
Programming Historian

Creating Interactive Visualizations with Plotly
(/en/lessons/interactive-visualization-with-plotly)
Grace Di Méo (https://orcid.org/0000-0002-3227-8053)
This lesson demonstrates how to create interactive data visualizations in Python with
Plotly’s open-source graphing libraries using materials from the Historical Violence
Database.

 Peer-reviewed (https://github.com/programminghistorian/ph-
submissions/issues/518)

 CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.en)

 Support PH (/en/individual)

edited by
Scott Kleinman
(https://orcid.org/0000-0001-7477-
1308)

reviewed by
Mario Bañuelos
Rob Lewis

published

| 2023-12-13
modified

| 2024-05-15
difficulty

| Medium
 https://doi.org/10.46430/phen0115

https://programminghistorian.org/en/lessons/interactive-visualization-with-plotly
https://programminghistorian.org/en/lessons/interactive-visualization-with-plotly
https://programminghistorian.org/en/lessons/interactive-visualization-with-plotly
https://orcid.org/0000-0002-3227-8053
https://orcid.org/0000-0002-3227-8053
https://github.com/programminghistorian/ph-submissions/issues/518
https://github.com/programminghistorian/ph-submissions/issues/518
https://github.com/programminghistorian/ph-submissions/issues/518
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://programminghistorian.org/en/individual
https://programminghistorian.org/en/individual
https://orcid.org/0000-0001-7477-1308
https://orcid.org/0000-0001-7477-1308
https://orcid.org/0000-0001-7477-1308
https://orcid.org/0000-0001-7477-1308

Contents
Introduction

Lesson Goals
Prerequisites
What is Plotly?
Plotly’s Python Graphing Library: Plotly Express vs. Plotly Graph Objects
vs. Plotly Dash
Why Plotly?

Sample Dataset
Building Graphs with Plotly Express

Setting Up Plotly Express
Importing and Cleaning Data
Bar Charts
Line Graphs
Scatterplots
Facet Plots
Adding Animations: Animation Frames
Adding Animations: Dropdown Bars

Building Graphs with Plotly Graph Objects
Setting Up Plotly Graph Objects
They’re All Objects! Data Structure of Plotly Graph Objects
Using Plotly Graph Objects vs. Plotly Express
Why Use Graph Objects?
Tables
Subplots

Step 1: Import the subplots module and get data
Step 2: Create an empty subplot with a 3x1 grid using the
make_subplots() function
Step 3: Add the first graph (the bar chart) using the
.add_trace() method
Step 4: Add the second graph (the line graph)
Step 5: Add the final graph (the boxplot)
Step 6: Format the figure
Step 7: Add annotations to the line graph
Step 8: Add annotations below the figure

Viewing and Exporting Figures
Viewing Figures
Exporting Figures

Exporting as HTML
Exporting static images

Summary
Endnotes

Introduction
Lesson Goals
This lesson demonstrates how to create interactive data visualizations in Python
using Plotly’s open-source graphing libraries (https://perma.cc/94J3-8LAS). In
particular, you will learn:

https://perma.cc/94J3-8LAS
https://perma.cc/94J3-8LAS

The distinction between Plotly Express, Plotly’s Graph Objects, and Plotly Dash
How to create and export graphs using plotly.express and
plotly.graph_objects

How to add custom features to graphs

Prerequisites
In order to follow this lesson, it is assumed that you have:

Installed Python 3 (https://www.python.org/downloads/) and the pip package
installer (https://pypi.org/project/pip/)
An intermediate level understanding of the Python programming language
Some familiarity with pandas (https://perma.cc/UT9Y-KR76) and NumPy
(https://perma.cc/JQW9-AM8Y), which should also be installed
Knowledge of basic data visualization techniques (especially bar charts,
histograms and scatterplots)
Some familiarity with data preprocessing (we will be using pandas)

This lesson was developed using Jupyter Notebook. For those who are unfamiliar
with this software, the Programming Historian offers an excellent lesson on how to
create, edit and export Jupyter notebooks here (/en/lessons/jupyter-notebooks). You
may also follow this lesson using your own preferred code editor (VSCode, PyCharm,
etc.).

What is Plotly?
Plotly (https://plotly.com/) is a company which provides a number of open-source
libraries allowing users to build interactive graphs. Unlike static images, Plotly graphs
can respond to user actions with popup labels, pan-and-zoom abilities, faceted data
displays, and more. Plotly libraries are available in Python — the focus of this tutorial
— as well as various programming languages, including R and Julia. A wide variety
of graphs is available through Plotly libraries, ranging from the statistical or scientific
to the financial or geographic. These graphs can be displayed using various
methods, including Jupyter notebooks, HTML files, and web applications produced
with Plotly’s Dash framework. Static (non-interactive) graphs can also be exported
either as raster or vector images.

Throughout this lesson, Plotly graphs will be displayed as static images.
To access their interactive features, either click on the image or the link
in the caption below the image.

Plotly’s Python Graphing Library: Plotly Express vs. Plotly Graph
Objects vs. Plotly Dash
To understand how to use Plotly, it is vital to understand the differences between
Plotly Express, Plotly Graph Objects, and Plotly Dash.

Essentially, these are three distinct — but often overlapping — Plotly modules with
their own use cases:

Plotly Express (plotly.express , usually imported as px) is an accessible,
high-level interface for creating data visualizations, offering around 30

1

https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://perma.cc/UT9Y-KR76
https://perma.cc/UT9Y-KR76
https://perma.cc/JQW9-AM8Y
https://perma.cc/JQW9-AM8Y
https://programminghistorian.org/en/lessons/jupyter-notebooks
https://programminghistorian.org/en/lessons/jupyter-notebooks
https://plotly.com/
https://plotly.com/
https://plotly.com/

different graph types. The module provides functions which create figures in
just one line of code (although more lines are required for certain
customizations), making graphs quick and easy to create. Since this is a ‘high-
level’ interface, users do not need to interact with the underlying data
structure of graphs when using plotly.px . Plotly recommends that new
users start with Express before working directly with Plotly Graph Objects.
Plotly Graph Objects (plotly.graph_objects , usually imported as go) are
the actual figures created and rendered by Plotly ‘under the hood’: in essence,
when a user creates a figure in plotly.px , Plotly will generate a ‘Graph
Object’ to store the graph’s data. These data include the information
visualized in the graph as well as various attributes such as graph colors, sizes,
and shapes. It is therefore possible to create visualizations with the lower-level
plotly.go module; in fact, it is possible to recreate anything made with
plotly.px using plotly.go . It is generally advised to use plotly.px

where possible, since using plotly.go often involves generating many lines
of code. However, as we will see later, there are some specific use cases for
plotly.go .

The Plotly Dash module (imported as dash) is a framework for building
interactive web applications (typically dashboards) which can be embedded
into websites and other platforms. Users often integrate figures created using
plotly.px and/or plotly.go into their Dash apps, making the Plotly

Python stack a full suite for creating, manipulating, and publishing interactive
data visualizations. Plotly Dash is built on top of React.js and Plotly.js

to enable integration with the web, meaning that users do not need to have
any knowledge of Javascript, CSS or HTML (only Python).

Plotly provides comprehensive documentation for working with Express and Graph
Objects (https://perma.cc/94J3-8LAS) and for using Dash (https://perma.cc/E7S3-
6W3H).

Why Plotly?
There are currently a plethora of graphing libraries available to Python users,
including Matplotlib (https://perma.cc/N3Y9-CPWN), Seaborn
(https://perma.cc/3AQL-5H6C), Bokeh (https://perma.cc/L2MP-43BL) and Pygal
(https://perma.cc/UZM9-2LBE). With so many options to choose from, users will
need to select one library over another. Factors such as use case, stylistic taste, and
ease of use will be important here, with each library having its own merits. Some of
the notable advantages of working with Plotly include:

Plotly is one of the only packages to be directed at interactive graphs: options
such as Matplotlib and Pygal provide only limited interactivity (although
Bokeh is also designed for interactivity and is a viable alternative)
Plotly is the only Python graphing suite which facilitates both the creation of
graphs and the integration of these graphs within web apps
Plotly has easy (seamless) integration with pandas (for example, DataFrames
can be added directly into graph objects)
Interactive 3D graphs are available (typically not available in other libraries)
Plotly is simple to use (adding features like animation and dropdown bars is
relatively easy)

2

3

https://perma.cc/94J3-8LAS
https://perma.cc/94J3-8LAS
https://perma.cc/94J3-8LAS
https://perma.cc/E7S3-6W3H
https://perma.cc/E7S3-6W3H
https://perma.cc/E7S3-6W3H
https://perma.cc/N3Y9-CPWN
https://perma.cc/N3Y9-CPWN
https://perma.cc/3AQL-5H6C
https://perma.cc/3AQL-5H6C
https://perma.cc/L2MP-43BL
https://perma.cc/L2MP-43BL
https://perma.cc/UZM9-2LBE
https://perma.cc/UZM9-2LBE

Sample Dataset
The dataset for this lesson is a subset of Roger Lane’s ‘Homicides in Philadelphia,
1839-1932’ dataset (https://perma.cc/93XS-LFG4) , covering only the years 1902-
1932. If you wish to work along with this lesson, you can download this particular
dataset directly (/assets/interactive-visualization-with-plotly/sample-dataset-
philadelphia-homicides-1902-1932.csv). (The corresponding ‘Philadelphia homicide
codebook 1902-1932’ document was also consulted to verify variables in the dataset
but is not required for completing this lesson.) As its title suggests, the dataset
records homicides which occurred in Philadelphia in the early twentieth century. It is
informed by arrest reports filed by the Philadephia police and covers the years 1902,
1908, 1914, 1920, 1926, and 1932. In its downloaded format, the dataset contains 26
columns and 717 rows, although we will be scaling this down.

Building Graphs with Plotly Express
Setting Up Plotly Express

1. Before starting, you will need to install three modules to your environment:

Plotly (using the terminal command pip install plotly)
pandas (using the terminal command pip install pandas)
Kaleido (using the terminal command pip install kaleido)

2. With these packages installed, create a new Jupyter notebook (or a new
Python file in your chosen code editor). Ideally, your notebook should be
stored in the same folder as the downloaded sample dataset.

3. import these modules at the start of your new notebook:

import numpy as np
import pandas as pd
import plotly.express as px

Importing and Cleaning Data
Next, we will import and clean the Philadelphia homicide dataset using pandas. This
will involve:

Importing only the required columns from our dataset
Replacing any missing numeric values as a NumPy ‘non-number’ (the NaN

data type)
Relabeling and removing certain data points for clarity and accuracy

4

5

6

7

https://perma.cc/93XS-LFG4
https://perma.cc/93XS-LFG4
https://perma.cc/93XS-LFG4
https://programminghistorian.org/assets/interactive-visualization-with-plotly/sample-dataset-philadelphia-homicides-1902-1932.csv
https://programminghistorian.org/assets/interactive-visualization-with-plotly/sample-dataset-philadelphia-homicides-1902-1932.csv
https://programminghistorian.org/assets/interactive-visualization-with-plotly/sample-dataset-philadelphia-homicides-1902-1932.csv
https://programminghistorian.org/assets/interactive-visualization-with-plotly/sample-dataset-philadelphia-homicides-1902-1932.csv

Import data as DataFrame (only the columns specified under 'fields'
list will be kept)
fields = [
 "Year",
 "Charge",
 "Gender of accused",
 "Age of accused",
 "Victim age",
 "Weapon",
 "Gang",
]

Store csv data as DataFrame, keeping specified columns with
'usecols' parameter
phl_crime = pd.read_csv("philadelphia homicides 1902-1932 5-
2004.csv", usecols=fields)

Replace missing numeric values (classified in original dataset as
'99') to NumPy NaN
phl_crime.replace(99, np.NaN, inplace=True)

Drop rows with where crime type is unknown (those classified as
either '4' or '9' under the 'Charge' column)
phl_crime = phl_crime.drop(
 phl_crime[(phl_crime.Charge == 4) | (phl_crime.Charge ==
9)].index
)

Re-label crime types (under "Charge" column) as nouns (originally
coded numerically)
phl_crime["Charge"].replace(
 {1: "Murder", 2: "Manslaughter", 3: "Abortion"}, inplace=True
)

Re-label gender (under "Gender of accused" column) as nouns
(originally coded numerically)
phl_crime["Gender of accused"].replace(
 {1: "Male", 2: "Female", 3: np.NaN, 9: np.NaN}, inplace=True
)

Replace erroneous data and typos in "Year" column
phl_crime["Year"].replace(
 {1514: 1914, 1520: 1920, 1526: 1926, 1532: 1932, 1915: 1914},
inplace=True
)

Re-label gang affilation (under "Gang" column) as nouns (originally
coded numerically)
phl_crime["Gang"].replace({1: "No gang", 2: "Teen gang", 3: "Adult
gang"}, inplace=True)

Re-label weapons (under "Weapon" column) as nouns (originally coded
numerically)
phl_crime["Weapon"].replace(
 {

 1: "Gun",
 2: "Knife, sharp instrument",
 3: "Blunt object",
 4: "Fist, other body part",
 5: "Vehicle",
 6: "Other",
 7: "Poison",
 9: np.NaN,
 },
 inplace=True,
)

Bar Charts
Now that we’ve created a pandas DataFrame for our historical homicide data, we
can start building some basic graphs using Plotly Express. Let’s begin by creating a
bar chart to represent the count of prosecutions per type of crime. Since our existing
dataset does not contain counts of offences (each row represents one individual
prosecution), we will first need to create a new DataFrame which groups cases by
offence type and provides a count:

Creates new DataFrame containing count of prosecutions per offence
type
phl_by_charge = phl_crime.groupby(["Charge"], as_index=False).size()

The next step is to create the bar chart using this new phl_by_charge dataset.
Notice that the graph has been saved to the variable fig , which is a common
convention when working with Plotly:

Create bar chart using the .bar() method
fig = px.bar(phl_by_charge, x="Charge", y="size")

Display figure using the .show() method
fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
01.html)
Figure 1. Simple bar graph with basic interactivity created using Plotly Express. If
readers hover over the bars, they will notice floating labels appear. Click to explore
an interactive variant of this plot (/assets/interactive-visualization-with-

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html

plotly/interactive-visualization-with-plotly-01.html).

So we have our first px graph! Notice that this graph already has some
interactivity: hovering over each bar will specify its crime type and prosecution count.
Another notable feature is that users can easily save this graph (as a static image) by
navigating to the top-right corner and clicking on the camera icon to download the
plot as a .png file. In this same corner, users have the option to zoom, pan,
autoscale or reset their view of the plot. These features are available throughout all
the following Plotly visualizations.

However, this isn’t the most visually appealing graph: it could use a title, some
colors, and a clearer y-axis label. We could have done this when we initially created
the bar chart by passing additional arguments into the .bar() method. We can use
the labels argument to change the y-axis labels from ‘size’ to ‘Count’ and the
color argument to color the bars according to a given variable (in this example, we

will use the crime type, ‘Charge’). To add a title, uncomment the title argument in
the code below and add a title of your choice.

Create bar chart using the .bar() method (in a new code cell)
fig = px.bar(
 phl_by_charge,
 x="Charge",
 y="size",
 # title="Add a title here",
 labels={"size": "Count"},
 color="Charge", # Note that the 'color' parameter takes the name
of our column ('Charge') as a string
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
02.html)
Figure 2. Simple bar graph with basic interactivity created using Plotly Express. This
plot is a variant of that produced in Figure 1, now featuring color attributes as well as
an interactive legend which allows readers to isolate or remove data points. Click to
explore an interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-02.html).

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-01.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-02.html

As demonstrated above, Plotly will automatically add a legend to the graph if you
are dividing attributes by color (this can be avoided if desired). The legend is also
interactive: clicking once on an element will remove its corresponding bar from the
graph; double-clicking on an element will isolate all others.

Line Graphs
Let’s move on to creating a line graph. As a general rule, Plotly Express graphs are
created using the syntax px.somegraph() , where somegraph represents the graph
being created. While we used the syntax px.bar() to create a bar chart, we will use
px.line() to create a line graph. The exact term needed for each graph type can

be found via the Plotly documentation (https://perma.cc/U4N7-2VM5).

Our line graph will illustrate changes in prosecution rates per crime type over the
research period. As before, we will need to create a new DataFrame which groups
cases both by year and offence type:

Creates new DataFrame containing counts of prosecutions per offence
type and year
phl_by_year = phl_crime.groupby(["Charge",
"Year"],as_index=False).size()

Next, we will create a line graph using the .line() method and will use the
labels and color keywords to add some formatting. Again, uncomment the
title argument in the code below (and in subsequent code samples) if you wish

to add a title:

Use px.line() to build line graph and add some formatting
fig = px.line(
 phl_by_year,
 x="Year",
 y="size",
 # title="Add a title here",
 labels={"size": "Count"},
 color="Charge",
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-

https://perma.cc/U4N7-2VM5
https://perma.cc/U4N7-2VM5
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html

03.html)
Figure 3. Simple line graph with basic interactivity created using Plotly Express.
Hovering over the lines at plot points invokes a floating label. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-03.html).

We have now learned to create new graphs with some added formatting — but what
if we wanted to add our formatting after creating the graph instead? We can use the
.update_layout() method on our fig object to edit the graph at a later stage.

This method can be applied to any Plotly Express graph and accepts a very wide
range of adjustable parameters. As an example, let’s use this method to update our
font family, font colors, and the text of our title:

fig.update_layout(
 font_family="Courier New", # Update font
 font_color="blue", # Make font blue
 legend_title_font_color="red", # Make legend title red
 title="A formatted title!",
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
04.html)
Figure 4. Simple line graph with basic interactivity created using Plotly Express.
Hovering over the lines at plot points invokes a floating label. This plot is a variant of
that produced in Figure 3, now featuring updated font, font colors, and an
embedded figure title. Click to explore an interactive variant of this plot
(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
04.html).

Scatterplots
Scatterplots, commonly used for visualizing relationships between continuous
variables, can be created with Plotly Express using the .scatter() method. For our
sample dataset, it might be appropriate to use a scatterplot to depict the
relationship between victim and assailant ages.

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-04.html

fig = px.scatter(
 phl_crime,
 x="Age of accused",
 y="Victim age",
 color="Charge", # Add
 # title="Add a title here",
)
fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
05.html)
Figure 5. Simple scatterplot with basic interactivity created using Plotly Express.
Readers can hover over individual plot points to invoke floating labels. Additionally,
an interactive legend allows isolation, comparison or removal of data categories.
Click to explore an interactive variant of this plot (/assets/interactive-visualization-
with-plotly/interactive-visualization-with-plotly-05.html).

As you can see, scatterplots also contain some inherent interactivity: hovering over a
unique data point will display the specific charge and the ages of both the accused
and the victim. Clicking and double-clicking on the legend allows you to isolate
certain elements.

Facet Plots
Facet plots are made up of the multiple subplots which a) share the same set of axes;
and b) show a subset of the data (for the same set of variables). These can be made
very easily in Plotly Express. First, using the same procedure as outlined in the above
examples, you’ll need to specify the type of graph you want to use in your subplots.
Second, the facet_col parameter allows you to specify which variable to use for
splitting the data into subplots. In the example below, a 2x1 grid of bar charts shows
prosecution counts for each weapon type used by suspects in homicide cases. One
bar chart provides counts for male suspects and the other for female suspects:

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-05.html

Create DataFrame which groups by gender and weapon and adds a count
('size') column
phl_by_weapon = phl_crime.groupby(
 ["Weapon", "Gender of accused"], as_index=False
).size()

Use px.bar() to indicate that we want to create bar charts
fig = px.bar(
 phl_by_weapon,
 x="Weapon",
 y="size",
 facet_col="Gender of accused", # Use facet_col parameter to
specify which field to split graph by
 color="Weapon",
 # title="Add a title here",
)
fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
06.html)
Figure 6. Two bar graph subplots with basic interactivity created using Plotly Express,
separating the data between the two genders. Readers can hover over the bars to
invoke floating labels. An interactive legend allows isolation, comparison or removal
of data categories. Click to explore an interactive variant of this plot
(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
06.html).

Note that this method circumvents the need to specify your grid dimensions, as
Plotly Express will automatically divide the grid into the number of categories
available (in this case, a 2x1 grid — one chart for males and one for females).
However, the method only works for creating a figure which contains just one type
of graph. We will discuss how to create figures which contain specified dimensions
and multiple types of graph in this section on using Graph Objects.

Adding Animations: Animation Frames
As we have seen, Plotly Express figures already feature some inbuilt interactivity. Yet,
there are a number of other features which we could add to increase interactivity,
including animation frames.

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-06.html

An animation frame depicts the way data change in relation to a certain measure. In
historical research, the measure which is most likely to be useful is time, although
most other numerical variables with some inherent rankability (e.g. ordinal or interval
data) should work. A Plotly Express figure with an animation frame will contain an
interactive toolbar which allows users not only to play/stop the animation but also to
manually scroll to the data dispersion at selected points.

To create a figure with an animation frame, start by using the usual method outlined
in the above examples to specify which type of graph is desired. Then, within that
method, use the animation_frame parameter to specify which variable should be
used for visualizing change. The example below builds a bar chart depicting changes
in male and female homicide prosecutions over the sample period:

Create DataFrame which provides counts of prosecutions by gender
and year
phl_by_gender_year = phl_crime.groupby(
 ["Gender of accused", "Year"], as_index=False
).size()

Use px.bar() to create a bar chart
fig = px.bar(
 phl_by_gender_year,
 x="Gender of accused",
 y="size",
 labels={"size": "Count"},
 range_y=[
 0,
 200,
], # The range_y parameter allows customization of the y-axis
range (optional)
 color="Gender of accused",
 # title="Add a title here",
 animation_frame="Year", # Use animation_frame to specify which
variable to measure for change
)
fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
07.html)

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html

Figure 7. Animated bar graph featuring an interactive slider created using Plotly
Express. As before, readers have the option to hover over the bars to display floating
labels. Readers can either invoke an animation of the graph using Play and Stop
buttons, or use the slider function to manually shift their view of the data. Click to
explore an interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-07.html).

Adding Animations: Dropdown Bars
Dropdown bars are slightly more complicated than animation frames. They can allow
users to switch between a wide variety of display options, including changing colors,
lines, axes and even variables. When creating figures with dropdown bars, the first
step is to create the initial graph without a dropdown bar (this will be the first graph
which your users will see). In this example, we’ll be working with a scatter plot which
visualises the ages of perpetrators and victims, so we’ll create this as follows:

fig = px.scatter(
 phl_crime,
 x="Age of accused",
 y="Victim age",
 color="Charge",
 # title="Add a title here",
 labels={"Age of accused": "Assailant age"},
)

Note that the graph has been created but is not visible since we have not used the
fig.show() command yet. This figure will be displayed once we have added a

dropdown bar in the following steps.

After creating our initial graph, we can use the update_layout method again to
add a dropdown bar. This is a more complex step, since Plotly Express objects’ data
are nested at many levels under the hood, so we’ll need to go a few layers deeper
than normal to access the dropdown feature.

Once we have called the update_layout method:

We first need to access the updatemenus parameter: this stores a list of
dictionaries, each storing the metadata for various design features.
The only design feature we are currently interested in is the dropdown box,
which is stored under the buttons dictionary.
The buttons key stores as its value another list of dictionaries, each
representing the options available in your dropdown bar.
We’ll need to create two buttons — one for the stacked bar chart and one
for the pie chart — so our buttons list will store two dictionaries.
Each of these two dictionaries will need three key-value pairs:

The first, under the args key, will specify which type of graph to
display.
The second, under the label key, will specify the text to display in the
dropdown bar.
The third, under the method key, will specify how to modify the chart
(update, restyle, animate, etc.).

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-07.html

In the example below, we will look at how to use a dropdown bar to toggle between
different categories of a variable. Since our initial scatterplot displays the ages of the
accused and their victims, we’ll add a dropdown bar which allows users to see data
points for either a) all cases, b) murder charges only, c) manslaughter charges only,
or d) abortion charges only.

To create the dropdown, we need to take the following steps:

Under the label key, the value will specify the text to display in the
dropdown bar.
Under the method key, the value will be ‘update’ since we are altering the
layout and the data.
Under the args key, the value (which is another list of dictionaries) will
specify which data will be visible (more on this issue below), the title for
this graph view (optional), and the titles for the x- and y-axes of this graph
view (optional).

You need to enter a list for the visible key: each item in the list indicates whether
the data at that specific index should be displayed. In our example, we have
partitioned our dataset into three groups: the data corresponding to murder
charges, the data for the manslaughter charges, and the data for the abortion
charges. As such, our list for the visible key should have three items. Our first
button , which represents the first graph displayed to the user, should therefore

specify [True, True, True] since we want all charges to be shown in that first
view. However, the remaining three buttons will only specify True for one item,
because we want to show the data for only one type of crime.

Now let’s put this into practice:

Use .update_layout() method to add dropdown bar
fig.update_layout(
 updatemenus=[
 dict(
 buttons=list(
 [# Create the 'buttons' list to store a dictionary
for each dropdown option
 dict(
 label="All charges", # Add label for first
'view'
 method="update",
 args=[
 {
 "visible": [True, True, True]
 }, # This 'view' show all three types of
crime
 {
 "title": "Victim and assailant ages,
Philadelphia homicides (1902-1932)",
 "xaxis": {"title": "Age of accused"},
 "yaxis": {"title": "Victim age"},
 },
],
),
 dict(
 label="Murder", # Add label for second
'view'
 method="update",
 args=[
 {
 "visible": [True, False, False]
 }, # Will only show data for first item
(murder)
 {
 "title": "Dynamic title: victim and
assailant ages in murder charges", # Can change titles here to make
the graph more dynamic
 "xaxis": {
 "title": "Dynamic label: age of
accused"
 }, # As above
 "yaxis": {"title": "Dynamic label:
victim age"},
 },
],
), # As above
 dict(
 label="Manslaughter", # Add label for third
'view'
 method="update",
 args=[
 {
 "visible": [False, False, True]
 }, # Will only show data for second item
(manslaughter)

 {
 "title": "Another dynamic title:
victim and assailant in manslaughter charges", # New title
 "xaxis": {
 "title": "Another dynamic label:
age of accused"
 }, # New x- and y-axis titles
 "yaxis": {"title": "Another dynamic
label: victim age"},
 },
],
),
 dict(
 label="Abortion", # Add label for fourth
'view'
 method="update",
 args=[
 {
 "visible": [False, True, False]
 }, # Will only show data for third item
(abortion)
 {
 "title": "More dynamism: ages of
accused and victims in abortion charges", # New title
 "xaxis": {
 "title": "More dynamism: age of
accused"
 }, # New x- and y-axes titles
 "yaxis": {"title": "More dynamism:
victim age"},
 },
],
),
]
)
)
]
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
08.html)
Figure 8. Scatterplot featuring an interactive dropdown filter created using Plotly
Express. This iteration of the plot also features a dropdown menu which facilitates
filtering by category of Charge or to display All Charges. As before, an interactive
legend allows readers to isolate, compare or remove data categories, and hover-over
invokes floating labels for individual data points. Click to explore an interactive
variant of this plot (/assets/interactive-visualization-with-plotly/interactive-
visualization-with-plotly-08.html).

Creating the dropdown bar in the above example provides users with the ability to
isolate (and examine) a given element from the wider visualization. We visited this
Plotly feature earlier when noting that double-clicking on an element in the graph’s
legend will remove it from the visualization. However, the dropdown menu offers an
additional advantage: it provides us with the ability to create dynamic headings,
which means our titles and labels change depending on which option we have
selected from the dropdown box.

The above examples demonstrate that it is very easy to create graphs using Plotly
Express and relatively simple to add interactivity such as animation frames and
dropdown bars. We will now look at creating graphs with Plotly Graph Objects.
Specifically, we will focus on what ‘Graph Objects’ are, how they work, and when (and
why) you might want to create graphs using plotly.go instead of plotly.px .

Building Graphs with Plotly Graph Objects
Setting Up Plotly Graph Objects
To start working with Plotly’s Graph Objects, you’ll need to import the
graph_objects module:

import plotly.graph_objects as go
from plotly.graph_objs.scatter.marker import Line # Not required, but
avoids raising 'DeprecationWarning'.

Note that in a conventional `.py `script the libraries should all be imported at
the start of the script. The code to import these libraries is provided at this
stage for clarity.

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-08.html

They’re All Objects! Data Structure of Plotly Graph Objects
As mentioned in the introduction to this lesson, all Plotly Express figures are actually
Graph Objects ‘under the hood’. This means that, when you create a figure using
plotly.px , you are creating an instance of a Graph Object.

This becomes evident if we call the type function on the fig variable:

Output the figure's 'type'
print(type(fig))

<class 'plotly.graph_objs._figure.Figure'>

It is important to note therefore that all figures created in Plotly are effectively Graph
Objects.

Graph Objects are represented by tree-like (hierarchical) data structures with three
top levels: data , layout , and frames :

The data level contains information such as the type of chart, the categories
available, the data points falling under each category, whether to show the
category in the legend, the types of markers being used for data points, and
the text/data to display when hovering over data points.
The layout attribute contains information such as the figure dimensions, the
fonts and colors used, any annotations, the coordinates of subplots, the
metadata associated with any buttons (as discussed in a previous example),
and whether any images should be used in the background.
The frames attribute stores information relating to animations used in the
figure, such as the data to be displayed at each stop point on a sliding bar.
This attribute will not be created unless you add an animation to the figure.

It is easy to view the underlying data structure of a figure by printing it as a Python
dictionary with the fig.to_dict() function. We can format the structure for easier
reading by viewing it in JSON format with fig.to_json(pretty=True) . In the
example below, we display only the first 500 characters to provide a sample of the
output when we use this method (again using the fig variable we created above).

print(fig.to_dict())
print(fig.to_json(pretty=True)[0:500] + "\n...")

{
 "data": [
 {
 "hovertemplate": "\u003cb\u003eGender=\u003c\u002fb\u003e %
{x}\u003cbr\u003e\u003cb\u003eCount=\u003c\u002fb\u003e %
{y}\u003cextra\u003e\u003c\u002fextra\u003e",
 "name": "Suspect gender",
 "x": [
 "Female",
 "Male"
],
 "y": [
 72,
 617
],
 "type": "bar",
 "xaxis": "x",
 "yaxis": "y"
 },
 {
 "hovertemplate":
"\u003cb\u003eGender=\u003c\u002fb\u003eFemale\u003cbr\u003e\u003cb\u003e
 }
]
}

Examining the output of a figure should help you to understand the underlying data
structure and properties of a graph object. If you print the full output (using the
fig.to_dict() method), you will notice that:

Our data attribute stores data for each of the three categories (murder,
manslaughter, and abortion) under separate dictionaries
The data attribute qualifies which type of graph is being used (in this case
‘scatter’)
The layout attribute contains the figure title
The layout attribute contains the data associated with the buttons (i.e.
the dropdown bar)
There is no traces attribute since there is no animation frame associated
with this figure

Using Plotly Graph Objects vs. Plotly Express
Another key point to be aware of is that creating graphs with plotly.go typically
requires much more code than making the same graph with plotly.px .

Consider the following example: building a simple horizontal bar chart to show male
vs. female homicide prosecutions. First, let’s create a DataFrame which tallies
prosecution counts by gender:

phl_by_gender=phl_crime.groupby(["Gender of accused"],
as_index=False).size()

Now let’s build the horizontal bar chart with these data with plotly.go :

fig = go.Figure(
 go.Bar(x=phl_by_gender["size"], # Use go.Bar() to specify chart
type as bar chart
 y=phl_by_gender["Gender of accused"],
 orientation='h',
 hovertemplate="Gender=%{y}
Count=%{x}<extra></extra>"), # Need
to format hover text (this is automatic with plotly.px)
 # layout={"title": "Add a title here"})

fig.update_layout(# Need to use .update_layout to add x- and y-axis
labels (this is automatic with plotly.px)
 xaxis=dict(title="Count"),
 yaxis=dict(title="Gender of accused"))

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
09.html)
Figure 9. Horizontal bar chart with basic interactivity created using Plotly Graph
Objects. Readers can hover over the bars to invoke floating labels. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-09.html).

Note that when using Plotly Graph Objects, you can supply a title using the layout

argument, which takes a dictionary containing the title keyword and its value.

Now, let’s create the same figure using plotly.px :

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-09.html

fig = px.bar(
 phl_by_gender,
 x="size",
 y="Gender of accused",
 orientation="h",
 # title="Add a title here",
 labels={"size": "Count"},
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
10.html)
Figure 10. Horizontal bar chart with basic interactivity created using Plotly Express.
Readers can hover over the bars to invoke floating labels. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-10.html).

It becomes clear from the above examples that plotly.go requires more code than
plotly.px because many features need to be manually created in plotly.go .

Thus, it is usually better to use plotly.px where possible.

Why Use Graph Objects?
This leads us to a key question: if it’s so much easier to create graphs using
plotly.px , why should we bother using plotly.go at all? The simple answer is

that there are several useful features and capabilities which are only available by
using plotly.go . We will look at two such capabilities in this section of the tutorial:
tables and subplots.

Tables
One of the most useful features provided through the plotly.go module is the
option to create neat, interactive tables. This requires four steps:

1. Create a new figure using the .Figure() method.
2. Under the data attribute, call the .Table() method to specify that the

figure should be a table.
3. Within the .Table() method, create a header dictionary to store a list of

column headings.

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-10.html

4. Also within the .Table() method, create a cells dictionary to store the
data (values).

It is also possible to customise it with labels, colors and alignment options.

In the example below, we’ll create a table to store the entire Philadelphia homicides
dataset:

fig = go.Figure(
 data=[
 go.Table(# Create table
 header=dict(
 values=list(
 phl_crime.columns
), # Get list of all columns in 'phl_crime'
DataFrame to use for header
 fill_color="paleturquoise", # Change heading color
 align="left",
), # Change header text alignment
 cells=dict(
 values=phl_crime.transpose().values.tolist(), # Get
values from all columns in dataframe for values
 fill_color="lavender",
 align="left",
),
)
]
)

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
11.html)
Figure 11. Table containing the Philadelphia Homicides dataset created with Plotly
Graph Objects. Readers can scroll through the entire dataset as they would in a
spreadsheet. Click to explore an interactive variant of this plot (/assets/interactive-
visualization-with-plotly/interactive-visualization-with-plotly-11.html).

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-11.html

As with plotly.px , figures created with plotly.go have some inherent
interactivity. Tables, for example, provide users the ability to scroll through rows
(either using a trackpad or the scrollbar on the right) and are therefore excellent for
saving space. It is also easy to move columns around by clicking on the column
headers and dragging them left or right.

Subplots
Another useful feature of the plotly.go module is its capacity for building
subplots. Although plotly.px can build facet plots, these are comparatively
limited, since they must all share the same graph type, axes and variables. Subplots,
on the other hand, allow you to create a grid containing different types of graphs
with their own axes and variables, which ends up looking like a sort of ‘dashboard’.

Since the code is particularly lengthy for creating subplots, this example will be
provided on a step-by-step basis. We will create a 3x1 grid containing three different
charts: the first will be a standard bar chart to quantify prosecution counts for male
vs. female suspects; the second will be a line graph showing changes in male vs.
female prosecutions over time; and the third will be a boxplot showing the minimum,
inter-quartile range and maximum ages of male vs. female suspects.

Step 1: Import the subplots module and get data
Import make_subplots
from plotly.subplots import make_subplots

Gather data for subplot
phl_women, phl_men = (
 phl_crime.loc[phl_crime["Gender of accused"] == "Female"],
 phl_crime.loc[phl_crime["Gender of accused"] == "Male"],
)
phl_women_year, phl_men_year = (
 phl_women.groupby(["Year"], as_index=False).size(),
 phl_men.groupby(["Year"], as_index=False).size(),
)

Step 2: Create an empty subplot with a 3x1 grid using the make_subplots()
function

fig = make_subplots(rows=1, cols=3) # Use the rows and cols
parameters to create smaller/bigger grid

Step 3: Add the first graph (the bar chart) using the .add_trace() method

fig.add_trace(
 # Use go.Bar() to specify chart type as bar chart
 go.Bar(
 x=phl_by_gender[
 "Gender of accused"
],
 y=phl_by_gender["size"],
 name="Suspect gender",
 hovertemplate="Gender= %{x}
Count= %{y}
<extra></extra>",
),
 # Use the row and col parameters to change the position of the
subplot within the grid
 row=1,
 col=1,
)

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
12.html)
Figure 12. A three-column plot with basic interactivity created using Plotly Graph
Objects, with a bar chart on the left showing the number of accused by gender, and
two empty columns on the right. Readers can hover over the bars to invoke floating
labels. Click to explore an interactive variant of this plot (/assets/interactive-
visualization-with-plotly/interactive-visualization-with-plotly-12.html).

Note: If you are creating a subplot using Jupyter Notebook, rerunning the
code may duplicate the trace you added and thereby add more items to the
legend. If you need to rerun the code, it is best to restart the kernel first.

Step 4: Add the second graph (the line graph)

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-12.html

fig.add_trace(
 # Use go.Line() here to specify graph type as line graph
 go.Line(
 x=phl_women_year[
 "Year"
],
 y=phl_women_year["size"],
 name="Female", # Specify that this line represents female
prosecutions
 hovertemplate="Gender=Female
Year= %{x}

Count= %{y}<extra></extra>",
),
 # the col parameter is now 2 (rather than 1) since we want to
position this graph next to the bar chart.
 row=1,
 col=2,
)

Since we want separate lines for male and female charges, we need
to add two 'Line' traces to the plot.
fig.add_trace(
 go.Line(
 x=phl_men_year["Year"],
 y=phl_men_year["size"],
 name="Male", # Specify that this line represents male
prosecutions
 hovertemplate="Gender=Male
Year= %{x}

Count= %{y}<extra></extra>",
),
 row=1,
 col=2,
)

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
13.html)
Figure 13. A three-column plot created using Plotly Graph Objects, with a bar chart
showing the number of accused by gender and a line graph showing the number of
male and female accused by year. Hover-over invokes floating labels for each bar

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html

and individual data points. The third column is still empty. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-13.html).

Note that if you did not import `plotly.graph_objs.scatter.Line`, you may get
the following warning (which you can safely ignore):

/Library/Frameworks/Python.framework/Versions/3.10/lib/python
packages/plotly/graph_objs/_deprecations.py:378:
DeprecationWarning:

plotly.graph_objs.Line is deprecated.
Please replace it with one of the following more specific
types
 - plotly.graph_objs.scatter.Line
 - plotly.graph_objs.layout.shape.Line
 - etc.

Step 5: Add the final graph (the boxplot)

We have not looked at boxplots yet, but they are created in a similar way to other
graphs and have similar interactive behaviour (e.g. scrolling over a box will show the
minimum, maximum, median, and interquartile range of the data).

fig.add_trace(
 # Use go.Box() to specify graph type as boxplot
 go.Box(
 y=phl_women["Age of accused"], name="Female"
),
 row=1,
 col=3, # col=3 now because it is the third graph in the grid
figure
)

As before, we need to add another trace since we want a separate
box for males.
fig.add_trace(go.Box(y=phl_men["Age of accused"], name="Male"),
row=1, col=3)

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-13.html

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
14.html)
Figure 14. A three-column plot created using Plotly Graph Objects, with a bar chart
showing the number of accused by gender, a line graph showing the number of
male and female accused by year, and a box plot showing the distribution and
outlier values of male and female accused by age. Hover-over invokes floating labels
for each bar or individual data point and shows the minimum, maximum, median,
and interquartile range on the box plot. Click to explore an interactive variant of this
plot (/assets/interactive-visualization-with-plotly/interactive-visualization-with-
plotly-14.html).

Step 6: Format the figure

There are still some tweaks needed, like adding a main title for the figure and
subtitles for each subplot. You might also want to change fonts, text positioning, and
the figure size — you can use the .update_layout() method to change these
properties:

fig.update_layout(
 font_family="Times New Roman", # Change font for the figure
 hoverlabel_font_family="Times New Roman", # Change font for
hover labels
 hoverlabel_font_size=16, # Change font size for hover labels
 # title_text="Add a title here", # Main title
 # title_x=0.5, # Position main title at center of graph (note:
the title_x parameter only takes integers or floats)
 xaxis1_title_text="Suspect gender", # Add label for x-axis in
1st subplot
 yaxis1_title_text="Count", # Add label for y-axis in 1st subplot
 xaxis2_title_text="Year",
 yaxis2_title_text="Count",
 xaxis3_title_text="Suspect gender",
 yaxis3_title_text="Age",
 showlegend=False, # Remove legend
 height=650, # Set height for graph - not needed, but can be
useful for digital publishing
)

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-14.html

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
15.html)
Figure 15. A three-column plot created using Plotly Graph Objects, with a bar chart
showing the number of accused by gender, a line graph showing the number of
male and female accused by year, and a box plot showing the distribution and
outlier values of male and female accused by age. This plot is a variant of that
produced in Figure 14, with added subtitles for each subplot. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-15.html).

Step 7: Add annotations to the line graph

Since the legend has been removed, it’s now impossible to distinguish between the
lines which represent males and those which represent females in the line graph. We
can use the .update_layout() method to add annotated arrows pointing to each
line:

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-15.html

fig.update_layout(
 # Pass in a list of dicts where each dict represents one
annotation
 annotations=[
 # Our first annotation will be for the 'males' line
 dict(
 x=1920,
 y=120, # X- and y- co-ordinates for the annotation point
 xref="x2", # Specify xref and yref as x2 and y2 because
we want the second graph in the grid (the line graph)
 yref="y2",
 text="Males", # Text for annotation is 'Males'
 showarrow=True, # Use False to add a line without an
arrowhead
 arrowhead=1, # Change size of arrowhead
 ax=30, # Use the ax and ay parameters to change length
of line
 ay=30,
),
 # Our second annotation will be for the 'females' line
 dict(
 x=1920,
 y=20,
 xref="x2",
 yref="y2",
 text="Females",
 showarrow=True,
 arrowhead=1,
),
]
)

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
16.html)

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html

Figure 16. A three-column plot created using Plotly Graph Objects, with a bar chart
showing the number of accused by gender, a line graph showing the number of
male and female accused by year, and a box plot showing the distribution and
outlier values of male and female accused by age. This plot is a variant of that
produced in Figure 15, with added annotations in the line graph. Click to explore an
interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-16.html).

Step 8: Add annotations below the figure

We might want to add annotations below the figure to specify the focus of each
subplot (particularly useful for academic publishing), which we can do using the
.add_annotation() method:

fig.add_annotation(
 dict(
 font=dict(color="black", size=15), # Change font color and
size
 x=0, # Use x and y to specify annotation position
 y=-0.15,
 showarrow=False,
 text="Male vs. female suspects (left); male vs. female
suspects over time (middle); age distributions of male vs. female
suspects (right).",
 textangle=0, # Option to rotate text (sometimes useful to
save space)
 xanchor="left",
 xref="paper", # Set xref and yref to 'paper' so that x and y
coordinates are absolute refs.
 yref="paper",
)
)

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-16.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html

17.html)
Figure 17. A three-column plot created using Plotly Graph Objects, with a bar chart
showing the number of accused by gender, a line graph showing the number of
male and female accused by year, and a box plot showing the distribution and
outlier values of male and female accused by age. This plot is a variant of that
produced in Figure 16, with an additional annotation added below all three subplots.
Click to explore an interactive variant of this plot (/assets/interactive-visualization-
with-plotly/interactive-visualization-with-plotly-17.html).

Viewing and Exporting Figures
In the previous sections of the lesson, we saw how to create and modify interactive
graphs using both the plotly.px and plotly.go modules. We will next consider
how to view and export these graphs for publications or other research outputs.

The methods discussed here will use a basic line graph, identical to that created
earlier in the tutorial (see Figure 3). Let’s start by recreating that figure:

fig = px.line(
 phl_by_year,
 x="Year",
 y="size",
 # title="Add a title here",
 labels={"size": "Count",},
 color="Charge",
)

Viewing Figures
As we have seen throughout this lesson, the .show() method can be used to
output a figure. By default, this method uses the inbuilt Plotly renderer and therefore
provides interactivity:

fig.show()

(/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-
03.html)
Figure 18. Reproduction of Figure 3, illustrating the fig.show() method. Click to
explore an interactive variant of this plot (/assets/interactive-visualization-with-
plotly/interactive-visualization-with-plotly-03.html).

https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-17.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html
https://programminghistorian.org/assets/interactive-visualization-with-plotly/interactive-visualization-with-plotly-03.html

Exporting Figures
Plotly figures can be exported either as interactive or static (non-interactive) graphs.
Interactive graphs may be useful for research websites and (some) digital
publications, whereas static graphs are appropriate for print publications.

Exporting as HTML

Exporting figures as HTML retains their interactivity when viewed in a web browser.
Any figure can be saved as an HTML file by using the .write_html() method:

Save HTML file of the graph (which we have been storing under the
variable name 'fig' throughout this lesson)
fig.write_html("your_file_name.html")

By default, any exported figure will be saved in the same folder as that in which your
script is stored. If you want to store the figure elsewhere (a different folder), you can
specify the exact directory when you specify the file name (for example,
fig.write_html("your_path/your_file_name.html")).

Exporting static images

Plotly provides numerous options for exporting both raster images (.png or
.jpg) and vector images (.pdf or . svg). To do this, use the .write_image()

function and specify the image type within the file name:

Export to raster graphic, either png or jpg:
fig.write_image("your_file_name.png")
fig.write_image("your_file_name.jpeg")

Export to vector graphic, either pdf or svg:
fig.write_image("your_file_name.svg")
fig.write_image("your_file_name.pdf")

Summary
Plotly offers the ability to create publication-quality, interactive figures using Python
and other programming languages. This lesson provides an overview of what Plotly
is, why it’s useful, and how it can be used with Python. It also demonstrates the
different modules in the Plotly framework (Plotly Express and Plotly Graph Objects)
and the methods required to create, edit, and export data visualizations. The key
syntaxes covered in this lesson are:

Installing Plotly using pip install plotly

Importing Plotly Express and Plotly Graph Objects using import

plotly.express as px and import plotly.graph_objects as go

With Plotly Express:
Creating graphs using px.bar() , px.line() , and px.scatter()

Adding features to graphs using parameters such as title , labels ,
color , and animation_frame

Using .update_layout() to edit figures after creation and/or add
dropdown bars

With Plotly Graph Objects:

Recognizing the data , layout , and traces attributes as key
underlying structure of a graph object
Creating new (empty) graph objects with go.Figure()

Creating graphs using go.Bar() , go.Table() , go.Line() , and
go.Box()

Editing features using the layout attribute
Creating subplots (importing the subplots module using from

plotly.subplots import make_subplots , implementing subplots with
make_subplots() function, and adding traces to subplots using
.add_trace() method)

Using .update_layout() to edit figures after creation
Exporting figures created with Express or Graph Objects using
.write_html() and .write_image()

Endnotes
1. Under the hood, these libraries are built on top of the Plotly JavaScript

library. ↩

2. Plotly Dash is outside the scope of this lesson, which instead focuses on
plotly.px and plotly.go . ↩

3. For further information on Bokeh, see Charlie Harper’s lesson on Visualizing
Data with Bokeh and Pandas (/en/lessons/visualizing-with-bokeh) here on
Programming Historian. ↩

4. The dataset and its related documents are available freely via the Historical
Violence Database (https://perma.cc/WCW9-YRX9) project organized by Ohio
State University and licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License (https://perma.cc/3BYZ-
UDYW). ↩

5. If you already work with Jupyter notebooks, there is a good chance that other
dependencies are already installed. However, if you are working in a clean
Python environment or in a code editor like VS Code, it may also be necessary
to run pip install ipykernel and pip install nbformat . ↩

6. We will also be using the NumPy module, but this is automatically installed
with the installation of pandas. ↩

7. Kaleido is a Python library for generating static images (e.g. JPG and SVG files)
and will therefore be needed when exporting non-interactive graphs. ↩

ABOUT THE AUTHOR

Grace Di Méo is a Lecturer in Criminology in the Faculty of Humanities and Social
Sciences at Oxford Brookes University. (https://orcid.org/0000-0002-3227-8053)

SUGGESTED CITATION

Grace Di Méo, "Creating Interactive Visualizations with Plotly," Programming
Historian 12 (2023), https://doi.org/10.46430/phen0115.

https://programminghistorian.org/en/lessons/visualizing-with-bokeh
https://programminghistorian.org/en/lessons/visualizing-with-bokeh
https://programminghistorian.org/en/lessons/visualizing-with-bokeh
https://perma.cc/WCW9-YRX9
https://perma.cc/WCW9-YRX9
https://perma.cc/WCW9-YRX9
https://perma.cc/3BYZ-UDYW
https://perma.cc/3BYZ-UDYW
https://perma.cc/3BYZ-UDYW
https://perma.cc/3BYZ-UDYW
https://orcid.org/0000-0002-3227-8053
https://orcid.org/0000-0002-3227-8053

The Programming Historian (ISSN: 2397-2068) is released under a CC-BY
(https://creativecommons.org/licenses/by/4.0/deed.en) license.

This project is administered by ProgHist Ltd, Charity Number 1195875 (https://register-of-
charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview) and Company
Number 12192946 (https://find-and-update.company-information.service.gov.uk/company/12192946).

ISSN 2397-2068 (English) (/)

ISSN 2517-5769 (Spanish) (/es)

ISSN 2631-9462 (French) (/fr)

ISSN 2753-9296 (Portuguese) (/pt)

 Hosted on GitHub (https://github.com/programminghistorian/jekyll)
 Site last updated 17 October 2024 (https://github.com/programminghistorian/jekyll/commits/gh-
pages)

 RSS feed subscriptions (https://programminghistorian.org/feed.xml)
 See page history (https://github.com/programminghistorian/jekyll/commits/gh-
pages/en/lessons/interactive-visualization-with-plotly.md)
 Make a suggestion (/en/feedback) Lesson retirement policy (/en/lesson-retirement-policy)

 Translation concordance (/translation-concordance)

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://register-of-charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview
https://register-of-charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview
https://register-of-charities.charitycommission.gov.uk/charity-search/-/charity-details/5181272/charity-overview
https://find-and-update.company-information.service.gov.uk/company/12192946
https://find-and-update.company-information.service.gov.uk/company/12192946
https://programminghistorian.org/
https://programminghistorian.org/
https://programminghistorian.org/
https://programminghistorian.org/es
https://programminghistorian.org/es
https://programminghistorian.org/es
https://programminghistorian.org/fr
https://programminghistorian.org/fr
https://programminghistorian.org/fr
https://programminghistorian.org/pt
https://programminghistorian.org/pt
https://programminghistorian.org/pt
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll
https://github.com/programminghistorian/jekyll/commits/gh-pages
https://github.com/programminghistorian/jekyll/commits/gh-pages
https://github.com/programminghistorian/jekyll/commits/gh-pages
https://programminghistorian.org/feed.xml
https://programminghistorian.org/feed.xml
https://github.com/programminghistorian/jekyll/commits/gh-pages/en/lessons/interactive-visualization-with-plotly.md
https://github.com/programminghistorian/jekyll/commits/gh-pages/en/lessons/interactive-visualization-with-plotly.md
https://github.com/programminghistorian/jekyll/commits/gh-pages/en/lessons/interactive-visualization-with-plotly.md
https://programminghistorian.org/en/feedback
https://programminghistorian.org/en/feedback
https://programminghistorian.org/en/lesson-retirement-policy
https://programminghistorian.org/en/lesson-retirement-policy
https://programminghistorian.org/translation-concordance
https://programminghistorian.org/translation-concordance

