (concurrent)

transactions that can take place on a key-item. Since the system makes use of

snapshot isolation, it implies that operations are never blocked. This can lead to a

high number of aborts when a particular data item is involved in many

transactions. However, in such situations, the conflict would only be detected

when requesting for a commit time. This can lead to a degrading performance

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

105

since transactions in this scenario have reached an advanced phase (applied

phase). When too many transactions are aborting at this phase, it becomes a

waste of processing resources. Once the number of on-going transactions

involving a particular data item is equal to the max-trax value (which is

configurable by application), the system would prevent transactions from

accessing that data item till some of the transactions are completed.

Also, the decision to put TSM controllers in both DMS and TPE means that both

components have access to the TSM. This decision is strategic as it means that the

TPE can also interact with the TSM. This will improve the performance of the

systems because when there is loss of information (such as a transaction

timestamp) on the TPE, the TPE can retrieve that information directly from the

TSM.

5.4 APPLICATION DOMAIN

The application domain is used to test and evaluate the proposed system. The

system designed implements a banking application known as the closed economy

workload similar to the implementation in [121] which is evaluated in the next

chapter.

Typically, a banking application will have multiple bank accounts and allow for

banking transactions to take place across bank accounts. Operations that can take

place on a bank account include checking accounts, cash deposits, cash transfers

and deductions. Operations in the application must be atomic and consistent i.e.

they must follow the ACID properties. These operations allows users to insert,

update and delete records i.e., users can perform CRUD operations. In addition,

users can perform multi-key operations such as transferring funds from one

account to the other. The application data is stored persistently at the DMS layer

which is the MongoDB database. Transactions take place at the TPE layer. So

when a user makes a transfer operation (which is a multi-key transaction), the

transaction takes the account details of both user and the amount to be

transferred as arguments. The TPE receives the operation from the client and

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

106

requests for the user accounts details from the DMS following the protocol in

section 4.6. After the transaction, the updates are sent back to the DMS. There

are two collections (tables are known as collections in MongoDB) in the DMS

which include: (i) accounts and (ii) transaction collections. Each document

(records are referred to as documents in MongoDB) in the database has multiple

attributes. The accounts collection contains the following attributes:

_id: This is a unique identifier for each document in MongoDB. Every document in

MongoDB must have an identifier attribute. When a new document is inserted in

MongoDB, the value of the identifier must be specified. If it is not specified,

MongoDB automatically assigns a value to the identifier (_id) attribute. In the

proposed system, this attribute is used as a unique identifier for each account

record. The unique identifier was generated using python codes.

Balance: The balance attribute is a user account attribute that stores the account

balance for each record.

PendingTransactions: This attribute is an array type that stores the unique

identifier for any ongoing transaction on that record i.e. it stores the transaction

ID for ongoing transactions on that data item. Once a transaction is completed, its

ID is pulled from the array of transaction IDs stored in this attribute. Since it is an

array type, it can store multiple values. When there is no ongoing transaction, the

value is an empty array ([]).

lastModified: As explained in section 4.8, every record contains the lastModified

attribute which is a timestamp data type. The attribute stores the commit

timestamp issued by the TSM for the most recently committed transaction on that

record.

Figure 5.8 below shows the record for a user account stored at the DMS.

Figure 5.8: Account Details for an Account User

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

107

The second collection stored in the DMS is called the transactions collection. This

collection stores information of all transactions that takes place in the system. The

collection contains the following attribute.

_id: This attribute, as mentioned earlier, is a unique attribute used to identify

each document. For the transactions collection, the value of this attribute is not

supplied by the user but automatically issued by MongoDB. This value is used to

identify each transaction and represents the transaction ID for the application.

State: This attribute stores the state of the transaction which was explained in

section 4.4. It is updated anytime the transaction state changes. The value of this

attribute is used to know the current state of any transaction. This includes

aborted transactions.

Value: The value attribute stores either the amount of money to be transferred

from one account to another in a multi-key transaction. However, for an update

operation, the attribute stores the new value supplied by the user which will be

set as the new balance for an account in the accounts table.

Source: The Source attribute, stores the account ID of the user account from

which the value would be deducted.

Destination: This attribute stores the account ID of the user account to which the

value would be added.

lastModified: The lastmodified attribute in the transactions document stores the

timestamp of the last time the transaction state was changed. This also allows the

system to monitor the time in which each operation in a transaction was

executed.

Figure 5.9 below shows the record for a transaction in the done state. The records

are also stored at the DMS.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

108

Figure 5.9: Transaction Records

The operations were implemented in the following methods.

ReadOp() – The ReadOp method takes a user account ID as an argument, and

returns the account details record for that account ID.

Read-LatestOp() – This method also takes a user account ID as an argument and

returns the account details for that account if there is no ongoing transaction.

UpdateOp() – The UpdateOp methods takes two arguments which includes the

account identifier and the new balance for that account. It returns a success

message or a failure message depending on the outcome of the transaction.

Update-LatestOp() – The Update-LatestOp methods also takes two arguments

which includes the account identifier and the new balance for that account. It

returns a success message or a failure message depending on the outcome of the

transaction. If there is an ongoing transaction, it waits for a user-specified time

before.

MultiKkeyTransactionOp() – The multikeyTransactionOp is a method that invokes

transaction that involves multiple key items and operations. It involves the

transfer of money from one account to the other and also maintains ACID

properties of a NST transaction (see section 4.1).

In order to maintain consistency in the operation of multi-key transactions, the

constraint holds that the total money in the closed economy is an invariant i.e.

when money is transferred from one account to the other, the transaction must

be atomic, leaving the database in a consistent state.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

109

5.5 SUMMARY

This chapter provided an analysis of the proposed system. The design objectives

which guided the approach taken in this system were clearly explained. The

proposed approach aimed to provide consistency and to maintain the ACID

properties of transaction. The system design put into perspective the fact that

cloud database systems need high availability and efficiency. Therefore, the

implementation ensured that availability was not sacrificed while trying to achieve

consistency. The implementation makes use of well-known industry tools and

technologies such as MongoDB and SQLite. The programming language used in

implementation, Python 2.7, includes libraries that can interact with MongoDB,

SQLite and a host of other cloud and relational databases. This provided a

seamless interaction between the components of the system. The cloud layer was

managed by Ubuntu Juju which is a cloud hosting platform that allows users to

easily manage nodes in a cluster.

The chapter also explained the different types of operation that is supported by

the prototype system. Three of these operations which are novel to cloud systems

include the read-latest operation, update-latest operation and the multi-key

operation. The algorithm followed in the implementation of these operations are

outlined and explained. Operations in any database can abort and the system

must have a way to handle such scenarios to preserve consistency. This chapter

explained the different scenarios that can cause an operation to abort. The

chapter then explains the procedure followed by the proposed system to handle

these scenarios for each of the operations.

Finally, this chapter explained the application domain which was used to

implement the prototype system. The domain simulates a banking application

which allows users to perform CRUD operations. The different components and

attributes used in the implementation were explained. Since the system uses

MongoDB to implement the DMS, the application stores its data persistently in

MongoDB. The different data entities used in the implementation were explained.

The next chapter explains the various experimentation and metrics used to

evaluate the system. The chapter also analyses the results of the experimentation.

IMPLEMENTATION OF THE NoSQL-TX SYSTEM

110

111

CHAPTER 6

EXPERIMENTAL EVALUATION

This chapter evaluates the proposed system using workloads derived from well-

known standard cloud benchmarks which include the YCSB (Yahoo! Cloud Service

Benchmark) and the YCSB+T (Yahoo! Cloud Service Benchmark and Transaction).

The results of the evaluation are documented in this chapter. The proposed

system is also evaluated in comparison to existing systems.

The evaluation of the proposed system is carried out by taking into account failure

free environment. That is, failures such as system, network communication, etc.,

are not considered. This is in line with most of the existing approaches which

consider failure free environment in the evaluation of transaction processing both

in the classical databases as well as cloud databases.

Section 6.1 explains the benchmark and the workloads used to evaluate the

proposed system. Section 6.2 explains the various experiments carried out and

presents the results of the experiment. Section 6.3 analyses the proposed system

in comparison with other similar systems.

6.1 EVALUATION BENCHMARKS AND WORKLOADS

The evaluation of the prototype system was carried out using a combination of

the two widely used benchmarks, YCSB [122] and YCSB+T [123] cloud

benchmarks. The YCSB benchmark is recognised as a standard benchmark used to

evaluate cloud database while the YCSB+T benchmark was developed as an

extension to the YCSB benchmark. The next section explains the two benchmarks

as well as the workloads used in the evaluation

EXPERIMENTAL EVALUATION

112

6.1.1 YCSB and YCSB+T Benchmark

The workloads developed for evaluating the proposed system, (explained in the

next section) were adopted from a combination of the YCSB and the YCSB+T

benchmarks. The YCSB is the most widely accepted cloud data benchmark and

was developed to evaluate performance of cloud data serving (distributed)

systems. The YCSB benchmark evaluates performance by focussing on the latency

of requests to the cloud database. The benchmark also aims to measure the

trade-off between latency and throughput in cloud systems. As such, some of the

workloads implemented in this evaluation were adopted from this benchmark.

However, the benchmark was not designed to evaluate transactions and

consistency, since most cloud databases do not provide transaction support. The

YCSB+T benchmark was therefore designed as an extension of the YCSB

benchmark to evaluate cloud databases that offer support for transactions. The

YCSB+T take into consideration, the need to preserve ACID properties during the

execution of operations in a transaction. Therefore, the YCSB+T benchmark is

designed to detect consistency anomalies introduced during the execution of the

transactions.

Therefore, the approach used in this evaluation is a combination of both

benchmarks. The next section explains the workloads.

6.1.2 Workloads for Experiments

The proposed system has five (5) types of operations which were explained in

section 5.3.1. The operations evaluated include the following:

Read: The read operation takes a data key identifier as an argument and returns

the details for that key. Read operations are never blocked and will always return

a result.

Read-Latest: This also takes a data key identifier as an argument and returns the

details for that key if there is no running transaction on that key item. If there is, it

EXPERIMENTAL EVALUATION

113

waits for a specified amount of time and returns a fail if the specified time is

elapsed and the transaction is still running.

Update: This takes a data key identifier and the detail to be updated as

arguments. It retrieves the data and performs an update on the data.

Update-Latest: Update-Latest also performs an update on a data item if there are

no running transactions involving that data item.

Multi-key: The multi-key transaction involves more than one data items and

operations. The execution of a multi-key transaction follows the constraints of a

NST transaction defined in section 4.1 and preserves the ACID properties of

transactions.

For read-latest and update-latest operations, an upper-limit value is arbitrarily

chosen by a user, explained in (section 5.3.1.2 and section 5.3.1.5). The upper

limit value determines how long an each of these two operations must wait for an

ongoing transaction before it times-out and decides to abort. This is similar to

timeout mechanisms applied in existing transactional protocols. For instance, in

the 2PC protocol, the coordinator and participants have to wait for message from

each other. To prevent unnecessary delays, the system protocol times out after a

certain amount of time. The termination and restart protocol (explained in section

2.4.1) determines how the system behaves when such timeouts occurs.

In choosing upper limit values for the Read-Latest and Update-Latest operations,

the following factors were put into consideration.

(1) A very high upper limit time means transactions may have a higher

latency which is not ideal for applications

(2) A very high upper limit time would mean that there would hardly be any

abort due to conflicts since the transactions would wait longer for on-

going transactions to complete. This will defeat the purpose of evaluating

the system as it would be difficult to evaluate how the system reacts to

conflicting operations.

(3) A very low upper limit time will make it difficult to see the difference

between an ordinary read (or update) transaction and a read-latest (or

update-latest) transaction.

EXPERIMENTAL EVALUATION

114

Putting these into consideration, the upper-limit time was set to two (2) seconds

and three (3) seconds for read-latest and update latest operations respectively.

The values were different for the two operations because it is expected that an

update operation would normally take longer to process than a read operation.

There is no generally accepted standard for setting transaction timeouts. It may

vary from one protocol (or application) to another.

As stated earlier, the workloads adopted for this thesis were a combination of the

workloads used in the YCSB and YCSB+T benchmarks. Workload A, B and C were

adopted from the YCSB benchmark. Workload E and G were adopted from YCSB+T

benchmark and was used in this thesis to evaluate performance difference

between strictly read operations and strictly write operations. Workloads D and F

were developed for the purpose of this research as both workloads are made up

of operations that novel to cloud database systems. The YCSB and YCSB+T

benchmarks do not contain these operations. The application domain used to

evaluate this system is closely similar to the YCSB+T benchmark which simulates a

banking application. Table 7.1 shows the workloads mixture used to evaluate the

system.

Table 6.1: Workloads for Evaluation

WORK LOAD TYPE OPERATIONS
A Read only Read 100%
B Read-heavy Read 90%, Update 10%
C Update heavy Read 50%, Update 50%
D Read Latest heavy Read latest 90%, Update

10%
E Update Only Update 100%
F Multi-key heavy Multi-key 50 % and

Update-latest 50%
G Multi-key transaction Multi key transactions

100%

The explanation of the operations in each workload is as follows.

Workload A: This workload contains only read operations. Therefore all the client

operations generated by this workload are limited to read operation i.e., 100%

read operation.

EXPERIMENTAL EVALUATION

115

Workload B: This workload contains a mixture of read and update operations.

This would help to assess if the system is optimized for read or for write

operations. 90% of the operations generated are read operations and the

remaining 10% are update operations. Therefore it is called Read-heavy.

Workload C: This workload also contains a mixture of read and writes operations.

However, the ratio of read to write operation is 1:1. Therefore, 50% of the

operations are read operations while update operations also represent 50%.

Workload D: Workload D aimed to assess the impact of the read-latest operation

on performance and latency. As stated earlier, the upper-limit time for read-latest

operation was set to two (2) seconds. Therefore, this workload was made up of

90% read-latest and 10% update operations.

Workload E: This workload is made up of only update operations. The Workload is

compared with workload A to compare read versus write performance. The

workload is therefore 100% update operations.

Workload F: This workload is a mixture of multi-key operations and update latest

operations. Both operations a write operations and is designed to see the

performance of the system under heavy writes.

Workload G: Workload G is 100% multi-key operations. This workload is carried

out to assess the impact of maintaining ACID properties on the system.

Each of these workloads was run on various experiments based on certain metrics

which are explained in the next section. These metrics are used to evaluate the

system.

The data to be used for the evaluation was loaded into the data management

store (DMS). For workloads A, B, C, D and E, one thousand (1000) unique data

items were loaded into the system while for workloads F and G, two thousand

(2000) unique data key items were loaded into the system. Workloads F and G

both contain two thousand data items because these workloads include multi-key

operations which involves multiple key items. For a cloud system, one thousand

(or two thousand) key items are relatively low. However, this number was chosen

because the lower the number of data items involved in transactions, the higher

EXPERIMENTAL EVALUATION

116

the chances of a conflict. This would allow us to evaluate the consistency of the

system. For each of the workloads, one thousand requests per client are

generated. The requests are randomly generated to perform operations on the

pool of data loaded into the system. The requests are generated for 1, 2, 4, 8, 16

and 32 clients to check the performances of the system under load (each client

generates one thousand requests). Therefore, at 32 clients, with each client

generating one thousand requests, total workload generated will be thirty two

thousand (32,000) requests. Table 7.2 shows the total number of operations

generated by the clients. In the YCSB+T benchmark, performance of transactions

were measured from one (1) to sixteen 16 clients. However, for this thesis, each

experiment is extended to thirty-two (32) clients. This is to add extra load to the

system.

Table 6.2: Number of Clients and Operations Executed

Number of Clients Operations Generated per

Clients

Total Number of

Operations Executed

1 1,000 1,000

2 1,000 2,000

4 1,000 4,000

8 1,000 8,000

16 1,000 16,000

32 1,000 32,000

6.2 EXPERIMENTS AND RESULTS

Based on the above workloads, various experiments have been conducted in

order to evaluate the proposed approach in relation to the objectives of this

research set out in Chapter 1.

Different sets of experiments are conducted by taking into account different

factors. These include:

EXPERIMENTAL EVALUATION

117

Set 1: Number of transactions per second:

This experiment measures the throughput (i.e. number of completed transactions

per second) that the proposed system can handle for each of the workloads. All

the workloads are run, and the number of completed transaction per second is

recorded.

Set 2: Latency of each operation

This set of experiments measure the latency each operation in each of the

workloads while varying the number of client threads. The latency of each

operation measures the average time it takes to complete an operation.

Set 3: Percentage of total completed transactions

As stated earlier, the experiments assume a failure free environment. However,

the evaluation also considered that there are situations which would lead to

transaction aborts. This set of experiment measures the percentage of operations

in each workload that ends with a successful commit.

Set 4: Number of failed transactions

This experiment measures the total number of transactions that were aborted for

each of the workloads.

Set 5: Distribution of failed transactions

This set of experiments measures the distribution of aborted transactions. Recall

from section 5.3.2, that there are three scenarios which can lead to aborts. This

experiment measures the percentage distribution of each of these scenarios that

caused the aborts.

Set 6: Overall latency of each workload

These experiment measures the total time it takes for each of the workloads to

complete executions. Table 6.2 shows the total number of operations that are

executed for each operation.

EXPERIMENTAL EVALUATION

118

Set 7: Consistency Overhead

The consistency overhead measures the performance cost (measured by latency

of workloads) of implementing consistency in the system. The experiment

compares the latency of an update operation performed directly on the DMS with

the latency of update operations performed via the TPE. Operations performed

via the TPE implements snapshot isolation and provides stronger consistency

guarantees.

Set 8: Anomaly scores

The consistency of the system is evaluated by measuring the correctness multi-

key transactions (workload G). The correctness of transactions will be evaluated

on varying number of clients (using 1, 2, 4, 8, 16 and 32, client threads). This will

involve a consistency check on the records in the DMS to determine if there is any

anomaly. An anomaly is scenario in which the system deviates from the expected

behaviour which could affect the consistency of the system. For instance, if a

transaction fails to complete a roll back before it aborts, this represents an

anomaly and leaves the database in an inconsistent state. The calculation for the

anomaly score is adopted from the YCSB+T benchmark. An anomaly score is

defined in [119] as the number of anomalies that is introduced into the system

during the run of the workloads. This evaluation is carried out after each run of

workload G. The expectation is that a consistent system should have an anomaly

score of zero.

6.2.1 Experiment – Set 1

This experiment evaluates the ‘number of transactions per second’. The following

table (Table 6.3) shows the throughput (i.e. number of transactions per second)

that the prototype system can handle for each of the workloads.

EXPERIMENTAL EVALUATION

119

Table 6.3: Total Number of Completed Transactions per Second

Note that the YCSB+T and YCSB benchmarks do not specify the size of data use for

transactions. However, the average size of each key item (or document as in

MongoDB) used in each operation is 112 bytes. Each multi-key transaction

contains two key items (and 4 read and write interleaved operations). The data in

the table above is expressed as a graph below to show the relationships between

the workloads.

Figure 6.1: Transactions per Second

Figure 6.1 above shows the number of operations (and transactions) per second

the prototype system can handle. The figure also shows that the system is highly

optimised for reads. Other operations such as the Update, Read-latest, Update-

Latest and Multi-key transactions are relatively slower because they provide a

stronger consistency guarantee. In order to achieve that, they incur extra message

Workload A Workload B Workload C Workload D Workload E Workload F Workload G
(Read 100%) (90% read, 10% Update) Update heavy (90% read-latest, Update 10%) (Update 100%) (50% multi -key, Multi key (100%)

1 128 28 8 31 4 5 3
2 207 56 10 52 5 8 4
4 206 59 11 57 5 6 4
8 164 46 9 54 5 8 5

16 146 39 11 52 5 5 6
32 134 47 11 42 5 5 5

No of Clients

EXPERIMENTAL EVALUATION

120

communication and processing delays. Each of these operations must contact the

TSM for information on previous transactions and wait for the response of the

TSM before they can progress. This introduces some form of latency to the

system. However, this is a trade-off that must be made for the system to

guarantee consistency. For example, a simple update operation without any

consistency check will take an average of 0.009s/ operation while adding

consistency check will increase the average time for a transaction to 0.2s. This is

because adding consistency will mean every transaction must make at least 2 trips

to the TSM. The additional latency, Lu, incurred by an update (update and update

latest) operation with consistency is explained with the equation below.

Lu = [4 Ttsm + Tst + Tct] (6.1)

Where Ttsm is the time taken for a network message trip between the DMS and

the TSM (i.e. Each round trip to receive a timestamp from the TSM represents 2

network messages journeys to and fro), Tst is the time taken for the TSM to

process and issue a start time and Tct is the time taken for the TSM to process and

issue a commit time. Ideally, it is expected that Tct would be greater than Tct

because before Tct is issued, the TSM must check all on-going operations as well as

operations that started after the current operation start time to ensure that there

are no conflicting operations. For read operations, the latency is lower because a

read operation does not need any form of contact with the TSM.

The equation is slightly more complex with multi-key transaction because a multi-

key transaction involves multiple data items. It involves a new variable Nd which

is the number of data items involved in a transaction. Therefore, for a multi-key

transaction, equation (1) above is modified as follows:

Lu = [(Nd * 4 Ttsm) + Tst + Tct] (6.2)

The system is able to handle roughly 207 read operations per second at its peak.

For write operations (update, update-latest and multi-key), the number of

transactions in a second is reduced. For instance, the result shows that the

throughput of Workload G is about six transactions per second. This is expected as

a write operation would definitely incur higher latency that read operations due

to the forced-writes or logs involved. Also, the new operations read-latest and

EXPERIMENTAL EVALUATION

121

update latest have lower level of throughput than read update operations

consecutively. Again this is an expected behaviour. These two operations give

users the power to determine the level of consistency that they fill would be

suitable for their application. Thus, a higher value for the upper-limit would lead

to a stronger the consistency guarantee. However as stated earlier on, this would

be a trade-off on latency as the transaction can be slower depending on the

number of ongoing transactions on that data item. This approach to calculating

the network latencies has been used in previous research. For instance in [16], the

latency various protocols were calculated using this approach. The performance

of 2PC is measured using the number of messages exchanged, forced-write

operation, etc.

Figure 6.2: Workload F vs. Workload G

6.2.2 Experiment – Set 2

This experiment measures the average time taken to complete an operation for
each of the workloads.

EXPERIMENTAL EVALUATION

122

Figure 6.3: Average latency per transaction

The Figure 6.3 above shows that a read transaction will take an average of 0.006

seconds, an update transaction will take an average of 0.2 seconds and a multi-

key transaction will take an average of 0.3 seconds to complete. This shows that

the system is able to provide a lower latency than some existing systems. For

instance, Megastore [51] has a latency of about 0.4 seconds for a write operation

and up to tens of milliseconds for read operations which is relatively higher than

the proposed system.

6.2.3 Experiment – Set 3:

This experiment evaluates the “Percentage of Total Completed Transactions”. As

stated earlier, for each of the workloads, one thousand requests were generated

per client. The graph in Figure 6.4 shows the percentage of requests that were

completed for workloads A - F. A completed request means operations and

transactions that were committed i.e. read operations that returned a result and

successful write operations (and transactions). Recall from the definitions and

constraints of a NST in section 4.1 that a NST is of type seq (Begin | OPi | Cmt |

Abt) with the condition that either Cmt (commit) or abort (Abt) occurs only once

within the sequence. The formula below shows the calculation for the percentage

transaction completion rate PTcr.

 PTcr = [(Nct / Nr) * 100] (eq. 3)

EXPERIMENTAL EVALUATION

123

Where Nct is the total number of completed transaction per workload and Nr is the
total number of client requests issued.

Figure 6.4: Percentage of completed transactions

For read operations (workload A), all requests were completed without any

aborts. This is in line with the operations in snapshot isolation as explained in

section 5.1.1. However, for other workloads, there were a few aborted operations

due to failure of the TSM to issue start-time or commit-time. However, most of

the transactions were able to maintain above 99% of completion with the

exception of workload G which is in Figure 6.5 below.

Figure 6.5: Percentage throughput of Multi-key transactions

EXPERIMENTAL EVALUATION

124

Workload G had relatively lower percentage throughput (PTcr) when compared to

other workloads. Again, this is expected as the multi-key operation is a

transaction involving more than one data items and multiple operations. Also

recall from definition one in chapter four, a NST is a sequence of operations which

are executed in a way such that all of them are successfully completed or none at

all. This is to preserve the atomicity property of transactions. As such, it is

expected that a multi-key operation will have a lower throughput than other

operations. However, even with thirty-two clients (32,000 operations) the system

is able to process to completion over 80% of transactions.

6.2.4 Experiment – Set 4

The figure below shows the total number of aborted transactions for workloads A

to F.

Figure 6.6: Total Number of Aborted Transactions

The figure 6.6 shows that there were no aborted operations in workloads A. All

other workloads show relatively low numbers of aborted transactions. The Figure

6.7 below shows that multi-key transactions have a relatively higher number of

aborted transactions when compared to other workloads. Figure 6.7 also shows a

EXPERIMENTAL EVALUATION

125

comparison between the number of aborted transactions in workload A (read

only operations) and workload G (multi-key operations).

Figure 6.7: Workload A vs Workload G (Aborted Transaction)

Generally, most of the aborts were as a result of the inability of the TSM to meet

up with the speed of incoming request when issuing transaction start-times.

When an operation is unable to receive a start timestamp, it will lead to an abort

type Ab-S1 explained in section 4.7. This caused a very high percentage of the

aborts as most of the aborted transactions occurred when the transaction was in

the initial state. Also, because the multi-key transactions involved multiple data

items, each of these data items could be involved in other transactions which

would lead to a higher number of aborts in workload G. Future work will

implement queues to control the rate at which the client requests arrive at the

TSM. This can improve the rate of transaction completion but will however incur a

higher latency.

The number of Ab-S2 and Ab-S3 aborts was very low. The main cause of an Ab-S3

abort is when one part of a transaction should fail leading to a total abort of the

operation. On the other hand an A3 abort occurs when a transaction is not issued

with a commit timestamp mainly as a result of a conflicting transaction. The rate

of data conflict occurrence (transactions aborted at “applied” state) was very low

as such; transactions that aborted at the point of retrieving transaction commit-

EXPERIMENTAL EVALUATION

126

time were very rare. This is because for this type of failure to occur, another

transaction must have its commit-time in the interval between the start-time and

commit time of an ongoing transaction. For instance, for an abort Ab-S3 to occur

on a transaction Ti, then a transaction Tj must have its commit time in the interval

S (see figure below) and must contain one or more data items in transaction Ti.

Figure 6.8: Period between transaction start time and commit time

Where S is interval/period where the transaction Ti takes place, Ti start is

transaction i start time and Ti commit is transaction i commit time.

As Figure 6.8 above shows, for a multi-key transaction which has the highest

latency, S = 0.3s. Since our request was pulled randomly from a set of one

thousand data, the probability of Ab-S3 happening was very low. The next reading

shows the distribution of the aborted transactions.

6.2.5 Experiment – Set 5

This set of experiments measures the distribution of aborted transactions. As

mentioned earlier, the three types of aborts that can occur include Ab-S1, Ab-S2

and Ab-S3. Abort Ab-S1 has the highest frequency. As explained, an abort Ab-S1

occurs when a transaction (or operation) does not get a start timestamp. At this

stage, the transaction is in an initial phase. As soon as a start time is issued, a

transaction enters into a pending state where write operations take place. If any

part of the write operation fils, then a rollback would begin, followed by an abort.

This is abort Ab-S2. If all operations are successful, the transaction moves into an

applied state and proceeds to retrieve a commit time from the TSM. Failure of a

transaction to retrieve a commit time will lead to abort type Ab-S3. Most of the

aborts however are caused by the TSM. As such, for workloads B and C, result

showed that most of the aborts occurred when the transaction was still at initial

Ti start Ti commit
S

EXPERIMENTAL EVALUATION

127

stage. This was because the transactions were unable to receive a start-time

because the TSM could not meet up with the speed of the request. The TSM

therefore represents a bottle neck and a single point of failure for the system.

Future work will look at ways in which the TSM can be further optimised, in order

to ensure proper synchronization across replicas of the TSM. The table 6.4 below

shows the state at which trasactions were when they were aborted.

State Workload A Workload B Workload C Workload D Workload E Workload F Workload G

Initial 0 99.4 % 99.6% 98.3% 95.5% 93.37% 99.7%
Pending 0 0.6% 0.4% 1.7% 0.5% 6.34% 0.3%
Applied 0 0 0 0 0 0.29% 0
 0 100 100% 100% 100% 100% 100%

Table 6.4: Percentage distribution of Transaction state when abort took place

The diagram above shows that a very high percentage of the total aborted

transactions in each workload took place when the transactions were still in their

initial state. Though this affects the throughput but it does not affect the

consistency of data. That is, in the initial state, transactions do not manipulate

(update) data and thus there is no risk of data inconsistency.

6.2.6 Experiment – Set 6

This reading evaluates the total time taken for each of the workloads to complete

one thousand requests per client. The latency measured includes a combination

of both committed and aborted requests. The Figure 6.9 below displays the

results for latency of total request for each of the workloads. The results show

that the system is able to process clients request at relatively low latencies. The

system can complete thirty-two thousand (32,000) read transactions in about 236

seconds. For a single client, the system can process one thousand read operations

in just less than 8 seconds.

EXPERIMENTAL EVALUATION

128

Figure 6.9: Latency of Workload Requests

6.2.7 Experiment – Set 7

This experiment measures the performance cost of implementing consistency.

The Figure 6.10 below compares the latency of a simple update operation on the

DMS (with no consistency) with the latency of our update operation which is able

to guarantee stronger consistency by implementing snapshot isolation (using the

TSM). This result shows the overhead (in terms of latency cost) involved in

guaranteeing consistency. The Figure 6.10 shows that in order to maintain

consistency, the system incurs a higher level of latency due to the extra

processing and messaging time. See equation (6.1) of section 6.2.1. However, this

is a trade-off between latency/performance and guaranteeing stronger

consistency.

Figure 6.10: Transactional Overhead of Update Operations

EXPERIMENTAL EVALUATION

129

6.2.8 Experiment – Set 8

An anomaly occurs when the system deviates from its expected behaviour leading

to errors and violating consistency guarantee provided by the system. As

mentioned earlier, the method for calculation for anomaly was adopted from the

YCSB+T benchmark and was also adopted in [121]. An example of anomaly in this

case is if a transaction aborts mid-way and the rollback does not occur. Another

anomaly that can occur is the failure of the TSM to detect conflicts in transactions.

As mentioned section 5.4, the implementation domain used to evaluate the

prototype system known as the closed-economy workload. This is also adopted

from the YCSB+T benchmark that models a banking environment. The formula for

calculating the anomaly score is given below.

Where ϒ = simple anomaly score, Sinitial = initial sum of all the accounts, Sfinal =

final sum of all the accounts and ɳ = number of operations executed. The table

below shows the anomaly score for multi-key workloads.

Number of
Clients

Number of
operations

Initial sum Final sum Anomaly
score

1 1000 400000000 400000000 0
2 2000 400000000 400000000 0
4 4000 400000000 400000000 0
8 8000 400000000 400000000 0
16 16000 400000000 400000000 0
32 32000 400000000 400000000 0

Table 6.5: Anomaly Score

The formula is a perfect fit for evaluating the consistency of multi-key transactions

as a multi-key transaction must leave the database in a consistent state. In the

banking application domain, the total amount of money in the economy is an

invariant. Therefore, during transfer of funds from one account to the other

(which is essentially a multi-key transaction), the amount deducted from one

EXPERIMENTAL EVALUATION

130

account must be added to another account to complete the transaction

atomically and leave the database in a consistent state. As such, the sum of all

accounts must remain an invariant irrespective of the number of operations (or

transfers in this case) executed. Therefore, any difference between the initial sum

of accounts and the final sum of the accounts after the execution of the workload

would imply that the database is in an inconsistent state. The anomaly score is

however calculated in relation to the number of operations because the higher

the number of request, the higher the possibility of inconsistencies. Table 6.5

shows that our system maintains an anomaly score of zero irrespective of the

number of clients or number of operations. This shows that the system has a

strong consistency guarantee with no errors. The price of this however is a slightly

higher latency for transactions. A comparison of the anomaly scores derived from

this evaluation with anomaly scores for ReTSO in [121] shows that this system

does better than ReTSO with respect to consistency guarantees. The experiments

were designed to identify the anomalies present in the execution of operations.

The results show that 11% of the total number of failed transactions was due to

consistency anomalies in ReTSO.

6.3 ANALYSIS OF THE PROPOSED SYSTEM AND EXISTING
APPROACHES

In this thesis, the evaluation of the proposed system is carried out using two

standard benchmarks, YCSB and YCSB+T, rather than comparing it to a single

existing approach. The evaluation therefore provided an in-depth analysis of the

various features of the proposed approach and has determined that the proposed

approach has met the objectives set for this research.

Further, the decision of not restricting the evaluation of the proposed approach to

a single existing approach is that there are significant differences in the

transaction models, protocols, design and implementation of the proposed

system and those of existing systems.

The architecture of the system implemented in this thesis is similar to the

architecture in Deuteronomy [102] and Megastore [51] which follows the

EXPERIMENTAL EVALUATION

131

middleware approach explained in section 3.3.2. The rationale behind the choice

of this middleware architecture is that it allows our system to separate

transactional functionalities from storage functionalities. However, the method of

implementing transactional semantics deviates from the implementation in

Deuteronomy [102] [113]. Deuteronomy makes use of data locking which adds

extra overheads and reduces concurrency.

The proposed system implements transactional semantics in a way similar to

[104] using an optimistic concurrency control technique which allows for higher

level of concurrency. Compared to the approach in [104] , the critical and novel

aspect of the implementation in this thesis is the commit ("lastmodified")

timestamp parameter which is associated with every data item – a commit

timestamp that allows the proposed system to identify the replica with the latest

version of any key item. Since the prototype system does not follow the one-copy

serializable transaction model in [111], the “lastmodified” timestamp parameter

becomes an important aspect of our system for maintaining consistency. This

removes the extra effort required to maintain one-copy serializable transactions

and does not jeopardize the consistency of the database. Maintaining one-copy

serialization can affect availability negatively since replicas are not allowed to be

out of date. This can lead to rejecting transactions when a replica is failed.

 Moreover, the proposed system incorporates a Timestamp Manager, similar to

ReTSO [104] which allows the system to manage transactions across the system.

ReTSO also makes use of snapshot isolation but has a different architecture and

different set of operations. The proposed system design has taken advantage of

this centralized time manager to introduce new types of operations called update-

latest and read-latest. A brief comparison with ReTSO shows that ReTSO has a

higher throughput than the proposed system [104]. However, ReTSO stops short

of providing multi-key transactions and cannot guarantee consistency at the level

of our system.

Megastore [51], G-store [100] and [106] all implement transactions using the

middleware architecture as in our system, however, transactions can only occur

among data in a subset of the total data in the system (typically among data that

share a common boundary). The proposed system can implement transaction

EXPERIMENTAL EVALUATION

132

across all the data items in the system and does not limit transactional capabilities

to a subset of data (or entity groups). As stated earlier, experimental results also

shows that the proposed system has a lower latency per operation than

Megastore [51]. The results show that Megastore has a write latency of about 0.4

seconds and read latency of up to tens of milliseconds. The proposed system has a

write latency of between 0.2 and 0.3 seconds and a read latency of 0.006 seconds.

6.4 SUMMARY

The aim of this research was to implement transactions in a NoSQL cloud

database. In line with the design objectives highlighted in section 5.1, the

prototype implementation aimed at achieving high availability, high concurrency

control without sacrificing consistency. This evaluation has been able to prove

that these objectives were met. The above results show that this system is able to

provide multi-key transaction support on a cloud database.

In summary, the system is able to reliably manage transactions with ACID level

consistency. When a failure occurs or a conflict happens in a transaction, the

system is able to detect it. It sends the transaction into a “cancelling” state and

initiates rollback action. Rollbacks have been designed to be idempotent. On

completion of a rollback action, the system changes the transactions state to

“cancelled”. Also, as shown in [111], the prototype model can also be

implemented using other key-value stores.

133

CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis researched into cloud computing technologies, in general, and NoSQL

databases, in particular. NoSQL databases were designed mainly to solve

problems of big data such as efficiency, availability and scalability. Though

classical relational databases ensure strong consistency of data and support

transactions they were found to be inappropriate to meet the requirements of big

data. The architectural style and design of NoSQL databases allow them to store

large volume of big data and to provide high efficiency, availability and scalability

in the processing of big data but at the cost of data consistency and a lack of

support for transactions. The research carried out in this thesis has clearly

identified the need and importance of transactional support for NoSQL databases.

Further, existing research [19] has stressed for the support of transactions in

NSQL databases and the golden standard of ACID properties.

This research addressed the problem of implementing ACID transactions in NoSQL

databases. In order to address this problem the research followed appropriate

methodological approach.

The challenges with NoSQL databases and their design decisions were thoroughly

analysed and understood. The research problems were identified based on an

extensive review of existing literature and state-of-the-art systems. With an in-

depth understanding and appreciation of the problem area, the research

proceeded to propose a solution to implementing ACID transactions in NoSQL

databases. The constraints of the proposed systems were clearly defined and

specified. Based on these constraints, the prototype system was developed,

implemented and tested. The system was then evaluated using standard cloud

database benchmarks. The results of evaluation show that the system was able to

process transaction efficiently and maintain high level of consistency.

CONCLUSION AND FUTURE WORK

134

This chapter outlines the contributions made by this research and critically

analyses the system and highlights its limitations. Finally, this chapter suggests

ways in which the system can be improved. These improvements serve as a basis

for future research opportunities.

7.1 CONTRIBUTIONS

The following are the contributions made by this thesis.

1. The definition of a new Multi-Key transaction model for NoSQL systems:

This thesis defined a model for implementing transactions in NoSQL

databases (see chapter 4). The approach is different to others in that it does

not sacrifice consistency of the system as most NoSQL databases do. The

theoretical model for the implementation of this model was defined in

section 4.1.

2. Development of a loosely-coupled architecture that implements

transaction logic using a middleware approach: To be able to achieve the

defined multi-key transaction model, this thesis developed and

implemented an architecture which contains different components that

interact with each other to achieve the defined model. Each of these

components has specific duties and functions which were explained in

section 4.3.

3. A new protocol for asynchronous replica management: Maintaining

consistency among replicas of a database is non-trivial. Section 4.8 explains

a new protocol for managing replicas designed and implemented in this

thesis. The protocol makes use of the Time Stamp Manager (TSM)

component of the system to monitor and identify replicas that are stale. The

stale replicas are not allowed to be involved in transactions until they are up

to date.

4. The development of new types of operations (read and write) that have

stronger consistency guarantee which can be adjusted based on user

CONCLUSION AND FUTURE WORK

135

requirement: Each of these novel operations allows users/application to

determine their level of consistency and latency. This thesis outlined the

protocol followed by these operations in section 5.3.1.

5. The development of a prototype system using real NoSQL system,

MongoDB, which is evaluated using the YCSB+T benchmark based on

standard Yahoo! Cloud Services Benchmark (YCSB). The proposed approach

(NoSQL-TX) was implemented using cloud technologies and languages which

include MongoDB, Python, SQL and JavaScript. The results show enhanced

consistency and performance.

The proposed approach is suitable for applications that need transactions and

strong consistency. The approach can also work with applications that have

interactions between different key items. For instance, an online application that

allows multiple users to buy and sell their items. In such applications, there would

be interaction among user IDs. Also, the system can be used to manage an online

shopping application where users can bid for certain items. In such applications,

an item remains available even when a user has put in a bid for it. However, as

soon as the user buys the item, it becomes unavailable. The Time Stamp Manager

(TSM) can help the system to determine which user has paid for the item first

(using the commit timestamp) and then reject all other bids. The TSM can also

make bidders aware about the number of bids currently on that system. This is

similar to an application that is used to book seats on a flight during checking in.

Multiple passengers can see a seat as available until the first passenger books the

seat.

7.2 CRITICAL ANALYSIS

This section provides a critical analysis of the system being developed in this

research. The analysis on one hand provides a critique of the proposed system

and on other hand it sets the directions for future work.

First, the proposed system is built around a single NoSQL database, called

MongoDB. Though this research provided a justification of the choice for using

CONCLUSION AND FUTURE WORK

136

MongoDB, the proposed system could have been validated using some other

NoSQL databases. As mentioned earlier, MongoDB is a document class NoSQL

database and allows relationships among data entities to be expressed. As a

result, the model implemented in this work may not necessarily work with all

NoSQL databases. Some NoSQL databases do not allow relationships among data

objects to be expressed and this model may not be suitable for such databases.

This represents a limitation of the system.

Second, some of the components of the prototype system could have been

implemented in a way so that they can cope with increasing number of incoming

transactions. For instance, the Time Stamp Manager was not fully optimised to

keep up with the speed of incoming requests especially when the number of

requests has increased. The reason for this is that before the TSM issues a commit

time, it has some processing work to do. It must check for conflicts among

ongoing transaction as well as recently completed transaction. Ideally, when two

or more transactions approach the TSM at the same time, the TSM tends to

queue the transactions. However, when the number of concurrent transactions

gets very high, the TSM tends to reject requests. In addition, the TSM could have

been replicated in order to survive possible failures. Currently the proposed

system uses a single TSM which is susceptible to failures.

To mitigate these limitations, the next section outlines possible solutions that

future research can explore.

7.3 FUTURE WORK

This section explores the various options that can be implemented to optimise the

model of transaction processing proposed by this research. The suggestions are

explained below.

Controller - Implementing a queuing system that can manage traffic between

components of the TSM can improve the transaction throughput (rate of

completion) of the system. The requests can be sent through a queue in such a

way that as the speed of incoming request increases, the requests are sent

CONCLUSION AND FUTURE WORK

137

through queues to prevent loss of transactions. This can have a slight effect on

latency but can improve the rate of completion of request. One of such

technologies that can be implemented in our system includes rabbitMQ [124].

RabbitMQ is a messaging system that allows applications to connect to each other

and scale.

Optimization of messaging processes – In implementing transactions, there are

message exchanges between components of the system. The process of

messaging (and information exchange between the DMS, TPE and TSM) increases

latency of operations, particularly write (updates and multi-key) operations.

Future research should look into how this information exchange can be optimised

in order to reduce the number of network trips.

Main Memory processing for TSM – To help the TSM speed up its processing, the

TSM can be designed to store and process its data from main memory. This will

reduce disk latency and overheads caused by disk I/O. The design of the system

included this feature however the prototype system stored its components on

hard disk to prevent failures and loss of data. Also, the prototype system was

implemented on commodity servers. It is believed that if the time stamp manager

(TSM) is implemented on a high performance system, it will improve the

throughput and performance of the system.

Replicating TSM – As mentioned earlier, the TSM represent a single point of

failure for the system. If the TSM should fail, transactions will never be issued with

a start-time or commit-time and therefore cannot progress. Future work should

consider implementing multiple TSMs to process transactions when the rate of

client requests gets very high. The TSM can also be replicated for fault tolerance.

REFERENCES

138

REFERENCES

[1] D. W. Cearly and M. J. Walker, “The Top 10 Strategic Technology Trends for

2015,” Gartner Press Release, 2015. [Online]. Available:

https://www.gartner.com/doc/2966917?srcId=1-3132930191#-

1012988714. [Accessed: 03-May-2016].

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art

and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18,

2010.

[3] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud

computing,” Commun. ACM, vol. 53, no. 4, p. 50, 2010.

[4] D. J. Abadi, “Data Management in the Cloud : Limitations and

Opportunities,” Bull. IEEE Comput. Soc. Tech. Commitee Data Eng., pp. 1–

10, 2009.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and Technology,”

2011.

[6] The Open Group, “Service Oriented Architecture.” [Online]. Available:

http://www.opengroup.org/subjectareas/soa. [Accessed: 01-Feb-2016].

[7] D. Kossmann, T. Kraska, and S. Loesing, “An Evaluation of Alternative

Architectures for Transaction Processing in the Cloud,” Proc. 2010 Int.

Conf. Manag. data - SIGMOD ’10, p. 579, 2010.

[8] J. Hamilton, J. M. Hellerstein, M. Stonebraker, and J. Hamilton,

“Architecture of a Database System,” J. M. Hellerstein, vol. 1, no. 2, pp.

141–259, 2007.

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and

Recovery in Database Systems. Boston, MA, USA: Addison-Wesley

REFERENCES

139

Longman Publishing Co., Inc., 1986.

[10] R. Smith, R. Harrison, S. Wood, D. Sussman, A. Fedorov, S. Murphy, and

Home, Professional Active Server Pages 2.0, 2nd ed. Birmingham, UK, UK:

Wrox Press Ltd., 1998.

[11] A. Ogunyadeka, M. Younas, H. Zhu, and A. Aldea, “A Multi-Key Transactions

Model for NoSQL Cloud Database Systems,” in IEEE Bigdata2016, 2016.

[12] M. Indrawan-Santiago, “Database research: Are we at a crossroad?

Reflection on NoSQL,” Proc. 2012 15th Int. Conf. Network-Based Inf. Syst.

NBIS 2012, pp. 45–51, 2012.

[13] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and B. Kemme, “How to

select a Replication Protocol according to Scalability, Availability and

Communication overhead,” Proc. 20th IEEE Symp. Reliab. Distrib. Syst.,

2001.

[14] L. Lamport, “The Part-Time Parliament,” ACM Trans. Comput. Sys-tems,

vol. 16, no. 2, pp. 133–169, 1998.

[15] L. Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32, no. 4, pp.

51–58, 2001.

[16] M. Younas, B. Eaglestone, and K.-M. Chao, “A low-latency resilient protocol

for e-business transactions,” Engineering, vol. 1, no. 3, pp. 278–296, 2004.

[17] C. Babcock, “Surprise: 44% Of Business IT Pros Never Heard of NoSQL,”

Information Week, 2010. [Online]. Available:

http://www.informationweek.com/database/surprise-44--of-business-it-

pros-never-heard-of-nosql/d/d-id/1092523?

[18] M. Stonebraker, “Why Enterprises Are Uninterested in NoSQL,” Commun.

ACM, vol. 54, no. 8, p. 10, 2011.

[19] M. Stonebraker, “SQL databases v. NoSQL databases,” Commun. ACM, vol.

53, no. 4, p. 10, 2010.

[20] C. Kothari, Research methodology: methods and techniques. 2004.

REFERENCES

140

[21] R. Elio, J. Hoover, I. Nikolaidis, M. Salavatipour, L. Stewart, and K. Wong,

“About Computing Science Research Methodology,” p. 9, 2011.

[22] M. Berndtsson, J. Hansson, B. Olsson, and B. Lundell, “Thesis Projects: A

Guide for Students in Computer Science and Information Systems,”

SpringerVerlag New York, Inc., Secaucus, NJ, USA, vol. 1, 2007.

[23] R. Ramakrishnan and J. Gehrke, Database Management Systems, vol. 8, no.

4. 2003.

[24] S. Sumathi and S. Esakkirajan, Fundamentals of Relational Database

Management Systems. 2007.

[25] E. F. Codd, “A relational model of data for large shared data banks,”

Commun. ACM, vol. 26, no. 6, pp. 64–69, 1983.

[26] K. P. Eswaran, J. N. Gray, R. a. Lorie, and I. L. Traiger, “The notions of

consistency and predicate locks in a database system,” Commun. ACM, vol.

19, no. 11, pp. 624–633, 1976.

[27] C. Lu, T. Masuzawa, and M. Mosbah, Eds., “Principles of Distributed

Systems - 14th International Conference, {OPODIS} 2010, Tozeur, Tunisia,

December 14-17, 2010. Proceedings,” 2010, vol. 6490.

[28] David M. Kroenke and D. J. Auer, Database Processing, Fundamentals,

Designing, and Implementations, 12th ed., vol. 1. Pearson, 2012.

[29] J. Kreps, “The Log : What every software engineer should know about real-

time data ’ s unifying abstraction,” Linkedin Engineering, 2013. [Online].

Available: https://engineering.linkedin.com/distributed-systems/log-what-

every-software-engineer-should-know-about-real-time-datas-unifying.

[30] D. O. N. Haderle, “ARIES : A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead Logging,” vol.

17, no. 1, pp. 94–162, 1992.

[31] A. Jhingran and P. Khedkar, “Analysis of Recovery in a Database System

Using a Write-ahead Log Protocol,” SIGMOD Rec., vol. 21, no. 2, pp. 175–

184, Jun. 1992.

REFERENCES

141

[32] M. Özsu and P. Valduriez, Principles of distributed database systems. 2011.

[33] J. N. Gray, “Transparency in its Place - The Case Against Transparent Access

to Geographically Distributed Data,” Readings Database Syst., no. 21667,

pp. 592–602, 1994.

[34] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and

Paradigms, 2/E. 2007.

[35] H. Garcia-Molina, J. D. Ullman, and J. Widom, “Database Systems: The

Complete Book,” Education, p. 1248, 2008.

[36] Gerhard Weikum and G. Vossen, “Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and

Recovery,” ACM SIGMOD Rec., vol. 30, no. 4, p. 853, 2001.

[37] R. Casado and M. Younas, “Emerging Trends and Technologies in Big Data

Processing,” Concurr. Comput. Pr. Exper., vol. 27, no. 8, pp. 2078–2091,

Jun. 2015.

[38] P. Zikopoulos, C. Eaton, D. Deroos, T. Deutsch, and G. Lapis, Understanding

Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, vol.

53, no. 9. McGraw-Hill Osbord MEdia, 2012.

[39] M. Stonebraker and U. Çetintemel, “‘One Size Fits All’: An Idea Whose Time

Has Come and Gone,” 2005.

[40] C. L. Philip Chen and C. Y. Zhang, “Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data,” Inf. Sci. (Ny)., vol. 275,

no. January, pp. 314–347, 2014.

[41] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P.

Helland, “The End of an Architectural Era (It ’ s Time for a Complete

Rewrite),” Dbms, vol. 12, pp. 1150–1160, 2007.

[42] ScaleDB, “Big Data and Transactional Databases Exploding Data Volume is

Creating New Stresses on Traditional Transactional Databases.” [Online].

Available: http://docplayer.net/1826199-Big-data-and-transactional-

databases-exploding-data-volume-is-creating-new-stresses-on-traditional-

REFERENCES

142

transactional-databases.html. [Accessed: 04-Nov-2015].

[43] T. Kraska and B. Trushkowsky, “The new database architectures,” IEEE

Internet Comput., vol. 17, pp. 72–75, 2013.

[44] R. Hecht and S. Jablonski, “NoSQL evaluation: A use case oriented survey,”

Proc. - 2011 Int. Conf. Cloud Serv. Comput. CSC 2011, pp. 336–341, 2011.

[45] T. Hoff, “An Unorthodox Approach To Database Design : The Coming Of

The Shard,” High Scalability, 2009. [Online]. Available:

http://highscalability.com/unorthodox-approach-database-design-coming-

shard.

[46] D. J. Dewitt and J. Gray, “Parallel Database Systems : The Future of

Database Processing or a Passing Fad ? conventional shared-nothing

hardware base along with a highly parallel dataflow software architecture .

Such a design 1 Introduction The 1983 paper titled Database Machines :,”

vol. 19, no. 4, pp. 104–112, 1990.

[47] D. Rubio, “Web Application Performance and scalability techniques,” Web

Forefront, 2013. [Online]. Available:

http://www.webforefront.com/performance/scaling101.html.

[48] M. M. Waldrop, “More than Moore,” Nature, vol. 530, p. 145, 2016.

[49] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The Dangers of Replication

and a Solution,” 1996, no. P115, p. 0.

[50] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.

Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo : Amazon

’ s Highly Available Key-value Store,” pp. 205–220, 2007.

[51] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore: Providing

Scalable, Highly Available Storage for Interactive Services.,” Cidr, pp. 223–

234, 2011.

[52] T. Desai and J. Prajapati, “A Survey of Various Load Balancing Techniques

and Challenges in Cloud Computing,” Int. J. Sci. Technol. Res., vol. 2, no. 11,

pp. 158–161, 2013.

REFERENCES

143

[53] D. Borthakur, “HDFS architecture guide,” Hadoop Apache Proj.

http//hadoop apache …, pp. 1–13, 2008.

[54] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM

SIGOPS Oper. Syst. Rev., vol. 37, p. 29, 2003.

[55] E. A. Brewer, “Towards robust distributed systems,” Proc. Annu. ACM

Symp. Princ. Distrib. Comput., vol. 19, pp. 7–10, 2000.

[56] A. Fox, S. D. Gribble, and E. a Brewer, “Cluster-Based Scalable Network

Services Symposium on Operating Systems Principles,” no. October, 1997.

[57] Laksham Avinash and Prashant Malik, “Cassandra: a decentralized

structured storage system,” ACM SIGOPS Oper. Syst. Rev., pp. 1–6, 2010.

[58] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services,” ACM SIGACT News,

vol. 33, no. 2, p. 51, 2002.

[59] D. Abadi, “Problems with CAP, and Yahoo’s little known NoSQL system,”

2010. [Online]. Available:

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-

yahoos-little.html\npapers3://publication/uuid/7223E100-97C1-4BF8-

BAF9-EC66435F781F. [Accessed: 20-Apr-2016].

[60] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,

H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS: Yahoo!’s

Hosted Data Serving Platform,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1277–

1288, Aug. 2008.

[61] D. Abadi, “Consistency Tradeoffs in Modern Distributed Database System

Design: CAP is Only Part of the Story,” Computer (Long. Beach. Calif)., vol.

45, no. 2, pp. 37–42, 2012.

[62] M. Brooker, “CAP and PACELC: Thinking More Clearly About Consistency.”

[Online]. Available: https://brooker.co.za/blog/2014/07/16/pacelc.html.

[63] H. Robinson, “CAP Confusion: Problems with ‘partition tolerance,’”

Cloudera Engineering Blog, 2010. [Online]. Available:

REFERENCES

144

http://blog.cloudera.com/blog/2010/04/cap-confusion-problems-with-

partition-tolerance/.

[64] M. Stonebraker, “Errors in Database Systems, Eventual Consistency, and

the CAP Theorem,” Communications of the ACM, 2010. [Online]. Available:

http://cacm.acm.org/blogs/blog-cacm/83396-errors-in-database-systems-

eventual-consistency-and-the-cap-theorem/fulltext.

[65] E. Brewer, “CAP twelve years later: How the ‘rules’ have changed,”

Computer (Long. Beach. Calif)., vol. 45, no. 2, pp. 23–29, 2012.

[66] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations,

Extensions, and Beyond,” Commun. ACM, vol. 56, no. 5, pp. 55–63, 2013.

[67] W. Vogels, “Eventually Consistent,” Queue, vol. 6, p. 14, 2008.

[68] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency

Rationing in the Cloud : Pay only when it matters,” Proc. VLDB Endow., vol.

2, no. 1, pp. 253–264, 2009.

[69] N. Antonopoulos and L. Gillam, “Cloud Computing: Principles, Systems and

Applications,” Media, vol. 54. p. 379, 2010.

[70] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” Proc. -

2011 6th Int. Conf. Pervasive Comput. Appl. ICPCA 2011, pp. 363–366,

2011.

[71] D. Agrawal, A. El Abbadi, S. Antony, and S. Das, “Data Management

Challenges in Cloud Computing Infrastructures,” Dnis, pp. 1–10, 2010.

[72] S. Das, S. Antony, D. Agrawal, and A. El Abbadi, “Clouded Data:

Comprehending Scalable Data Management Systems,” Analysis, no.

November, 2008.

[73] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. a. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system

for structured data,” 7th Symp. Oper. Syst. Des. Implement. (OSDI ’06),

Novemb. 6-8, Seattle, WA, USA, pp. 205–218, 2006.

REFERENCES

145

[74] M. Burrows, “The Chubby lock service for loosely-coupled distributed

systems,” OSDI ’06 Proc. 7th Symp. Oper. Syst. Des. Implement. SE - OSDI

'06, pp. 335–350, 2006.

[75] J. Dean and S. Ghemawat, “Simplified data processing on large clusters,”

Sixth Symp. Oper. Syst. Des. Implement., vol. 51, no. 1, pp. 107–113, 2004.

[76] M. Stonebraker, “The Case for Shared Nothing,” Contract, vol. 9, pp. 1–5,

1986.

[77] M. Hogan, “Shared-Disk vs. Shared-Nothing: Comparing Architectures for

Clustered Databases by,” 2015.

[78] R. Burtica, E. M. Mocanu, M. I. Andreica, and N. Tapus, “Practical

application and evaluation of no-SQL databases in Cloud Computing,”

SysCon 2012 - 2012 IEEE Int. Syst. Conf. Proc., pp. 79–84, 2012.

[79] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed

System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[80] Highly Scalable Blog, “Distributed Algorithms in NoSQL Databases,” 2012.

[Online]. Available:

https://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-

in-nosql-databases/.

[81] R. H. Thomas, “A Majority consensus approach to concurrency control for

multiple copy databases,” ACM Trans. Database Syst., vol. 4, no. 2, pp.

180–209, 1979.

[82] C. Plattner and G. Alonso, “Ganymed: scalable replication for transactional

web applications,” Proc. ACM/IFIP/USENIX Int. Conf. Middlew., pp. 155–

174, 2004.

[83] ORACLE, “Master-slave vs. peer-to-peer archictecture: benefits and

problems,” 2014. [Online]. Available:

https://blogs.oracle.com/NoSQL/entry/master_slave_vs_peer_to.

[84] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper: Wait-free

Coordination for Internet-scale Systems.,” USENIX Annu. Tech., vol. 8, pp.

REFERENCES

146

11–11, 2010.

[85] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li, “Big data processing in cloud

computing environments,” Proc. 2012 Int. Symp. Pervasive Syst.

Algorithms, Networks, I-SPAN 2012, pp. 17–23, 2012.

[86] MongoDB, “MongoDB Documentation,” 2013. [Online]. Available:

https://docs.mongodb.com/manual/.

[87] K. Salem and H. Garcia-Molina, “Main Memory Database Systems: An

Overview,” in IEEE Transactions On Knowledge and Data Engineering,

1992.

[88] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux J., no. 124, p.

5–, Aug. 2004.

[89] D. Obasanjo, “When Databases Lie: Consistency vs. Availability in

Distributed Systems,” 2007. [Online]. Available:

http://www.25hoursaday.com/weblog/2007/10/10/WhenDatabasesLieCo

nsistencyVsAvailabilityInDistributedSystems.aspx.

[90] P. Sadalage, “NoSQL Databases: An Overview,” ThoughtWorks, 2014.

[Online]. Available: https://www.thoughtworks.com/insights/blog/nosql-

databases-overview.

[91] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Rec., vol.

39, no. 4, p. 12, 2011.

[92] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,

“Consistent Hashing and Random Trees: Distributed Caching Protocols for

Relieving Hot Spots on the World Wide Web,” in Proceedings of the

Twenty-ninth Annual ACM Symposium on Theory of Computing, 1997, pp.

654–663.

[93] P. Raman, A. D. George, M. Radlinski, and R. Subramaniyan, “GEMS :

Gossip-Enabled Monitoring Service for Heterogeneous Distributed

Systems,” J. Networks, Softw. Tools Appl. Comput., vol. 9, pp. 101–120,

2006.

REFERENCES

147

[94] K. K. A and S. Surendran, “BigTable , Dynamo & Cassandra – A Review,” Int.

J. Electron. Comput. Sci. Eng., vol. 2, pp. 133–141, 2012.

[95] D. Obasanjo, “Building Scalable Databases: Pros and Cons of Various

Database Sharding Schemes,” newtelligence dasBlog, 2009. [Online].

Available:

http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatab

asesProsAndConsOfVariousDatabaseShardingSchemes.aspx. [Accessed: 12-

Feb-2016].

[96] A. Dey, a Fekete, and U. Röhm, “Scalable transactions across

heterogeneous NoSQL key-value data stores,” Proc. VLDB Endow., vol. 6,

no. 12, pp. 1434–1439, 2013.

[97] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S.

Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E.

Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L.

Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford,

“Spanner : Google ’ s Globally-Distributed Database,” Osdi, pp. 251–264,

2012.

[98] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don ’ t Settle

for Eventual : Scalable Causal Consistency for Wide-Area Storage with

COPS Categories and Subject Descriptors,” Lloydia (Cincinnati), pp. 1–16.

[99] D. K. Gifford, “Information Storage in a Decentralized Computer System,”

Stanford University, Stanford, CA, USA, 1981.

[100] S. Das and A. El Abbadi, “G-Store : A Scalable Data Store for Transactional

Multi key Access in the Cloud,” Group, pp. 163–174, 2010.

[101] Z. Wei, G. Pierre, and C. H. Chi, “CloudTPS: Scalable transactions for web

applications in the cloud,” IEEE Trans. Serv. Comput., vol. 5, pp. 525–539,

2012.

[102] J. J. Levandoski, “Deuteronomy : Transaction Support for Cloud Data,”

Read, vol. 48, pp. 123–133, 2011.

REFERENCES

148

[103] D. Peng and F. Dabek, “Large-scale Incremental Processing Using

Distributed Transactions and Notifications,” Dbms, vol. 2006, pp. 1–15,

2010.

[104] F. Junqueira, B. Reed, and M. Yabandeh, “Lock-free transactional support

for large-scale storage systems,” Proc. Int. Conf. Dependable Syst.

Networks, pp. 176–181, 2011.

[105] F. Junqueira and B. Reed, “BookKeeper,” Confluence, 2016. [Online].

Available:

https://cwiki.apache.org/confluence/display/BOOKKEEPER/BookKeeper.

[106] P. a. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya, D. B. Lomet,

R. Manne, L. Novik, and T. Talius, “Adapting microsoft SQL server for cloud

computing,” 2011 IEEE 27th Int. Conf. Data Eng., pp. 1255–1263, 2011.

[107] S. Harizopoulos and D. Abadi, “OLTP through the looking glass, and what

we found there,” Proc. 2008 …, vol. pages, p. 981, 2008.

[108] S. Das, D. Agrawal, and A. El Abbadi, “ElasTraS: An Elastic Transactional

Data Store in the Cloud,” p. 5, 2010.

[109] S. Das, D. Agrawal, and A. El Abbadi, “ElasTraS: An elastic, scalable, and

self-managing transactional database for the cloud,” ACM Trans. Database

Syst., vol. 38, no. 1, pp. 5:1–5:45, 2013.

[110] M. K. Aguilera, M. K. Aguilera, A. Merchant, A. Merchant, M. Shah, M.

Shah, A. Veitch, A. Veitch, C. Karamanolis, and C. Karamanolis, “Sinfonia: a

new paradigm for building scalable distributed systems,” {SIGOPS} Oper.

Syst. Rev., vol. 41, no. Figure 1, pp. 159–174, 2007.

[111] R. Escriva, B. Wong, and E. Sirer, “Warp: Lightweight Multi-Key

Transactions for Key-Value Stores,” Rescrv.Net, 2013.

[112] A. E. Lotfy, A. I. Saleh, H. A. El-Ghareeb, and H. A. Ali, “A middle layer

solution to support ACID properties for NoSQL databases,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 28, no. 1, pp. 133–145, 2016.

[113] D. Lomet, A. Fekete, G. Weikum, and M. Zwilling, “Unbundling Transaction

REFERENCES

149

Services in the Cloud,” arXiv Prepr. arXiv0909.1768, pp. 1–10, 2009.

[114] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte,

“Web Services Transaction (WS-Transaction),” IBM Dev., p. 25, 2002.

[115] D. R. K. Ports and K. Grittner, “Serializable Snapshot Isolation in

PostgreSQL,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1850–1861, 2012.

[116] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage for

geo-replicated systems,” Proc. Twenty-Third ACM Symp. Oper. Syst. Princ. -

SOSP ’11, p. 385, 2011.

[117] M. Stonebraker and R. Cattell, “10 Rules for Scalable Performance in

‘Simple Operation’ Datastores,” Commun. ACM, vol. 54, no. 6, p. 72, 2011.

[118] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A

Critique of ANSI SQL Isolation Levels,” pp. 1–10, 2007.

[119] A. S. Dey, “CHERRY GARCIA : TRANSACTIONS ACROSS HETEROGENEOUS

DATA STORES,” University of Sydney, 2015.

[120] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL MongoDB to an SQL

DB,” Proc. 51st ACM Southeast Conf. - ACMSE ’13, p. 1, 2013.

[121] Y. Lu, “Serializable Snapshot Isolation in Shared-Nothing , Distributed

Database Management Systems,” pp. 1–10.

[122] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” Proc. 1st ACM Symp.

Cloud Comput. - SoCC ’10, pp. 143–154, 2010.

[123] A. Dey, A. Fekete, R. Nambiar, and U. Rohm, “YCSB+T: Benchmarking web-

scale transactional databases,” Proc. - Int. Conf. Data Eng., pp. 223–230,

2014.

[124] W. Smith, “An Information Architecture Based on Publish/Subscribe

Messaging,” in Proceedings of the 2011 TeraGrid Conference: Extreme

Digital Discovery, 2011, pp. 27:1–27:2.

	Abstract
	Declaration
	Acknowledgements
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 CLOUD COMPUTING
	1.2 NoSQL DATABASES and TRANSACTIONS
	1.3 MOTIVATION AND RATIONALE OF THE RESEARCH
	1.3.1 Statement of the Research Problem

	1.4 AIM and OBJECTIVES
	1.5 RESEARCH METHODS
	1.6 MAIN CONTRIBUTIONS
	1.7 STRUCTURE OF THE THESIS

	CHAPTER 2
	BACKGROUND
	2.1 DATABASE MANAGEMENT SYSTEMS
	2.2 DATABASE TRANSACTION MANAGEMENT
	2.2.1 ACID Properties
	2.2.2 Serializability
	2.2.3 Concurrency Control Techniques

	2.3 DISTRIBUTED TRANSACTION MANAGEMENT
	2.4 TRANSACTION RECOVERY PROTOCOLS

	CHAPTER 1
	CHAPTER 2
	2.1
	2.2
	2.3
	2.4
	2.4.1 Two Phase Commit

	2.5 BIG DATA and NoSQL DATABASES
	2.6 BIG DATA MANAGEMENT IN NOSQL DATABASES
	2.6.1 Partitioning
	2.6.2 Scaling
	2.6.3 Replication
	2.6.4 Failure Detection and Recovery
	2.6.5 Load Balancing
	2.6.6 Garbage collection

	2.7 ANALYSIS OF CAP THEOREM
	2.7.1 BASE
	2.7.2 Other Consistency Models

	2.8 SUMMARY

	CHAPTER 3
	DATA PROCESSING IN CLOUD COMPUTING
	3.1 ACHITECTURAL CONSIDERATIONS of CLOUD DATABASES
	3.1.1 Loose Coupling VS Tight Coupling
	3.1.2 Share Nothing VS Shared Disk
	3.1.3 Data Model
	3.1.4 Concurrency Control Techniques
	3.1.5 Replication
	3.1.6 Master-Slave VS Peer to Peer Architecture
	3.1.7 Query Processing Approach
	3.1.8 Read Optimised VS Write Optimised
	3.1.9 Latency VS Durability

	3.2 NOSQL DATABASES AND BIG DATA
	3.2.1 BIGTABLE
	3.2.2 MONGODB
	3.2.3 DYNAMO
	3.2.4 CASSANDRA
	3.2.5 PNUTS

	3.3 TRANSACTIONS IN CLOUD DATABASES
	3.3.1 The Integrated Approach
	3.3.1.1 Google Spanner
	3.3.1.2 Cluster of Order Preserving Servers (COPS)

	3.3.2 The Middleware Approach
	3.3.2.1 Megastore
	3.3.2.2 G-Store

	3.3.3 The API Approach
	3.3.3.1 Percolator
	3.3.3.2 ReTSO

	3.4 ANALYSIS OF OTHER TRANSACTION MODELS AND PROTOCOLS
	3.5 DISCUSSION AND CONCLUSION

	CHAPTER 4
	MODELLING AND DESIGN OF THE PROPOSED APPROACH – NoSQL-TX
	4.1 NoSQL TRANSACTIONS
	4.2 SYSTEM DESIGN APPROACH
	4.2.1 Snapshot Isolation
	4.2.2 Rationale for Snapshot Isolation

	4.3 ARCHITECTURE OF THE NoSQL-TX
	4.3.1 Transaction Processing Engine (TPE)
	4.3.2 Data Management Store
	4.3.3 Time Stamp Manager

	4.4 TRANSACTION STATE TRANSITION MODEL
	4.5 INTERACTION BETWEEN SYSTEM COMPONENTS
	4.6 COMMIT PROTOCOL
	4.7 ABORT SCENARIOS
	4.8 A PROTOCOL FOR MANAGING TRANSACTIONS ACROSS ASYNCHRONOUS DATA REPLICATION
	4.9 SUMMARY

	CHAPTER 5
	IMPLEMENTATION OF THE NoSQL-TX SYSTEM
	5.1 DESIGN OBJECTIVES
	5.2 IMPLEMENTATION TOOLS AND TECHNOLOGIES
	5.3 IMPLEMENTATION OF TRANSACTION OPERATIONS
	5.3.1 Types of Operations
	5.3.1.1 Read
	5.3.1.2 Read-latest
	5.3.1.3 Write-New
	5.3.1.4 Update
	5.3.1.5 Update-Latest
	5.3.1.6 Multi Key Transactions

	5.3.2 Aborts Scenarios for Operation
	5.3.2.1 Abort Scenario Ab-S1
	5.3.2.2 Abort Scenario Ab-S2
	5.3.2.3 Abort Scenario Ab-S3

	5.3.3 Optimisation Decisions

	5.4 APPLICATION DOMAIN
	5.5 SUMMARY

	CHAPTER 6
	EXPERIMENTAL EVALUATION
	6.1 EVALUATION BENCHMARKS AND WORKLOADS
	6.1.1 YCSB and YCSB+T Benchmark
	6.1.2 Workloads for Experiments

	6.2 EXPERIMENTS AND RESULTS
	6.2.1 Experiment – Set 1
	6.2.2 Experiment – Set 2
	6.2.3 Experiment – Set 3:
	6.2.4 Experiment – Set 4
	6.2.5 Experiment – Set 5
	6.2.6 Experiment – Set 6
	6.2.7 Experiment – Set 7
	6.2.8 Experiment – Set 8

	6.3 ANALYSIS OF THE PROPOSED SYSTEM AND EXISTING APPROACHES
	6.4 SUMMARY

	CHAPTER 7
	CONCLUSION AND FUTURE WORK
	7.1 CONTRIBUTIONS
	7.2 CRITICAL ANALYSIS
	7.3 FUTURE WORK

	REFERENCES

