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Abstract 
 
Security and scalability are considered as two major challenges in rapid and smooth deployment of 
blockchains in businesses, enterprises and organizations. Common belief is that the ability to scale up 
a blockchain lies mainly in improving the underlying technology rather than deploying new hardware. 
Though recent research works have applied sharding techniques in enhancing scalability of 
blockchains, they do not cater for addressing the joint issue of data security and scalability in 
blockchains. This paper proposes an approach that makes a trade-off between security and scalability 
when designing blockchain based systems. It designs an efficient replication model, which creates 
dynamic sharding wherein blocks are stored in a varying number of nodes. In order to maintain required 
level of security, the proposed approach shows that the replication of blockchain over peer-to-peer 
network is minimized as the blockchain’s length evolves according to a replication factor. 
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1 Introduction 
 
Blockchain is a distributed data structure which consists of a list of blocks that record transactions. 
These are maintained by nodes which do not require a central authority or a coordinator. It uses a peer-
to-peer (P2P) network that is open, decentralized and resilient network. Blocks are securely connected 
by hash pointers, which require consensus from multiple nodes when approving transactions in a block. 
Blockchain was initially proposed by an enigmatic person (named Nakamoto) in 2008 as a proof-of-
work (PoW) consensus. It was first used for bitcoin in order to securely conduct financial transactions. 
It was deployed on a P2P network that was not bound by the control of a third party or a central authority 
(Nakamoto,- 2008). Blockchain has lately been adopted in numerous financial organizations and other 
industries. It is also used in Internet of Things (IoT), e-Health, self-sovereign identity management [14], 
Public Key Infrastructures (PKIs) and decentralized key management. 
 
Each blockchain has its own operating mode with dedicated transaction validation consensus that 
makes it attractive to various applications. For example, in cryptocurrency, a transaction is a digitally 
signed statement (currency) that states the transfer of ownership of a digital property (or asset). In 
bitcoin, a transaction is signed cryptographically by one participant which is then sent to one or more 
anonymous participants who are only known by their public keys. Any node can join or exit blockchain 
P2P network at any time without authentication. 
 
A user adds a new transaction to the blockchain whenever it is broadcasted to the network. The new 
transaction is then received and verified by a group of (computer) nodes in order to ensure that it is 
signed precisely and that it has not previously been spent (or recorded) in a general ledger. These are 
then grouped into valid transaction blocks. 
 
Miners are compensated for their labor by receiving a fee each time a block is added and agreed upon. 
Despite the fact that all nodes in this decentralized network are equal, they can perform different 
functions, such as routing, database operations, mining, and wallet services. A full node is a node that 
performs all such services, contributes to network security and maintains a complete copy of a 
blockchain. A lightweight node performs a handful of functions and uses simplified payment verification 
(SPV) approach in verifying transactions. In addition, a lightweight node allows to transmit and receive 
transactions without owning a whole blockchain. They do, however, download block headers, and the 
transactions in question rely on full nodes. 
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In terms of data integrity, security, and immutability, blockchain has earned its stripes. An ideal 
blockchain system enables a decentralized control where no single party has an a priori privileged role. 
It also provides consensus on a single state (single source of truth), and tamperproof recording such 
that validated transactions cannot be deleted or updated. Furthermore, ideal blockchain preserves 
privacy of data using cryptographic techniques such as cryptographic hashing, private-public key 
cryptography. 
 
In blockchain system, security comes at the cost of maintaining full nodes. Storage costs rise in lockstep 
with an increase in number of transactions, which become a barrier in blockchain’s scalability. Full 
replication, in which nodes rely on all previous transactions locally, is the foundation of traditional 
blockchain, where nodes validate a new transaction by checking the state, and then store each 
transaction to keep the system running. This is used to convey proof of correct status, which is made 
up of all block headers beginning with the genesis block. This operation is slow and requires a large 
amount of storage space. 
 
Based on the above discussion, it is observed that the decentralization, security, and scalability 
trilemma is the most pressing concern in blockchain. Though blockchain technology is fast evolving it 
still faces fundamental and practical challenges in gaining widespread adoption. On the one hand, the 
decentralization of blockchain on a P2P network and its replication on multiple nodes, provide extra 
security by making it more difficult for an attacker to compromise the system. It must be made secure 
[18, 19] to ensure that it can withstand specific types of assaults that could imperil its proper functioning. 
To achieve decentralization, solutions must allow independent participants with diverse assumptions 
about how participants might join or depart a network. On the other hand, these negatively affect the 
scalability of blockchain systems. It is believed that the ability to scale up a blockchain therefore lies 
mainly in improving the technology, and not in the deployment of new hardware. 
 
This paper designs a new blockchain system in order to reduce storage volume on each node and to 
allow dynamic sharding with different local states from node to node but without compromising on 
security. The main contributions of this paper are as follows. 
It designs a new blockchain system namely SecuSca that maintains an appropriate balance and trade-
off between security and scalability. In addition, it formulates trade-off as a multi-objective optimization 
problem. The proposed approach allows a dynamic sharding to save replications in the network while 
maintaining appropriate level of security. Furthermore, it implements the proposed approach as a proof 
of concept and evaluates its efficiency. 
 
The remainder of this paper is organized as follows. Section 2 presents the motivation through an 
example of the proposed approach, a useful background to make the paper understandable and an 
overview of the approach. Section 3 describes the dynamic sharding architecture and the approach that 
preserves balance between security and scalability. Section 4 presents the dynamic sharding calculus.- 
Section 5 gives an overview of the existing approaches and their drawbacks. The conducted 
experiments are presented in Section 6. 
 
2 The SecuSca approach and a motivating example 
 
Every node in all of the blockchain protocols with a backbone and production environment that we see 
today is responsible for storing all states and processing all transactions. This enhances security but 
restricts scalability. Furthermore, the blockchain network must maintain its own features, such as proof 
and traceability; which result in an increase in the amount of data that each node must store. This 
section first presents a running example in relation to the proposed SecuSca approach that aims to 
overcome scalability limitation of blockchain based systems while maintaining appropriate level of 
security. It then presents an overview of SecuSca model. 
 
2.1 Motivating Example 
 
The blocks that make up blockchain are replicated on all nodes. They maintain local copies of all blocks 
(including genesis block) for the following reasons: 
 
1. To verify transactions - the nodes read the history of all past transactions locally. 
2. To provide replication - it enhances security against attacks and tampering, and also improves 
availability of data. 



3 
 

3. To safeguard transactions - transactions are considered sufficiently safe from attacks when buried 
under enough blocks, and miners reach consensus by selecting the longest one. In proof of work 
cryptocurrencies, the longest chain is deemed honest by the network, and is regarded as the most 
invested chain (Pinar Ozisik et al.,2017). 
 
We consider Alice, Bob and John as three participants among hundred nodes in the blockchain network 
which has a storage capacity of 50 GB that holds shared ledger. As shown in Fig. 1, the blockchain is 
fully replicated on every node in the network. All nodes store whole blocks with all transactions, and the 
same block is replicated on all nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose that the size of a block is 1MB, and that blocks are generated every 10minutes, 1MB ∗ 6 ∗ 24 
∗ 30 =4320MB per month. Since each block is replicated in all nodes, the three nodes can store up to 
50∗103 blocks. These nodes with a capacity of 50GB containing the blockchain will be saturated in less 
than a year. This shows that current design of blockchain would result in major scalability issue. 
 
In Fig 2(a), each node maintains its chain which contains all previous transactions. Each given block is 
stored on the three nodes, Alice, Bob, and john. While in Fig 2 (b), the global blockchain shown at the 
top is sharded across the three nodes. Colored blocks represent the entire block containing 
transactions, and framed blocks only have the block header - so the block buried in the chain is held on 
a few nodes. Decreasing the replication reduces the storage space of the nodes so they can keep 
receiving new blocks. Thus blockchain can contain more than 50,000 blocks. Consequently, as shown 
in Fig 2, the blockchain distributed over the network is more scalable in storage than that of full 
replication. 
 
2.2 An overview of SecuSca approach 
 
SecuSca aims to reduce storage load by reducing replication of each block in a distributed ledger. It 
takes into account fundamental characteristics of security and verification as mentioned above. The 
blockchain is distributed on nodes, and all blocks make the overall state. To allow a node for verifying 
history of the blockchain, SecuSca removes transactions from blocks but keeps the header block. The 
new block, produced cryptographically, is linked to the last block and is added to the longest chain. As 
blocks arrive in the system, they are stored on a higher number of nodes. The replication of blocks 
secured by chaining decreases when the blockchain becomes longer on each node. Each block is not 
entirely removed from the blockchain. As a result, it is possible to store a larger number of transactions 
than current blockchain systems by using the same storage capacity. It also reduces the memory 
required for each node individually. Also, with an increase in transactions, users are not forced to store 
a large amount of data. Below we present some important concepts and definitions which are used in 
the design and development of the proposed approach. 
 
2.2.1 Distributed ledger vs blockchain 
 
A distributed ledger is a database that exists across several locations or among multiple parties which 
is decentralized in a way that does not need a central authority to process, validate or authenticate 

 

Fig. 1 Full Replication 



4 
 

transactions. All files in the distributed ledger are timestamped and are given unique cryptographic 
signature (Ioini & Pahl, 2018; Lux et al., 2020). 
 
Blockchain is one of the types of Distributed Ledger Technology (DLT). It is essentially a shared 
database filled with entries that must be confirmed and encrypted. Transactions are entered in the DLT 
in chronological order and are recorded as a series of blocks in the general ledger. An interconnected 
chain is built between the blocks with each block referring to the block before it, thus forming a 
blockchain. The major distinction is that blockchain is a sequence of blocks, but DLT do not require 
such a chain. Furthermore, DLT do not need proof of work and offer, which provide better scaling 
options. Moreover, blockchain requires global consensus across all nodes, but DLT can establish 
consensus without validating the full blockchain. Blockchain requires a peer-to-peer network with 
consensus techniques so as to assure replication between nodes. But DLT is dispersed over numerous 
nodes (devices). Each node replicates and saves an identical copy of the general ledger and updates 
itself independently. Once a consensus is reached, all other nodes are updated with the new, correct 
version of the ledger. 
 
2.2.2 Blockchain 
 
A blockchain is a type of distributed ledger maintained by a group of validators that stays correct even 
if some of the validators are malicious. When each party receives blocks of transactions, they save a 
copy of the ledger on their computer and update it according to the protocol’s rules. The purpose of 
blockchain technology is to ensure that the ledger is correctly replicated, which means that at any given 
time, each honest party sees the same version of the ledger. A blockchain network is made up of nodes 
that can maintain an immutable record of all data. The data structure is organized into blocks, each of 
which contains a set of transactions that are verified by the majority of network participants. The 
messages sent by the nodes are signed, and a hash, or unique identifier, is used to identify each block. 
Transactions and blocks need time to transfer from one participant to another as they pass through the 
protocol. Depending on the environment in which they are designed to operate, different protocols use 
different network models. While communications can be arbitrarily delayed or even omitted altogether, 
the consensus mechanism must be designed to accommodate this. 
 
Definition 1 (Network model) The parameter by which nodes communicate with each other is called 
the network model. Nodes communicate by sending messages through Gossip protocol and form a 
P2P network topology. 
 
The adversary’s ability to delay messages is limited by the network model. Networks can be 
synchronous, asynchronous or partially synchronous. 
 
– Synchronous: In synchronous networks, the maximum network delay of message propagation delays 
between nodes has a predetermined upper bound known to the participants in which messages are 
sent to all nodes. In semi-synchronous, the message delivery time can be defined by a random variable 
whose probability distribution is known to participants. 
 
– Partially-synchronous: In this network, there is a predetermined maximum network delay that is 
unknown to network participants. However, they are certain that all messages will eventually reach their 
intended recipients. There is also an unknown global stabilization time (GST) in a second scenario, 
which ensures that all communications between two honest nodes arrive on time after GST (the network 
will then become synchronous). Partial synchrony provides good adaptability to the real network 
dynamics, while also simplifying network modeling. 
 
– Asynchronous: This is most challenging scenario to reach consensus. There is no maximum network 
delay in this configuration. That is, communications could take an unlimited amount of time to reach 
their intended receiver. 
 
2.2.3 Data model 
 
Different blockchains adopt different data models for their states. For example the states of Bitcoins are 
coins and modeled as Unspent Transaction Output (UTXO). The two most common models: 
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1. UTXO model: In this model transaction spends output from prior unspent transactions and generates 
new outputs that can be spent in the future. The unspent transactions are kept in each node; which 
consists of transaction outputs that have not considered inputs to another transaction. A higher level of 
privacy is provided by UTXO. In this paper we focus on UTXO model. 
 
2. Account/Balance Model: More contemporary blockchain-based systems, such as Ethereum (Buterin, 
2017) and Hyperledger (Hyperledger Architecture Volume 1, 2021), allow smart contracts to modify 
general states arbitrarily; the model where consensus takes place upon state (result). Furthermore, the 
Account/Balance model is more efficient because each transaction just needs to verify that the sending 
account has sufficient funds to complete the transaction. State replication completely overcomes the 
concept of transaction input and output. More precisely, blockchain state is an outcome of a transaction. 
The Balance model keeps track of the balance of each account as a global state. The balance of an 
account is checked to make sure it is larger than or equal to the spending transaction amount. Once a 
transaction is executed the states of the accounts involved in the transferring are updated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.4 Block structure 
 
In bitcoin, a transaction is a transfer of bitcoins from one or more source accounts to one or more 
destination accounts. In essence, an account is a public/private key pair. The account is identified by 
using an address obtained from the public key. To send bitcoins to a specific account, a transaction is 
produced using account’s address as a destination. To send bitcoins from one account to another, a 
transaction must be signed using the sending account’s private key. Generally, a block stores 
transactions and global states. 
 
The block header contains the following fields. 
 
• Previous Block - it is reference to the previous block in the chain 
• Nonce - it is related to the proof of work, 
• Merkle root - it enables efficient verification of transactions and states (a block stores transactions) 
• A set of metadata related to the mining protocol; difficulty and timestamp. 

 
2.2.5 Blockchain layers 
 
There are several components in a blockchain system which are categorized as follows (Ferdous et al., 
2021). 
 

• Meta-Application Layer. Its aim is to provide an overlay on top of the application layer 
• Application Layer. It defines a semantic interpretation of a blockchain system. For example, in 

the cryptomoney blockchain, it defines a crypto-currency and then set up protocols in order to 
determine, how such a currency can be exchanged between different parties. 

• Consensus Layer. It manages distributed consensus mechanisms that allow distributed 
systems (networks of computers) to work together and stay secure. 

 

 (a) Traditional blockchain   (b) New replication model 
 
Fig. 2 Traditional blockchain vs the new replication model 
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• Network Layer. It is handling network functionalities, for instance, protocol network as well as 
propagating and receiving transactions and blocks in the P2P network. 
 

2.2.6 Consensus 
 
A common order on transactions must be agreed between the nodes in order to ensure consistency of 
the nodes participating in the blockchain. In a distributed system, deciding on a common order is not 
easy. This is an agreement used to verify correctness of blockchain, which is related to the order and 
timing of a block. All honest nodes accept the same order of transactions as long as they are confirmed 
in their local blockchain views. The blockchain is constantly updated as new blocks are received, e.g. 
bitcoin overcomes this challenge by tentatively committing transactions before synchronizing at regular 
intervals and broadcasting a block created by one of the nodes (Al-Saqqa & Almajali, 2020; Ferdous et 
al., 2021; Du et al., 2021). A block b contains collection of transactions T x that the node that produced 
the block has committed since the previous block. The block is subsequently delivered to all nodes in 
the network. Each receiving node rolls back any tentatively committed transactions from the previous 
block and applies the transactions from the current block. At this time, all of the nodes have agreed that 
all of the transactions in the block are valid. Transactions committed as part of the block are confirmed, 
so they do not need to be applied again. The rolled-back transactions will be validated once more and 
reapplied on top of the new base state. Transactions that are now invalid due to conflicts with other 
transactions in the block are rejected.We show the major consensus algorithms in Table 1. Unlike, our 
proposed SecuSca, majority of existing distributed consensus algorithms are not handling security and 
scalability at the same time. 
 
2.2.7 Blockchain Characteristics 
 
States The system ensures data availability and transparency for all participating members by 
maintaining all historical and current transactions at each node for blockchain verification. The main 
abstraction of reading blockchain requires user to maintain a full node to run the consensus protocol 
and maintain a local replica of a blockchain. An increase in number of participants makes blockchain 
system complex and leads to saturation of network. This leads to substantial transaction costs in terms 
of processing data and increased storage space which in turn degrades network performance. 
 
Censorship-resistance Data stored in the blockchain cannot be tampered with during and after block 
generation. An adversary will fail to modify historical data stored on blockchain because of cryptographic 
techniques used in distributed blockchain storage: (1) Asymmetric Key - each node uses this key to 
sign and verify the integrity of the transaction, and (2) Hash function - a mathematical algorithm that 
maps arbitrary size data to a unique fixed length binary output. A hash function (e.g., SHA − 256) is 
computationally infeasible to recover input from output hash. An attacker fails to tamper with a block 
after a size t of the blockchain sufficiently secure (Pinar Ozisik et al., 2017); where t is the number of 
blocks in the blockchain. Even if the adversary tries to cover up this tampering by breaking the hash of 
the previous block and so on, this attempt will ultimately fail when the genesis block is reached. It is 
complicated to modify data blocks across the distributed network. A small change in the original data 
makes the hash unrecognizably different, which secures the blockchain. 
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2.2.8 Sharding Blokchains 
 
Sharding aims to split nodes into different partitioning (shards) that process transactions 
simultaneously, while- maintaining consistency. In a sharded blockchain, (honest or malicious) nodes 
are partitioned into various shards, as shown in Fig. 3. Each shard stores its own blockchain, which 
contains transactions. A transaction might involve a single shard (an intra-shard transaction) or multiple 
shards (a cross-shard transaction). 
 
Communication, storage, and computational overhead are three primary resources of traditional 
blockchains that might prevent system from scaling up. All nodes incur such overhead due to data 
replication and established consensus, which requires a large mass of message exchange. However, 
this can be avoided if each node participates in sharding, as each node in a shard only supports part of 
the total blockchain. 
 
The following are the main steps in sharding with orthogonal functionalities: (1) Shard formulation: It 
involves two processes. First, the ledger is divided into distinct shards. Second, nodes are assigned to 
different shards in different ways based on verification methods being applied (shard allocation). (2) An 
intra-shard transaction: It describes how each shard processes local transactions; different protocols 
utilize different consensus, e.g., BFT, POW, PBFT, etc. (3) A cross-shard protocol: It defines how 
shards process cross shard transactions, which is only guaranteed by certain protocols. Concurrency 
Control and Atomic Commit both capture the cross-shard layer (Han et al., 2021). The sharded 
blockchain has four layers (Han et al., 2021): (1) data layer defines format of the ledger (2) membership 
layer, ensures that nodes are partitioned into shards (3) intra-shard layer -transactions are validated 
inside the shard (4) cross-shard layer - transactions are validated between the shards. 
 
3 The Proposed Dynamic Sharding Approach 
 
In this section, we first discuss the architecture of the proposed dynamic sharing approach, SecuSca. 
We then describe the process involved in the dynamic sharding approach that preserves balance 
between security and scalability. 
 
3.1 Architecture of SecuSca 
 
An architecture of the proposed SecuSca approach is depicted in Fig 4. Users trigger transactions which 
are inserted into a block and are added and replicated in the chain of blockchain over the network. In 
order to preserve maximum security and scalability of the blockchain by decreasing its full replication, 
SecuSca creates a tradeoff between security and sclability. The process comprises two steps that 
operates at the same time. An optimization function is introduced in order to help the sharding process: 

Table 1 Main distributed consensus algorithms in blockchain 
 

Algorithm Description 
Practical Byzantine fault tolerance (PBFT.) Replication algorithm able to tolerate Byzantine fault. 

it works in asynchronous environments. But it does 
not scale (Castro & Liskov, 1999) 

Proof of Work(PoW) The blockchain validators must take data from 
a block header as an input, and continuously run it 
through a cryptographic hash function (Kiayias & 
Zindros, 2018). 

Proof Of Stake (PoS) Blocks are validated based on the stake of the 
network participants (Fan & iching, 2017). 

Delegated Proof-of-Stake (DPoS) Users of the network vote and elect delegates to 
validate the coming block (Wang et al., 2020). 

Proof of Authority (PoA) It is based on the reputation of trusted parties 
in a blockchain network. It provides high 
performance and fault tolerance (Ekparinya et al., 
2020) 

 



8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
– Efficient replication: The replication means efficient storage and security. This approach distributes 
and replicates global state of the blockchain to some nodes of the network by dynamic sharding but 
without sacrificing security. The fundamental goal is to preserve the security and scalability of the 
blockchain and store data in the future where blockchain applications are variants. Even if a node has 
poor memory storage it can participate in the protocol process. 
 
– Efficient reduction: During the process of replication of an inserted block, a reduction step is operating 
in order to reduce the replication of some blocks over the network. This process then scales up the 
blockchain. This also allows more storage in network of the blockchain. 
 
3.2 The process of SecuSca Approach 
 
The efficient replication and reduction steps, involved in the proposed SecuSca approach, are explained 
as follow. 
 
Step 1: Replication model: In SecuSca, we are interested in storing transaction’s history. 
Unfortunately, all nodes cannot store the whole state due to scalability reasons. The blockchain is 
distributed over a higher number of nodes that store blocs, bi (where i = {1, ...,B}). Each node is 
represented as nj; where j = {1, ....,N}. The blocks are propagated throughout the network and stored 
on nodes, n, (n <= N). A node may not even store any state and can still participate in transaction 
validation and block process. The number of malicious nodes, q, that the system can tolerate cannot 
exceed half of the nodes in the network. The honest nodes, p, can be resilient under the presence of 
malicious nodes, q, if their computing power is greater than the computing power of malicious nodes. 
Therefore, security of the blockchain is guaranteed by honest nodes. Replication of blocks at the 
beginning of the process must be large enough to discourage malicious nodes from attacking the 
network. The number of nodes adding the block should be higher for security reasons. But this should 
be carried out without replicating them across the network. t denotes the number of blocks contained in 
the blockchain that increases with the arrival of new blocks. The replication of the block is related to the 
size, t , of the blockchain in each node, nj. In the beginning, it is maximum as the size is small. It then 
decreases as the size increases. 
 

 

Fig. 3 Blockchain Architecture with Three Shards 
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Step 2: Reduction Model. In SecuSca, reducing block replication does not mean removing the entire 
block. Instead, it only reduces replication of explicit transactions in each block and keeps the header of 
all blocks in the blockchain. Transactions are explicitly represented in the block when it is newly added. 
For each new block added to the blockchain, the transactions it contains are only confirmed when a 
specific size constitutes other blocks after that new block. During this phase, the block is entirely stored. 
Indeed, transactions are proportional to the load of the network. Forcing a node to store everything 
would affect scalability. When transactions of block are confirmed by the network and that block is 
buried in the blockchain, the transactions are deleted. 
 
Cryptographically, blocks buried in the blockchain are more secure. As the size t increases, the 
replication of the old blocks decreases. The last blocks added to the blockchain are not reduced 
because they are less secure. For each new block, bi , added to the blockchain with a high replication, 
the approach selects a replication of all previously confirmed blocks in the blockchain on all nodes. 
Each node frees memory space by erasing the transactions of these blocks until reaching a minimal 
replica. The replication then becomes constant, even if the blockchain size increases. SecuSca allows 
availability of the overall state and keeps a minimum replica of the entire blocks distributed on nodes. 
Every node stores part of the blockchain state (a subset of all history) and header blocks, including 
Merkle roots for the whole blockchain. 
 
4 The Dynamic Sharding Calculus 
 
This section describes the calculus and the process of inserting a new block into the blockchain. When 
a new block is ready to be inserted in the blockchain and is replicated over the network, the sharding 
process follows an optimization function R. In the following, we define and explain such an optimization 
function (R) in order  to ensure trade-off between replication for security and scalability of the 
blockchain. 
 
4.1 Dynamic Sharding Function 
 
In order to define and explain the optimization function, we introduce some useful definitions, which are 
used in the setting of such function.We first introduce the notion of the depth of a block which is given 
by the number of blocks added to the chain after a specified block. It is formally defined as: 
Definition 2 (Block depth d). Consider, t , as the size of the blockchain and ,i, as the position of a 
block, bi , in the chain, we define the depth of a block, bi , as follows: d = t − i. For example, if a blockchain 
contains three blocks [b1, b2, b3], the depth of b1 is 2, the depth of b2 is 1, and the depth of b3 is 0. 
 
Definition 3 (Boundaries’ thresholds αN, α0 for security) 
 
Let’s consider, N, as the number of nodes in the network that host the blockchain,  
 

 

Fig. 4 An overview of functional architecture of SecuSca 
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– the upper bound, αN, in the replication phase is the estimated highest number of nodes where the 
blockchain should be fully replicated in all nodes such as αN < N to ensure maximum security. 
 
– the lower bound, α0, in the replication phase is the estimated lowest number of nodes where the 
blockchain should be replicated to ensure a minimum of security such as α0 < αN < N. 
 
Definition 4 (Boundaries’ thresholds γ0, γB for scalability) Let’s consider B as the higher size of the 
blockchain. In order to ensure security and optimize scalability we define: 
 
- the upper bound γB in the replication phase is an estimated highest depth of a block from which we 

can not go under to stop reduction of blocks in different nodes; where γB < B 
- the lower bound γ0 in the replication phase is the estimated lowest depth of a block (to be replicated) 

and from which the replication starts to be reduced while preserving the security and increasing the 
scalability, such as γ0 < γB, 

 
By means of the definitions of block depth in a blockchain and the boundaries, let’s define, the sharding 
function to ensure the trade off between security and scalability. 
 
Definition 5 (The sharding function R) Let’s, d, be a depth of block, b, in a blockchain. According to 
the steps of SecuSca, the number of replications of any block over the network is defined as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 The Validation Algorithm 
 
This section illustrates the validation process when a block is replicated over the network. We devise 
an Algorithm 1 that presents the main steps involved in the process.  
 
Step 1. Step 1. Entry of a new block: When a new block is entering in the blockchain, the sharding 
function R(d) will be triggered in order to calculate replication of the new block over the network to 
ensure scalability and security. 
 
Step 2. Validation by the Quorum: The insertion of the block in the blockchain and its replication should 
be validated by the quorum Q over the network N. The block will not be inserted until the quorum is 
reached. 
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5 Related Work 
 
This section reviews existing work and provides insights into related methods and solutions. The most 
popular blockchain systems, such as Bitcoin and Ethereum, have a full replication process that cannot 
manage a large number of transactions. This is because, with an increase in number of transactions, 
systems become overloaded, which make them difficult to scale. Efficiency of such systems also 
declines as more nodes join the network. Some solutions (e.g., on-chain and off-chain) have lately been 
emerged in order to overcome this issue, i.e., to enable blockchain to work even with the growth in 
number of transactions. Off-chain scalability options may come with their own set of security problems. 
The decentralization and security of blockchain networks should not be compromised. However, in 
order to maintain the security of blockchain systems under the continuous growth of transactions and 
blockchain architecture, scalability features must be maintained. 
 
In off-chain blockchains, transactions are executed off-chain in order to overcome scalability limitation 
in blockchain systems. Untrusted peers can build direct payment channels on the Lightning network 
(Poon & Dryja, 2008). This allows them to make off-chain micropayments without committing each 
transaction to the underlying blockchain. A payment channel is made up of a blockchain-based contract 
that stores funds of peers involved in a transaction. Signatures are used in micropayments to ensure 
that peers accept a transaction. Furthermore, hashlocks and timelocks are used in micropayments to 
ensure that a malicious node does not take advantage of a cooperative participant. 
 
In addition to the above, on-chain blockchains are proposed in order to address scalability issue. In on-
chain, sharding is commonly employed in databases. The aim is to improve scalability of a traditional 
blockchain. This section reviews current approaches based on their basic qualities, and examines 
operational specifics of each method from several perspectives. It also analyzes potential challenges 
of each solution, such as security, throughput, and latency as shown in Table 2. 
 
In a sharding blockchain system, number of nodes, N, in a network are divided into committees, K 
(shards), with a small number of nodes, c, which are responsible for managing their own blockchain, 
and replication of c = N/K. This results in smaller full replication systems. Each committee K keeps just 
validated blocks and does not handle the whole blockchain ledger. The purpose is to eliminate overhead 
of duplicating communication, storage, and computation in each full node. 
 
The work presented, in (Luu et al., 2016; Kokoris-Kogias et al., 2018; Zamani et al., 2018), is based on 
shardingbased Proof of Work and Byzantine fault tolerance (BFT). Authors in (Luu et al., 2016) 
proposes, Elastico, which is the first sharding-based public blockchain that is capable of tolerating 
byzantine adversaries. It partitions the network into shards and ensures probabilistic correctness by 
randomly assigning nodes to committees. In it, each shard is verified, in parallel, by a disjoint committee 
of nodes. 
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It executes expensive PoW to form a committee, where nodes randomly join different committees and 
run PBFT or Practical Byzantine Fault Tolerance for intra-committee consensus. In Elastico, all nodes 
maintain blockchain ledger but cross-shard transactions are not supported. In addition, running PBFT 
among hundreds of nodes decreases protocol’s performance. But reducing the number of nodes within 
each shard increases failure probability. The network can only tolerate up to 25% of malicious nodes. 
 
The Omniledger (Kokoris-Kogias et al., 2018) is designed in order to improve upon Elastico. It includes 
new methods for assigning nodes to shardswith a higher security guarantee, as Elastico. It uses both 
Pow and BFT as atomic protocols for across-shard transactions (Atomix). The intra-shard consensus 
protocol of OmniLedger uses a variant of ByzCoin (Kokoris-Kogias et al., 2016) and assumes partially 
synchronous channels to achieve faster transactions. The network tolerates up to 25% of faulty nodes 
and 33% of malicious nodes in each committee as in (Luu et al., 2016). 
 
Cross-shard in Rapidchain (Zamani et al., 2018) relies on an inter-committee routing scheme which is 
based on the routing algorithm of Kademlia(Maymounkov & Mazi`eres, 2002). It tolerates up to 33% of 
total resiliency and 50% of committee resiliency. Rapidchain also supports crossshard transactions 
using Byzantine consensus protocols but requires strong synchronous communication among shards 
which is hard to achieve. There exist other approaches in the literature which are based on private 
blockchain (ZILLIQA team & et al, 2017; Harmony team, 2017; Amiri et al., 2019; Dang et al., 2019; 
Amiri et al., 2019). Though sharding improves storage and throughput, K (shards) increases linearly 
with N (nodes) with a low-security level. This could lead to malicious node errors. 
 
The Vault approach (Leung et al., 2019) introduces fast bootstrapping that allows new participants to 
join the network without downloading the whole blockchain, thus reducing the transmitted state. Vault 
is Account-based for Algorand (Chen & Algorand, 2019), and does not require all nodes to store the 
whole blockchain state. In (Lu et al., 2020), authors propose a superlight client design that allows a light 
client to relay full nodes to read blockchain with a low read cost so as to predict (non) existence of a 
transaction in a blockchain. Therefore, blockchains can hold a large amount of data. However, each 
node requires storage space. Thus, the cost of storage and the required memory increase with the 
number of transactions. In contrary, the proposed SecuSca approach does not replicate the blocks over 
the entire network. 
 
Moreover, according to the results reported in [56], [57], it is critical that a sharding mechanism can 
handle crossshard verification and cross-shard transactions for validators assigned to distinct shards. 
This shows that the probability of cross-shard transactions reaches 100 percent as the total number of 
shards increases. Maintaining a separate global root chain could be one solution to verification. 
However, it does not permit cross-shard transactions without the use of an additional mechanism, such 
as lock/unlock operation in synchronous networks or lock-free operation in asynchronous networks. 
The demand for a safe cross-shard transaction protocol progressively outweighs the desire for a naive 

 



13 
 

mechanism that does not permit cross-shard transactions; even it can achieve a high improving factor 
N. In summary, most of the approaches being reviewed are focused only on storage issue. They fall 
short of simultaneously handling security and scalability issues, as addressed in our SecuSca approach. 
 
6 Simulation and discussion 
 
6.1 Experimental Setup 
 
In order to validate our proposed SecuSca to ensuring a trade-off between security and scalabilit, we 
conducted simulation using python on a server with 75GB of RAM and two Intel Xeon E5-2650 v4 
2.2GHz CPUs..We evaluate our approach and compare it with traditional bitcoin blockchain. We 
conduct multiple experiments by varying the replication of block and block depth. We run multiple 
simulations with different values of α and γ parameters in order to define upper bound αN and lower 
bound γ0. We then define the size of the whole blockchain sharded over the network. 
 
6.2 Simulation Results 
 
The experiments studied two main aspects which include: the efficiency in terms of block replication; 
and the size of the blockchain. 
 
– Replication of blocks 
 
When a miner produces a new block, it is broadcasted over the network and is added to the local 
storage of nodes. First, we simulate the function R(d) with 100 nodes with 200 GB storage capacity as 
shown in Fig. 5(a) and (b). Each node performs the sharding optimization function R. At the start of the 
process, the new block has a depth of zero. No block is chained to it, and its replication is high.We fixed 
the parameter (α = 0.5) and (γ = 0.5), and then (α = 0.7) and (γ = 0.6). For the first simulation, the upper 
bound is given by 50, and the block is replicated on 50 nodes. This initial replication is constant until it 
reaches depth of γ0. 
 
A second simulation experiment is conducted using 200 nodes with a storage capacity of 100 GB. The 
results are shown in Fig. 5 (c) and (d). The replication of each block depends on its depth in the 
blockchain. Replication decreases as the block’s depth increases. Our system reduces the replication 
of block to α0. It is the lower number of replication that is to be stored in the blockchain for each block. 
For our experimental results, we consider that 15 replicas of a block are sufficient to maintain state of 
the blockchain as the size increases (αO = 15). 
 
– Size of the network 
 
In the experiment that follows, we run the algorithm over 100 nodes that produce 300 blocks of 1MB 
size. Fig. 6 gives an overview of the evolution of the size of blockchain in both traditional blockchain 
and SecuSca. The experiment reveals that the overhead of blockchain becomes more significant in 
traditional blockchain. The size of SecuSca is the sum of all blocks stored on each enode, i.e., from the 
first block to the last block. The sum of all transactions of all shards is shown in blue (or SecuSca 
legend). From [0-200], every block is highly replicated. The size also grows linearly in this range. After 
that, nodes start reducing replication until the lower bound is reached. 
 
The size t of the shard in each node n at different steps is given by: 
 

𝑡𝑛 = ∑
𝑅(𝑖,𝑡)

𝑁
𝑏
𝑖=0     (2) 

 
In the above equation, N, is the number of nodes, i is the position of a block bi is in the chain and t is 
the size of the blockchain. 
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– Discussion 
 
This section evaluates and analyzes the effectiveness of SecuSca approach. It is clearly observed that 
our approach has designed an optimal function for blockchain that ensures an appropriate tradeoff 
between scalability security of blockchain. The analytical and numerical results show, how our SecuSca 
approach, promotes scalability, and enables users to store more transactions by freeing up local disk. 
However, certain aspects of SecuSca needs further improvements. For instance, it should allow the 

 

 

Fig. 5 The replication of blocks according to block depth 

(a) 100 nodes with 200 GB memory (b) 100 nodes with 200 GB memory 

(c) 200 nodes with 100 GB memory (d) 200 nodes with 100 GB memory 

 

Fig. 6 Comparison of the size of blockchain between traditional blockchain and SecuSca 
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blockchain to continue to function even when some nodes delete transactions from their local chain. At 
each transaction verification, if the needed data is not on a local chain of each node, this node must 
retrieve them from another node despite sharing state between nodes. Inter-shard communications 
should also be part of the consensus protocol. 
 
7 Conclusion 
 
Security and scalability are two crucial factors in the successful implementation and operation of 
blockains. Existing research either focuses on security or a scalability of blockchain but they fall short 
of taking both into account when designing blockchain. 
 
In this paper, we have designed a new approach, SecuSCa, for blockchain which makes an effective 
tradeoff between security and scalability. SecuSca allows for more capacity in terms of storage in the 
whole blockchain. We developed a dynamic sharding approach which is formulated as an optimisation 
problem that preserves security and scales up the blockchain. We have conducted various simulation-
based experiments. This experiments have shown positive results and significant improvement over 
traditional blockchain, bitcoin. The analysis shows how our proposed approach promotes scalability and 
enables users to store more transactions by freeing up local disks while ensuring security of the 
blockchain. Nevertheless, SECUSCA needs further improvements, for instance, it should allow the 
blockchain to keep working even when some nodes are saturated. 
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