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Abstract 

Internal combustion (IC) engines are the current dominant power 
source used in the automotive industry for hybrid vehicles. The 
combustion process of IC engines involves various parameters, which 
are linked to the overall performance of the driveline. Therefore, 
finding the frequency coupling between the manifold pressure, in-
cylinder pressure and output crankshaft speed will provide an insight 
into the reasons for torque fluctuations and its effect on driveline 
performance. The present work introduces a methodology to analyze 
cylinder pressure, manifold pressure and instantaneous crank speed 
signals measured from a 4 cylinder, 1.6 Litre, Gasoline Direct 
Injection Engine at different speed conditions to identify the 
frequency coupling between these signals. This work uses Ensemble 
Empirical Mode Decomposition (EEMD) as a de-noising method and 
Bispectral analysis for examining the presence of a frequency 
coupling from the signals. This paper will demonstrate a systematic 
approach followed for employing EEMD and Bispectral analysis in a 
GDI engine for deriving frequency coupling details and its 
significance. 

Introduction 

Cylinder pressure is commonly used for deriving the rate of heat 
release and other combustion related parameters for a given operating 
conditions in internal combustion (IC) engines [1,2]. Monitoring the 
characteristics of pressure induced during combustion is a key factor 
to achieve optimum engine performance. This is given that the 
pressure from the combustion process of the air-fuel mixture is 
directly related to output power and torque generated by IC engines 
[3]. Cylinder pressure signal contains information that can be used in 
controlling air to fuel ratio balance, fuel Consumption and spark 
ignition timing [2]. For example, spark ignition timing can 
significantly affect the torque generated by the engine, as maximum 
output torque is achieved at a specific spark timing, any advanced or 
retarded spark timing will result in obtaining a lower torque. This is 
known as Maximum Brake Torque timing [1]. Therefore, cylinder 
pressure signal can be used to derive spark timing information for a 
given air-fuel ratio or any other targeted performance parameters and 
hence improve the overall output torque and power.   

Cylinder pressure signal is generally used for estimating indicated 
mean effective pressure (IMEP), the location of peak pressure in 
crank angle (CA) with respect to top dead centre (TDC) of the piston, 
peak cylinder pressure, mass fraction burned, rate of heat release, 
cyclic variability, wall heat transfer and many other combustion 
related details from the time domain cylinder pressure trace. Cylinder 
pressure information have also been applied to develop closed-loop 
combustion control algorithms used to optimize fuel injection 
characteristics [4]. Other uses of cylinder pressure data are found in 
applications tackling misfire and partial burning issues within Spark 
ignition engines [5]. However, converting the time domain pressure 
versus crank angle signal to a frequency domain at a given operating 
condition allows detecting and characterizing abnormal combustion 
such as knock in gasoline engines. Engine knocking takes place when 
the air-fuel mixture auto ignites before being ignited by the spark 
source and also often due to end gas combustion process which 
produce a shock wave that results in high frequency and high 
amplitude pressure oscillations. Its frequency interval is generally 
between 5 and 7 KHz [6]. A repeated occurrence of heavy knocks 
can lead to damaging the internal components of an engine such as 
the exhaust valve, piston and rings. Moreover, noise from constant 
engine knocking can be unsatisfactory for the vehicle user [6]. 
Another important signal used in the present work is crankshaft 
instantaneous speed. This parameter allows a representation of output 
power feedback and can be used to obtain information on combustion 
process output. The relationship between cylinder pressure and the 
output crankshaft rotational speed [7] is well known. Researchers 
have used signals obtained from crank speed data to reconstruct 
cylinder pressure signal as a cost-effective approach to replace 
expensive direct cylinder pressure measurements [7]. Similarly, 
methods to predict indicated torque using instantaneous crankshaft 
speed are also found in the literature [8,9]. Various approaches 
consisting of modelling the relation between crank speed and 
cylinder pressure parameters using Multi-Layer Perceptron neural 
network to obtain a non-intrusive cylinder pressure approximation [7] 
is also gaining more attention recently.  

Traditionally, the amount of air inducted per cycle per cylinder or 
volumetric efficiency, is estimated using intake manifold pressure. 
Volumetric efficiency, ηv, determines the amount of air inducted per 
cylinder per cycle and hence the torque generated per cycle. Manifold 
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pressure has a direct impact on combustion and emissions control 
[10] and plays an important role in controlling the air-fuel mixture
entering the combustion chamber based on the engine operating
conditions. Manifold pressure signal is used in the Engine Control
Unit (ECU) for estimating mass flow rate of air entering the cylinder
and thus adjusting the fuel mixture to meet the torque demand and
desired driving conditions [11, 12]. Researchers has also
demonstrated the reliability of using intake manifold pressure signal
to develop fault diagnosis methods for internal combustion engines
[11].

Overall, it can be concluded that the relationship between manifold 
pressure which directly influences the volumetric efficiency, cylinder 
pressure resulting from combustion process and the instantaneous 
crank speed due to torque generated from combustion process are 
inter-linked and therefore, the analysis of frequency coupling 
between these signals will allow an optimization of the overall 
process. Hence, the scope of the current work. Table 1 shows a list of 
instruments used for measuring manifold pressure, cylinder pressure 
and crank speed. Whereas, Figure 1, schematically shows the location 
of sensors.  

Table 1: Table of instruments  

Data Measurement instrument 

Cylinder pressure 

Kistler Spark plug mounted Type 
6118C Piezo-electric pressure 
transducer with the measuring 
range up to 200 bar 

Manifold pressure Piezoresistive Absolute Pressure 
Sensor, measurement range of 5 
bar, with Amplifier Type 4618A0 

Crank instantaneous speed 
Rotary Encoder with 360 pulse per 
rotation with AVL Indiset© 
Advanced Data Acquisition system 

Figure 1: IC engine schematic diagram showing the sensors position to collect 
cylinder pressure, manifold pressure and instantaneous crank speed datasets.   

Signal processing methods 

The following section gives brief account of three signal processing 
methods used in the current work. One of the commonly used signal 
processing methods for analyzing cylinder pressure is Fast Fourier 
Transform (FFT).  FFT has been widely used to identify the knock 
and classify the nature of abnormal combustion in cylinder for a long 
time [13]. However, the main drawback of FFT for combustion 
application is that, it can identify the presence of various frequency 
contents in the cylinder pressure signal, but, loses the time resolution 
and therefore, the location at which the knock occurs can’t be 
identified once the signal is converted to frequency domain using 
FFT. The location of knock onset is an essential information for 
optimizing the spark timing and avoiding knock due to auto-ignition 
of the fuel-air mixture. 

Another signal processing method used to overcome this short 
coming of FFT is Ensemble Empirical Mode Decomposition 
(EEMD). This is an adaptive method introduced by Wu and Huang 
[14] and used in analyzing time and frequency data with its suitability
for non-linear and non-stationary signals [15]. The principle of this
method is to break down the main signal to a set of time domain
signals with instantaneous frequencies named Intrinsic Mode
Functions (IMF) and a residual signal. An IMF by definition requires
meeting two conditions. The first condition is that the number of zero
crossings must be equal to or different by one to the number of
extrema present within the entire data. Whereas, the second condition
requires the resulting mean value of the local minima envelope and
local maxima envelope to be zero at any point [16]. Extracting IMFs
using EEMD is a process known as sifting algorithm [15]. The
following step were proposed by Gaci [15] for extracting IMFs from
the original signal for denoising purposes:

1) Find the local minima and maxima (local extrema) of the
original signal x(t).

2) Use cubic spline method to complete an interpolation of the
local maxima and minima and find the lower L(t) and upper
U(t) envelopes.

3) Find the lower and upper envelopes local mean value

using:     mean(t) = 
𝑈(𝑡)+𝐿(𝑡)

2

4) Subtract mean(t) from the original signal using:  .
h(t) = x(t) + mean(t)

5) Use h(t) as a replacement of x(t), then repeat the sifting
algorithm steps until finding a signal that meet the two
conditions of an IMF defined above.

The number of IMFs obtained from EEMD decomposition is defined 
after the sifting algorithm ends. The algorithm is stopped once the 
residual signal (residualj(t)) obtained after the (j-1)th IMF extraction 
is found to be a monotonic function or if the residualj(t) is an IMF 
[16]. In order to re-construct the initial time domain signal, the 
equation below is used [15]:  

  𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑗(𝑡) + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗(𝑡)   (1)

𝑗−1

𝑗=1
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EEMD was introduced as an improvement for the original Empirical 
Mode Decomposition (EMD) approach introduced by Huang et al. 
[16]. The main advantage of the new EEMD is its ability to overcome 
the mode mixing issue, which has a common occurrence in EMD. 
Mode mixing takes place when oscillations of significantly different 
scales are found in any resulting IMF after decomposition, which can 
result in the loss or faults in physical meanings associated with IMFs 
[14].  The way EEMD differs from EMD and solves mode mixing 
problems is through adding white noise to the original signal. This 
noise acts as a reference scale distribution resulting in a much simpler 
EMD process. After the added white noise serves its function in 
reducing the risk of mode mixing, it is cancelled out in the 
calculation of the last mean of each IMF [14].   

EEMD also proved to be an effective signal de-noising method. The 
general methodology followed to remove noise from a signal using 
EEMD is through decomposing the time domain, identifying and 
eliminating IMFs representing unwanted noise, then re-composing 
the signal using equation 1. The high frequency noise within the 
decomposed signal is generally present within lower order IMFs. 
Whereas, the energy of noise decreases with the increase of the IMFs 
order number [14].  Hence, the boundary of IMFs representing noise 
can be found by identifying the IMF containing the lowest high 
frequency noise proportion. Zhang and Wei [17] introduced a 
methodology to identify the boundary of IMFs containing noise. This 
method consists of the following steps: 

1) Computing the standard deviation of an IMF by using the
following formula:

  𝜎𝑖  =  √
1

𝑁 − 1
∑(𝐼𝑀𝐹𝑖(𝑗)  − 𝐼𝑀𝐹𝑖(𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
𝑁

𝑗=1

 (2) 

In equation 2, N represents the IMF data length and ‘i’ 
corresponds to the IMF order number.  

2) Computing the noise standard deviation for the
corresponding IMF using the equation below:

  �̂�𝑖  =  
𝑚𝑒𝑑𝑖𝑎𝑛(|𝐼𝑀𝐹𝑖(𝑗)  −  𝐼𝑀𝐹𝑖(𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |)

0.6745
 (3) 

Similar to Equation 2, variable ‘i’ in equation 3 represents 
the IMF order number.  

3) Evaluate the boundary of IMFs representing noise using:

  𝐾 =  
𝑎𝑟𝑔𝑚𝑎𝑥 (

𝜎𝑖

 �̂�𝑖  
) +  𝑎𝑟𝑔𝑚𝑎𝑥 (𝜎𝑖 − �̂�𝑖)

2
 (4) 

IMFs representing noise are identified as any IMFs with an order 
number smaller or equal to K.  

For example, figure 2 shows a signal y(x) to which noise has been 
added compared with the de-noising process outcome. By applying 
EEMD using R© 3.6.3 Rlibeemd package, signal y(x) can be 
decomposed to the IMFs illustrated in figure 3. IMFs 1 to 3 were 
identified as unwanted high frequency noise using Zhang and Wei 
[17] method described above, and hence by summing IMFs 4 to 7
and residual, the noise free y(x) signal is obtained.

Figure 2: An example of signal y(x) generated with added noise (Black line) 
compared with the de-noised signal (Red line) after applying EEMD  

Figure 3: IMFs obtained after EEMD decomposition process of signal y(x)  

The third method used is Higher Order Spectral Analysis (HOSA). 
This is an approach originally used in statistical analysis and can be 
represented as the (n − 1)th Fourier Transform of nth order 
sequences [18]. This method is ideal for non-linear and non-Gaussian 
signal analysis along with its ability to identify correlation or phase 
coupling in time series. Whereas, the 2nd order Fourier transformation 
of a time domain’s 3rd order cumulants is identified as bispectrum, 
which can be found using the following equation [19,20]: 

𝐵(𝑓1, 𝑓2)  =  
1

𝑇
∑ 𝑋𝑡(𝑓1) 𝑋𝑡(𝑓2)𝑋𝑡

∗ (𝑓1 + 𝑓2)

𝑇

𝑡=0 

 (5) 

 𝐵(𝑓1, 𝑓2) = 𝐸[𝑋𝑡(𝑓1)𝑋𝑡(𝑓2)𝑋𝑡
∗ (𝑓1 + 𝑓2)]   (6) 

Where 𝑋𝑡  is the Fourier transform of the t-th segment of 𝑋𝑡 and T is
the total number of segments, 𝑋𝑡

∗    is its complex conjugate and f1, f2
and (f1+f2) are three individual frequency components while the 
expectation is represented by 𝐸. When these three frequency 
components are non-linearly coupled to each other, the total phase of 
these three components will be strongly correlated even though each 
of the induvial phases are random. 
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An illustration for bispectrum borrowed from [21] is shown in Figure 
4. When two independent frequencies derived from the decomposed
signals are plotted as x and y axis, the third component due to
interaction between these two frequencies which represent the
bispectral quantity can be located.

Bispectral analysis has found its application in various fields such as 
speech analysis [21], fault diagnostics of vibration data [20], wave 
analysis [22], underwater acoustics [18], sonar data [23], detecting 
forgery [24], musical [25], medical application [19] and many more. 
This signal processing method will be employed in the present work. 

Figure 4: An example re-drawn from [21] illustrating the principle of 
Bispectrum method in measuring the frequencies and interactions between 
multiple signals  

Scheme of work 

Experimental process 

The specifications of the engine used for measuring manifold 
pressure, cylinder pressure and instantaneous crank speed are shown 
Table 2. 

Table 2: Specifications of Experimental engine 

Parameter Value 

Bore diameter 77 mm 

Stroke length 85.8 mm 

Connecting rod length 138.4 mm 

Number of cylinders 4 

Compression ratio 10.5 

Fuel injection type Gasoline Direct injection 

Induction type Turbocharged and intercooled 

In order to collect the required data, two piezoelectric transducers 
were used to measure cylinder pressure and manifold pressure of the 
engine.  Crank angle encoder connected to the crankshaft at the 
pulley end was used to measure the instantaneous crank speed. AVL 
Indiset© advanced data logging system was used for collecting and 
analyzing these data. 

Signal post processing methodology 

Once the time domains data are obtained, signal post processing 
methods can be used to analyze these three datasets, manifold 
pressure, cylinder pressure and instantaneous crank speed measured 
as function of crank angle with one degree crank angle interval.  FFT 
was first used as a method to convert the time domains to frequency 
domains using MATLAB programming software for the purpose of 
extracting the main dominant frequencies. Once this is completed, 
EEMD is applied for de-noising the time domains along with 
decomposing the original signals to multiple IMFs using R© 3.6.3 
Rlibeemd package. The de-noising process applies the following 
equation:  

  𝑌(𝑡) = ∑ 𝐼𝑀𝐹𝑗(𝑡) −

𝑗−1

𝑗=𝑛+1

∑ 𝐼𝑀𝐹𝑗(t) + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗(t)

𝑛

𝑗=1

  (7) 

The concept of equation 7 is to eliminate 𝑛 number of IMFs which 
represent unwanted noise then recomposing the signal by adding the 
rest of the IMFs and residual.  

Once EEMD analysis outcome is obtained, Bispectral analysis is used 
to study the frequency coupling between cylinder pressure, manifold 
pressure and crank instantaneous speed. HOSA outcome is 
represented as Bispectrum and Bicoherence graphs in order to 
identify the frequency coupling between manifold pressure, cylinder 
pressure and instantaneous crank speed signals. 

Results and discussion 

Figures 5(a) illustrates the cylinder pressure signal at firing condition 
obtained at 1600 rev/min and 40 Nm. The spark timing and IMEP of 
the pressure data presented in figure 5(a) are 36o before TDC and 3.6 
bar, respectively. The noise present within the compression and 
expansion stroke of cylinder pressure data is due to the opening and 
closing of inlet and exhaust valves events, spark ignition noise and 
fuel injection noise. Whereas, figures 5(b) and 5(c) illustrate the 
signals obtained for manifold pressure and crank instantaneous speed 
at 1600 rev/min and 40 Nm. The experimental data used for this work 
are based on the average of 13 engine cycles. It can be observed that 
these signals contain multiple frequencies. Hence, the time domains 
are converted to frequency domains via FFT method in order to find 
the dominant frequencies. The resulting FFT plots are demonstrated 
in figures 6(a), 6(b) and 6(c). 
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Figure 5(a): Cylinder pressure data of one cylinder at engine speed of 1600 
rpm, load 40 N.m  

Figure 5(b): Manifold pressure obtained signal at engine speed of 1600 rpm 
and load 40 N.m 

Figure 5(c): Crank instantaneous speed obtained signal at engine speed of 
1600 rpm and load 40 N.m 

Figure 6(a): FFT of cylinder pressure at engine speed of 1600 rpm and load 40 
N.m

Figure 6(b): FFT of manifold pressure at engine speed of 1600 rpm and load 
40 N.m 

Figure 6(c): FFT of crank instantaneous speed signals at engine speed of 1600 
rpm and load 40 N.m  
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It is seen from FFT results that the dominant frequencies are mainly 
in the first region between 0 and 500 Hz. In order to get more 
information from the plots shown in figures 6(a), 6(b) and 6(c), the 
main peaks found in FFT graphs are extracted to be compared in 
figure 7. It can be seen that some similar frequency values are present 
within the signals obtained. For example, the frequency 28.15 Hz is 
present in both manifold pressure and crank instantaneous speed FFT 
plots. This frequency also has the highest energy based on the results 
in figures 6(b) and 6(c), 28.15 Hz represents the main crankshaft 
speed and is also found in the manifold pressure signal.  

Figure 7: A comparison between the main frequencies extracted from FFT 
results at engine speed of 1600 rpm and load 40 Nm showing some matching 
frequency values within the signals measured 

Ensemble Empirical Mode Decomposition 

By applying EEMD to cylinder pressure data, the resulting IMFs 
after the decomposition process are illustrated in figure 8. 

IMFs 1 to 3 are found to represent noise within in the original signal. 
Hence, the first three IMFs are not considered and eliminated to 
remove noise from cylinder pressure recorded data. Hence, by 
summing the rest of the IMFs and residual. The de-noised cylinder 
pressure signal is obtained and demonstrated in figure 9. 

In order to analyze the frequencies within the measured data, the 
firing frequency of the experimental engine used in this work is 
considered. The overall firing frequency for IC engines is dependent 
on the speed at which the engine is running and the number of 
cylinders. The combustion process within each cylinder results in a 
power delivery pulse corresponding to a certain frequency. The 
overall engine firing frequency can then be obtained as the frequency 
value of the power pulse produced by each cylinder multiplied by the 
total number of cylinders. Hence, the engine firing frequency (fc) can 
be expressed as [27]:   

  𝑓𝑐 =  
𝑁 × 𝑛 

60 × 𝑘
 (8) 

The parameters 𝑁, 𝑛 and 𝑘 represent the engine speed in rpm, 
number of engine cylinders and the number of revolutions per cycle, 
respectively. In this case, the number of cylinders is four and the 
crankshaft completes two revolutions per cycle for the four-stroke 
experimental engine used in this project, i.e. 𝑛 =  4 and 𝑘 =  2. 
Hence, the engine firing frequency value obtained using equation 8 
considering one cylinder only at 1600 rpm is 13.34 Hz. Whereas, the 
firing frequency considering all 4 cylinders is found to be 53.34 Hz. 

In order to extract present features of the signals within its IMFs, FFT 
is used to obtain the frequency domain of these IMFs. Similar 
approach has been used in other applications found in the literature 
[26]. This was achieved through decomposing raw signals to IMFs 
using EEMD and then producing the power spectrum of these IMFs 
using FFT to extract features or events representing system dynamics 
found in raw signals. This method has direct applications in the 
present work and can be applied for the IMFs obtained from the 
decomposition process of cylinder pressure, manifold pressure and 
crank instantaneous speed. 

Figure 8: IMFs of Cylinder pressure signal at engine speed of 1600 rpm and 
load 40 N.m 

Figure 9: De-noised cylinder pressure signal 
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Figure 10 shows the FFT results of cylinder pressure signal IMFs. 
From the FFT plot of IMF 6, it is noticed that EEMD detected a 
critical combustion event present in IMF 6 corresponding to a peak 
frequency value of 14.08 Hz. This frequency value is very close to 
the theoretical engine firing frequency value of 13.34 Hz considering 
one cylinder at an engine speed of 1600 rpm. FFT was also applied to 
cylinder pressure data IMFs at 2000 rpm, the FFT of IMF 6 of this 
speed condition is illustrated in figure 11. The results in figure 11 
show a peak at 18.77 Hz which is close to the engine firing frequency 
at 2000 rpm. The theoretical firing frequency in this case considering 
one cylinder is 16.67 Hz. Therefore, it can be concluded that cylinder 
pressure IMF 6 represent the engine firing event during combustion. 

Figure 10: FFT of cylinder pressure IMFs at engine speed of 1600 rpm and 
load 40 Nm 

Figure 11: FFT of IMF 6 obtained from EEMD decomposition of cylinder 
pressure data at engine speed of 2000 rpm and load 40 Nm 

EEMD process was applied to manifold pressure, and the resulting 
denoised time domain is illustrated in figure 12. It can be noticed that 
changes to the manifold pressure signal due to the denoising process 
are very minimal, which shows that the noise energy detected in the 
original data is very low. The same method is applied to crank 
instantaneous speed signal as shown in figure 13 where the resulting 
time domain after EEMD is compared to the original recorded signal. 

Figure 12: A comparison between the original and de-noised manifold 
pressure signal 

Figure 13: A comparison between the original and de-noised crank 
instantaneous speed signal 

However, EEMD is limited when it comes frequency coupling and is 
unable to detect the presence of a coupling or correlation between 
multiple signals. This objective is completed using Bispectral 
analysis, as this method is capable of extracting the coupling between 
these frequencies.  

Higher Order Spectral Analysis 

Higher order spectral analysis is based on various analytical 
strategies such as cross-bispectrum, which by considering three time 
domain signals can be expressed by the following triple product [28]: 

𝐵123(𝑧1 , 𝑧2) = 𝑋1(𝑧1)  × 𝑋2(𝑧2)  ×   𝑋3(𝑧1
−1  ×  𝑧2

−1)   (9) 

𝑋𝑛(𝑧) represents signal 𝑥𝑛(𝑎) transform with 𝑛 being 1,2 or 3.

Bispectrum analysis of a particular time domain signals is estimated 
following two methods. The main one is the use of direct FFT 
process for the estimation. This process is based on the principle of 
equation 9, with an option for smoothing the frequency domain via 
Roa-Gabr window [29]. The second method is estimating bispectrum 
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via the indirect method, which consists of dividing the signal to 
segments with possible overlapping events. For each of these events, 
a computation of unbiased sample estimates of their 3rd order 
cumulants is executed. The next stage is to average these sample 
estimates across events [18]. In the present work, MATLAB 
functions bispecdx and bispeci from HOSA package are used to 
obtain the combustion signals cross-bispectrum via direct FFT and 
indirect method, respectively. Cross-bispectrum plots are originally 
3D graphs. However, they are represented in 2D with the colors of 
the contours signifying the z-axis level of the plots. The yellow 
contours represent the highest level of coupling while purple is the 
lowest level. Figures 14 and 15 show bispectrum results for engine 
speed of 1600 rpm and 40 Nm load. It can be seen that the resulting 
contours are different from zero, which signifies the presence of a 
coupling between cylinder pressure, manifold pressure and crank 
instantaneous speed. It is also noticed that the cross-bispectrum 
estimation has a peak corresponding to an 𝑓1 value of around 
0.005568 and an 𝑓2 value of around 0.002966. These two 
frequencies are linked together by a third frequency 𝑓3 with the 
relation expressed as:  

  𝑓3 =  𝑓1 +  𝑓2   (10) 

Figure 14: Cross-Bispectrum plot via direct method of cylinder pressure, 
manifold pressure and crank instantaneous speed at engine speed of 1600 rpm 
and load 40 Nm showing the locations of f1, f2 and f3  

Figure 15: Cross-Bispectrum plot via indirect method of cylinder pressure, 
manifold pressure and crank instantaneous speed at engine speed of 1600 rpm 
and load 40 N.m 

Whereas, the physical explanation of equation 10 concept is that 𝑓1 is
a frequency corresponding to an event in cylinder pressure signal, 𝑓2

to a manifold pressure event, while 𝑓3 is corresponding an event in
crank speed signal. The negative frequencies shown in the bispectrum 
plots are the complex conjugate of their reflections [18,30]. 

The resulting frequencies from bispectrum plots are given as 
normalized frequencies. Therefore, equation 11 below is used to 
obtain the frequency values in Hz:  

  𝑓𝐻𝑧 = 𝑓𝑛 ×  𝑓𝑠   (11) 

𝑓𝑛 and 𝑓𝑠 represent the normalised frequency and sampling
frequency, respectively.  

Hence, the cross bispectrum peak corresponding to 0.005568 + 
0.002966 = 0.008478 can be expressed as 53.45 Hz + 28.48 Hz = 
81.93 Hz. It is noticed that the frequency 𝑓1 of 53.45 Hz has a close
value to the engine firing frequency, which has a theoretical value of 
53.33 Hz. It is also seen that the frequency value of 𝑓2 = 28.48 𝐻𝑧 is
close to 28.15 Hz which is a frequency with the highest energy in 
crank instantaneous speed and manifold pressure signal based on the 
results in figure 6(b) and 6(c) obtained from FFT analysis. Whereas, 
𝑓3 = 81.93 𝐻𝑧 is close to one of the main frequency peaks with a
value of 79.77 Hz extracted from crank instantaneous speed FFT plot 
as shown in figure 7. 

Figures 16 and 17 show the bispectrum results obtained at engine 
speed of 2000 rpm and 40 Nm load. It can be seen that these contour 
plots show multiple peaks. This signifies that a frequency coupling is 
also present at 2000 rpm.  

Figure 16: Cross-Bispectrum plot via direct method of cylinder pressure, 
manifold pressure and crank instantaneous speed at engine speed of 2000 rpm 
and load 40 Nm 
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Figure 17: Cross-Bispectrum plot via indirect method of cylinder pressure, 
manifold pressure and crank instantaneous speed at engine speed of 2000 rpm 
and load 40 Nm 

Bicoherence results 

Bicoherence is a very useful process in higher order spectral analysis 
to examine nonlinearities found in time domain signals [30], which 
makes this analysis strategy suitable for extracting quadratic phase 
coupling present within a particular signal. The theoretical expression 
followed to obtain bicoherence estimation is as shown in the 
following equation [30]:  

  𝐵𝑖𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 (𝑓1, 𝑓2)  =  
|𝐵(𝑓1, 𝑓2)|2

𝐴{|𝑋(𝑓1) × 𝑋(𝑓2)|2} × 𝐴{|𝑋(𝑓1 + 𝑓2)|2}
 (12) 

𝐵(𝑓1, 𝑓2) represents the bispectrum calculation using equation 5. 
While 𝑋(𝑓) refers to the Fourier transformation procedure. Parameter 
‘A’ in equation 12 is an averaging operator and can be expressed as:   

  𝐴(𝐹)  =  
1

𝑇
∑ 𝐹(𝑗)   (13)

𝑇

𝑡=0 

 

‘F’ represents derived quantities such as the Fourier transform of the 
t-th segment of 𝑋𝑡. Whereas, T is the total number of segments as
explained in equation 5.

Bicoherence analysis is used in the present work as an additional 
HOSA procedure to examine presence of frequency coupling within 
the combustion signals and compare these results with the outcome 
obtained from cross-bispectrum analysis. The results of bicoherence 
analysis are illustrated in figures 18 and 19 below. 

The results show that maximum bicoherence values of 0.89 and 0.47 
has been obtained for engine speeds of 1600 rpm and 2000 rpm, 
respectively. These values are different from zero which signifies the 
presence of a frequency coupling in both speed conditions. 

However, certain limitations were found in bispectral analysis during 
the present work. The main overall drawback of HOSA is the long 
computation timing required to complete the desired analysis, this 
can negatively affect the cost of undertaking such heavy 
computational process for professional and industrial use of this 
analytical approach.  The present work draw only attention to firing 
frequency in order to demonstrate the application of bispectral 

analysis for GDI engine, however, further analysis could reveal 
frequency coupling between other dynamic processes and their 
physical relevance. 

Figure 18: Bicoherence estimation results based on direct FFT method speed 
at engine speed of 1600 rpm and load 40 Nm 

Figure 19: Bicoherence estimation results based on direct FFT method at 
engine speed of 2000 rpm and load 40 Nm 

Conclusions 

This paper presents a methodology to analyze critical parameters 
related to internal combustion engines performance using Bispectral 
analysis and EEMD. This method proved its suitability to preserve 
time information and signal features during the analysis, overcome 
the mode mixing issue associated with the original EMD and to 
detect frequency coupling features. This method is applied to cylinder 
pressure, manifold pressure and crank instantaneous speed data 
measured from a 4 cylinder, 1.6 Litre, Gasoline Direct Injection 
Engine in order to find the frequency coupling within these signals. 
The choice of these parameters was based on the direct relation of IC 
engines performance, output power and volumetric efficiency with 
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these three signals as demonstrated by background literature. EEMD 
was used to decompose the signals into a set of IMFs. The results 
after the decomposition process show that IMF 6 of cylinder pressure 
data was correlated with the theoretical firing frequency of the 
cylinder at 1600 rpm and 2000 rpm. Whereas, bispectrum and 
bicoherence results show the presence of a frequency coupling 
between cylinder pressure, manifold pressure and crank instantaneous 
speed at engine speeds of 1600 rpm and 2000 rpm with a load of 40 
Nm. At 1600 rpm, the coupled frequencies f1, f2 and f3 were 
compared to FFT and EEMD outcome and the comparison showed 
that f1 corresponds to the engine firing frequency, f2 to the engine 
speed found after the computation of manifold pressure and 
crankshaft instantaneous speed FFT, while f3 corresponds to a 
frequency of 81.93 Hz close to a frequency value found in crankshaft 
instantaneous speed FFT. This method can be used to identify other 
signal features and frequency couplings present between combustion, 
crankshaft and other connected driveline components of vehicle 
systems.  
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Definitions/Abbreviations 

IC – Internal Combustion  

IMEP – Indicated Mean Effective Pressure 

CA – Crank Angle 

TDC – Top Dead Centre 

FFT – Fast Fourier Transform  

EMD – Empirical Mode Decomposition  

EEMD – Ensemble Empirical Mode Decomposition 

IMF – Intrinsic Mode Function 

HOSA – Higher Order Spectral Analysis 
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