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Abstract
The burgeoning interconnectedness of global trade in the digital age not only presents
enticing opportunities but also harbors potent vulnerabilities of artificial intelligence
(AI)-driven cyberattacks. This study explores the cascading impacts of these disrup-
tive threats on economies, supply chains, and trade, utilizing the intricate lens of
Computable General Equilibrium modeling.
Through meticulously designed simulation scenarios, we illuminate the potential eco-
nomic ramifications of cyberattacks, with a focus on regions heavily reliant on digital
technologies and interwoven supply chains. The analysis reveals significant declines in
real GDP, trade prices and volumes, and trade route disruptions across regions. Notably,
economies like China, the United States, the United Kingdom, and the EU, due to their
deep integration in global networks, face pronounced vulnerabilities.
However, amidst this bleak landscape, hope emerges in the form of cyber resilience.
The study showcases the effectiveness of proactive measures like adaptable production
systems, diversified trade partners, and robust cybersecurity infrastructure in mitigating
the adverse impacts of cyberattacks. Incorporating cyber resilience significantly damp-
ens the reported negative consequences, highlighting the critical role of preparedness
in combating digital warfare.
This study underscores the urgent need for a global paradigm shift toward cyber
resilience. Collective efforts to bolster cybersecurity infrastructures, foster international
cooperation in threat intelligence, and establish open and resilient trade frameworks are
crucial in navigating the treacherous labyrinth of AI-driven cyberattacks. By embrac-
ing resilience strategies and fostering global collaboration, we can pave the way for a
more secure and prosperous digital future, where interconnectedness becomes a tool
for progress, not a vulnerability to be exploited.
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1 INTRODUCTION

The intricate web of global trade, woven with intercon-
nected networks and digital arteries, pulsates with economic
dynamism, although this very interconnectedness harbors
a chilling vulnerability: Artificial intelligence (AI)-driven
cyber threats. These advanced threats, transcending mere
data breaches, now target critical infrastructure, wielding
the potential to sever vital trade routes and inflict profound
economic wounds.
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Recent history paints a grim picture of this unfolding real-
ity. The 2020 SolarWinds hack, employing sophisticated AI
algorithms, compromised the networks of 18,000 organiza-
tions, including tech giants (such as Microsoft and FireEye)
and government agencies, highlighting the reach and sophis-
tication of AI-driven cyber threats (Grubbs et al., 2021).
Just three years earlier, the NotPetya ransomware attack,
fueled by AI-enhanced propagation techniques, crippled the
global shipping industry, inflicting over $10 billion in losses
(Bateman, 2020). Its tentacles ensnared major transportation
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companies, paralyzing their systems and disrupting supply
chains with chilling precision (Lika et al., 2018). The ensu-
ing ripple effects, extending far beyond delayed deliveries,
triggered economic shocks across nations. The United States,
the United Kingdom, Germany, France, China, and India are
among the countries most severely affected by the supply
chain disruption (Crosignani et al., 2023).

These are not isolated incidents but rather ominous
harbingers of a future where AI empowers cyberattacks to
pose unprecedented risks to global trade. Their consequences
transcend mere inconveniences. AI-driven cyberattacks can
cripple supply chains, leading to shortages, price hikes, and
business closures (Corbet & Gurdgiev, 2020). They can erode
consumer confidence, impacting brand reputation, inflating
unemployment, and stifling economic growth. In extreme
scenarios, they can even trigger global recessions (Goodell
& Corbet, 2023).

This necessitates a deeper understanding of the intricate
interplay between AI-driven cyber threats, global trade, and
economic stability, and underscores the urgent need for com-
prehensive strategies to enhance cyber resilience and mitigate
the far-reaching consequences of AI-driven cyber threats on
the interconnected global trade ecosystem. Our paper delves
into this critical nexus, utilizing a Computable General Equi-
librium (CGE) model to analyze the cascading effects of
cyberattacks on trade route disruptions and their macroeco-
nomic implications. By simulating these disruptions across
interconnected economies and sectors, we aim to illuminate
the multifaceted vulnerabilities of global trade in the face of
AI-driven cyber threats.

Furthermore, we evaluate the efficacy of diverse cyber-
resilience strategies, potentially equipping policymakers with
invaluable insights to fortify the arteries of the global econ-
omy. This research embarks on a critical mission: to navigate
the complex landscape of AI-driven cyber threats, global
trade, and economic stability. By employing a CGE model,
it unveils the vulnerabilities inherent in our increasingly digi-
tized trade networks, charts a course toward cyber resilience,
and ultimately seeks to safeguard the interconnected lifeblood
of our globalized world.

2 UNVEILING THE SCARS: THE
MULTIFACETED IMPACTS OF AI-DRIVEN
CYBERATTACKS

The evolution of AI has significantly transformed the land-
scape of cyber threats, marking a new era characterized by
highly sophisticated and adaptive attacks. AI-driven cyber-
attacks refer to cyberattacks that utilize AI and machine
learning (ML) algorithms to enhance their effectiveness,
stealthiness, and adaptability. These attacks leverage AI
capabilities to automate and optimize various stages of
the attack lifecycle, from reconnaissance and infiltration
to evasion and exploitation. Unlike traditional cyberattacks,
which are typically manual or scripted, AI-driven cyber-
attacks can autonomously learn and evolve their tactics,

techniques, and procedures based on real-time feedback
and environmental changes. These AI-driven cyberattacks
leverage ML algorithms and automation to orchestrate mul-
tifaceted assaults on critical infrastructure, autonomously
identify vulnerabilities, launch targeted assaults, and rapidly
evolve to counteract defense mechanisms, posing sig-
nificant threats to global trade and economic stability
(Blessing, et al., 2022).

The impact of AI-driven cyberattacks on global trade and
economies is multifaceted and pervasive. Recent statistics
underscore the severity of these threats. According to the
IBM Cost of a Data Breach Report (IBM, 2021), the average
cost of a data breach globally reached $4.24 million in 2021,
showcasing the financial implications of cyberattacks. Fur-
thermore, the World Economic Forum’s Global Risks Report
2022 identified cyber threats among the top risks concern-
ing businesses and economies worldwide (WEF, The Global
Risks Report, 2022).

To fully comprehend the scope of these threats, this sec-
tion dissects the impacts of the most common types of
AI-driven cyberattacks. It categorizes the scars they leave
and delves into the intricate consequences these attacks bring
upon the delicate flow of international trade. In Table 1,
we outline several AI-driven cyberattacks, detailing their
definitions and economic impacts. These attacks exploit
AI algorithms to craft deceptive inputs, automate social
engineering techniques, enhance malware capabilities, and
orchestrate large-scale disruptions. The economic repercus-
sions of these attacks extend across multiple dimensions,
affecting trade, market stability, supply chains, and consumer
confidence. Understanding the nature of these threats and
their economic ramifications is crucial for devising effective
cybersecurity strategies and safeguarding the resilience of the
global economy.

2.1 Disrupted trade operations and supply
chains

Malicious actors targeting AI systems in supply chain man-
agement, through poisoning models or botnet intrusions,
compromise the integrity of trade deals, leading to disruptions
in logistics, procurement, and inventory management. An
adversarial attack manipulating an AI-based inventory man-
agement system might result in inaccurate stock predictions,
creating bottlenecks in the global supply chain (Anbumozhi
et al., 2020; Pandey et al., 2020).

2.2 Impact on seamless flow of goods and
services

Breaches in interconnected systems can result in delays,
shortages, or overstocking, disrupting global trade routes. A
cyberattack compromising a key logistics system might delay
shipments, impacting the timely delivery of goods to interna-
tional markets, causing financial losses for businesses, and
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INTERCONNECTED AND RESILIENT 3

TA B L E 1 AI-driven cyberattacks.

Types and definitions Economic impacts

Adversarial attacks: Crafting inputs to
deceive ML models.

▪ Disruption of trading algorithms, market volatility, and financial losses.
▪ Incorrect tariff classifications affecting trade agreements, leading to delays or penalties in international trade.
▪ Decreased confidence in AI technologies, hindering economic activities (e.g., supply chain management and

financial services).
▪ Ineffective marketing strategies due to misclassification of customer behavior data, reducing market

competitiveness.
▪ Overproduction or underutilization of resources impacting supply chain efficiency and economic productivity.

Automated social engineering:
Leveraging AI to craft personalized
phishing emails, or scams tailored to
deceive specific individuals/groups.

▪ Financial losses through fraudulent transactions and unauthorized access to financial accounts.
▪ Disruption of supply chain operations and trade transactions.
▪ Undermined trust in digital communication channels and online transactions, hindering digital trade facilitation

initiatives.
▪ Reputational damage impacting competitiveness and trade relationships in global markets.

AI-enhanced malware: Malicious
software with AI capabilities like
evasion and polymorphism.

▪ Delays in production, distribution, and delivery of goods, impacting global trade volumes and supply chain
efficiency.

▪ Diminished competitiveness due to theft of proprietary information.
▪ Loss of customer trust and confidence, negatively impacting business relationships and market reputation.
▪ Significant costs for cybersecurity measures, diverting funds from core economic activities.

Generative adversarial networks
(GANs) attacks: Using GANs to
generate synthetic content for
disinformation campaigns, financial
scams, and intellectual property
theft.

▪ Impact on public opinion and societal stability due to disinformation campaigns.
▪ Financial losses from counterfeit goods, financial scams, and market uncertainty.
▪ Impersonation of individuals, damaging reputations, and violating privacy.
▪ Disruption of operations, decreased market competitiveness, and impact on trade relations.
▪ Challenges for regulation, cybersecurity risks, and erosion of trust in digital media.

AI-powered data poisoning attacks:
Injecting malicious data into training
data sets to manipulate AI models.

▪ Reduced accuracy and reliability of AI models, impacting financial, and trade-related decisions.
▪ Financial losses from suboptimal investment decisions, pricing errors, and inefficient resource allocation.
▪ Decreased trust in AI systems and algorithms, hindering their adoption for trade-related tasks.
▪ Market distortions such as unfair competition and discriminatory practices due to biases in AI models.

Model inversion attacks: Exploiting the
transparency of ML models to infer
sensitive information about training
data or inputs based on the model’s
outputs.

▪ Risk of privacy breaches in trade-related data and unauthorized access to confidential information.
▪ Economic sabotage through industrial espionage, compromising competitive advantages, and fair trade

practices.
▪ Erosion of trust in AI systems for trade-related decision-making, leading to regulatory consequences and

financial losses.
▪ Direct financial losses, recovery expenses, and long-term damage to affected industries and economies.

AI-driven ransomware: Deployment of
AI algorithms to identify and target
high-value data or systems for
encryption in ransomware attacks.

▪ Higher ransom demands exacerbating financial losses.
▪ Prolonged recovery process due to AI-enabled encryption techniques.
▪ Disruption of business operations, leading to downtime, loss of productivity, and financial setbacks.
▪ Erosion of trust in digital systems and confidence in online transactions, affecting consumer behavior and trade

relationships.
▪ Introduction of stricter regulations to address ransomware threats, impacting trade policies and business

operations.

AI-powered reconnaissance:
Automated gathering and analysis of
information about target systems and
identifying their potential
vulnerabilities (e.g., trade and supply
chain networks).

▪ Heightened market instability as attackers gain insights into trade and supply chains, potentially causing
fluctuations in prices and demand.

▪ Enable threat actors to identify vulnerabilities and exploit weaknesses in trade networks, undermining the
competitive advantage, and causing production delays and shortages.

▪ Stealing intellectual property related to trade secrets, product designs, or market strategies, leading to economic
losses and diminished innovation capabilities.

▪ Breaches resulting from reconnaissance attacks can erode trust between trading partners, hindering
collaboration, and impeding the formation of new trade agreements and partnerships.

▪ Leading to compliance burdens and increased operating costs.
▪ Disrupt the flow of goods and services, leading to production delays, inventory shortages, and increased

logistics costs.
▪ Reputational damage, resulting in a loss of market share as consumers and trading partners seek more secure

alternatives.

AI-driven evasion: Techniques that
dynamically adjust attack strategies
based on real-time feedback and
environmental changes to evade
detection by security systems.

▪ Disruption of trade operations, leading to delays and increased costs.
▪ Compromised trade security, risking fraud, and cyberattacks.
▪ Decreased trust in trade systems, hindering collaboration.
▪ Market uncertainty and volatility due to disrupted trade flows.
▪ Regulatory compliance challenges and legal liabilities.
▪ Loss of competitive advantage, affecting market share and revenue growth.

(Continues)
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4 OSMAN AND EL-GENDY

TA B L E 1 (Continued)

Types and definitions Economic impacts

AI-powered DDoS attacks: Utilization
of AI to orchestrate distributed
denial-of-service attacks with greater
efficiency.

▪ Attacks on e-commerce platforms and financial institutions cause delays in transactions and shipments,
affecting international trade.

▪ Downtime and operational costs from attacks reduce profitability and investment in trade.
▪ Disruption of online services, affecting trade relationships.
▪ Attacks prompt regulatory interventions, increasing compliance costs and affecting trade competitiveness.
▪ Attacks deter investment in digital technologies critical for global trade, hindering progress.

Scalable threats: Utilization of AI to
orchestrate large-scale, coordinated
attacks across multiple targets
simultaneously.

▪ Physical damage to infrastructure, safety risks to individuals, and disruption of essential services.
▪ Economic losses from service disruptions, operational downtime, and damaged reputation.
▪ Amplified impact of cyberattacks, as these coordinated attacks magnify financial losses and operational

disruptions.
▪ Large-scale attacks overwhelm cybersecurity defenses.
▪ Critical nodes in supply chains suffer disruptions, leading to delays and increased costs.

Source: Authors’ compilation from the following studies: Malatji and Tolah (2024), Guembe et al. (2022), Yamin et al. (2021), and Sarker et al. (2021).

affecting consumer demand (Katsaliaki et al., 2022; Smith
et al., 2023).

2.3 Operational standstills and reduced
productivity

Successful botnet attacks targeting AI-driven systems used
in global trade lead to significant operational downtime.
This disruption halts or slows down critical trade functions,
including supply chain management, inventory tracking,
procurement, and financial transactions. The resultant down-
time leads to inefficiencies and delays in executing trade
operations. Systems essential for decision-making, logistics
planning, or transaction processing become compromised,
causing interruptions in the flow of goods and services across
borders. AI-driven systems affected by cyberattacks may
lead to compromised decision-making processes. As a conse-
quence, businesses may struggle with inaccurate data, flawed
predictions, or halted automation, impacting the accuracy and
efficiency of trade decisions (El-Gendy et al., 2023).

2.4 Financial losses and long-term
repercussions

Compromised AI models due to adversarial attacks directly
translate into financial losses for businesses involved in global
trade, through fraudulent activities like misleading predic-
tions or fraudulent fund transfers. This might also ripple into
long-term financial repercussions for affected entities due
to factors like unsold inventory or reduced demand. A suc-
cessful AI-driven cyberattack altering trade predictive models
might cause businesses to invest in incorrect markets or over-
produce goods, resulting in financial losses due to unsold
inventory or reduced demand (Rosenberg et al., 2021).

2.5 Misguided investments and economic
setbacks

Incorrect predictions, compromised decision-making, and
flawed strategies due to AI system compromises can lead

to misguided investments, pricing errors, and economic
setbacks for businesses engaged in global trade. A cyberat-
tack on AI systems that serve trade processes might result
in flawed market analysis, leading to a misallocation of
resources in new markets, impacting revenue generation and
causing economic setbacks (Burri, 2021).

2.6 Reputational damage and credibility
erosion

Successful cyberattacks on AI-driven trade systems erode
trust among stakeholders, customers, and partners involved
in global trade, impacting the reputation and credibility of
affected businesses or countries. A breach in the AI system of
a multinational trade corporation might lead to a loss of trust
among customers and partners, affecting their willingness
to engage in future trade deals (Kannelønning & Katsikas,
2023; Smith et al., 2023). Public disclosure of a cyberattack
targeting a government’s AI systems may impact its stand-
ing in international negotiations and trade agreements (Jones,
2023).

2.7 Instability and uncertainty

AI-driven attacks can introduce uncertainties in trade dynam-
ics, causing sudden shifts in supply chains, market inefficien-
cies and instabilities, and distorted market analyses, thereby
disrupting established trade relations. A successful cyberat-
tack that manipulates a country’s trade-related AI models
might cause sudden fluctuations in commodity prices and
hence demand for certain goods, impacting trade agreements
and disrupting established market trends (Katsaliaki et al.,
2022; Yi et al., 2020).

3 LITERATURE REVIEW

Measuring economic losses from AI-driven cyberattacks,
akin to other large-scale disasters, is crucial for inform-
ing mitigation and recovery strategies. Existing literature
explores various methodologies, including input–output (IO)
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INTERCONNECTED AND RESILIENT 5

models, social accounting matrix (SAM) multiplier approach,
and CGE models.

IO and SAM multiplier models offer a data-driven
approach to estimate disaster impacts. They capture eco-
nomic interdependencies through a table representing flows
of goods and services. Disasters disrupt these flows, caus-
ing direct (e.g., infrastructure damage) and indirect effects
(e.g., reduced demand). Studies by Okuyama and Santos
(2014) and Lenzen et al. (2004) demonstrate their effec-
tiveness in quantifying disaster losses. However, IO models
have limitations. They assume fixed production coefficients
and linear relationships, neglecting potential price adjust-
ments and behavioral changes. These would potentially lead
to overestimated effects of large disruptions. Additionally, IO
models often lack the capacity to capture long-term effects.

Although studies like Eling et al. (2023) specify cyberat-
tacks with IO models as inoperability and economic damage
of the targeted sectors, they often neglect broader economic
impacts and downstream disruptions. Dreyer et al. (2018)
and Kokaji and Goto (2022) address this gap by capturing
upstream supply chain disruptions, but downstream impacts
remain understudied.

CGE models offer a more advanced and theoretically
grounded framework for analyzing disaster and cyberattack
impacts. Pioneering work by Rose and Guha (2004) paved the
way for their application in cyber threats. Rose (2019) high-
lights their ability to identify vulnerable sectors and assess
economic impacts on growth and employment. Athukorala
et al. (2018) further emphasize their strength in capturing
interdependencies within global trade networks, crucial for
understanding the ripple effects of cyberattacks.

CGE models incorporate nonlinear relationships, price
flexibility, substitution possibilities, and endogenous determi-
nation of production and consumption patterns. This allows
them to capture complex economic responses beyond pro-
duction, including price adjustments, resource reallocation,
consumer behavior, and government intervention (Rose &
Liao, 2005). Additionally, CGE models handle supply con-
straints, making them suitable for analyzing long-term and
dynamic impacts (Wing et al., 2015).

Research acknowledges the importance of resilience in
mitigating the economic consequences of cyberattacks,
but specific mechanisms and their effectiveness are still
being explored. Rose (2019) differentiates between static
(maintaining system functionality) and dynamic resilience
(recovery speed and intensity). Rose et al. (2019) incorpo-
rate various resilience tactics into CGE models (e.g., input
and import substitution) to assess their effectiveness in reduc-
ing business interruption losses. Additionally, Gertz et al.
(2019) specify resilience and recovery in the aftermath of dis-
rupting events through production recapture, reconstruction,
and growth dynamics. Rose and Miller (2021) encompass
investments in cybersecurity, information sharing, and robust
contingency plans. Rose and Chen (2020) paint a vivid pic-
ture of potential losses depending on attack severity, repair
duration, and response effectiveness. Their work under-

scores the critical role of technological advancement in cyber
resilience.

Although CGE models offer valuable insights, they are
computationally complex and require extensive data with
strong assumptions about optimizing behavior, limiting their
applicability and transparency. Due to their complexities,
most existing CGE models are either single-country or sub-
regional models, neglecting the global nature of cyberattacks.
This highlights the need for multiregional models that capture
both local and global consequences, particularly for large-
scale AI-driven cyberattacks, as emphasized by Zhou and
Chen (2020).

The limited availability of reliable and comprehensive data
remains a major challenge in assessing the economic impacts
of cyberattacks. Our study addresses this gap by utilizing
the Global Trade Analysis Project (GTAP) global database
and a comprehensive CGE modeling framework to exam-
ine the ripple effects of large-scale AI-driven cyberattacks
through global supply chain and trade networks, capturing
both upstream and downstream systemic impacts. By har-
nessing the analytical power of a multiregion CGE model,
we aim to illuminate the nuanced economic impacts of these
emerging threats and shed light on the most effective resilient
strategies for safeguarding the global economy.

4 METHODOLOGY

This paper utilizes CGE modeling to investigate the cas-
cading consequences of cyber threats on global trade and
supply chain disruptions, while also assessing the effective-
ness of implemented cyber-resilience strategies. We leverage
the multiregion, multisector Standard GTAP Model (Version
7), calibrated to the GTAP10 data set on the global econ-
omy with a 2014 reference year (Aguiar et al., 2019). This
global model offers a detailed portrayal of economic interde-
pendencies across 13 regions and 17 sectors, encompassing 5
production factors (Table 2).

4.1 Region selection and rationale

The GTAP database integrates detailed bilateral trade, trans-
port, and protection data on regional linkages with individual
country I-O tables, capturing intersectoral linkages within
regions, and resembling a global SAM.

The chosen regional aggregation prioritizes major play-
ers within the global trade and supply chain network (e.g.,
the United States and China). This design aims to represent
countries with robust supply chain systems that signifi-
cantly contribute to international trade fluidity. For instance,
South Korea, a global leader in technological advancement,
exerts substantial influence on supply chains for semiconduc-
tors, electronics, and automobiles. Similarly, India’s rapidly
expanding market, particularly in electronics, software, and
services, generates significant demand for resources, raw
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6 OSMAN AND EL-GENDY

TA B L E 2 GTAP10 disaggregation.

Sectors Regions

1 Agriculture 1 USA

2 Oil and gas 2 UK

3 Mining and extraction 3 EU

4 Processed food 4 China

5 Light manufacturing 5 Japan

6 Heavy manufacturing 6 India

7 Electricity 7 South Korea

8 Gas manufacture and distribution 8 Russia

9 Other utilities and construction 9 North and Latin America

10 Trade 10 Rest of Asia

11 Sea transport 11 MENA

12 Air transport 12 Sub-Saharan Africa (SSA)

13 Other transport 13 Rest of the World (ROW)

14 Communication Production Factors

15 Financial services 1 Land

16 Business services 2 Unskilled labor

17 Other services 3 Skilled labor

4 Capital

5 Natural resources

Source: Authors’ aggregation of the GTAP10 database.

materials, and finished goods, impacting the global supply
chain landscape.

Additionally, the EU and United Kingdom play pivotal
roles, especially in areas like automobiles, electronics, and
machinery (Germany); luxury goods, automobiles, electron-
ics, and aerospace (France); and financial services (UK).
Their well-developed and efficient supply chains significantly
contribute to smooth international trade operations.

4.2 Sectoral focus and justification

The sector aggregation scheme emphasizes industries sus-
ceptible to immediate cyberattack impacts and those with
significant influence on global trade and supply chain flows.
For example, the trade and transport sectors heavily rely on
digital systems for communication, navigation aviation oper-
ations, and logistics management. As Section 2 explains,
cyberattacks targeting these systems can disrupt trade trans-
actions, delay shipments, cause accidents, and result in cargo
losses, incurring substantial financial losses for businesses.
The cyberattacks on Maersk (2017) and the port of Rotterdam
(2018) exemplify such disruptions, hindering cargo handling
and impacting global trade.

Oil and natural gas are increasingly targeted by cyberat-
tacks (e.g., the 2012 attack on Saudi Aramco impacting crude
oil and natural gas production and distribution), which can
trigger significant spill-over effects on other production and

trade sectors (Kokaji & Goto, 2022), as well as financial mar-
kets. Furthermore, electricity, gas, water, and other utilities
play a vital role in cyber-resilience measures.

Communication networks are crucial for coordinating
trade and supply chain activities, and cyberattacks disrupting
these networks can hinder collaboration and lead to substan-
tial delays and disruptions. The financial services industry
(and to a lesser extent other services) is a key player in the
global trade and supply chain, making it exceptionally vulner-
able to cyberattacks, with annual costs exceeding $18 million
in 2018 (WEF, The Global Risk Report, 2020).

4.3 The GTAP model

The GTAP model is a comparative static global model for the
world economy. It assumes perfect competition and constant
returns to scale (Corong et al., 2017).

Figure 1 provides a graphical representation of the model.
An aggregate regional consumer follows the Cobb–Douglas
utility function. It collects the region’s income and allocates
between private expenditure, government expenditures, and
savings according to constant shares.

The model uses a sequence of nested Constant Elasticity
of Substitution (CES) production functions to specify activ-
ity behavior (Figure 2). Each activity combines aggregate
value added and aggregate intermediate inputs using Leon-
tief coefficients. The optimal bundle of production factors is
governed by a CES function (from capital, composite labor,
and composite land) with region- and activity-specific substi-
tution elasticities. The aggregate labor is defined by a CES
function over two arguments—skilled and unskilled labor.
CES production technologies define aggregate intermediate
input from individual intermediate inputs. Each individual
input is a CES aggregate of imported and domestic interme-
diate components. Similarly, the model adopts the Armington
function for trade: two-level nested CES import functions and
two-level nests of constant elasticity of transformation (CET)
export functions.

4.4 AI-driven cyberattacks in a general
equilibrium framework

This global multisector multiregion CGE model serves as
a robust instrument illustrating the interconnectedness of
diverse sectors within and across economies. Based on the
I-O structure of each country, the model ties all coun-
tries together through a complex web of direct and indirect
trade connections and supply chain interactions, estab-
lishing a general equilibrium setting wherein prices and
quantities are determined simultaneously clearing primary
factor markets and domestic and international commodity
markets.

This is particularly relevant to AI-driven cyberattacks,
because their impacts are not confined to the immediate
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INTERCONNECTED AND RESILIENT 7

F I G U R E 1 Graphical representation for the GTAP model. Note: VOA (endow) value added received by the private household in return for the use of its
endowments; XTAX export taxes; VDPA domestic purchases by the private household at agents’ prices; VDGA domestic purchases by the government at
agents’ prices; MTAX import taxes; VIPA imported purchases by private household at agents’ prices; VIGA imported purchases by government at agents’
prices; VDFA domestic purchases by firms at agents’ prices; VIFA imported intermediate inputs purchases by firm at agents’ prices; VXMD exports of
commodity I from region r to region s valued at exporter’s domestic price. Source: Brockmeier (2001).

sector/country of concern, but they spread across the globe,
as shown in Section 2. When a country (A) is affected by a
cyberattack that targets trade or trade-related service sectors
(e.g., transportation, communication, and financial services),
it will face a higher price of imported inputs. Prices of final
commodities in sectors with high intensity of imported inputs
would increase. Demand for imported intermediate inputs
would consequently drop and they would be substituted
with domestic inputs according to the CES substitutability.
In addition, demand for final domestic substitutes would
increase. These together would generate cost-push and
demand-pull increases in prices in sectors with high trade

intensity. Production factor markets would experience lower
demand.

The ripple impacts are captured throughout the trade net-
work and supply chain. Another country (B), which would
have exported these intermediate inputs at a lower price in
the absence of the cyberattack, would experience a reduction
in demand in product and factor markets. The factor mar-
kets clearing conditions in both countries A and B (i.e., fixed
supply and full employment) would lower production factor
returns. Both countries would suffer a reduction in produc-
tivity and inefficient allocation of resources. The more severe
the cyberattacks and the more exposed a country is to trade,
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8 OSMAN AND EL-GENDY

F I G U R E 2 Production and trade flows in the GTAP model. Source: Authors’ elaboration.

the greater the losses in productivity and efficiency induced
by cyber threats.

4.5 Tracking cyberattacks impacts across
sectors and regions

This general equilibrium framework not only captures the
first-order effect of a cyberattack but also delves into the
second-order effects that operate through upstream and
downstream sectors and regions. Within this framework, the
impact of a cybersecurity breach in one sector on other sec-

tors or other regions is determined, inter alia, by the level of
economic complexity, interconnectedness, and connectivity
among sectors and economies (Borg, 2005).

If a cyberattack affects a sector with strong forward link-
ages, which measure the relative importance of the sector as
a supplier of outputs to other sectors in the economy, then we
would expect noticeable ripple effects on other sectors and
the economy as a whole. For example, the USA 2021 Colo-
nial Pipeline cyberattack had ripple effects on forward-linked
sectors and led to disruptions in transportation (trucking and
air travel), increased costs for manufacturers and retailers,
and potential power outages due to limited fuel for electricity
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INTERCONNECTED AND RESILIENT 9

generation. On the other hand, the pattern of the impacts
would be different if the cyberattack targets a sector with
strong backward linkages. Backward linkages reflect the
economic connection between one sector and other sectors
supplying inputs, either directly or indirectly. Hence, the
impact would depend mainly on the ability of this sector to
recover and maneuver post-attack.

By the same analogy, the spread of the impact across
regions depends on trade and supply chain connectivity.
Trade disruptions can be attributed to two effects: output
and relative price changes. Output changes reflect downward
shifts of the CET export (and the CES import) frontiers due
to decreases (and increases) in domestic output. On the other
hand, relative price changes reflect movements along the
CET export (and the CES import) frontiers due to increases
(and decreases) in relative prices of domestic commodities
and their foreign substitutes. Indeed, the complex tapestry
of trade and supply chain connectivity served as a conduit
for the 2017 NotPetya cyberattack, weaving a web of disrup-
tion that ensnared not only Ukraine but also the United States
and Russia. In 2017, the United States was Ukraine’s fourth-
largest export market, and trade between Russia and Ukraine
remained significant. This intertwined trade embodies US
businesses’ reliance on Ukrainian inputs and exposed Russian
industries to supply chain disruptions caused by NotPetya’s
attack.

5 SIMULATION SCENARIOS

Based on Section 2, we designed three hypothetical sim-
ulation scenarios to elucidate the cascading impacts of
AI-driven cyberattacks and cyber resilience on trade flows,
economic structure, and productivity across regions. Each
scenario includes three types of shocks (namely, trade, sup-
ply, and productivity) that mimic the disruptive effects of such
attacks on various facets of the global economy. Furthermore,
these scenarios encompass the implementation of four cyber-
resilience measures to assess their effectiveness in mitigating
the adverse effects of cyberattacks.

5.1 Cyberattack shocks

To represent the impact of cyber threats on the model, we
introduce the following shocks:

5.1.1 Trade shock

This shock increases trade costs, reflecting the increased
complexity and uncertainty associated with international
trade in the presence of AI-driven cyber threats. We introduce
an ad valorem tariff shock to imports and exports in all goods
and services for the main international traders, representing
the additional costs and delays due to cyberattacks, and these
cyberattack-targeted countries are the United States, China,

the EU, the United Kingdom, Japan, South Korea, India, and
Russia.

5.1.2 Supply shock

This shock affects the production costs of selected industries,
representing the disruption caused by AI-driven cyberattacks
in the cyberattack-targeted countries. We employ a multi-
plicative cost shock to industries that are heavily reliant on
digital technologies or interconnected supply chains, and
these are agriculture, oil and gas, mining and extraction,
processed food, and light and heavy manufacturing.

5.1.3 Productivity shock

In order to signify the tangible losses or impairment of phys-
ical assets and infrastructure caused by cyber threats, we
introduce multiplicative total factor productivity reductions
in the cyberattack-targeted countries. These are equivalent to
sectors becoming less efficient in their use of inputs due to
cyber disruptions, and this infrastructure includes electricity,
gas manufacture and distribution, other utilities and construc-
tion, various transport, communication, financial, business,
and other services.

5.2 Cyber-resilience mechanisms

Cyberattacks are dynamic in nature and, hence, it is extremely
difficult and costly to mitigate their negative impacts upfront.
We thus assume that economies build cyber-resilience strate-
gies for the “known” threats, in the sense that the system
embodies “machine learning” mechanism that allows the sys-
tem, after exposure to a threat, to learn how to deal with
similar incidents.

In the face of cyberattacks, producers can adapt their
production and trade behavior in two key ways. First, cyberat-
tacks can disrupt normal operations, forcing producers to find
more efficient ways to use resources. This might involve min-
imizing waste, conserving inputs, and adjusting production
processes. These adaptations can be refined and implemented
more broadly, leading to improved factor productivity. Sec-
ond, producers can increase their ability to switch between
different resources and suppliers in response to disruptions.
This could involve diversifying production inputs and trade
partners. By making their systems more adaptable, producers
become more resilient to future cyberattacks (Rose & Liao,
2005).

Against this background, we implement four cyber-
resilience mechanisms, which enable the cyberattack-
targeted countries to:

1. Substitute domestic goods with their imported counter-
parts more easily if any of these became inaccessible after
a cyber-related disruption. The Armington substitution
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10 OSMAN AND EL-GENDY

F I G U R E 3 Simulation scenarios. Source: Authors’ elaboration.

elasticities between imported and domestic goods and
between imports from different regions are higher.

2. Divert goods between export markets and domestic mar-
kets more easily if any market has decreasing demand,
which implies lesser disruption of the product supply in
the cyber aftermath. The CET export functions exhibit
higher transformation elasticities between domestic and
export markets and between different export markets.

3. Diversify their suppliers of intermediate inputs and
widen their supply chain. The CES import functions
exhibit higher substitution elasticities between domestic
and imported inputs and between imported inputs from
different trade partners.

4. Substitute between primary and intermediate inputs. The
production technology compasses CES (instead of fixed
Leontief coefficients) between aggregate value added and
aggregate intermediate input. This replicates cases of
temporary adjustment made in certain production activ-
ities where essential intermediate inputs (e.g., electricity
and water) can be replaced by (or can replace) other
primary inputs (e.g., labor). A temporary shift from
fully automated production processes to less sophisticated
mechanical (or even manual) processes, and the oppo-

site shift to automated processes under losses in labor,
can help to buffer against the severity of cyberattacks and
to reduce the production disruption (e.g., electricity cut
induced by cyberattacks).

5.3 Cyberattack and cyber-resilience
scenarios

Based on the above two subsections, we design three simula-
tion scenarios, encompassing the three types of cyberattack
shocks as well as four cyber-resilience mechanisms, as
presented in Figure 3.

5.3.1 Low-sim (Low-level cyberattack
scenario)

This scenario represents a low-level cyberattack, with a
small number of cybersecurity breaches. The number of
cybersecurity breaches in this scenario is 50% of the number
of breaches in the high-level cyberattack scenario. This
scenario includes an increase in trade costs by 5% for the
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INTERCONNECTED AND RESILIENT 11

cyberattack-targeted countries, an increase in production
costs by 3% in the selected industries, and a reduction in
productivity by 10% in the selected infrastructure sectors.

5.3.2 High-Sim (High-level cyberattack
scenario)

This scenario represents a high-level cyberattack, with a large
number of cybersecurity breaches. The number of cybersecu-
rity breaches in this scenario is twice the number of breaches
in the low-level cyberattack scenario. This scenario includes:
an increase in trade costs by 10% for the cyberattack-targeted
countries, an increase in production costs by 6% in the
selected industries, and a reduction in productivity by 20%
in the selected infrastructure sectors.

5.3.3 High-Res-Sim (High-level cyberattack
with cyber-resilience scenario)

This scenario represents the same number of cybersecu-
rity breaches as in the high-level cyber threat scenario,
and it incorporates the four resilience mechanisms for the
cyberattack-targeted countries. These resilience mechanisms
are higher import substitution elasticities, higher export trans-
formation elasticities, higher substitution elasticities between
imported and domestic inputs, and CES production technol-
ogy for value added and intermediate demand. The higher
values of various elasticities are implemented through a
multiplicative increase of 1.4, keeping the heterogeneity of
elasticity values across sectors and regions as the original
elasticity values in the GTAP10 database exhibit (Aguiar
et al., 2019).

6 RESULTS AND ANALYSIS

The simulations show that cyber threats can have a signifi-
cant negative impact on global trade, with the largest impact
on economies that are more reliant on digital technologies
and interconnected supply chains. However, cyber-resilience
measures can help to mitigate these risks, the High-Res-
Sim scenario exhibits mitigating negative impacts, indicating
the potential of cyber-resilience strategies in cushioning the
effects of cyber threats on international trade.

6.1 Changes in real GDP

The simulation results depict varying degrees of negative
impacts on the real GDP of major regions under different
cyber threat scenarios in Table 3. For the low-level cyber
threat, the decrease in real GDP remains relatively minor,
ranging from 0.02% to 0.25%. These modest reductions
reflect the impact of a low-level cyber threat, with limited
breaches. Countries such as China, Japan, and South Korea

TA B L E 3 Changes in real GDP (%).

Regions Low-Sim High-Sim High-Res-Sim

USA −0.05 −1.40 −0.70

UK −0.02 −1.20 −0.60

EU −0.05 −1.35 −0.75

China −0.15 −2.20 −1.60

Japan −0.10 −2.00 −1.40

India −0.02 −1.15 −0.85

South Korea −0.10 −1.95 −1.70

Russia −0.05 −1.25 −0.95

North and Latin America −0.25 −2.40 −2.00

Rest of Asia −0.10 −2.00 −1.60

MENA −0.05 −1.95 −1.60

SSA −0.20 −2.40 −2.00

ROW −0.15 −2.25 −1.85

Source: Authors’ elaboration on model results.

experience slightly higher declines in real GDP. The three
economies account for around 20% of the world trade, and
they are major mutual trading partners with strong intra-
industry trade in manufacturing products reflecting China’s
industrial structure and advanced technology. This suggests a
marginally more pronounced effect in economies with high
economic exposure and strong trade interconnectivity.

Notably, the High-Sim scenario reveals more substantial
declines in real GDP across all regions. The United States, the
United Kingdom, the EU, China, Japan, and India encounter
more pronounced reductions. This demonstrates the height-
ened detrimental impact of a high-level cyber threat, resulting
in more significant economic disruptions.

Interestingly, the most affected regions are North and Latin
America and sub-Saharan Africa (SSA). The two regions are
heavily dependent on imported intermediate inputs essential
for their domestic production, and the bulk of these inputs are
imported from the most affected countries (e.g., China, Japan,
India, South Korea, and the United States), which explains
the manifold impact. Cyberattacks that target ports, shipping
companies, and other logistics providers would severely dis-
rupt these intermediate goods’ flow, and cause severe supply
chain disruptions.

Cyber resilience can significantly mitigate the negative
impact of cyber threats. Under the High-Res-Sim scenario,
the United States, the United Kingdom, the EU, China, and
Japan experience a sizable difference compared with real
GDP reduction under the High-Sim scenario, whereas results
for India, South Korea, and Russia under the two scenarios
are not significantly different.

6.2 Trade prices and volumes

All regions experience deterioration in terms of trade (ToT),
meaning their export prices rise less than their import prices
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12 OSMAN AND EL-GENDY

TA B L E 4 Changes in terms of trade (ToT) (%).

Regions Low-Sim High-Sim High-Res-Sim

USA −1.20 −2.30 −1.8

UK −0.90 −1.80 −1.5

EU −0.70 −1.00 −0.8

China −2.50 −4.40 −3.2

Japan −0.60 −1.20 −1.0

India −0.40 −0.90 −0.7

South Korea −0.60 −1.30 −1.1

Russia −0.40 −0.80 −0.6

North and Latin America −0.70 −1.60 −1.5

Rest of Asia −0.40 −1.40 −1.2

MENA −0.30 −1.40 −1.2

SSA −0.70 −1.60 −1.5

ROW −0.60 −1.50 −1.4

Source: Authors’ elaboration on model results.

(Table 4). Sharp ToT declines occur in countries with high
dependency on digital technologies and strong intercon-
nected supply chains (e.g., the United States) and countries
that experience increases in production cost and import
prices while their exports face muted price increases due to
dampened global demand (e.g., China).

Economies that are more reliant on exports experi-
ence higher ToT deteriorations (e.g., China, Japan, and
South Korea) compared with other economies like the
United Kingdom, India, and Russia. Moreover, the balance
between export competitiveness and vulnerability to import
price increases (in countries like India and South Korea)
determines the extent of the ToT impact.

Other regions that are less digitized and less dependent
on international trade (e.g., SSA) are yet not immune to
impacts, as disruptions in global supply chains, increased
trade costs, and global economic slowdown can still affect
their import prices. The cyber-resilience scenario mitigates
ToT declines by allowing countries to substitute domestic
inputs for disrupted imports; however, these positive effects
are trivial, as this higher substitutability might come at the
expense of higher domestic production costs and reduced
overall economic efficiency.

A severe cyberattack can disrupt production, damage
infrastructure, and erode consumer confidence, leading to a
decline in exports for regions that are heavily reliant on manu-
facturing, technology, or global supply chains. Indeed, China,
the United States, the United Kingdom, and the EU experi-
ence the sharpest export declines in the High-Cyber Threat
scenario due to their heavy reliance on digital technologies
and interconnected supply chains.

The disruptive impact of this cyberattack on global trade
flows is shown by the sharp reductions in China exports
(8.2%) and US exports (5.6%) (Table 5). Chinese exports
heavily rely on the American markets, whereas US export
markets are more diversified. At the baseline scenario, the

United States absorbs around 20% of total Chinese exports,
whereas China contributes 7% of total US exports. There-
fore, cyberattacks would generate higher declines in Chinese
exports compared to those of the US’s exports; the latter will
still decline as higher production costs reduce the US prod-
ucts’ competitive advantages in the global markets. Under
the High-Cyber Threat scenario, China experienced a sharp
decrease in exports, the sector that counts for more than one-
fifth of GDP, and this contributed to the country’s overall
macroeconomic loss, whereas the US exports experienced
lesser drops.

These main traders’ import patterns can be mixed, with
potential increases in essential imports needed for recovery
(the United Kingdom and the EU) or decreases due to low-
ered confidence and economic activity (the United States and
China). Some regions’ recovery plans might necessitate an
increase in imports of critical goods or services needed for
recovery, such as replacement equipment, emergency sup-
plies, or cybersecurity services. Other countries experience an
increase in imports that is attributed to trade diversion, which
suggests complex trade dynamics at play and hence the need
for detailed bilateral and trade analysis, as explained below.

Comparably, South Korea, Japan, and India show smaller
export declines, reflecting their growing reliance on digital
infrastructure and trade integration. Their import patterns,
which show slight declines or even increases, are determined
by import substitution opportunities, trade diversion routes,
and their specific needs for economic recovery.

North and Latin America, the Rest of Asia, Middle East
and North Africa (MENA), SSA, and the Rest of the World,
generally, experience increases in trade due to their lower
dependence on digital technologies and international trade
as well as trade diversion and creation opportunities created
after disruptions in the main trader routes and the necessity
for alternative import sources and trade pathways.

The introduction of resilience measures like improved
cybersecurity infrastructure and trade facilitation helps mod-
erate the decline in exports and imports compared with the
High-Cyber Threat scenario. This demonstrates the criti-
cal role of proactive resilience building in minimizing the
economic impacts and trade disruptions of cyberattacks.

Furthermore, diversification of trade partners and reliance
on domestic production can also play a role in mitigating
the impact and minimizing the need for large-scale imports
after a cyberattack, leading to lower overall trade imbalances.
Indeed, the High-Cyber Threat scenario has trivial impacts on
India’s trade. The country’s “Look East” policy and “Make in
India” initiative strengthen its trade ties with East and South
East Asian countries, promote domestic manufacturing, and
reduce reliance on imports (Roy, 2020).

6.3 Trade routes and diversions after cyber
threats

This subsection depicts changes in trade routes and struc-
tures, explaining potential trade diversions for the major
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INTERCONNECTED AND RESILIENT 13

TA B L E 5 Changes in trade volume (%).

Regions

Low-Sim High-Sim High-Res-Sim

Export Import Export Import Export Import

USA −3.70 −4.14 −5.60 −7.60 −4.30 −6.10

UK −2.40 1.53 −3.70 0.72 −2.00 1.20

EU −1.90 0.90 −2.50 1.10 −2.00 −0.20

China −4.50 −6.29 −8.20 −9.47 −6.50 −7.30

Japan −0.90 −1.25 −1.30 −3.60 −1.00 1.80

India −0.70 −2.22 −1.00 4.18 −0.90 0.80

South Korea −1.10 0.80 −1.90 −1.24 −1.70 1.34

Russia 0.80 2.53 −0.70 0.40 −0.40 0.30

North and Latin America 1.30 1.20 2.70 1.08 2.20 −0.40

Rest of Asia 1.20 2.10 1.80 1.80 1.40 2.10

MENA 0.60 1.70 1.20 −2.85 1.00 2.00

SSA 1.80 2.70 2.22 1.02 2.20 3.00

ROW 1.70 2.30 4.90 2.38 2.40 2.30

Source: Authors’ elaboration on model results.

global traders, under the high cyberattack scenario. Over-
all, major trade partners like China and the United States
experience disruptions in their direct exchanges, prompting
alternative routes and benefiting intermediary countries like
India, Rest of Asia, Japan, and North and Latin America
(Table 6).

Looking at the economic and trade structures for China, the
United States, the United Kingdom, and the EU, their exports
are likely to be exported to each other’s markets through third
countries, creating huge flows of trade diversions.

China’s exports to the United States dropped sharply
by −24% and its exports to the United Kingdom and the
EU decreased by −4.5% and −3.2%, respectively. Con-
versely, the trade diversion effect might lead to increased
Chinese exports to other countries outside the United States;
mainly the Rest of Asia (6.4%), Japan (5.2%), and South
Korea (4.5%), and the three regions’ exports to the United
States increased by 4.3%, 2.7%, and 7.1%, respectively.
This suggests that Chinese exports to the United States have
been diverted to other Asian countries before reaching the
American markets.

Similarly, US exports to China dropped by 21.3%. The
observed increases in US exports to India (5.8%), Japan
(5.5%), North and Latin America (4.4%), and South Korea
(2.2%) along with surges in their exports to China imply that
Chinese imports from the United States have taken diverted
routes through third countries.

The examination of trade routes and diversions reveals
the complex dynamics of global trade networks in response
to cyber disruptions. Major trade partners like China, the
United States, the United Kingdom, and the EU may expe-
rience shifts in trade flows as a result of disrupted direct
exchanges, leading to trade diversions through third coun-
tries. The deployment scale of AI technologies in the United
States and China amplifies their vulnerability to cyberattacks,

resulting in significant disruptions to their trade routes and
economic activities. Meanwhile, third countries may capital-
ize on these disruptions by offering alternative supply routes
and trade pathways, thereby mitigating the overall impact on
global trade.

6.4 Systematic sensitivity analysis

To assess the robustness of our results, we conducted a sys-
tematic sensitivity analysis using a Monte Carlo approach
(Belgodere, 2011). The systematic sensitivity analysis is con-
ducted for one of the main parameters in the model, namely,
the elasticity of substitution between labor and capital. We
investigated how varying these elasticities within a specified
range influenced the model’s outcomes, specifically focusing
on percentage changes in export volume for the United States
under the Low-Sim (Low-level Cyberattack) scenario.

The systematic sensitivity analysis involved 3,000 Monte
Carlo simulations, each with a unique set of randomly gen-
erated elasticity values for the two production factors. These
values were drawn from independent, identically distributed
normal distributions. The mean of each distribution was set to
the original GTAP elasticity values used in the model, while
the variance was defined as half of the mean.

The systematic sensitivity analysis revealed that the per-
centage changes in export volume for the United States under
the Low-Sim scenario are not dependent on the values of
substitution between production factors. The distribution of
outcomes was centered around the original elasticity values
used in the model.

The scatter plot presented in Figure 4 visually depicts the
relationship between percentage changes in export volume
for the United States and the standard deviation (i.e., sigma)
of the normal distributions used to generate the elasticity
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14 OSMAN AND EL-GENDY

TA B L E 6 Changes in trade routes, High-Res-Sim (%).

Note: The color gradient denotes the magnitude of percentage changes in trade volumes, showcasing the highest percentage increases in green and the highest percentage decreases
in red.
Source: Authors’ elaboration on model results.

F I G U R E 4 Systematic sensitivity analysis: USA export changes (%), Low-Sim. Source: Authors’ elaboration on model results.
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INTERCONNECTED AND RESILIENT 15

values. It is evident that there is no clear linear relationship,
and the general direction and magnitude of the impact on the
US exports under the Low-Sim scenario remain relatively
consistent. This suggests that the percentage changes in
export volume for the United States are primarily determined
by the simulated shocks. The systematic sensitivity analysis
demonstrates the robustness of the results to changes in
values of the elasticity of substitution between production
factors.

7 NAVIGATING THE CYBER
LABYRINTH: TRADE RESILIENCE IN THE
DIGITAL AGE

Our journey through the cyber labyrinth of global trade has
illuminated the potential perils, lurking in the shadows of
interconnectedness. AI-driven cyberattacks threaten the very
fabric of international trade, unleashing cascading disruptions
on economies, supply chains, and trade routes. This study, uti-
lizing the intricate lens of CGE modeling, unveils the nuanced
tapestry of these threats, shedding light on their ripple effects
across sectors and regions.

The stark picture painted by our simulations underscores
the vulnerability of economies heavily reliant on digital
technologies and interwoven supply chains. The specter of
cyberattacks looms large over real GDP, trade prices, and
volumes as well as trade routes, with potentially devastating
consequences for economic stability and prosperity. Notably,
the deployment scale of AI technologies in countries like
China, the United States, the United Kingdom, and the EU
exacerbates their susceptibility to cyber threats, leading to
more pronounced economic disruptions. Conversely, third
countries may benefit from trade diversions and alternative
supply routes, mitigating the overall impact on global trade
dynamics.

However, amidst the storm clouds of cyber threats, a bea-
con of hope emerges in the form of cyber resilience. Our
findings convincingly demonstrate the potency of proactive
measures in staving off the worst impacts of digital warfare.
By fostering adaptable production systems, diversifying trade
partners, and investing in robust cybersecurity infrastructure,
economies can equip themselves to navigate the treacherous
landscape of AI-driven cyberattacks.

The High-Res-Sim scenario serves as a testament to the
efficacy of resilience strategies. The diminished negative
impacts on economies under this scenario highlight the cru-
cial role of preparedness in mitigating the economic carnage
wrought by cyber threats. This reinforces the urgent need
for a global imperative toward cyber resilience, with a focus
on collective efforts to improve cybersecurity infrastructures,
foster international cooperation in information sharing and
threat intelligence, and promote open and resilient trade
frameworks.

In conclusion, the cyber labyrinth presents a formidable
challenge to the smooth functioning of global trade. Yet,
within this maze lies the potential for a brighter future. By

embracing cyber-resilience strategies, investing in robust dig-
ital defenses, and fostering international collaboration, we
can pave the way for a more secure and prosperous world,
where the flow of trade remains unfettered by the specter of
cyber threats. This is the imperative of our time, the key to
unlocking a future where interconnectedness becomes a tool
for progress, not a vulnerability to be exploited.

8 LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS

Although this study sheds light on the broader impacts
of AI-driven cyberattacks, it acknowledges the need for a
more granular exploration of attack types and their spe-
cific consequences. Future research could benefit from
developing detailed scenarios specific to various types of
AI-driven cyberattacks and their associated cyber-resilience
approaches. This could involve modeling distinct scenar-
ios for data theft, short-term denial-of-service attacks, and
hardware damage, each with tailored resilience strategies.
Additionally, modeling different aspects of cyber resilience
(e.g., recovery speed, adaptive capacity, and organizational
learning) would offer a richer understanding of the overall
resilience landscape.

In addition, our model currently does not account for
uncertainty and risk-aversion behavior. Integrating prob-
abilistic elements to reflect the unpredictable nature of
cyberattacks and their potential cascading effects, and cap-
turing the risk-averse decision-making of economic agents
in response to cyber threats would enhance the analysis,
as these can influence investment patterns, trade flows, and
technology adoption.

Finally, in order to effectively capture the complex dynam-
ics of cyber–economic interactions, future research could
utilize a recursive dynamic stochastic CGE approach. This
would allow for more accurate modeling of repair and recon-
struction efforts, further enhancing the realism and predictive
power of the simulations.
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