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Background: Transcranial direct current stimulation (tDCS) and therapy-based virtual

reality (VR) have been investigated separately. They have shown promise as efficient

and engaging new tools in the neurological rehabilitation of individuals with cerebral

palsy (CP). However, the recent literature encourages investigation of the combination

of therapy tools in order to potentiate clinic effects and its mechanisms.

Methods: A triple-blinded randomised sham-controlled crossover trial will be performed.

Thirty-six individuals with gross motor function of levels I to IV (aged 4–14 years old) will

be recruited. Individuals will be randomly assigned to Group A (active first) or S (sham

first): Group A will start with ten sessions of active tDSC combined with VR tasks. After

a 1-month washout, this group will be reallocated to another ten sessions with sham

tDCS combined with VR tasks. In contrast, Group S will carry out the opposite protocol,

starting with sham tDCS. For the active tDCS the protocol will use low frequency tDCS

[intensity of 1 milliampere (mA)] over the primary cortex (M1) area on the dominant

side of the brain. Clinical evaluations (reaction times and coincident timing through

VR, functional scales: Abilhand-Kids, ACTIVLIM-CP, Paediatric Evaluation of Disability

Inventory-PEDI- and heart rate variability-HRV) will be performed at baseline, during, and

after active and sham tDCS.

Conclusion: tDCS has produced positive results in treating individuals with CP; thus,

its combination with new technologies shows promise as a potential mechanism for
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improving neurological functioning. The results of this study may provide new insights

into motor rehabilitation, thereby contributing to the better use of combined tDCS and

VR in people with CP.

Trial Registration: ClinicalTrials.gov, NCT04044677. Registered on 05 August 2019.

Keywords: cerebral palsy, virtual reality exposure therapy, plasticity, motor rehabilitation, autonomic nervous

system, non-invasive brain stimulation, transcranial direct current stimulation

INTRODUCTION

Cerebral palsy (CP) describes a group of permanent disorders
of movement and posture that limit activity. It is attributed to
non-progressive disturbances that occur in the developing foetal
or infant brain (1). The difficulties that accompany individuals
with CP lead to their registration in different and continuous
rehabilitation programmes to promote the development of
general motor skills, and some studies defend the importance
of upper limb tasks to promote physical activity for people
with CP. According to Pontén et al. (2) and Sarcher et al. (3),
contractions in the upper limbs of individuals with CP start
early and require adequate intervention and special attention to
provide increases in (or maintenance of) range of movement,
better performance and physical activity (especially for the
ones with less global mobility), improving the performance of
the functions of daily life, increasing independence, activities,
and participation (4). Likewise, there is growing evidence of
the higher prevalence of metabolic syndrome, cardiovascular
disease risk factors, and autonomic nervous system (ANS)
dysfunctions in adults with CP (5). According to Katz-Leurer
and Amichai (6), because of the sedentary behaviour that
results from their limited mobility (i.e., the more limited
the mobility, the less activity), individuals with CP are
more disposed to chronic disorders such as heart conditions
and hypertension.

Thus, considering the presence of musculoskeletal and
metabolic conditions in individuals with CP, professionals
involved in their care need to consider all the impaired structures
and functions and look for proposals for interventions based
on scientific evidence that can effectively and comprehensively
treat the limitations and restrictions caused by the brain injury
(7). To do so, they rely on modern technologies to create new
practices and interventions to stimulate different body structures
and physiological responses, even for those with more severe
conditions, to optimise the acquisition of mo(tor skills, which
leads to a more active life (8, 9).

In addition to evidence for the benefits of different techniques
for the treatment in rehabilitation of individuals with CP (8–
10), recent studies encourage the combination of interventions
and technologies as a promising approach for rehabilitation (11).
Currently, few studies had investigated the effect of combined

Abbreviations: tDCS, transcranial direct current stimulation; VR, virtual reality;
CP, cerebral palsy; mA, milliampere; HRV, heart rate variability; GMFCS, gross
motor function classification system; MACS, manual ability classification system;
PEDI, pediatric evaluation of disability inventory; WISC, wechsler intelligence
scale for children; TRT, total reaction time.

therapies in the rehabilitation of individuals with CP, though
they presented some encouraging results (12–15). Muszkat et al.
(11), suggested that the combination of therapeutic tools should
be encouraged to enhance clinical effects and provide more
effective and long-lasting results. In this sense, with the increasing
accessibility and evolution of technology, virtual reality (VR) and
transcranial direct current stimulation (tDCS) have the potential
to advance the treatment of CP (10).

The use of VR in rehabilitation is a modern concept of
treatment that is based on the use of games and tasks in virtual
environments to stimulate physical and cognitive functions
in individuals with different types of deficiencies (16, 17). In
VR, the user interacts with a three-dimensional environment
through remote input devices, such as a keyboard or a mouse
(a non-immersive environment), or by more advanced devices
(an immersive environment) such as a camera, glasses or
special gloves (16). Some studies were carried out using VR in
individuals with CP, and the effects were significantly positive
concerning the balance and strength of lower limbs (18),
learning of general motor skills (19), day-to-day activities (19),
and improvement of general learning processes with increased
attention in the task (20).

Transcranial direct current stimulation is a non-invasive
neuromodulatory technique that produces benefits in the
sensorimotor and physiological functions of individuals with
different neurological deficits (21), including individuals with
CP [see the review by (22)]. The tDCS uses low electrical
current (1–2mA) to modulate the resting potential of neurons
below the stimulated site (23). The action mechanism of
tDCS is related to the changes in the rates of spontaneous
neuronal firing and synaptic and non-synaptic plasticity, whichh
influences changes in the resting polarisation of the neurons,
and promotes neuroplasticity in cortical areas critically involved
in the performance of tasks and in promoting functional
benefits (24).

The benefits of tDCS include the flexibility to use it for
different activities and exercises (as it presents a mobile
characteristic) and the possibility of combining it with
other interventions. Spampinato et al. (25) showed that the
combination of tDCS with a task using reward characteristics
produced neurophysiological modulation of inhibitory networks,
and it resulted in enhanced retention of the learned task. Thus,
it can be used during fine motor tasks [to reinforce learning of
coordinative tasks; (26)], global movements [to increase range
of movement; (22)] and physical activities [in order to facilitate
motor activities; (12)], and to improve heart and autonomic
conditions (27).
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Some studies have produced positive results when combining
VR and tDCS therapies in stimulating the lower limbs for gait
improvement (12) and balance (28, 29). However, no studies have
investigated VR and tDCS interventions using an upper limb
motor task, which might benefit different clinical conditions of
individuals with CP. We organised a triple-blinded, randomised,
and controlled crossover trial to investigate the upper limbmotor
function of individuals with CP with the aims of (1) investigating
the effectiveness of the use of tDCS while performing a non-
immersive VR task on upper limb motor function and (2) to
analysing the influence of a combined VR and tDCS in upper
limb motor function through different functional assessment
scales, reaction times, and coincident timing analysis, as well as
physiological analyses such as heart rate variability.

We hypothesise that all individuals with CP will show an
improvement in performance after practising a non-immersive
virtual reality task, with benefits in upper limb functional scales,
reaction times and, coincident timing analysis underpinned by
an adaptation of autonomic neural physiological control after the
protocol, and retention of these variables at the 30-day follow-up.
However, such improvement and benefits will be more evident
after the application of active tDCS than the sham (placebo) tDCS
group. If this hypothesis is confirmed, the results of this study will
be relevant to the treatment of individuals with CP.

METHODS/DESIGN

We registered this trial on ClinicalTrials.gov (NCT04044677).
This paper has been reported in accordance with the Standard
Protocol Items: Recommendations for Interventional Trials
(SPIRIT) (30) (Figure 1 and Table 1).

Overview of the Study Design
A triple-blinded randomised controlled crossover trial with a
1:1 allocation ratio will be conducted, and all participants will
undertake non-immersive VR tasks and active or sham tDCS.
Groups A–S will start with 10 daily sessions of tDCS-active
combined with VR tasks for 20min. After a 1 month washout,
this group will be reallocated to another 10 daily sessions of
20min with sham tDCS combined with VR tasks. Meanwhile,
groups S–A will carry out the opposite protocol (participants will
start an allocated 10 sessions of sham tDCS combined with VR
tasks, and after a 1 month washout period will be reallocated
to 10 sessions of active tDCS combined with VR tasks). The
1 month washout period has been used and was shown to be
sufficient to reset the effects of the first 10 sessions in Biabani et al.
(31). Figure 2 summarises the planned experimental design. This
research protocol follows the SPIRIT recommendations.

Thirty-six participants will be recruited through referral by
the coordinators of three clinics in Brazil: Intensiva, Intertherapy,
and Therapies, located in São Paulo state. Those interested
in participating will undergo a detailed screening using the
eligibility criteria for enrolment in the study.

The sample size was calculated using statistical software
(GPower 3.1.5) on the main outcome measure (i.e., the motor
score). This calculation was based on data from one study with a
group of individuals with CP who received tDCS (32). The power

was 0.80; the alpha was 0.05; and the effect size was 0.65 (Cohen’s
d). The sample estimation indicated that 28 participants would
be necessary (i.e., 14 per group). With an adjustment to allow for
a withdrawal rate (20%), we will recruit 36 participants.

Inclusion Criteria
Participants will be included if they have: the agreement to
participate in the research from themselves [by signing assent
form (33)] and their legal guardians (by signing a consent form);
a clinical diagnosis of CP will be carried out by a neuropaediatric
clinician; with GMFCS levels I to IV and MACS I to IV; age
ranging from 4 to 14 years.

Exclusion Criteria
Participants will be excluded if they (1) do not understand
the tasks—the understanding of the task will be evaluated
through five attempts at each task in VR, because even with a
low intelligence quotient (IQ) a large number of the children
and adolescents can understand virtual tasks and interact with
improved performance; (2) motor difficulties that impede the
completing of the virtual tasks; (3) cardiac diseases that impede
the assessment of HRV; (4) surgery or use of an upper limb
spasticity inhibitor during the last 6 months; and (5) a metal
prosthesis in the head.

Withdrawal Criteria
Participants will be withdrawn from the study if they are
not willing to continue, cannot be present on the day of the
experiment, or miss two treatment sessions out of 10 (four
in total).

Randomisation
Participants will be randomly allocated to either group
A-S (active tDCS and VR tasks) or group S-A (sham
tDCS and VR tasks) with a 1:1 allocation defined by a
website (randomization.com). As we will have the participant’s
characteristics, immediately after the randomisation the age and
motor function (GMFCS/MACS) will be compared between
groups; if the groups are not homogeneous, a new randomisation
will be carried out. This protocol will be repeated until there
is no difference between age and GMFCS amongst groups
(in a maximum of first three attempts at randomisation, we
always have homogeneous groups). Randomisation will be under
the control of a blinded investigator who will be the only
person allowed to manage the electronic security file of the
randomisation to locate the individuals. (More details about this
can be found in the section that follows). The investigator will be
blind to the group to which the participant is allocated.

Blinding
The participants, the researchers delivering the intervention,
those performing the assessments, and the statistician will be
blind to group allocation until after the data analysis. To ensure
proper blinding, participants will receive codes and will be
separated from the allocation process by a different investigator.
The researchers responsible for applying the intervention and
the outcome assessors will not know the allocation of the
participants. In addition, for the blinding of the experimenter, the
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FIGURE 1 | SPIRIT: Description of the study protocol, schedule of enrolment, interventions, and assessments. *List of specific timepoints in this row.

device to be used has a “study” mode, in which a code is inserted
for each participant, so the device (DS-Stimulator Mobile,
neuroConn R©, Ilmenau, Germany) recognises and programmes
the settings (active or sham). Further details about settings used
in both active and sham interventions are presented in section
tDCS Intervention.

Assessment Scales and Tasks
We will use two classification systems to characterise both
groups, five assessments to characterise participants and to
measure improvement, and one physiological assessment; and
one enjoyment scale, four visual assessments, one cognitive
assessment, and two VR tasks (reaction time and coincident
timing) for motor performance.

Classification Systems for Group
Characterisation
Manual Ability Classification System (MACS) for

Children With CP
The MACS describes how children with CP use their hands to
manipulate objects in daily activities, and is used for children and
adolescents aged 4 to 18 years (34, 35).

The MACS has five levels. They are based on a child’s ability
to initiate the manipulation of age-appropriate objects alone and
on the need for assistance or adaptation to perform manual
activities in daily life. Levels are determined by a parent or
caregiver who regularly observes the child’s day-to-day functions
in collaboration with a healthcare professional.

Children who are able to manipulate objects easily with
maximum limitations to performmanual tasks that require speed

and accuracy are classified regardless of their age as level I, and
those who handle objects of lower quality and speed are classified
as level II. Children at level III manipulate objects with difficulty
and need help or an adapted activity, and those at level IV require
continuous support and assistance and/or adapted equipment
adapted to partially perform the activity. Finally, children at
level V are severely compromised in manual skills and need full
assistance. Given the difficulties associated with this level, it will
be an excluded item in our study.

Gross Motor Function Classification System (GMFCS)
GMFCS is a reliable and valid standard classification system for
measuring the functional abilities of children with CP (36). It
describes self-initiated movement and the use of assistive devices
(walkers, crutches, canes, wheelchairs and so on) for mobility
during an individual’s daily activities.

It uses locomotion as a key assessment and analyses the
individual at five levels of locomotor performance, separated
by age range from 0 to 18 years (37, 38). Thus, an individual
classified as GMFCS I is able to walk without limitations. A
child classified as level II may walk with limitations, where a
GMFCS II operation may result in the use of wheeled mobility
over long distances. A GMFCS III-graded child can usually
walk with a portable mobility device indoors, but uses wheeled
mobility in the community over longer distances. A GMFCS IV-
rated individual may sit supported, but their own mobility is
limited and they are often carried in a manual wheelchair or use
motorised mobility. Children classified as GMFCS V have more
severe limitations with head and trunk control, and self-mobility
is only possible with an electric wheelchair (37). Considering the
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TABLE 1 | Trial characteristics based on WHO Trial Registration Data Set.

Data category Trial information

Primary registry and trial

identifying number

ClinicalTrials.gov, ID: NCT04044677

Date of registration in primary

registry

05 August 2019

Secondary identifying numbers Ethical Committee of the University of São

Paulo, under the number CAAE:

99577318.0.0000.5390

Source(s) of monetary or

material support

Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior–Brasil (CAPES)

Primary sponsor University of São Paulo–USP

Secondary sponsor(s) NA

Contact for public queries TDS, CBMM

Contact for scientific queries TDS, CBMM

Public title Virtual reality therapy and transcranial direct

current stimulation in cerebral palsy

Scientific title Effect of combined virtual reality therapy and

transcranial direct current stimulation on

children and adolescents with cerebral palsy

Country of recruitment Brazil

Health condition(s) or

problem(s) studied

Cerebral palsy

Interventions Group 1 will start with 10 sessions of active

tDSC combined with VR tasks. After a 1 month

washout, this group will be reallocated to

another 10 sessions with sham tDCS

combined with VR tasks. Meanwhile, group 2

will carry out the opposite protocol (i.e.,

participants will start an allocated 10 sessions

of sham TDCS combined with VR tasks, and

after a 1 month washout period will be

reallocated to 10 sessions of active tDCS

combined with VR tasks).

Key inclusion and exclusion

criteria

Inclusion criteria: the agreement to participate

in the research from themselves and their legal

guardians; a clinical diagnosis of CP will be

performed by a neuropaediatric clinician; with

Gross Motor Function Classification System

(GMFCS) levels I to IV; and Manual Ability

Classification System (MACS) I to IV; age range

4–14 years. Exclusion criteria: do not

understand the tasks; motor difficulties that

impede the completing of the virtual tasks;

cardiac diseases that impede the assessment

of heart rate variability (HRV) and surgery; use

of an upper limb spasticity inhibitor during the

previous 6 months; metal prosthesis on the

head. Withdrawal criteria: participants will be

withdrawn from the study if they are not willing

to continue cannot be present on the day of the

experiment, or miss two treatment sessions.

Study type interventional

allocation

Randomised

Masking Triple-blinded

Assignment Crossover

Primary purpose Treatment

Date of first enrolment March 2019

Target sample size 35

Recruitment status Recruiting

Primary outcome(s) Motor skills improvement

Key secondary outcome(s) HRV improvement

difficulties that are associated with level V, it will be an excluded
item for our study.

Assessments to Characterise Participants
and Measure Improvement
Pediatric Evaluation of Disability Inventory (PEDI)
The PEDI is a standardised instrument consisting of a structured
interview with the caregiver, capable of documenting the
functional performance of children between 6months and 7 years
old in their daily life activities (39, 40).

This test covers three domains: self-care, mobility, and social
function. The self-care scale covers food, personal hygiene,
toilet use, clothing, and toilet control. The functional items of
mobility provide information about transfers, walking indoors
and outdoors, and use of stairs. The social function dimension
reflects issues related to communication, problem solving,
interaction with colleagues, amongst others.

Total scores are calculated for each scale in each domain,
where each item receives a score of 0 (the child is unable to
perform the activity) or 1 (the activity is part of the child’s
repertoire), and the sum of the items generates the score for
each domain. Studies have shown that the PEDI test is valid and
sufficiently reliable to be applied to children with CP in Brazil
(40, 41).

ABILHAND-Kids
ABILHAND-Kids is a questionnaire about manual ability in self-
care activities in children with upper limb involvement based on
their parents’ perception (42, 43).

The scale consists of 21 mainly bimanual items classified by
parents as impossible, difficult, easy to complete, or unknown,
defining a one-dimensional measure of manual skill in children
with CP.

Scores are significantly related to school education, CP type,
and grossmotor function, but not to age, sex, or laterality (42, 44).

Finally, ABILHAND-Kids measures are significantly related
to GMFCS levels; a higher manual skill is related to a
higher gross motor function. A similar relationship between
bimanual fine motor function and GMFCS levels has been found
previously (45).

ACTIVLIM-CP
The ACTIVLIM-CP is a questionnaire for parents that measures
the performance of global activity in daily activities. It has been
validated for children with CP (46–48).

It includes 43 items of activities of daily living related to
self-care, mobility, and domestic life, and represents a valid
and reliable measure of the performance of global activity.
In addition, the ACTIVLIM-CP was built based on parents’
perception. They are asked to estimate the ease or difficulty
their children have in performing each activity, by rating this
on a three-level scale: impossible (the child is unable to perform
the activity without using any other help), difficult (the child is
able to perform the activity without any help, but experiences
some difficulty), or easy (the child is able to perform the activity
without any help and experiences no difficulty).
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Physiological Assessment (HRV)
We will use HRV to analyse autonomic nervous systems before,
during, and after the intervention recovery. The analysis will
follow the guidelines of the Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology (49). The strap (for data collection) will be
positioned on the participant’s chest, and the Polar V800 (Polar
Electro, Finland) heart rate receiver will be positioned next to
it. HRV will be recorded after the initial assessments at rest for
10min and during VR combined with tDCS training for 20min.
For analysis of HRV data at rest 1,000 consecutive resting rate
(RR) intervals will be used, and during the tasks 256 consecutive
RR intervals will be used.

Heart rate will be recorded beat by beat throughout the
protocol by the Polar V800 heart rate receiver and RR intervals
recorded by the monitor will be transferred to the Polar
ProTrainer program, which allows HR visualisation and cardiac
period extraction in the “txt.” file format.

Moderate digital filtering will be performed in the program
itself, complemented with manual filtering performed in Excel
software to eliminate premature ectopic beats and artefacts, and
only series with more than 95% sinus beats will be included in the
study (50).

HRV analysis will be performed using linear (time and
frequency domain) and non-linear methods that will be analysed
using Kubios HRV R© software (Kubios HRV v.1.1 for Windows,
Biomedical Signal Analysis Group, Department of Applied
Physics, University of Kuopio, Finland).

Enjoyment Scale
An enjoyment scale using smiley faces (0 is “not fun at all;” 1 is
“boring;” 2 is “a bit of fun;” 3 is “fun;” and 4 is “great fun”) will be
applied after the end of the game sequences, since the motivation
may be related to the motor proficiency level.

This scale was developed by Jelsma et al. (51) to evaluate how
children feel when interacting with proposed non-immersive VR
games. It was used in other studies using different games (52, 53).

In this study, the scale will be applied in the first and last days
of the protocol to verify the children’s level of satisfaction with
the games presented.

Visual Assessments
For visual evaluation the following tests will be used: the Ishirara
Test and the Titmus Test.

Ishihara Test
The Ishihara Test (chromatic vision—Ishirara
pseudoisochromatic slides) is the best known and most
widely used in the world for green and red colour perception or
colour blindness. It was originally created to diagnose congenital
colour vision deficiencies, but it has also been shown to be
effective in identifying acquired colour deficiencies (54, 55).
Its application is based on the analysis of planks formed by
coloured circles, with two or three shades and different sizes on a
background of similar colour and structure, in which a number
or maze appears in a certain colour, which should be identified
by the possible bearer of the disability (56).

The boards can be classified into: demonstration boards—
visible to all observers in which the figure is presented with a
significant contrast brightness against the background, making
chromatic sensitivity not necessary for a correct answer; and
masking boards—only individuals with normal vision can see the
picture in which the object is close in colour to the background
(54, 56).

Titmus Test
The Titmus Test is a test used to assess stereoscopic vision
or depth perception (the “3D view”) that is given by both
eyes together and based on the principle of polarisation. It is
composed of a two-sided book, and on each side are arranged
figures that are projected in duplicate and horizontally disparate
from each other (57).

With the use of polarised glasses, and the book positioned
between 30 and 40 cm from the eyes, the participant is
instructed to indicate the figures they perceive in “relief” (three-
dimensional). This perception of three-dimensionality is image
disparity, and is measured in arc seconds (57–59).

Quantitatively the steroscopic acuity in this test ranges from
3,000 to 40 seconds of arc, and the level of image disparity
decreases as the participant is able to identify them. Therefore,
the lower the numerical value in arc seconds, the greater the
stereoscopic acuity (57, 59).

Cognitive Assessment
The Wechsler Intelligence Scale for Children (WISC-IV) was
developed to assess intelligence in children and adolescents.
Because it assesses different intellectual aspects, WISC-IV can
be used in different situations, such as psychoeducational,
clinical and neuropsychological assessment, diagnosis of
neurodevelopmental disorders, and psychiatric disorders
(60, 61), and is indicated for the evaluation of subjects between 6
and 16 years old (62, 63).

The WISC-IV is composed of 15 subtests divided into
four indices: verbal comprehension, perceptual organisation,
working memory, and processing speed (61). The Intelligence
Quotient is considered a global cognitive functioning index and
traditionally used as a crucial measure in case-control studies in
neurodevelopmental disorders (64).

VR Task for Assessment
We will use two VR tasks to assess the participants’ capacity
and improvement with intervention. The tasks will be used as
assessment at three points: initial assessment (D0); assessment
after 5 sessions (D5); and final assessment (D11).

The assessment tasks are presented below:

Coincident Timing
Coincident timing is defined as the perceptual motor ability to
perform a motor response in synchrony with the arrival of an
external object at a given point (65, 66). This task will use non-
immersive virtual coincident timing software, which displays on
the computer screen (of a 15’ computer) 10 (3D) spheres that
light up (in red) in sequence until the last sphere—the target—
is reached. The participant must rest his/her hand next to the
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FIGURE 2 | Study design. MACS, Manual Ability Classification System; GMFCS, Gross Motor Function Classification System; PEDI, Pediatric Evaluation of Disability

Inventory; VR, virtual reality; n: sample size; tDCS, transcranial direct current stimulation; D0-D11, days of interventions in which D0 is the baseline, D1 to D10 are the

days of interventions and the D11 is the day of the final assessments. Participants and sampling.

keyboard of the computer and then press the space key at exactly
the moment when the last (target) sphere lights up. The software
provides immediate feedback on the success or otherwise of the
task by means of different previously demonstrated sounds and
colours [for more details, see (8, 17, 67, 68)]. If the participant
anticipates or delays the timing of the stimulus, a red light will
appear around the feedback; if he/she hits the target, a green light
will appear (Figure 3).

The magnitude and direction of error of each
participant in anticipating or delaying the arrival of the
light is recorded by the software in milliseconds. The
object is to evaluate the time difference between the
participant’s response and the arrival of the object at the
target location (accuracy) and his/her global temporal
precision and therefore his/her coincidence–anticipation
ability (8, 17, 67, 69, 70).

The software is programmed to provide a unique username
for each participant and the following data are stored: participant
name, date of birth, sex, and the researcher’s name.

Reaction Time
To analyse the reaction time, the software TRT_S2012 will be
used [constructed and validated by (71)]. The software proposes
a simple total reaction time (TRT) test, which consists of the
appearance of a yellow square (parameterisable) in the centre of
the monitor at predefined time intervals (ranging from 1.5 to

FIGURE 3 | Representative design of the accomplishment of the coincident

timing task. (A) Demonstration of error performed by the participant on each

attempt (red light–unsuccessful). (B) Demonstration of hit performed by the

participant on each attempt (green light–successful). (C) Demonstration of the

movement on the space bar on keyboard to perform the task. Main image is

about an example of the initial position of the participant.

6.5ms) and, when it is presented, the participant should react
as quickly as possible by pressing the spacebar of the computer
keyboard (Figure 4).

Frontiers in Neurology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 953

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Silva et al. Combined Therapy in Cerebral Palsy

FIGURE 4 | Reaction time task.

ASSESSMENT PROTOCOL

The assessment protocol will have the following sequence: the
assessment scales will be undertaken with the participants’
parents in a separate room (PEDI, Abilhand-Kids, and
ACTIVLIM-CP), and GMFCS and MACS will be carried out by
observacional analysis of their abilities. Also, cognitive (WISC-
IV) and visual assessments (Titmus Test and Ishihara Test) will
be made by a psychologist and a psychometrist, respectively.

Then, for the VR assessment, the coincident timing task will
be carried out with a short-term motor learning protocol as
used by Monteiro et al. (17), with 20 repetitions for acquisition.
After 15min of no contact with the task, the participants will
perform five repetitions of the same task (for retention analysis),
and five more repetitions with a speed increase (for transfer of
performance analysis).

The reaction time task will be carried out with two attempts
of adaptation and 10 attempts for analysis, as used by Crocetta
et al. (71).

The HRV will be assessed by 20min of rest seated in a
comfortable chair or their own wheelchair, as used by Alvarez
et al. (72).

The assessment part of the protocol will take around 1 h and
30min in total (inferential analysis method follows in the item
“Data analysis”).

INTERVENTION

All participants will attend the assigned tDCS and VR
intervention as follows: there will be 20 sessions over 4 weeks
with tDCS and non-immersive VR tasks, 10 of which will
involve active tDCS combined with VR tasks and 10 will
involve sham tDCS combined with VR tasks, separated by a
1 month washout period. The sessions will be administered
consecutively and once a day (except for weekends). The
investigators will have certification to apply the tDCS in children
and adolescents with CP and will have experience of the
VR tasks.

FIGURE 5 | Representative design of the MoveHero software performed

during tDCS intervention. (A) Demonstration of hit performed by the

participant (green light). (B) Error performed by the participant (red bar).

VR Intervention
During application of the active or sham tDCS, in all sessions
the participants will perform tasks in a non-immersive VR
environment to stimulate and verify improvement of motor
performance. Thus, we will use the Bridge Games software tasks
[for details and publication, see (68, 71)]. The software that will
be used was developed by the Research Group and Technological
Applications in Rehabilitation (Grupo de Pesquisa e Aplicação
Tecnológica em Reabilitação–PATER) group from the School of
Arts, Sciences, and Humanities of the University of São Paulo
(EACH-USP) (12).

The two tasks that will be used are presented below.

MoveHero
MoveHero, as presented by Martins et al. (68), is a game
that displays falling spheres in four imaginary columns on
the computer screen, with a musical rhythm selected by the
researcher. This is also considered a coincident timing task; the
action is to react (using the upper limbs) and not let the balls pass
from the fixed targets. The spheres should only be intercepted
when they reach the targets allocated in parallel (at two height
levels), two on the left (left position targets A and B) and two on
the right of the participant (right position targets C and D), as
shown in Figure 5. The virtual contact is performed by the avatar
of the individual, i.e., a representation of the individual appears
on the computer screen. The individual moves their arms and
trunk (only if they can move the trunk) in front of the webcam
to coincide with the moment the ball touches the target. The
individual is positioned at a distance of 1.5m metres from the
computer monitor and waits for the balls (which fall randomly
on each target) to drop. The avatar’s hand should reach the target
sphere along with the arrival of the ball, and the game offers
feedback on correctness and error by means of changing the
spheres’ colour (green for correct and a red line for error).
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FIGURE 6 | Representative design of the Moviletrando software performed

during tDCS intervention.

Moviletrando
The computer game MoviLetrando was developed at the
Laboratory for Research on Visual Applications in the State
University of Santa Catarina, Brazil (73, 74). It has been used
in different studies [see (75, 76)]. The game uses the concept of
projection-based VR with a webcam and creates a mirror images
so that participants can see themselves on the screen (Figure 6).

As presented by Guarnieri et al. (75), MoviLetrando is a
face-to-face learning computer program that involves interaction
with virtual symbols projected on the screen: letters of the
alphabet (vowels and/or consonants) and numbers (1 to 10). The
software allows the therapist or education professional to control
different phases that are identifiable as alphabet phases (AP) and
numbers phases (NP). In each phase, the software offers various
levels of difficulty (generating symbols on the left side, on the
right side, or both sides; an increase/decrease in the number of
symbols; an increase/decrease the size of the symbols; and an
increase/decrease in the time of the exposure to symbols). For
this study we chose two phases (one alphabet and one number).
The game shows a symbol (an alphabet or number according to
the phase) in the top middle of the screen, and the participant has
to reach the same symbol, moving his/her hands in the virtual
environment. The score obtained is based on whether or not
participants reach a symbol, whether it is correct, and the elapsed
time taken to carry out each task.

tDCS Intervention
Active tDCS
The anodal active tDCS will be performed over 10 consecutive
sessions per weekday (i.e., one session daily, no stimulation
during the weekend) during the practice of VR games. The active
tDCS will be performed with a current of 1mA and 20min of
duration (and 30 s of ramp-up and ramp-down). The stimulation
target will be the M1 area and aimed at the elbow, shoulder,
and trunk of the Penfield homunculus (i.e., 10% instead of
20% laterally to CZ), choosing the more functional side of the

participant (C1 or C2 areas of the International 10–20 System
for EEG).

Sham tDCS
The sham tDCS will be performed over 10 consecutive sessions
per weekday (i.e., one session daily, no stimulation during the
weekend). However, the electrodes will be positioned at the same
sites of the active tDCS and the device will be switched on for
30 s (ramp-up), giving the children the initial sensation of the
1mA current, but with no stimulation administered the rest of
the time (32). The current will be interrupted after 30 seconds.
This sham protocol is already programmed in the device prior to
data collection.

PROCEDURE

During the tDCS combined with VR protocol, participants will be
seated comfortably in an ordinary chair or their own wheelchair,
with their hands arranged over their legs and their feet resting
on the floor (or on the wheelchair support). The demarcation
and application of the active TDCS will then be performed in
the cortical area corresponding to the C1 and C2 primary motor
cortex according to the International 10–20 System for EEG (area
M1), in order to reach the elbow, shoulders, and trunk.

Therefore, anodal tDCS with electrodes with 25 cm2, intensity
of 1mA and a density of up to 0.057 mA/cm2 for a period
of 20min will be used. The same active procedure setting
will be used for the sham (placebo) procedure; however, the
current will be interrupted after 30 s (32). This configuration
will ensure that the electrical stimulus is interrupted before
generating considerable stimuli, while the other characteristics
of the intervention will be maintained. After each session the
participants will be questioned about the presence of any adverse
effects. The device used will be the DS-Stimulator Mobile from
NeuroConn, which allows blindness of the subjects of the
research and the experimenters.

After 5min of stimulation, the individuals will perform
the VR training. The protocol will count on the execution
of the following sequence of games: MoveHero for 5min and
Moviletrando for another 5min. The participants will have the
rest of the time (5min) with tDCS (sham or active) only. The
training time will take 20min in total. This kind of protocol was
used by previous authors who used tDCS (22). The method of
inferential analysis follows is described in the “Analysis of the
data” section of this paper.

PRIMARY OUTCOME

To evaluate the effect of the combined therapy of virtual reality
and tDCS in the upper-limb and trunk motor area on M1 (C1
or C2) of individuals with CP, and to check the possibility of
generatingmotor gains in individuals with CP, wewill observe the
change from baseline motor values provided by different scales
and VR tasks.
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Assessments for Primary Outcome
The VR task will be used to assess the participants’ motor
abilities (accuracy, precision, and trend of anticipation or
delay in movement) during each intervention. Also, we will
use coincident timing and reaction time tasks, ABILHAND-
Kids, ACTIVLIM-CP, and visual and cognitive assessments
to characterise the group and to find influences on motor
improvement by using correlation tests. These tests will be
carried out at three stages: initial assessment (D0); assessment
after five interventions (D5) and final assessment (D11)
(Figure 1).

SECONDARY OUTCOME

We will observe changes in the ANS after active and sham tDCS
combined with VR tasks in children and adolescents with CP.

Assessments for Secondary Outcome
In addition to the motor tests, the HRV analysis will be
verified throughout the intervention. Some studies point to ANS
alteration, with a reduction in HRV in individuals with CP
(77, 78). HRV represents the autonomic function, and short-
term HRV measurement has been used to evaluate sympathetic
and parasympathetic heart rate modulation. Therefore, because
of the ease of evaluation (non-invasively, through a chest strip)
and because of its high clinical relevance, it is important to
evaluate HRV before and during the intervention with tDCS and
VR, since some studies indicate improvement of the autonomic
balance after VR tasks in individuals with Duchenne muscular
dystrophy (72) and post-stroke (79). In the case of CP, some
studies had identified low HRV in foetuses that would later be
given a CP diagnosis (80), at rest and during postural change
(81), and submaximal tests (78). Low HRV is often an indicator
of abnormal and insufficient ANS adaptation, whichmay indicate
the presence of physiological malfunction in the individual (50)
and is associated with an increased risk of cardiac events (6).

STATISTICAL ANALYSIS

For the coincident timing task for the inferential analysis of
the initial tasks (transversal) and the longitudinal protocol with
tDCS and HRV as dependent variables, the error measures
(constant, absolute, and variable errors) will be considered
(time in milliseconds). If the data meet the assumptions for
the use of parametric analysis, ANOVA will be performed
to identify intra and inter-group differences. These, if any,
will be detected by the post hoc Tukey-HSD test. If the
normality assumptions are not met, non-parametric analyses
will be undertaken to identify and locate the differences: a
Friedman and post hoc Wilcoxon test (for within groups)
and a Kruskal–Wallis and post hoc Mann–Whitney U-test
(between groups). For the between-groups analysis of HRV
indices, MANOVA will be used, with repeated measures for
within groups analyses (for evaluations and follow-up) or
Mann–Whitney for intergroup analyses and Friedman for
intragroup analyses. A significance level of 0.05 (5%) will
be defined; all intervals constructed throughout the work

will be 95% statistical confidence. The statistical program
used will be SPSS (Statistical Package for Social Sciences),
version 26.0.

DISCUSSION

Although treatment with tDCS is feasible and effective, further
studies with individuals with CP are essential for a better
understanding of the motor and autonomic effects of treatment
with VR associated with tDCS for clinical practice. Therefore,
we organised this study to analyse the influence of combined
therapy of VR and tDCS for children and adolescents with CP,
with VR tasks for upper limb and trunk movements. As outcome
measures, we chose different upper limb functional assessment
scales, computer tasks for the analysis of reaction time and
anticipatory timing, as well as physiological analyses such as heart
rate variability (HRV). Considering our hypothesis, supported
by previous studies using similar tasks (8, 68, 70, 71), we
speculate that all individuals with CP will show an improvement
in performance during therapy sections and will maintain this
improvement in follow-up assessments (15 and 30 days). We also
hypothesise that the individuals using active tDCS with present
better results.

The results from this study can positively influence
the rehabilitation programs and provide answers to four
important topics:

1. Safety. The tDCS and VR are safe non-invasive techniques
according to current knowledge (24, 82). Two systematic
reviews of tDCS in children with CP (83) and paediatric motor
disorders (22) found that a large number of individuals have
been involved in studies with tDCS since 2014 and noted a
small number of adverse effects such as erythematous rash,
mild skin burn, redness, and tingling of the skin. The use
of Virtual reality presented some adverse symptomatology
(especially with immersive VR and commercial games)
such as nausea, dizziness, disorientation, frustration for the
failure of the interface to detect movement or actions, and
difficulty with hand-held interfaces, mainly in positioning
users with movement and postural impairments (84). Thus,
to avoid adverse effects and risks to the individual, the tDCS
parameters used in the present trial will be within the safety
limits described in themethods, and to prevent the adverse VR
effects, we will use a game developed especially for individuals
with disabilities with the use of non-immersive VR task.

2. Use of non-commercial games. Despite promising studies in
the literature using commercial games (85), an important
question is the potential and future use of customised serious
games–defined as a game developed for a specific target
(84). Commercial games are designed for entertainment
rather than rehabilitation and require high cognitive and
motor performance, whichmakes them unsuitable for patients
with restrictions on mobility. In contrast, studies using
games specifically developed for rehabilitation have presented
interesting results (71). Thus, for the present study, we selected
a serious game that provided an engaging task, specially
designed and created to effectively capture the performance
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of individuals with disabilities and provide a report of their
performance (68).

3. Combined intervention for different levels of motor
impairment. There is a significant gap in knowledge
about the benefits of combining different technologies for the
rehabilitation of upper limbs, in order to increase accuracy
of movement, reaction time, coincident timing and physical
activity for children and adolescents with CP with different
levels of gross motor function. Thus, we hope to contribute
knowledge for clinical practice by examining the effects
of a combined intervention on gross motor functions in
individuals classified as GMFCS I-IV.

4. Autonomic nervous system. In addition, there is another gap
in knowledge concerning the adaptation of the autonomic
nervous system (assessed through heart rate variability–HRV)
to a combined therapy of VR and tDCS, by measuring
HRV before, during, and after this intervention. Heart Rate
Variability is a well-known risk marker for chronic disorders
and reflects the control of autonomic nervous system in the
sinus node in different health conditions, physical activity
levels and exercise (70, 72, 86). HRV is impaired in individuals
with CP, with a sympathetic predominance, which leads to
less adaptation to physical demands (78). It characterises
a cardiovascular neural profile that can lead to negative
clinical results (87), such as increased cardiac arrhythmias and
cardiovascular mortality (88), in addition to the risk of sudden
death (86, 89), and there is evidence that maintained exercise
is a feasible option to decrease cardiovascular risk in persons
with sympathetic compromise (90).

Thus, we believe that the results of this study will provide
scientific support for the use of combined tDCS and VR therapy
in individuals with CP to improve motor skills, functionality, and
the autonomic nervous system.
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