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Abstract 

Discrete energy minimization has recently emerged as an indispensable tool for 

computer vision problems. It enables inference of the maximum a posteriori so-

lutions of Markov and mnciit ional random fic'lds. which nUl 1)(' used to model 

labelling problems in vision. \Vhen formulating such problems in an energy min-

imization framework. then' arl' thrPe main issues that need to be addressed: (i) 

How to perforlll dficiPllt illf('n'II(,(' to compute t IH' opt illlal solution: (ii) How to 

incorporate prior knowledge into the model: and (iii) How to learn thl' paramp-

ter values. This thesis focusses on these aspects and presents nowl solutions to 

address them. 

As computer vision moves towards tIl(' ('ra of large vidros and gigapixd images. 

COlli put at iouai dfkiml<'Y is 1)(,(,OlUiug in<T('asingiy illlport alit. \V(, present two 

now') met hods to illlprow til(' ('ffic-il'ucy of ('J\('J"gy lIIillilllil,at ion algorithms. The 

first Ill('t hod works hy ")'('( 'ydillg" r('slllt s fWIlI pn'violls problem instances. TIl(' 

s('cond Silllplifi('s till' ('IJ('rgy minilllizatioll proh)('llI by "1"('(Illdng" tIl(' numlH'r of 

variables in the energy function, \\'p demonstrat(' a substantial improvement ill 

the running time of various labl'lling problems such as. illtl'ractive imag(' and 

video segmentation. ohjl'('f rl'cognition. sterl'o matching, 

In the second part of the thesis we expIor(' the use of natural image statis-

tics for the single view reconstruction problem. where the task is to n'cover a 

theatre-stage rl'prl'sentation (containing planar surfaces and their geonwtrical re-

lationships to each other) froUl a single 2D image, To this end. we introduc{' a 

class of multi-label higher order functions to model these statistics ba."ed on the 

distribution of geonlPtrical fl'atures of planar surfaces. \Ve also show that this 

new da."s of fund ions ('all 1)(' solwd ('xad ly wit h dfki('llt graph cut methods. 

The third part of the thesis addresses the problem of lparning tI1P parametprs 

of the energy fUllction. Although sevpral methods have bwu proposl'd to learn 

the lllocl('1 paralllC'tNs from t railling clat a, t h('y suff('r fWIII \'aI"iolls drawbacks, 

such as limited appli('ahilit~r or lloisy estimates due to poor approximations. \'/e 

pn's(,llt all cu'('urat(' alld dflci('llt learning llH't hod. aBel <it-moBstratt' that it is 

widely applicable. 
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Chapter 1 

Introduction 



Many problems in computer vision. such as image segmentation, stereo matching. 

object recognition, single view reconstruction, have been posed as energy mini-

mization problems [16,18,36,93,94,95]. Such formulations involve representing 

the vision task in terms of an energy or cost function. An optimal solution to 

the problem is then obtained by finding the minima of the energy function. This 

approach is becoming increasingly popular due to the availability of efficient auel 

easy to use algorithms. such as graph cuts [1,17,31]. In this thesis. we focus on 

various aspects of energy minimization approaches in the context of computer vi-

sion problems. Specifically. w(' are iuterested iu image labelling problems. wherein 

every pixel in the image is assigned a label from a given set. 

1.1 Computer Vision as an Optimization 

Problem 

One of the main challenges in dealing with computer vision tasks is the size of 

the problem. Let us consider the image segmentation problem as an example. 

where the task is to assign every pixel in an image a label corresponding to the 

segment it belongs to. Figure 1.1 shows an image used in [46] and its correspond-

ing segmentation into four regions, namely cow, grass, trees, and sky. Given a 

640 x 480 image with each pixel taking one of four possible labels, the energy 

function is composed of over 300,000 variables, and there are over 10180•000 pos-

sible labellings in the solution space. A certain cost or energy value is associated 

with each of these label assignments, and the lowest cost labelling corresponds 

to the optimal solution. Naturally, searching for the best solution (also referred 

to as the Inference problem) in sHch all extremely large space requires efficient 

optimization algorithms. 

Although the prohlelll of finding t he minima of a gell<'ral (,llc'rg,v function is 

NP-hard [18]. there exist a number of powerful algorithms which compute the ex-

act solution for a particular family of functions in polynomial time. For instance, 

max-product belief propagation algorithm exactly minimizes energy functions de-

fined over graphs with 110 loops [75, 115]. Silllilarl~·. c('rtaill energy functions can 
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1.1. Computer Vision as an Optimization Problem 

(a) (b) 

Figure 1.1: (a) A natural image used in [46]; and (b) its segmentation into regions, 
namely cow, grass, tree , and sky, represented by four grey scale intensity values. 
Each pixel in the image (a) can take anyone of the four labels, which results in 
over 10180,000 possible labellings. An energy value i associated with each labelling, 
and the segmentation in (b) is obtained by finding the labelling corresponding to 
the lowest energy. 

be minimized by solving a minimum cost st-cut (st-mincut) problem [37,50,88,89]. 

In the first part of this thesis, we extend the class of energy functions which can 

be solved efficiently. We pre 'ent novel techniques that improve the computational 

and memory efficiency of algorithms for solving multi-label energy functions. Our 

methods are motivated by the observations that the performance of minimization 

algorithms depends on: (i) the initialization used for the variables; and (ii) the 

number of variables in the energy function. We reuse results from previous prob-

lem instances to initialize the variables in the new instance, and also compute 

partially optimal solutions to reduce the number of unlabelled variables. 

There are two other i su that need to be addressed when formulating vision 

labelling ta ks in an nergy minimization framework: (i) How to model the prob-

lem; and (ii) How to set the parameter values in the energy function. The second 

part of the thesis explores the possibility of including natural image statistics, 

which have been shown to be effective for many tasks [104,114]' into the energy 

function. \Ve also show how the global minima of such energy functions can be 

obtained. 

The last few years have seen a lot of attention being devoted to the problem 

of learning parameter of energy functions [62 ,71 ,84,90,100.117]. These m thods 

3 



1.2. Contributions 

learn the parameters using training data images and their corresponding labels l , 

rather than make the user set them manually. However, the state-of-the-art 

parameter learning methods suffer from various drawbacks. They can lead to 

poor accuracy due to noisy estimates, as noted in [84,97]' or require performing 

inference for every training image repeatedly, which limits their applicability. In 

the third part of the thesis, we present an efficient piecewise method to overcome 

these drawbacks. Our method decomposes the original problem into a number of 

smaller prohlems, and t}U'll performs efficiellt discriminative learning. 

1.2 Contributions 

The main contributions of this thesis are summarized below. We will discuss 

the relevant contributions in detail at the end of every chapter, and present a 

consolidated summary in section 6.1. 

Efficient Inference. As ShOWll in s('d ion 1.1, energy fUlwt iOllS defiued for COlll-

puter vision problems contain an extremely large number of variables. Searching 

for optimal solutions in such a large space requires efficient inference algorithms. 

We prescut three ('ffici(,llt t('('hlliques to improve the I'Ulllling time of inference 

methods. They are readily applicable for most of the popular energy minimiza-

tion algorithms in computer vision. Methods optimized using our techniques 

provide the same solution as the standard methods. although in a much shorter 

time. Furthermore, all the optimality guarantees of the original methods are 

retained. One of our techniques can be considered as an extension of the work 

in [39,46] for the multi-label (i.e. more than two labels) case. 

Applications. \\·c dcmonst.rate the bcnefits of our met hods Oll various lahdling 

problems such as, colour based segmentation, stereo matching, object class cat-

egory segmentation. single view reconstruction. structure detection. Our results 

in all these! prohlems are sigllificalltly b('tt(~r t hall thosp [('ported previously in 

the literature. Examples of the labelling problems we consider are shown in Fig-

1 Labels are obtained frOJIl either JIlanual or automatic annotation of imagt's. loor example. 
PASCAL voc dataset [19J provides high-quality manually annotated training data. 

4 



1.2. Contributions 

(a) (b) (c) 

Figure 1.2: We show the benefits of our methods on various image labelling prob-
lems: (a) Single view reconstruction. (b) Object class category segmentation, (c) 
Structure detection. The first row shows an example image, and the second row 
show the expected result, which corresponds to the minimum energy labelling. 
In (a) , the task is to assign one of the three geometric labels, namely ground , 
vertical, sky, to every pixel in the image. Here we show an image from the auto-
matic photo pop-up dataset [35]. In (b) , we would like to recognize which object 
each pixel in the image belongs to. One of the image from the MSRC dataset [95] 
containing four object classes, building, car, road , tree, is shown here. In (c) , 
the task i to find man-made structures (such as houses, cathedrals, buildings, 
castles) in the image. An imag from the man-made structure database [62] along 
with the result (illustrated with white squares overlaid on the image) is shown. 

ures 1.1 and 1.2. We have also made implementation of our methods publicly 

available. 2 In fact , most of the researchers using a -expansion, tree-reweighted 

message passing, and belief propagation algorithms, can replace the standard 

implementations with our optimized versions easily. 

U sing Natural Image Stat istics. It is well-known that natural image tatis-

tics can be used to improve the results of many labelling problems [65 , 104,114]. 

We explore the use of these rich statistics for the problem of reconstructing a 

scene from a single 2D image.3 We encode the e learnt statistics as t rms in the 

en rgy function that depend on more than two variables (referred to as higher 

2See http://cms.brookes.ac.uk/research/visiongroup 
3Note that this reconstruction problem is different from the traditional one where rno t pixels 

in the scene are assigned a 3D location. Here, the scene i approximated using three planes, 
which correspond to ground, vertical , and sky [36]. 

5 



1.3. Outline of the Thesis 

order terms). Unlike the work of [43]. we present a method to obtain an exact 

solution for multi-label energy functions involving higher order terms. 

Efficient Learning. \Ve present a widely applicable method for learning pa-

rameters of the energy function. Unlike the previous methods. it is not limited 

by the effidem'y of t he inference step in every iteration of the learning algorithm. 

Our approach can also be viewed as extending max-margin based learning meth-

ods [100,102] to a larger class of energy functions. Furthermore, our method is 

very easy to implement, and is suitable for multi-label energy functions. 

1.3 Outline of the Thesis 

In Chapter 2 we review the concepts of discrete optimization in the context of 

computer vision problems. \Ve explain how vision problems can be formulated us-

ing probabilistic models such as ~Markov and conditional random fields. \Ve then 

show that finding optimal solutions of su("h a lllodpi is p<}uivalent to minimizing an 

energy function. We also provide details of popular (exact and approximate) en-

ergy minimization algorithms, explain under what conditions they can be applied, 

and discuss their limitations. Finally. we provide examples of energy functions for 

various image labelling problems. such as segmentation. stereo matching, single 

view reconstruction. 

Chapter :3 introduces our methods for efficiently solving lllulti-label energy 

functions. Inspired by the dynamic computation paradigm. our first method im-

proves the performance of the a-expansion algorithm [18]. We reuse results from 

previous problem instances to initialize the variables in a new (related) instance. 

This makes solving the new problem instance much more computationally effi-

cient. Our seconci lllet hod simplifi('s the energy function by solving the easy part 

of the problem efficiently. Our strategy of reusing ('om put at ions is then used to 

solve the n'lllain<ier of the problelll. We first present our met hods for functions 

with energy terms containing one or two variables, and then show extensions to 

higher order terms. Many applications of these methods are also shown in this 

chapter. 

6 



1.4. Publications 

In chapter 4 we address the problem of fiuding the exad solution of multi-label 

energy functions with higher order terms. We present a framework to transform 

a certain class of multi-label higher order functions to second order boolean func-

tions, which can be minimized exactly using graph cuts. We show a principled 

way of including the rich statistics of natural images into the energy minimization 

framework in the form of higher order terms. In the latter part of this chapter 

we use these higher order terms to improve the quality of reconstruction from a 

single view of a scene. 

Chapter 5 describes our method for learning parameters of energy functions. 

We begin by discussing the pros and cons of two popular paradigms, namely (ap-

proximate) maximum likelihood [62,84] and max-margin [71,102], for estimating 

the energy function parameters. We then describe our large margin piecewise 

learning method, which iucorporates the benefits of hot h tlU' paradigms. Finally, 

we show results on binary and multi-label energy functions to demonstrate that 

our model is widely applicable. 

In chapter 6 we give a summary of the work presented in this thesis, and 

highlight our contributions. \Ve also discuss promising avenues for future research. 

Appendix A shows images from Middlebury-2005 [84] and man-made struc-

ture [62] datasets used in this thesis. 

1.4 Publications 

The first VC'rsiou of t he work presented ill chapter 3 for pairwise energy functions 

was published in CVPR 2008 [2]. An extension of this work for higher order 

functions, also presented in chapter 3, appeared in Transactions on PA~H [3]. 

The material presented in chapter 4 was published in CVPR 2008 [77]. The work 

presented in chapter 5 appeared in CVPR 2010 [4]. 
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Chapter 2 

Random Fields 



Consider a set of random variables X = {Xl, X 2 , ••. ,Xn }, and a set of labels 

£. = {II, 12 , ••• , Ik }. The objective of a labelling problem defined over these ran-

dom variables is to assign a label from the set £. to each variable. Many computer 

vision tasks, such as image segmentation [16], stereo matching [86], object recogni-

tion [43,94,95], can be viewed as labelling problems. Typically, in such scenarios, 

the random variables correspond to pixels in an image, and the label set is defined 

according to the problem. For example, in the stereo matching problem, the la-

bels represent disparity values, as shown in Figure 2.1. In the object recognition 

problem, each label denotes an object, as shown in Figure 2.2. In the latter part 

of this chapter we will discuss the formulation of these applications as labelling 

problems. 

Randolll fields provide an degant probabilistic frauH'work to model labelling 

problems [29,40. 70]. They provide a neighbourhood relationship between vari-

ables, and incorporate not only (noisy) image measurements, but also a prior 

model over the labelling space in a principled manner. Let N represent the neigh-

bourhood of the random field, which is defined by sets M, Vi E {I, 2, ... , n}. The 

set M denotes the set of all neighbours of the random variable Xi. In other 

words, M is the set of integers representing the indices of the neighbours of the 

random variable Xi. Random fidds are also able t.o model til(' cOlllplex int('rac-

tions between variables. Furthermore, it is possible to estimate the uncertainty in 

the labelling because the model is probabilistic. In this thesis. we are interested 

in two types of randolll fidd lUodels, namely: (i) Markov randolll fidd; aud (ii) 

conditional random field. 

2.1 Markov Random Fields 

A Markov randolU field (MRF) models the joint probability of the labelling x 

and the data y, denoted by Pr{x, y). According to the Bayes' rule, the joint 

probability is equal to the product of likelihood and prior probabilities as follows: 

Pr{x, y) = Pr(ylx) Pr(x), (2.1.1) 
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2.1. Markov Random Fields 

(a) (b) (c) 

Figure 2.1: In the stereo matching problem the task is to assign a disparity label 
to every pixel, given a pair of images. In the Tsukuba image pair [72J shown 
here, di parity gives the correspondence relationship between pixels in left and 
right images along every horizontal scan-line. (a) Image from left camera, (b) 
Imag from right camera, and (c) The disparity map of the left camera image, 
are shown here. The lighter intensities in the disparity map (c) denote larger 
di parity values. 

(a) (b) 

Figure 2.2: In the object r cognition problem, the labels represent object c1as 
such as sky. road , car. (a) An image from the MSRC dataset [95], and (b) The 
corresponding object labelling are shown here. For instance, the region marked 
in red denotes 'building', and the grey region i 'sky '. 

where Pr(ylx) is the likelihood and Pr(x) is the prior. A random field that models 

the joint distribution (2.1.1) is aid to b Markovian if satisfie the following 

properties [40,70J: 

Pr(xil{xj : j E {I, 2, ... , n } - {i}}) = Pr(x;l{xj : j EN;}) , Vi, (2.1.2) 

Pr(x) > 0, Vx E en. (2.1.3) 

The property (2.1.2) impli that the prior probability of the assignment X i = X; 

depends only on the labelling of it neighbouring random variables giv n by N;. 

Figure 2.3 show exampl of a Markov random field with a neighbourhood sy t 111 

10 



2.1. )'larkoy Random Field 

Figure 2.3: Th graphical model repre entation of an ~IRF [11] consists of two 
kinds of nodes and undirect d edg s between them. The observed node ~ rep-
r .. nt the data, and arc' denoted b fillNi circles, while the hidden nodes X 1 

repre 'Cllt the random variable. and arc dClloted by unfilled circles. The edget; 
between b, eIT d and hiddC'n nodes represent the unary potentials. The edges 
anne tiug the hidd n node ' repr ent the neighbourhood s)'strlll in the ran-

dOlll firld. In thi' ('xamplr, a hiddell node is (,OIllH'ctcd only to its illllllediate 
neighbour. thu. rC'presenting a clique of size hvo. Image courtesy of 1\1. Pawan 
Kumar [56]. 

of siz two. 

The joint distribution of an IRF in (2.1.1) can be written as fo110\\1s :1 

(2.1.1) 

where C i . th 'et of diques formed by the 11 .ighbourhood system N. For exampl . 

th lRF hown in Fig. 2.3 contains cliqu of ize two ilwoh-ing e\'Cry pair of 

variabl s ('ann ted to each oth r. The term ¢c(xc ) is known as the potential 

fUllction of th liq1.le c, wh re Xi' = {Xll i E c}. The term Z is thr normalization 

(' 11 tant 2 . whi h n 'nre ' that th probabilities sum to one. For a pairwise MRF. 

uch a' th all 'hown in Fig. 2.3, the probability (2.1.1) can be re-written as: 

(2.1.5) 

\Vh re V = {I 2 .... n}. and £, i: the 'et of rdg bet\n'en all pairs of neighbouring 

1 ACCOlding to til ' Hammcr 1 y- lifford theorem [6,33]. 
2\\:(, will dis \l 'S tIll' role of till' partition function later ill 'haptl'l' 5. 
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2.2. Conditional Random Fields 

variables. The terms cPi (Xi) and cPij (Xi, X j) are called as the unary and pairwise 

potentials respectively. The Gibbs energi3 of a labelling x for this MRF is given 

by: 

E(x) = L <Pi(Xi) + L ¢ij(Xi, Xj)' (2.1.6) 
iEV (i,j)EE 

The unary potential 4>i(Xi) models the likelihood of the label assignment Xi = 

Xi, while the pairwise potential <Pij (Xi, X j) models the cost of the assignment 

Xi = Xi and Xj = Ij. From Fig. 2.3, note that <Pi(Xi) represents the cost of the 

edge connecting the observed node li and the hidden node Xi, and depends on 

the data. On the other hand. (jJij (Xi, X j) represents the cost ofthe edge connecting 

two hidden nodes Xi and Xj' and is independent of the data. A pairwise potential 

commonly used in computer vision problems takes the form of Potts modeL which 

gives a low energy value when Xi = Xj' and penalizes with a high energy values 

otherwise. 

2.2 Conditional Random Fields 

In many computer vision problems it may be necessary to use observed data for 

computing the pairwise potentials. Consider the image segmentation problem as 

an example (see Fig. 1.1). Constraining neighbouring pixels in the randolll field 

to take the same label results in a smoothly varying solution, but is not always 

ideal. If two neighhouring pixels are very different in their colour intensity values 

(or any other features), then they should be allowed to take different labels. One 

way to achieve this is hy including the difference hetween the intensity values 

of the two pixels in the pairwise potential. thus making it dependent on the 

data. This idea of using data in the pairwise potential has been around for a few 

years [16,81.951. Based on the work by Laff('rty et al. [641. Kumar and Hebert [62] 
formalized the resulting probabilistic distribution as a conditional random fidd 

(CRF) model in the context of computer vision problems.4 

A CRF can also be viewed as an MRF globally conditioned on the data. It 

3Energy function maps any labelling x E en to a real number E(x). 
4Kumar and Hebert [62J refer to their model as discriminative random fidd. It is ('Ss<'I1tiall:v 

a conditional random fi('ld mod('l that IlS('S a diff('r('nt srh('m(' to learn the parameters of the 
energy function. 
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2.2. Conditional Random Fields 

models the conditional probability of the labelling x given the data y. assuming 

it satisfies the Markovian property, i.e. 

Pr(xil{xj : j E {l. 2, ... , n} - {ill, y) = Pr(xil{xj : j EM}, y), \ii. (2.2.1) 

The conditional distrihution of a pairwise randolll field is given by: 

(2.2.2) 

where Z is the normalization constant, and <Pi (Xi) and <Pij (Xi, X j) are the unary and 

pairwise potentials respectively, which both depend on data. This distribution 

can also be written as an energy function (similar to (2.1.6) in the MRF case). 

In s111Illnary, Markov and ('onditional random field lllocif'ls provide a posterior 

probability distribution5 of the labelling x, given data y. The best labelling of a 

given randoIll fidel is obt ained hy maximizing thf' post<'fior probability. This is 

referred to as the problem of maximum a posteriori (MAP) estimation. The max-

imization problem is equivalent to minimizing the corresponding Gibbs energy as 

follows: 

x map = arg min E(x). 
xEL 

(2.2.3) 

B('fore w(' discuss algorithms for finding MAP solution, we will review a couple of 

relevant dcfiuitious. 

Energy Reparameterization. Energy functions El and £2 are called repa-

mmeterizations of each other if and only if \ix, El (x) = E2(x) [14,47]. Note that 

this simply means that all possible labellings x have the same energy under both 

functions £1 and £2. and does not imply that El and E2 are composed of the 

same potential functions. 

Energy Projection. A projection of any function f(·) is a function fP(.) ob-

tained hy fixing tlw valnes of some of tlw argulll<'nts of f(·). For inst.allce, fixing 

the valllc of the first t variables of the energy function E(Xl' X2, ... ,xn) : en -+ lR 

5Note that the posterior probability distribution in the case of an MRF is proportional to 
the joint distribution. 
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2.3. Maximum A Posteriori Estimation 

produces the projection EP(Xt+}o Xt+2, ... ,xn ) : Cn - t -+ JR. In other words, we 

obtain a new energy function EP (.) of n - t variahles, by fixing t of the variables 

in the original energy function E(·) of n variables. 

2.3 Maximum A Posteriori Estimation 

The most probable or ~laximum a Posteriori (MAP) solution can be found by 

minimizing the corresponding Gibbs energy, as shown in (2.2.3). The problem 

of minimizing this energy is NP-hard in general. However, there exist a num-

ber of powerful algorithms which the compute the exact solution for a particular 

family of energy functions in polynomial time. Two such families of energy func-

tions relevant to our work are: (i) Submodular energy functions; and (ii) Energy 

functiolls defined 011 tf('(' structured MRF /CRF. Submodular energy function min-

imizat iOB for certain ralldoll1 fields has b('(~n shown to be equivalent to a graph 

cut (sp('(:ifically st-MINCUT) prohlem, which has several efficient polynomial tiUle 

algorithms [31,50,881. Enerp;y fUllctions defiw'd on tn'<' structured random fields 

can be solved by a dynamic programming algorithm presented in [75]. In the 

remainder of this section, we will describe these algorithms and their extensions 

proposed in the literature. 

2.3.1 Submodular Energy Functions 

Submodular energy functions are an important family of functions which can be 

minimized in polynomial time. They are discrete analogues of convex functions, 

and arise in various branches of applied mathematics such as game theory, in-

formation theory. and queueing theory. Given an ordering over the label set L, 

a function f (.) is submodular if all its projections on two variables satisfy the 

constraint: 

fP(a, b) + fP(a + 1. b + 1) ::; fP(a, b + 1) + fP(a + 1, b), Va, bE C. (2.3.1 ) 
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2.3. Maximum A Posteriori Estimation 

When dealing with functions of binary random variables this constraint trans-

forms to: 

jP(O, 0) + P'{I, 1) :s jP{O, 1) + fP(I, 0). (2.3.2) 

One of t he first strollgly polynomial time algoritlulls for this family was pro-

posed independently by [38] and [91]. However, this algorithm suffers from a very 

high runtime complexity. Recent work by Orlin [73] has successfully reduced this 

complexity to 0 (n6 ). where n is the number of random variables in the problem, 

but is still impractical for vision problems involving millions of random variables. 

Certain sllbmodlliar functions can be efficiently minimized by solving the st-

MINCUT problem [14.32,50.88]. For example, submodular functions of order6 at 

most three involving binary random variables can be minimized in this way [8,50]. 

Several methods have been proposed to extend the class of energy functions that 

can be posed as the st-MINCUT problem. Certain binary higher order functions7 

can be transformed into submodular functions of order two, and thus minimized 

dlki<'ntly [25J. Schlesin?;<'r awl Flach [88J showed how to (,Ollvert a multi-label 

submodular problem composed of unary and pairwise potentials into an st-mincut 

problem. Since many energy functions can be transformed to binary submodular 

functions of order 2, solving this class of energy functions efficiently is of great 

importance. We will now <'xplaill an efficient graph ('ut (st-MINCUT) algorithm 

for addressing this problem. 

2.3.2 Graph Cuts 

With the int.roduction of efficient algorithms to solve til<' st-MINCUT problem, 

graph cuts have become an indispensable tool in the computer vision commu-

nity [16,17, 99J. These algorithms have a low runtime complexity, and thus allow 

fast computation of the globally optimal solution of an important class of en-

ergy functions, namely submodular energy functions. As we will see in the latter 

s('diollS, t hey can also he used to find approximat.e solutions of non-submodular 

energy functions, with strong local optimality guarantees [18.42.53,57,109]. 

6The order of an energy function is k. if it can be written as a sum of potential functions, 
('ach of whirh is d('finro on at most k random variables. For example, the order of (2.1.6) is 2. 

7Potentiai functions composed of three or more variables. 
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2.3. Maximum A Posteriori Estimation 

Figure 2.4: The st-MINCUT problem is defined using a directed graph with positive 
edge weights, such as th one shown here. It has two special nodes , source sand 
ink t , such that ther are no edge into s and out of t. The set of nodes in 

Vg is represented as grey circles. and the n-edges (node-node) between them are 
hown in yellow. The t-edges (node-terminal) are shown in red or blue. The edge 

weight are indicated by the thickness of the edges. An st-cut (shown in green) 
separates the node set Vg into two disjoint sets one containing the source and 
the other containing the sink. Image courtesy of Yuri Boykov [15]. 

2.3.2.1 The st-MINCUT Problem 

The st-MINCUT problem is defined using a positively weighted directed graph 

9(Vg U{s,t},£g,C). Here, Vg denotes the set of vertices (or nodes) and £g de-

notes the set of directed dge in the graph. The function C : £g -) lR.+ specifies 

the dge weights, and maps every edge (i, j) E £g , to a non-negative real number 

Cij. Graphs used in the 't-MINCUT problem have two special vertices called ource 

s and sink t , uch that ther are no incoming edges to the source, and no outgoing 

edges from the sink. These pecial nodes are collectively referred to as terminals. 

The edge set contains terminal edge (t-edges) and node edges (n-edges). The 

terminal edges connect the terminal nodes to very node i E Vg , and the node 

edge connect a pair of nodes i, j E Vg according to orne neighbourhood struc-

ture. Let us consider th binary image segmentation problem as an example. 

The nodes in the t-graph correspond to pixels in the image, and the terminals 

represent the two label , ay 0 and 1. The edge weight are set according to the 

energy function defined for the segmentation problem, as discus ed in the latter 

We follow the convention of representing label 0, and t representing label 1. 
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2.3. Maximum A Posteriori Estimation 

part of this chapter. 

Figure 2.4 shows an example of an st-graph. Given such a graph 9, an st-cut 

is dcfillOO a.-; a partition of the node set Vg into two disjoint sets vg and V~, such 

that Vg = vg U V~ (collectively exhaustive), vg n V~ = 0 (mutually exclusive), 

S E vg, and t E V~. All the nodes in the set vg are assigned label corresponding 

to the source, and those in the set V~ are assigned the sink label. The cost of the 

st-cut C·", VI is given bv: V g• 9 • 

CV~,V~ = L Cij' 
iE~.jEVJ 

(2.3.3) 

The cost of an st-cut is equal to the cost of its associated labelling x, i.e. E(x}. 

Now, the st-MINCUT probkm is to find the st-cut with the minimulll cost. The 

partitioning corresponding to the st-MINCUT provides the minimum cost labelling 

for the nodes in Vg • According to the Ford-Fulkerson theorem [23], the st-MINCUT 

prohlem is ('(juiV'cllent to finding the maximum flow from tlw source to the sink 

with the weights C a.', edge capacities. 

2.3.2.2 The Max-Flow Problem 

Given a graph 9(Vg U { .... t}, £g. C), the max-flow problem is to find the maximulll 

flow I from the source to the sink, such that the following edge capacity (2.3.4) 

and 1ll8..'iS bala11('(' (2.3.5) ("onstraints an' satisfie<i:9 

o ~ lij ~ Cij, V(i, j) E £g, 

L Iii - hi = 0, Vi E Vg , 
iEN, 

(2.3.4) 

(2.3.5) 

where Iii is t h .. flow along the edge from node i to node j, and M is the set of 

nodes in the neighbourhood system of node i. The residual capacity Tij of an 

edge (i. j), given a flow Iii' is the maximulIl additional flow that ("an h<' p8..'>8e<1 

from node i to node j using the edges (i,j) and (j, i), i.e. Tij = Cij - hj + Iji' 

Now, a residual gmph g(J}. with resped, to a flow I, consists of the nodes Vg • 

and the edges with positive residual capacities. An augmenting path is defined 

as a path from the source to the sink along unsaturated edges. i.e. edges with 

9Using tht> notation of [1. 41]. 
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Source (0) Source (0) 

Reparameterization 
--..... a 

Sink (1) Sink (1) 

Figure 2.5: Here we show a graph G containing two nodes a1 and a2. The 
edge weights are given by the numbers beside them. The edges shown using 
dotted linc. ar part of the ,t- 11 T. and the cost of this cut is 2 + 2 + 4 = 8. "'c reparam teriz{' thi ' graph by adding a positive constant Q: to the t-edges 
of nod a 2 and obtain th graph G1. Performing st-MINCUT /max-flow 011 this 
feparamet riz d graph re ult in an identical st-MI UT. Thus, both the graphs 
indue th same partitioning in the node set, although the cost of the st-MINCUT 
i · diffC'fcut ill t,h(' two graph . Image courtesy of P ushDlcct Kohli [46]. 

positive residual capacities. of the re idual graph. 

Max-flow algorithms typicall find an augm('nting path, send the maximum 

po 'sible flow through it , and repeat this process unti l no such paths can be 

fOllllO [17]. Th lllll of all the flows obtained at each step is the maximum flow 

for the graph. At the end of the proce . certain edges will be saturated, and the 

graph will I e partitioned into two ets, separating the source and the sink. In 

other words it produces an st-cut. It has been shown that the maximum flow 

value thus obtain d i ' equal to the cost of the st-t\I1NCUT for the graph [23]. Other 

max-flow algorithm , ueh as pu h-relabe) algorithm [30], also provide efficient 

way ' for achieYing thi , and are described in the excell nt book by Ahuja et 

al. [1]. In summary, after t he max-flow algorithm has terminated, the set Vg is 

partitioned into two set : V~ (source set) and V: (sink set), thus assigning labels 

to all the nod . 

Graph R param terization. There are certain transformations, which do 

not affect the labelling obI ained b performing the max-flow op ration. ueh 

transforlllati ns only result in a reparameterizaiion of the graph. For example, 

adding ( constant vaIn to the terminal edge weights CS1 and Cit of any node i does 

1 



2.3. Maximum A Posteriori Estimation 

not affect the labelling, as it only depends on the difference of the edge weights 

(CSt - Cit). We show this on an example taken from [46] in Figure 2.5. Another 

example of graph reparameterization is shown in Figure 3.2. 

What can be solved? We mentioned earlier that all the edges in an st-graph 

must be non-negative. This naturally restricts the class of energy functions that 

can be represented and therefore solved using an st-graph. We now formalize this 

class of st-MINCUT solvable energy functions. For simplicity, let us consider the 

pairwise energy function in (2.1. 6): 

E(x) = L cPi(Xi) + L cPij(Xi, Xj}. {2.3.6} 
iEV (i,jla 

Furthermore, we assume that the random variables Xi are binary valued.1O Fol-

lowing the pseudo-boolean notation in [14], we can re-write energy function (2.3.6) 

as: 11 

E(x) = 

(2.3.7) 

Whel"C'Ii is the binary complement of Xi, i.e. Ii = 1, if Xi = 0 and vice versa. We 

simplify this energy function for two binary variables Xi, X j, and the edge (i, j) 

between them as follows: 

DV( ) ",I ",0- ",I + ",0- + ",00- - + ",01- + ",10 - + ,1..11 u' Xi, Xj 'Pi Xi + 'Pi Xi + 'PjXj 'PjXj Vij XiXj 'Pij Xi.Xj 'Pij XiXj 'Pij XiXj 

",const (I + II ",01) + ,1..0 - + ",1 + (,1..0 + ,1..00 ",01) -- 'P + (/Jj (/Jij - 'Pij Xi 'PiX, 'PjXj 'Pj 'Pij - 'Pij Xj 

(2.3.8) 

where fjJconst is a constant. Not.e that the coefficients of t.he unary t(,rIns can be 

variedl2 such that they are lloll-llegative. It, ('an he easily verified that the coeffi-

cient of the pairwise term will always be equal to (¢?] + ¢lY - ¢rJ - ¢JJ). Given 

lONott' that thest- assumptions are not. restrictive. as many multi-label higher order functions 
can be transformed to binary pairwise functions (~2.3.1). 

11 We dt'not,e ~dO) as (j)? aud {j)ij (1. 0) {j):J for brevity. 
12For example, by rewriting tht' equation algebraically. 
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Figure 2.6: H re we construct an st-graph corresponding to the energy function 
(2.3. ). In om notation. we as ign label 0 if a node belong to the source set, 
and label 1 otherwise. Thus, the co t for node i taking label 0 (given by the 
('odiki(,111 of 1 h(' Hilary 1 ('nil Xl) is added to the t-edge (i. t). All the other t-edge 
('o:t. are added ill a 'imilar fashion. The pairwise term X 1 Xj represents the cost 
of the as igum nt XI = L 1') = 0, and its ('odfkic1l1 is add('d to tIl(' Il-cdgc (j, i) . 

. tlwrc i '110 pairwis term for the a ignment Xl = O.Xj = 1, the n-edge (i,j) 
ha. no eo:t. 

this form of the euerg·y. \V now construct the st-graph as shown in Figure 2.6. 

For this graph t be a valid ' t-graph, all the edge w('ights must be non-negative. 

Th(' 1-('dg<, \\'('ight s ('all 1)(' lIlodifi('d (cit her alg(,hraindly or by graph reparalll-

(lterizatioll). ueh that th ~' are positive. For the n-edges to have non-negative 

\\' ight '. the condition (</>~jl + 4>~)o - ¢?J - cPU) ~ 0 lllllst b(' sat isfied, which is 1 h(' 

hinary Hubmodularity condition (2.3.2). This equivalence of binary pairwise sub-

modular functions and st-MI C T was shown by Hammer [32] and Kolmogorov 

and Zahih [50]. 

2.3.3 Solving Non-submodular Energy Functions 

So far w(' hav(' 8('('11 rIfici(')}t algorit hillS for solving sllbulOdular energy functions. 

Huw('Y(ll'. mo, t multi-Iahd energy functions encountered in omputer vision do 

not ati 'f~' the constraint (2.3.1). and thu are non-submodular. For in'tance. it 

can b clearly 8('('n that th Potts model pot ntial 'I/1IJ(') d.dill('d as: 

(2.3.9) 
otherwis(', 
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2.3. Maximum A Posteriori Estimation 

does not satisfy the constraint (2.3.1). Choosing a = k and b = k + 1 in (2.3.1) 

we get: 

fP(k, k + 1) + fP(k + 1, k + 2) ::; fP(k, k + 2) + fP(k + 1, k + 1). (2.3.10) 

The LHS of equation (2.3.10) is equal to 2"( while the RHS is equal to ,,(, making the 

above condition false. A number of approximate or partially optimal algorithms 

have been proposed to solve this class of energy functions [14,18,47,48,54,76,83, 

111]. Some of these methods provide an approximate solution either by optimizing 

a related submodular energy function [76,83], or by solving a relaxation of the 

problem [47.111]. The methods proposed in [14,54] provide a globally optimal 

solution for only a subset of the problem. The remaining part of the problem is 

then solved with message passing algorithms [47,75]. Boykov et al. [18] proposed 

efficient graph cut ba.'.;e<i a-expansion and a,3-swap algorithms for solving non-

submodular problems. We will provide an overview of these two algorithms in 

the remainder of this section. 

Move making algorithms. The a-expansion and o,3-swap algorithms are 

widely used for approximate energy minimization [18, 99J. They belong to the 

class of move making algorithms. These algorithms work by starting from an 

initial labelling x and making a series of moves (label changes) which lower the 

energy iteratively. Convergence is achieved when the energy cannot be decreased 

further. At eaeh step, the algorithms sear<:h a move space to find the optimal 

move - one that decreases the energy of the labelling by the most amount. The 

move search space must be as large as possible in order to make the algorithm 

less likely to get stuck in local optima. Expansion and swap algorithms achieve 

this by using a search space that is exponentially large in the number of variables 

in the Cllergy function. Thcy perform this scarch efficiently for a certain class of 

energy functions by solving an st-MINCUT /lllax-fiow problem. 

The a-expansion algorithm is an iteratiw pn)('c<iur<', which finds an approx-

imate MAP estimate by solving a series of st-MINCUT problems. At each step, it 

considers a label a E C. and allows all the random variables to either retain their 

current label or change to a. This is done by solving an st-MINCUT problem, 
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which makes the binary decision of changing or retaining the label assignment. 

One iteration of the algorithm involves performing expansions for all 0: in some 

order successively. The algorithm terminates when the energy cannot be reduced 

further for any 0:. Boykov et ai. [18] showed that o:-expansion is applicable if the 

pairwise potential functions ¢ij define a metric, e.g. Potts model (2.3.9), trun-

cated linear model. 

The Q~-swap algorithm also finds an approximate MAP estimate by solving a 

series of st-MINCUT problems. Unlike o:-expansion, it considers a pair of labels 

0:, f3 E {, together with all the variables currently assigned Q or ~. It then solves 

an st-MINCUT problem, which can swap the label assignments of these variables. 

The algorithm terminates when the energy cannot be reduced further by swapping 

labels for any pairs of labels 0:, f3. These moves can be computed if ¢ij defines a 

semi-metric [18]. e.g. Potts model (2.3.9)' truncated linear or truncated quadratic 

models. We will revisit these move making algorithms and provide more details 

in Chapter 3. 

2.3.4 Message Passing Algorithms 

Message passing algorithms are another important class of methods for addressing 

the MAP inference problem. These algorithms work by passing messages between 

nodes representing the random variables of the model. Belief Propagation (BP) 

is a popular and well-known message passing algorithm for MAP inference. It 

was originally propos(~l for a tre(' structured randolll fidd, where it is guaranteed 

to produce the exact MAP estimate in two iterations [75]. In the first iteration, 

messages are sent from the leaf nodes to the root, and in the second iteration, 

they are sent in the opposite direction. 13 For a general randolll field (with loops or 

cycles, e.g. MRF shown in Fig. 2.3), BP is not guaranteed to converge. Variants of 

BP have been proposed [20,27.112,116] to handle such models. These algorithms 

have no optimality guarantees, but can provide a good estimate of the MAP 

solution empirically. as noted in [99]. BP messages can be computed using either 

a max-product [11] or a sum-product [75,116] rule. In the former case, we take 

13Similar to forward-backward passes in dynamic programming. 
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the maximum over all possible label values and obtain the MAP estimate directly. 

While. in the latter case, we take the sum of all possible label values and obtain 

a set of probability estimates, which can be used to get the MAP solution. 

Wainwright et al. [111] proposed another belief propagation variant called 

tree-reweighted message passing (TRW), which was motivated by the problem of 

maximizing a concave lower bound on the energy. Their algorithm begins by 

selecting a s<'t of trccs from the random field, and computes probability distribu-

tions over each tree. These distributions are then used to reweight the messages 

being passed during loopy BP on each tree. The hope is that each step of loopy BP, 

followed by reweighting increases the lower bound on the energy. Kolmogorov [47] 

showed that the TRW algorithm is not guaranteed to achieve this. and proposed 

a sequential extension (TRW-S) to address this problem. TRW-S processed nodes 

in a scan-line order. Each node sent messages to its right and bottom neighbours 

in the forward pass, and its left and top neighbours in the backward pass. The 

algorithm terminates when the lower bound cannot be increased further. 

To summarize, there are many algorithms to solve the MAP inference prob-

lem. EffkiPllt graph ('ut hased lllethods lllinimize suhlllo<iular energy functions. 

Energy functions arising out of tree structured graphs can be solved exactly with 

message passing algorithms. All other classes of energy functions can be mini-

mized approximately or partially. 

2.4 Example Vision Problems 

We now look at two low-level vision problems, and discuss how they can be 

modelled in the energy minimization framework. 

2.4.1 Image Segmentation 

Consider the interactive image segmentation problem shown in Fig. 2.7 [15,16]. 

In this problem, the user marks red (foreground) and blue (background) strokes 

or regions, and the goal is to solve a binary MRF problem to estimate the fore-

ground and background regions in the image. Note that our discussion here is 
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2.4. Example Vision Problems 

Figure 2.7: Here we show two examples of :'::':e:-e.c:'ye ::;:'::e.:-y image segmentation 
problem. The red and blue strokes indicate the foreground and background seed 
pixels respectively, which are marked by the user. These seed pixels are used 
to compute the RGB histogram distributions for the two regions. Note that the 
image are colour coded to show the expected foreground (red) and background 
(blue) regions. Image courtesy of Yuri Boykov [15]. 

focus ed on the binary image s gmentation problem. In Chapter 3, we will re-

visit thi problem using multiple labels, e.g. as shown in Fig. 1.1. The energy 

corre ponding to the binary segmentation problem is given by (2.1.6), where the 

et of v rtice correspond to pixels in the image, and the set of edges is given by 

the neighbourhood we choose. Here we use 4-neighbourhood as an example, i.e. 

every pixel i is connected to it 4 immediate neighbours - to the top, the right , 

the bottom and the left of i. The unary potentials cPi(Xi), i E V, are defined using 

RGB histogram distributions ?-la, a = {O, 1}, of the two segment labels as follows: 

(2.4.1) 

The di tributions 1ta are computed using the user-specified seed pixels (available 

in th form of strokes or regions). 

The pairwise potentials must ensure that we obtain a spatially continuous (i. e. 

smooth) egmentation, without speckles. This can be achieved using the Potts 

model (2.3.9) which assigns a cost I if neighbouring pixels take different labels, 

and a cost 0 if they take the same label. This potential ignores image edges, and 

encourage pix Is on either sid of an edg to take the same label as well. Boykov 

and Jolly [16] introduced a data-dependent smoothness term to overcome this 

problem. Similar potentials were later used by many researchers [12,81,95 , 101]. 

The edge-preserving moothness term takes the form of a Gen ralized Potts model 
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2.4. Example Vision Problems 

defined as: 

{

A + A exp (_g2(i,j)) 1 
( ) 

1 2 2/72 dist(;,j) 
¢ij Xi· Xj = 0 (2.4.2) 

if Xi = Xj, 

w here A], A2 and (T are parameters of the model. The terms 9 ( i, j) and dist ( i, j) 

give the diffe}'('ll('e iu RGB values and the spatial distance respectively between pix-

els i and j. It cau h(~ casily verified that this euergy fuuctiou satisfies the submod-

ularity condition (2.3.2), and therefore be minimized using the st-MINCUT /max-

How algorithm. More sophisticated priors, such as couu('ctivity priors [110], shape 

priors [44.66.67] can also be included in the energy function. 

2.4.2 Stereo ~atching 

Stereo matching is the process of taking two or more images14 and estimating 

a 3D lllodd of t IH' S('CIl(' hy fillciing mat(,hing pixels ill the image'S and convert-

ing their 2D positions into 3D depths [98]. An example of the stereo matching 

problem is shown in Fig.2.1. The results of stereo matching algorithms are typi-

cally presented as a dense disparity map. where each pixel is assigned a disparity 

value. which indicates horizontal displacement the pixel has undergone from one 

image to another. It can easily seen that disparity is inversely proportional to 

distance from the observer, i.c. depth [24,34, 98J. The stereo matching problem 

has been formulated as an optimization problem using an energy function similar 

to (2.1.6), where each pixel takes a disparity label [9,16.85.96J. 

In the energy function we describe here, the set of vertices corresponds to 

pixels in the image. and the set of edges is given by 4-neighbourhood. The 

unary potential is a similarity measure that compares the pixel values in order to 

determine how likely they are to be in correspondence. This measure is computed 

by considering either the pixel or a region of support. e.g. 5 x 5 window, around it. 

A few examples of similarity measures are squared intensity differente, truncated 

quaclratks. ('ntropy, filtl'r-hauk respouses. Iuterested readers are encouraged to 

see Chapter 11 in [98] for more details of similarity measures. The pairwise term 

14For simplicity. wp will focus on using two images in our discussion ht're. 
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is a Generalized Potts model (2.4.2), which encourages similar pixels to take the 

same label. This multi-label energy function can be minimized using the move 

making or message passing algorithms discussed in this chapter. 

2.5 Summary 

In this chapter we presented a review of discrete optimization concepts in the 

context of computer vision problems. We introduced two popular ralldom field 

models, anel showeel that finding optimal solutions of thes(' models is equivalent 

to minimizing the corresponding energy functions. We also provided details of 

relevant energy minimization algorithms. 
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Chapter 3 

Efficient Energy Minimization 



3.1 Introduction 

Many problems in computer vision such as image segmentation, stereo match-

ing. image restoration. and panoramic stitching involve inferring the maximum 

a posteriori (MAP) solution of a probability distribution d('fiued by a discrete 

MRF or CRF [18.49,83.99]. The MAP solution can be found by minimizing an 

energy or cost function. Although, minimizing a general MRF energy function 

is an NP-hard problem [18]. there exist a number of powerful algorithms which 

compute the exact solution for a particular family of energy functions in poly-

nomial time. For instance. max-product (min-sum) belief propagation exactly 

minimizes ('n('rgy fund iOlls defined over graphs with uo loops [115]. Similarly, 

certain submodular energy functions can be minimized by solving an st-mincut 

problem [17,25,37,50]. 

Effidellt approxilllatioll algorithms have' also b('('l1 proposed for functions 

which do not fall under the above classes [18.47,111]. Expansion and swap 

move making algorithms, sequential tree-reweighted message passing (TRW-S), 

and belief propagation (BP) are examples of popular methods for solving these 

functions. They have been shown to give excellent results on the discrete MRFs 

typically used in computer vision [18,99]. However, these algorithms can take a 

considerable amount of time to solve problems which involve a large number of 

variables. 

As computer vision moves towards the era of large videos and giga-pixel im-

ages, complltat ional efficiency is becoming increasingly important. Indeed, the 

last few years have seen much attention being devoted to reducing the computa-

tional complexity of minimization algorithms [20,39,46,53]. In this chapter we 

make two cOlltributions to improv(' the efficiency of energy miuimization algo-

rit.hllls. Our first coutribution is a method which works by recycling results from 

previous problem instances. providing a simpler alternative to the recent work 

of [53] on dynamic energy minimization. Our second contribution is a method 

which simplifies the energy minimization prohlclll by reducing the number of vari-

ables in the energy function, and can also be used to generate a good initialization 
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3.1. Introduction 

for the dynamic a-expansion algorithm by reusing dual variables. 

Recycling Solutions. Our first method is inspired by the dynamic compu-

tation paradigm [39,46,53]. It improves the performance of the a-expansion 

algorithm by recycling results from previous problem instances. The idea of dy-

namic computation has been used in the recent work of [39,46] on minimizing 

submodular energy functions. In particular, [46] showed how flow can be reused 

ill maxflow algorit hms, and [39] showed how cuts (or previous labelling) can be 

reused. However, these methods are only applicable for the special case of dy-

namic MRFsl that are characterized by submodular energy functions. Our work 

extends these methods to non-submodular multi-label energy functions. It is 

most similar to the interesting Fast-PD algorithm proposed by Komodakis et 

al. [53]. which generalizes the work of [46] and [52]. Fast-PD works by solving the 

energy minimization problem by a series of graph cut computations. This process 

is 1111U{(' efficieut by reusing the primal and dual solutions of the linear program-

ming (LP) relaxation of the energy minimization problem, achieving a substantial 

improvcuH'ut in the rtUllliug time. Our modified dynamic a-expansion algorithm 

is conceptually much simpler and easier to implement than Fast-PD whilst giving 

similar performance. Our method of initializing the a-expansion algorithm can 

make both methods orders of magnitude faster. 

Simplifying energy functions. Most energy minimization problems encoun-

tered while solving computer vision problems are composed of "easy' and "dif-

jicult" components [48, 54]. For instance, the variables labelled by the QPBO 

algorithm [14,48] constitute the easy component, while the rest constitute the 

difficult component. The globally optimal labels for variables constituting the 

easy component of the MRF energy function can be found in a few iterations of 

the millimizat ion algorithm, while those of tile difficult part typically cannot be 

found in polynomial time (in the number of variables). Energy minimization al-

gorithms generally do not take advantage of this decomposition, and process all 

the random variables at every iteration. 

We propose a novel strategy which solves a given discrete MRF in two phases. 

1 MRFs that vary over time [39. 46J. 
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3.1. Introduction 

I . Cow 2. Cow . 3. Garden 4. Tsukuba 5. Venus 6. Cones 

(a) 

(b) 

. Plane 9. Bikes 10. Road 11. Building 12. Car 

(c) 

(d) 

Figur 3.1: Some of the image (a,c) and their ground truth labellings (b,d) u ed 
in our xp riments. 1-3 Colour-based egmentation problems with 3, 4, 4 labels 
r p tiv ly. 4-7 St r 0 matching problem with 16, 20, 60, 60 label r spectively. 

-12 Object-bas d egm ntation problems with 4, 5, 5, 7, 8 labels respectively. 
(Thi figure i b t vi w d in colo'ur.) 

III th fir t pha e a partially optimal solution of the energy function is com-

put d [14,4 .54]. In uch olution. not all variables are assigned a label. How-

ver, th et of variabl which are assigned a lab 1, are guaranteed to tak the 

am lab lling in at I ast on of the optimal solutions of the energy function. 

Thi ref rr d to a th property of partial optimality. Using the partial so-

lution to fix value of the e variables results ill a projection (cf. section 2.2) of 

th original nergy function [50] . In the econd phase we minimize this simpli-

fi d en .rgy , hi ·h n p nd on f w r variable , ann i consequentially easier and 

fast r to minimize compar d to the original en rgy function . This approach is 

applicabl to man popular n rgy minimization approaches such as a-expansion. 

BP. F t-PD and TRW- . \Ve al 0 show how to achieve a substantial peed-up in 

th minimization of the simplified energy by reusing results from computations 

p rform d to find the partially optimal solution. 

3.1.1 Outline of the Chapter 

In tion 3.2 w bri Jly rcvi w the notation and the algorithms for minimizing 

multi-lab 1 nergy function [14, 1 ,47,54] . Section 3.3 presents our two methods 
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to improve the running time of such algorithms. Specifically, it describes methods 

to: (a) recycle the primal and dual solutions for obtaining a good initialization for 

the new problem instance: and (b) reduce energy functions and reuse the resulting 

residual graphs. Our methods are also applicable for certain higher order energy 

functions, such as those containing the pn model potentials proposed by Kohli et 

ai. [43]. \Ve discuss this extension in section 3.4 using the problem of interactive 

texture based image and video segmentation as an example. We also prove that 

partially optimal solutions can be computed for this model. In section 3.5, we 

evaluate the performance of our methods on the problems of colour and object 

based segmentation [16.94.95]. and stereo matching [99]. A few examples of 

these problems are shown in Fig. 3.1. Summary and discussion are provided in 

section 3.6. 

3.2 Preliminaries 

We denote each pixel i in the image with a random variable Xi, which takes a 

value from the label set e = {l1.12 . ... , lk}. A labelling x refers to any possible 

assignment of labels to the random variables and takes values from the set en, 
where n is the number of pixels. For example, the label set corresponds to 

disparities in the case of stereo matching problem, and image segments in the case 

of colour-based segmentation problem. Fig. 3.1 shows a few of the segmentation 

and stereo matching problems we consider in this work. 

Given a neighbourhood system N, a clique c is specified by a set of random 

variables Xc such that Vi, j E c, i E Nj and j EM, where M and Nj are the 

sets of all neighbours of variable Xi and Xj respectively. An energy function 

E : en -+ IR. which maps any labelling to a real number E(x), can be written as: 

E{x) = L <Pc{xc). (3.2.1) 
cEC 

where C is the set of all cliques. The term <Pc(xc ) is known as the potential 

function of the clique c. where Xc = {Xi, i E c}. Note that this is a generalization 

of the uIlary and pairwise potential functions typically used in computer vision. 
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The unary potential cPi(Xi) represents the cost of the assignment: Xi = Xi, and is 

defined by considering diques of size 1 (i. e. treating each pixel as a clique). The 

pairwise potential cPij (x i, X j) represents the cost of the assignment: Xi = Xi and 

Xj = Xj' and is obtained by considering cliques of size 2. We will initially explain 

our methods using pairwise energy functions of the form: 

E(x) = L cPi(Xi) + L ¢ij(Xi, Xj), (3.2.2) 
iEV (i,j)Ef 

where V is the set of all random variables and £ is the set of all pairs of interacting 

variables. In section 3.4 we will provide details of the proposed methods for higher 

order functions. 

The unary potential cPi can be obtained in many ways. For example, in a 

colour-based image segmentation problem it is common to use the RGB distribu-

tion for computing the potential. In a stereo matching problem the unary poten-

tials are typically obtained using a window-based correlation measure. Object-

based segmentation problems can learn the potential using a boosting proce-

dure [103]. The exact form of all these potentials will be explained in section 3.5. 

The pairwise potential cPij commonly takes the form of the Potts model (or its 

contrast-sensitive variant [16]). and is given by: 

(3.2.3) 

The contrast-sensitive variant modulates the cost f of two neighbouring nodes 

taking different labels wit h the difference ill feature val \les and spatial distance 

between the nodes. This is also referred to as an edge-preserving pairwise po-

tential, as two nodes lying on either side of an edge are likely to have differeut 

fpat nre values and thus can take different labels. 

This fairly simple hut effective energy function in equation (3.2.2) cannot be 

solved exactly. Recall (~2.3.1) that multi-label energy functions can be solved 

('x<utly iff they satisfy the sublllodularity condition given by: 

EP(a, b) + £P(a + 1, b + 1) ~ EP(a, b + 1) + EP(a + 1, b), (3.2.4) 
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for all a. bEe and for all its projections on two variables. Here EP(.) is a 

projection of the original energy function E ( . ). Choosing a = k and b = k + 1 in 

(3.2.4) we get: 

P(k. k + 1) + P(k + 1, k + 2) ~ EP(k, k + 2) + EP(k + 1, k + 1). (3.2.5) 

In the case of the Potts model (3.2.3), the LHS of equation (3.2.5) is equal to 

2, while the RHS is equal to , making the above condition false. Thus, Potts 

model is not submodular for multi-label energy functions, and hence cannot be 

solved exactly [18.50]. 1\lany algorithms have been proposed to find approximate 

or partially optimal solutions of these energy functions [14,18,48,54, ll1J. We 

provide a brief summary of some of these algorithms, which are relevant to our 

work, in the next section. 

3.2.1 Approximate Energy Minimization 

Approximate algorithms for solving multi-label energy functions can be broadly 

classified int 0 lllove-making and message passing algorithms. 

Move making algorithms. The a-expansion and a!3-swap algorithms are 

widely used for approximate energy minimization [18,99]. These algorithms work 

by starting from an initial labelling x and making a series oflabel changes (moves). 

which lower the energy at each step. An optimal move. which is the move de-

creasing the energy of the labelling by the most amount, is found efficiently at 

every step from the large2 move space. Convergence is achieved when the energy 

cannot be decreased further. 

The a-expansion move allows any random variable to either retain its current 

label or take a label a. One iteration of the algorithm involves performing expan-

sion moves for all Q E C, in some order successively. The iterations are repeated 

until the energy cannot be decreased any further. Boykov et ai. [18] showed that 

the optimal expansion moves for certain energy functions of the form (3.2.2) can 

be computed in polynomial time by solving an st-mincut problem. They showed 

2Exponent.ial in t.he number of variables in the energy funct.ion. 
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that if the pairwise potentials ¢ij defin(> a metric, then the energy function (3.2.2) 

can be minimized using a-expansion. In other words, ¢ij should satisfy the fol-

lowing conditions: 

tl>jj{a, b) - 0 <==} a = b, 

for all a, b, c E C. 

(3.2.6) 

(3.2.7) 

(3.2.8) 

The o3-swap move allows any random variable whose current label is 0 or !3 to 

either take a label 0 or ,3. One iteration of the algorithm involves performing swap 

moves for all pairs of labels o. J E C in some order successively. These iterations 

are repeated until convergence. Optimal swap moves for energy functions of the 

form (3.2.2) can be computed in polynomial time if ¢ij defines a semi-metric, i.e. 

satisfies ("()n ci it ions (3.2.(j) anel (3.2.7) [I8]. 

Message passing algorithms. The other class of algorithms for approximate 

energy minimization work by passing messages between nodes representing the 

diff('fent random variahles of tlU' lllodel. Max-product belief propagation (BP) 

is one such method for MAP inference proposed by Pearl [75]. A message from 

node Xi to Xj indicates how likely it is for Xj to take a certain label from 

Xj's perspective. The BP algorithm was originally designed for tree structured 

graphs where it is guaranteed to provide the exact MAP solution within two 

iterations [75]. In the first iteration the Illes sages are sent from the leaf nodes 

of the tree towards the root. Messages are then sent from the root towards the 

leaf nodes in the second iterat.ion. After these iterations, the belief of taking a 

label ip , Vp E 1, ... , k, is computed for every node Xi using the unary potential 

tl>i(Xj = lp) and the messages from all its neighbours corresponding to the labellp . 

The node is then assigned a label according to its maximum belief. This method is 

not guaranteed to converge for the grid (loopy) graphs we use in computer vision. 

However. it has been applied to loopy graphs with some success [20,26,27,99]. 

III this case. the iterations are repeated until the rate of change of messages from 

one iteration to the ll(lxt falls below a certain threshold, thus resulting in an 
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approximate solution. 

Wainwright et ai. [111] proposed the tree-reweighted message passing (TRW) 

algorithm. which decomposes the graph into a set of trees and performs BP on 

them. The messages being passed are reweighted with sets of probability distri-

butions over each tree. The TRW algorithm also computes the lower bound on the 

energy. and aims to increase this bound in successive iterations. Kolmogorov [47] 
developed an improved sequential version of TRW. referred to as TRW-S, by pro-

cessing the nodes in a scan-line order. TRW-S has two useful properties: (a) The 

lower bound estimate is guaranteed not to decrease in every iteration; and (b) 

The lower bound estimate is guaranteed to converge, unlike the original TRW 

algorithm. Other variants of message passing algorithms have also been pro-

posed [51. 89.113]. 

3.2.2 Computing Partially Optimal Solutions 

Certain algorithms for minimizing non-submodular functions (such as (3.2.3)) 

return a partial solution x E (.c u {d)n of the energy [14.45,48.54,82]. Here. 

the assignment Ij = { implies that no label has been given to random variable 

Xi. In other words. these algorithms assign labels to a subset of the random 

variables. Consider the QPBO algorithm [14,48] as an example. It minimizes 

energy functions compQ<red of binary random variables. and returns a partially 

labelled solution x with the following property: there exists a global minimum x· 

of til(> energy function such that Ip = I; for all variables X p that are labelled, i. e. 

Ip =I (. This propE'rty of a partial solution is called weak persistency. There are 

certain partial solutions of the energy for which a stronger condition called strong 

persistency holds true. The strong persistency property states that if a variable 

Xp is labE'lled. thE'n it is assigned the same label in all global minima x* of the 

energy. i.e. xp = x; for all x· E {argminx E(x)}. 

Recently. there has been some interest in developing methods for comput-

ing partially optimal solutions of multi-label energy functions [45,54]. The work 

of [45) addresses this problem by transforming the multi-label energy function to 

a function involving binary variables [37,88]. The resulting binary energy func-
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tion is then minimized by applying the QPBO algorithm. This approach produced 

interesting results. but is computationally expensive. The method proposed by 

Kovt.llll [54] to find partially optimal solutions constructs a sub modular subprob-

lem Pk for each label lk E C. The random variables which are assigned label 

lk after solving the subproblem Pk have an optimality certificate a.'.;sodated to 

them. An additional advantage of this method is the submodularity property 

satisfied by t he subproblems. thus making them efficiently solvable (cf. §2.3.1). 

Partially optimal solutions obtained by the methods described here help us isolate 

the variables which have been assigned a label, and reduce the original energy 

minimization problem. 

3.3 Efficient Multi-label Methods 

\Ve now present methods to improve the performance of algorithms for minimizing 

multi-label energy functions arising from discrete MRFs or CRFs. For ease of 

understanding. we explain the working of these techniques in the context of the 

a-expansion algorithm. However. our methods are general and are applicable 

to all popular algorithms such as nJ3-swap, SP. Fast-PD and TRW-S (sequential 

TRW). Experimental results using all these algorithms are presented in the latter 

sections. We also limit our discussion to energy functions with unary and pairwise 

terms. e.g. (3.2.2). in this section. Methods for higher order terms are presented 

in section 3.4. 

The techniques proposed in this chapter are inspired from the observations 

that the computation time of energy minimization algorithms primarily depends 

on: (a) The initialization used: and (b) The number of variables involved in the 

energy function. Thus. our primary goals are: 

1. To generate a good initialization for the current problem instance, which 

results in a reduction in the amount of computation required for solving the 

problem. 

2. To reduce the number of variables involved in the energy function in an 

('ffki('ut manuer. 
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3.3.1 Recycling Primal and Dual Solutions 

\Ve achieve our first goal of obtaining a good initialization by recycling results 

from previous (related) problem instances. We call this method for a-expansion, 

the dynamic a-expansion algorithm. As discussed earlier (cf. §3.2.1), the a-

expansion algorithm works by making a series of label changes, called moves, 

which lower the energy at each step. This iterative algorithm starts with an initial 

labelling. Each step considers a label a E L, and solves the binary problem of 

assigning variables this label or retaining their current label. One iteration of 

the method involves performing expansion moves for all the labels in some order 

successively. The iterations are repeated until the energy cannot be reduced 

further for any label o. We denote the binary energy function corresponding to 

a particular '0' move by EU(x(l), and is defined as: 

Etl(xtl) = L<I>nxn + L ¢0(x~,xj), (3.3.1) 
iEV (i,j)Ec 

where xi. xj) E {D. I}. and correspond to Xi and Xj in the multi-label energy 

function respectively. The assignment xf = 0 implies that Xi = 0 in the multi-

label energy function. while the assignment xf = 1 implies Xi retains its current 

label. The unary potential ¢~) (x~)) is given by: 

if xtl = 0 t , 
(3.3.2) 

if XU = 1 1 , 

where x~ur is the current label assignment for Xi. The pairwise potentials, for the 

Potts model in (3.2.3). are defined as: 

(3.3.3) 

otherwise, 

where 8 (x~ur - xj"r) = 1. if x~ur = xjur. and 0 otherwise. 

The above binary function is pairwise and submodular, if the pairwise po-

tentials of the original multi-label energy function satisfy the metric conditions: 
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(3.2.6), (3.2.7), and (3.2.8). Thus, the binary energy function (3.3.1) can be min-

imized exactly by solving the equivalent st-mincut problem (cf. §2.3.2.1). The 

st-mincut problem is called the primal problem, and its solution, i. e. the labels 

assigned to all variables xf, Vi E V correspond to the primal solution. The st-

lIlincut is found by solving the dual problcm of maxHow on the' same graph. The 

dual solution corresponds to the feasible How solution of the maxHow problem. 

A new st-graph is built for solving each a-expansion move. 

Recycling Flow across Iterations. When solving an expansion move in a 

particular iteration. We' propose to r('('yelp the' How from tIl(' corresponding move 

in the previous iteration to make the new computation faster. In the first iteration 

of the algorithm, we build one graph GJ, i = 1, ... , k, for each label expansion. 

The optimal expansion move for a given label Ii is computed by solving the st-

lIlincllt /lllaxftow problel11 Oil the graph G:. Maxftow problems corresponding to 

all the labels are solved just as in standard a-expansion. In iterations u > 1 of the 

algorithm. instead of creating a new graph G~ for a label expansion, we recycle 

the corresponding graph Gf- I from the previous iteration exploiting the fact that 

the two graphs are similar. \\7e use dynamic graph cuts technique proposed by 

Kohli and Torr [46] to achieve this. Given the solution of the maxHow problem 

Oil a graph, their Ill('thod efficiently computes the maxHow in a Illodified versioll 

of t)1<' graph. Inspired by this idea, we update the maxHow solution of the graph 

Gf -I to obtain a good initialization for the graph Gi. 
The dyuami<' update step involves changing the flows and the residual edge 

capacities, such that all edges satisfy the capacity constraints. In other words, we 

require that til(' How in all edge is not more than its capacity. We illustrate the 

dynamic update step with an example in Fig. 3.2. It shows the case where the edge 

capacity between two nodes changes from one iteration to another. This change 

violates the capacity constraints of the edge, and is handled by reparameterizing 

the graph su('h that the final solution is not aff('ded. TIl(' time complexity of all 

such updates is 0 (1), except for deleting an n-degree node where it is 0 (n).3 
Aftpr the updatp operat ions, the maxHow algorithm is performed on the new 

3 A nodt> i..<; deleted by making the capacity of all the edges incident. on it zero, which takes 
o ( 1) time per edge. 
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Original 
Residual Graph 

(1\) 

Capacity of 
(1.)) reruces by 

3UMs 

Updated 
Residual Graph 

(b) 

Re-parametertze 

Re-parameterized 
Residual Graph 

(c) 

Figure 3.2: TV illll irate the dynamic update step using a graph containing two 
node i and j. Cowildcr the expan ion move in iteration u for labellm . Per-
jOT7l1l7lg 7T/(ujlow computation on the graph corresponding to this move 1'esults in 
a 7'e. idllal graph hou'll in (a). In thi example we assume that graphs G~;l and 
G~l dljjrr in til( capacity of the edge (i, j) by 3 units. Incorporating this dijjer-
nee in the Tc.idual graph (a) violate the capacity constraint, i. e. residual edge 

capacity of til( edge i.' 7lcgatit e. The edge capacities are made non-negative by 
r paramcil1'lzing the graph (ef. §2.:J.2.2), without affecting the final solution. The 
graph is Tepammde1 ized by adding a constant a = 1 to the capacity of the edges 
(1.j). ( .i) a7ld (j,t). and .ubtracting it from the capacity of the edge (j,i), as 
hou 11 in (b). The new Te.'1dual graph, which corresponds to expansion move in 

iteration u + 1 JOT labellm i. hown in (c). Max/low computation on this graph 
is effiei 111 f46}. Image cOUf'le y oj Pu hmeet. Kohli /46}. 

residual graph. ThC' efficiency of this computation depends on the number of 

update op ratioll. performed (s e Fig. 9 in [46]). In the worst case, when all 

the edges ar updated. this approach provides no speed-up and is as fast as the 

'tandard algorithm. However, our method is guaranteed to give some speed-up, 

becausE' tIl(' number of chang in the graphs decrease in the latter iterations [18]. 
An exampl of this is shown in Fig. 3.3, a plot of the number of label changes, 

which COlT('Spond' to the change in the graph, against the iteratiolls of the 

0.- xpan"..:;ioll alg rithm. Thi leads to a decrease in the number of update and 

maxftow computations over time. Hence, the optimal moves in these iterations 

are {'ompul( d fficic>ntl . 

For larg} problem,,, i.e. when th number of labels, k, or the number of pixels, 

n. is \,E'r~ r large. lllaintaining multiple dual solutions may not be viable due to 

1ll(,l1l0r~' r<>quirClllC.'llt . ThiH is ue can be overcome by working with a projected 
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3.3. Efficient Multi-label Methods 

Figure 3.3: The numb r of label changes in each iteration of the Q-expansion algo-
rithm. We use the tereo matching problem (Tsukuba image [86J) as an example 
here, and how that the number of label changes decreases in the latter iterations. 
Not that th numb r of lab 1 change corre ponds to the changes in the expansion 
mov graph from on iteration to another i.e. G~- l to G~ , VQ. Our strategy of 
recycling graph in th iteration lead to a significant speed-up. 

energy function obtain d from a partially optimal olution (cf. section 3.3.2). 

Thus our mthod i not only time-efficient but also memory-efficient if the pro-

j ct d n rgy function involve a mall subset of random variables. The recycle 

h m for ingle MRF ummarized a follows: 

1. Con truct graph Gl i = 1, ... ,k = l.e l, in the first iteration. 

2. olIlpute th maxflow olutions to get the optimal moves. 

3. For iterations u > 1, 

• U pdat graphs from iteration u - 1. 

• om put tb new maxflow olutions for the residual graphs. 

Efficiently Solving Dynamic MRFs For dynamic MRFs [46,53]' the task is 

to olve a problem wher th data changes from one problem instance to the next . 

For in tance. tlli occur when olving a labelling problem on the image frames 

of avid 0 quen . Th conventional method to solve such a problem is to use 

th tandard Q- xpansion algorithm on each problem instance (e.g. each time 

instan ) ind p ndently. This method is inefficient, given t hat the image frames 

ar highly corr lat d. and would require a lot of computation time. We address 
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3.3. Efficient Multi-label Methods 

this issue by recycling both the primal and dual solutions. The primal solution is 

generated by recycling the labelling of the previous problem instance, while the 

dual solution is computed by recycling the residual graphs (as in the single MRF 

case). Intuitively, if the data changes minimally from one problem instance to the 

next, the solution of a particular problem instance provides a good initialization 

for the subsequent one. 

Consider a lahelling prohlem defined OIl a video sequellce. The first frame 

in the video sequence is labelled using the single MRF method described above. 

The primal and dual solutions thus obtained are used to initialiJ',e the maxflow /st-

mincut problems for the next frame. The labelling (primal solution) of a frame t is 

initialized with the solution obtained for frame i-I. The graphs C! (i), i = 1, ... , k, 

(dual solut ion) corresponding t.o tIl(' first iteratioll for frame t are obtained by 

dynamically updating the graphs from the last iteration for frame t - 1. With 

th<'s(' initializatiolls the' maxflow problem for ea('h label is solved as in the single 

MRF case. In summary, 

1. Solve frame 1 as a 'single MRF'. 

2. For all frames i > 1, 

• Initialize the labelling (primal) using the solution of frame t - 1. 

• Init ializ(' til<' graph flow (dual) from the ('orrespolldillg solutions for 

frame t - 1. 

• Solve as a 'single MRF'. 

These techniques for n-expansion provide similar speed-ups as the Fast-PD algo-

rithm [53] as shown in section 3.5.1. 

3.3.2 Reducing Energy Functions 

We now propose a method to simplify (or reduce the number of unknown variables 

in) the MRF by solving the easy part. Our reduce strategy is applicable to many 

popular energy minimization approaches such as o-expansion, BP, TRW-S and 

Fast-PD. as illustrated in section 3.5. We also show how computations performed 
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3.3. Efficient Multi-label Methods 

Algorithm 1: Pseudo-code for computing the partially optimal solution of an 
energy function. An auxiliary problem Pj for each label lj is formulated as an 
st-mincut problem. The solution computed is used to project the energy function 
E by fixing the value ... of tl/.f~ labdled variables. After the itemtion terminates we 
obtain a new energy function, EP, comprising of all the unlabelled variables. 

input : X. C. = {II .... , lk}. E 
output: Partially optimal solution 

Sj: Set of variables taking labellj in the partially optimal solution; 

£P- E: 
for j - I to k do 

Pj - Auxiliary problem for labellj; 
Sj - Solve(EP. Pj } (cf. §3.3.2); 
EP - Project(£P. Sj}; 

end 

during this procedure can be used to efficiently initialize the dynamic a-expansion 

algorithm described in the previous section. 

As discussed earlier (§3.2.2), there are two main algorithms for obtaining 

partially optimal solutions of non-submodular multi-label energy functions. It 

would be interesting to compare these partially optimal solution algorithms for 

the segmentation and stereo problems, but is beyond the scope of our work. We 

chose to use the algorithm proposed by Kovtun [54] because it is an order of 

magnitude faster than the QPBo-based method. The key step of the Kovtun 

method is the construction of k auxiliary problems Pm, one for each label 1m E C. 

Kovtun showed that the solution of problem Pm could he used to find variables 

that have the persistency property (described in §3.2.2). Thus, by solving all 

subproblems Pm, 'VIm E C, a partial solution which satisfies strong persistellcy 

can be obtained. 

Spedfically, problelll Pm is the minimization of the following binary energy 

function 

£ffi(xm) = L ¢:n(x~} + L ¢ij(x~, xj}, (3.3.4) 
iEV (i,j)E£ 

where xft, X'll E {O, I}, and correspond to Xi and Xj in the multi-label energy 

function respectively. The assignment x:n = 0 implies that Xi = lm in the multi-

label energy function, while the assignment xf' = I implies the optimal label for 

42 



3.3. Effident Multi-label Methods 

X j has not been assigned yet. The unary potential ¢i(xi) is given by: 

(3.3.5) 

where l;nin = arg min,EC-{lm} ¢i(Xj = l). For the case of Potts model, the pairwise 

potent ials are defined a. ... :4 

o if xm = 0 xf!! = 0 
f 'J ' 

o if xm = 1 xm = 1 
f , ) ' 

(3.3.6) 

f otherwise. 

em (xm) dcfines a submodular encrgy fuuction and can be minimized by solving 

an st-mincut problem. Let x m * denote the optimal solution of the subproblem 

Pm. We extract a partially optimal solution x E ([. U {d)n of the multi-label 

function E(x) as: 

{ 
lm if x7n = 0 I , 

Xi = (: otherwise. 
(3.3.7) 

We repeat this process for all the labels 1m E [., and merge the solutions to obtain 

the final part.ially optimal solution of the original energy function E(x). 

To make this procedure computationally efficient, we proje('t the energy func-

tion after every subproblem computation. This involves fixing values of all vari-

ables whose optimal labels have already been extracted from the solution of pre-

vious subproblem Pm. This reduces the number of unknown variables in the 

multi-label energy function and makes the computation of subsequent auxiliary 

problems faster. We summarize this approach in Fig. 1. Our hope is that after 

solving all auxiliary problems, we would be left with a projection of the original 

energy function which involves far fewer variables compared to the original func-

tion E(x}. The experiments described in the next section on MRFs commonly 

cncountered in computer vision confirm this behaviour. 

The energy function projection obtained from the procedure described above 

corresponds to the difficult component of the energy function. It depends on 

4 Although the algorithm proposed in [54J only handles Potts model energy functions, it can 
be easily extended to general energy functions [55]. 
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3.3. Effident Multi-label Methods 

the variables whose optimal labels were not found. Thus, the original problem 

is now reduced to finding the labels of these variables. This can be done using 

any algorithm for approximate energy minimization. Results of this method are 

shown in Table 3.2. In the rest of this section, we show how this process can 

be made mOf(' efficient by reusing the solutions of the auxiliary problems solved 

during the partial optimality algorithm. Again, we will describe our approach 

using the o-expansion algorithm for ease of understanding. 

Reusing solutions from the partial optimality algorithm. The remainder 

of the original probl('m. which ('()rrespollds to the difficult part of the energy func-

tion, can also he solved efficiently. From (3.3.1) and (3.3.4), it can be seen that 

the energy functions corresponding to the subproblems of the partial optimality 

and o-expansion algorithms have the same form. Thus, we can potentially reuse 

the solutions of the partial optimality subproblems to make the computation of 

the o-expansion moves faster. Specifically, we use the dual (flow) solutions of the 

partial optimality problems to generate an initialization for the expansion moves 

of the first iterat ion of the o-expansion algorithm (in a manner similar to that 

described in §3.3.1). 

As discussed before, the potential improvement in computation time depends 

on the similarity of the two subproblems. Therefore, by making the subproblems 

of the partial optimality and the a-expansion algorithms similar, we can improve 

the running time. We note that for unassigned labels we have some choice as to 

their initialization, and a natural question arises as to whether any particular ini-

tialization is better. Consider the expansion and partial optimality subproblems 

with respect to a label a E {" i.e. 1m = a in (3.3.5). From (3.3.2) and (3.3.5) it 

can be seen that the unary potentials of the partial optimality and a-expansion 

subproblems are identical if the current label assignment for Xi, Iiur = iiin. 

This can be done by initializing the labelling for the a-expansion algorithm as: 

Xi = l:nin • where l:nin = arg minlEL: ¢(Xi = I). The pairwise potentials may differ at 

most by the constant "Y for the case If = 1, Ij = 1 (cf. (3.3.3) and (3.3.6)). This 

change makes the two problems similar, and potentially provides an improve-

ment in computation time using our reuse strategy. Experimental results shown 

in Fig. 3.8 confirm this expected behaviour. Our proposed methods-reduce, 
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reuse and recycle----can be used jointly as follows: 

1. Compute the partially optimal solution and project the energy function. 

(Reduce) 

2. To label the remaining nodes using a-expansion, 

• Initialize the labelling of each node i to lfin = arg min cPi(Xi = l). 
lEe 

• Update the residual graphs from the k auxiliary problems to construct 

graphs for the first a-expansion iteration. (Reuse) 

• Restart the lllaxflow algorithms to COlllput<' optimalllloves. using flow 

recycling between expansion moves. (Recycle) 

So far, we haw seell cfficient methods to minimize multi-label energy func-

tions composed of unary and pairwise potentials. Such energy functions are, 

however. unable to capture the rich statistics of natural scenes, making them 

severely restrictive [65]. Higher order clique potentials, which are defined on 

sets of interacting random variables, have been shown to overcome this limita-

tion [42,43,65,74,79]. but with a large computational cost typically. The following 

section aims to address the computational issues of higher order energy functions. 

3.4 Solving pn Potts Model Efficiently 

Consider the problem of minimizing energy functions which contain higher order 

clique potentials. Spcf.'ifically, we arc interested in clique potentials which take 

the form of a pn Potts model introduced in [42]. The pn Potts model potential 

for cliques of size n is defined as: 

if Xi = lk' Vi E c, 

otherwise, 
(3.4.1) 

where Imax > A/k , Vh E L. It can he easily verified that the standard Potts 

model in (3.2.3) is a special case of this model with n = 2 and Ik = 0, Vk. 

Energy functions containing pn Potts model potentials can be solved using the 

a-expansion and o,3-swap move making algorithms. The optimal expansion/swap 
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3.4. Solving pn Potts Model Efficiently 

move is computed by minimizing a binary energy function using the st-mincut 

algorithm as shown in [42]. Although our methods are applicable to both these 

move making algorithms, we describe them in the context of a-expansion for ease 

of understanding. The higher order binary energy function corresponding to a 

particular 'n' move will be denoted by Eh(XO). It is defined as: 

E~(xn) = L¢~'(xn + L ¢ij(x?,xj) + L <I>~(x~), (3.4.2) 
iEV (i,j)E£ cEC 

1c1>2 

where xi', xj E {O, I}. x~ = {xf, 'Vi E c}. The unary potential <l>i' (xf) and the 

pairwise potential ¢ij(xi' , Ijl) are given in equations (3.3.2) and (3.3.3) respec-

tively. The clique potential ¢~(x~) forms a pn Potts model, and is given by: 

In if xf = 0, Vi E c, 
if xf = 1, Vi E c, (3.4.3) 

"'(max otherwise, 

where I = 1.1 if .r~ur = ;3 E C, for all i E c, and I = Imax otherwise. This move 

energy function is submodular and can be solved using the st-mincut algorithm 

on the graph shown in Fig. 3.4. The reader is referred to [42] for more details of 

the graph construction. 

Recycling Solutions. Once the st-mincut graph corresponding to the higher 

order move energy is built, our methods for recycling primal and dual solutions 

(cf. §3.3.1) are directly applicable. When solving an expansion move in a partic-

ular iteration, we n'('yde the flow from the corresponding move in the previous 

iteration to make the new computation faster. 

Computing Partially Optimal Solutions. We now propose a method to 

efficient ly (,()lIllmte partially optimal solutions of energy functions containing pn 

Potts potentials. As in §3.3.2, our method is based on the algorithm proposed 

by Kovtun [54]. An auxiliary problem Pm, for labellm E C, is the minimization 
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Source (0) 

FigurE' 3.1: Graph C011stl'uction for computing the optimal Q-expansion move for 
the pn Pott mode I i 1I0'U171 her. The nodes v]) V2, .... Vn represent the pixels in 
the clzque. Th re aT'£' al '0 two auxiliary nodes !lfs and !1ft . After the computation 
of st-mincut, if t'l i connected to the SOUTce then xi = 0, and if Vi is connected 
to th , ink til 11 1,;1 = 1. The weights of the graph aTe given by 'Wd = I'max - I'll 

and U!( = "Ymax - ~' . 

of th following higher order binary energy function: 

E;;I(Xnl) = L ¢:n(l·~I) + L ¢ij(x;n, xj) + L ¢~(x~), (3.4.4) 
lEV (i,j)E£ cEC 

Icl>2 

where rill. x']' E {O, I}. x;n = {X~l Vi E c}. ote that xf' , xT correspond to Xi and 

x) r ppctively in the multi-label nergy function. The unary potential ¢f1(xr') 

and tht> pain\'i 'e pot ntial ¢;j(x:n , xjl) are given by equations (3.3.5) and (3.3.6) 

re pecti\'ely. The pll Potts clique potential ¢~1 (X~l) is ddillC'd as: 

I'm if x 111 = 0 Vi E c 
1 " 

min I'k if xf' = 1, Vi E C, 
kEL,k#m 

I'max. otherwise. 

(3.4.5) 

It ('all 1)(' (\/'ily V<'rifi(\d that EJ:l(Xm ) i a submodular energy function [88]. VVe 

now prO\'id til(' l'plevant notation to prove Theorem 1 in [54], which leads to the 

persistpllC), prop('l't~·. for the case of pn Pott model. 
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For every auxiliary problem Pm we consider any ordering of the label set 

C = {l], l2' ... , ld, such that labellm is the highest label. This allows lIS to define 

a partial ordering on the set of label pairs (a, a') E C x C. The maximum and 

minimum for any two label pairs (a, a') and (b, b') are defined as (a, a') V (b, b') = 

(a V b, a' V b') and (a, a') 1\ (b, b') = (a 1\ a', b 1\ b') respectively. Similarly, the 

maximum and minimum of any pair of labellings Xc and x~ is denoted by Xc V x~ 
and Xc 1\ x~ respectively. We also define the lowest optimal labelling x~ as follows: 

-Xc= (3.4.6) 
x~ =arg minxc E(xr) 

Using this notation, the submodularity condition in equation (3.2.4) can be writ-

ten as: 

(3.4.7) 

Let ym E cn denote the partially optimal solution after solving the auxiliary 

problem corresponding to label lm (i. e. Eh (x)). In other words, the labelling 

x?, = 0 is equivalent to yf = lm' and x?, = 1 to the random variable Xi retaining 

the initial label. 

Theorem 3.4.1 An arbitrary solution of the initial problem x* = arg min Eh(X) 
x 

sati.o;jil'S the following condition: x* 1\ ym = ym, where ym denotes the lowest 

optimal labelling for the auxiliary problem Pm. 

This theorem states that the lowest optimal labelling for a pixel in the orig-

inal problem is not lower than the label given to the corresponding pixel in the 

auxiliary problem solution. This allows us to assign optimal labels to all pixels 

which take the labellm in the solution for the auxiliary problem Pm, thus showing 

that the persistency property holds for our higher order energy function. We use 

the following Lemma to prove the theorem. 

Lemma 3.4.2 Let x be the lowest optimal labelling for a submodular problem, 

and x· be any arbitrary labelling satisfying the condition: X· 1\ x =1= x, then 

Eh(X*) > Eh(x* V X).5 

5The lemma can be proved easily using the submodularity condition in equation (3.4.7) and 
thC' dC'finition of iowC'St optimallabC'lling, i.e. Eh(X'l\i) > E,,(i). See [54] for more details. 
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Proof of Th. 3.4.1: Our proof is similar to that given in [54J. Let us assume 

for any labelling x, x A ym #- ym. From Lemma 3.4.2 it follows that: 

(3.4.8) 

The following inequality is obtained from equations (3.4.1) and (3.4.5): 

(3.4.9) 

Also, from [54J, 

Using inequalities (3.4.8), {3.4.9} and (3.4.1O) it can be easily shown that, 

(3.4.11) 

which proves that any labelling x that does not satisfy the condition x A ym = 

ym has a higher energy compared to x V ym, which is a solution containing the 

auxiliary problem solution. I 
Thus, the persistency property holds for our higher order energy function. 

We extract a partially optimal solution of the multi-label function Eh{x} using 

equation (:i.:i.7). The final partially optimal solution is obtained by repeating 

this process for all the labels, and merging the solutions. 

3.5 Experiments 

We evaluated our methods on a variety of multi-label MRF problems such as stereo 

matching [18]. colour-based [16], object-:based [94,95]' and texture-based [42J 

segmentation. The details of the unary and pairwise potentials of the energy 

functions used for formulating these problems are given below. 

Colour-based Segmentation. For the colour-based segmentation problem, 

we used til(' energy fUll('tion defined in [Hj]. The unary potentials ¢>i(Xi), i E V, 
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(a) (b) (c) {d) 

Figure 3.5: (a) The key fram e of the 'Dayton' video sequence, and (b) its seg-
mentation. (c) An image from the MSRC-21 database, and (d) the brush strokes 
marked by the user indicating the segment labels. The key frame segments and 
brush stroke a~ used to learn the colour hi togram models and the patch dictio-
narze . 

are defined u ing the RGB distributions 'Ha, a = ll' .. . ,lk' of the k segment labels 

as follow: 

(3.5.1) 

The di ribution 'Ha are obtained using user-specified constraints. These con-

traint can b gmentation seeds marked by the user to indicate segment labels 

(s Fig. 3.5(d)). Th pairwise potentials encourage contiguous segments while 

preserving the image edge [16], and take the form of a Generalized Potts model 

defined as: 

{ 
>. >. ( _ g2(i,j») 1 ·f...j. 

( ) 
_ 1 + 2 exp 2(12 dist(i ') 1 Xi -r Xj, 

"1, ,, X , X , ,) 'l'lJ 1 J -
a if Xi = Xj, 

(3.5.2) 

wh r >'1 , >'2 and (J ar parameters of the model. The terms g( i, j) and dist( i, j) 

give the differ nce in RGB values and the spatial distance respectively between 

pixels i and j. 'Ve u ed the following parameter values for all our experiments 

with this nergy function: >'1 = 5, >'2 = 100 and (J = 5. Segmentation results are 

shown on the w ll-known garden image and a cow image used in [39,46]. 

Stereo Matching. We used the pairwise energy function in [54] for the stereo 

matching probl m. The unary potentials of the energy are computed with a 

fixed siz window-bas d m thod. Windows of size 15 x 15 centred over every 

pixel i in th left image and its corresponding pixel in the right image (for a 

given di parity) are us d. The cost of labelling pixel i with this disparity is 

given by the normalized urn of squared colour intensity differences between the 
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left and right image window pixels. The pairwise potentials take the form of a 

Potts model (3.2.3). Stereo matching results are shown on "Tsukuba", "Venus", 

"Cones", "Teddy" images from the Middlebury stereo data set [86]. The Potts 

model smoothness cost "'I was set to 20 for all our experiments on this energy 

function. 

Object-based Segmentation. For this problem we used the energy function 

defined ill [95]. The ullary pot.entials of t.his energy are ba..<;ed on shape-texture, 

colour, and location features. It is given by: 

(3.5.3) 

where ()T, ()eol, ()l are model parameters. The component 4>T(Xi) is learnt using a 

boosted classifier [103]. The classifier combines discriminative texture and shape 

filter response feat.ures and models the texture, layout, aud textural context of 

object classes. The colour component potential cPeol(Xi) is computed using Gaus-

sian Mixture Models (GMMS) in the CIELab colour space. The location potential 

<P1(Xi) captures the relation between absolute location of the pixel and the object 

class label. The reader is referred to [95] for more details on computing these 

potentials. The pairwise potentials take the form of a contrast sensitive Potts 

model (3.5.2). We evaluated our algorithms on this energy function using images 

from the MSRC-21 database. 

Texture-based Segmentation. In this problem, the task is to segment an im-

age, given a set of distinct textures, such as texton histograms [92] or a dictionary 

of RGB patches, together with their object class labels. The unary potential is 

specified by RGB distributions, while the pairwise potential is a contrast sensitive 

Potts model (3.5.2), similar to the colour-based segmentation example. The rich 

statistics of natural images provide by texture information [68, 107] are encoded 

in the form of pn Potts higher order potential. Following the work of [42], we 

represent the texture of each object class.., E {I, 2"" , n}, using a dictionary P s 

of np x np RGB patches. The higher order potential <Pe(xe) of a clique patch c is 
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Figur 3.6: Recycling primal and dual solutions for (a) , (b) single and (c) dynamic 
MRF problems: Compari on of run-times of standard and dynamic versions of a-

expansion, and Fa t-PD are hown for (a) object-based segmentation problem: 
'Building' image from the MSRC-21 data set [95], (b) stereo matching problem: 
Tsukuba (Left image), and (c) colour-based segmentation problem: cow video se-
quence [3946]. In (a) , (b) reusing the dual solution provides a speed-up of at least 
4 -10 tim e in ub equent it rations. In ome cases, the first iteration of Fast- P D 
was lightly lower compared to both versions of a-expansion algorithm, but the 
overall computation tim e wa better than 'standard ' and comparable to 'dynamic '. 
For example. time for the Building ' image are: Fast-PD: 0.658, dynamic: 0.64s, 
standard: 1. . Note that the run-times of Fast-PD and our dynamic version 
are very im ilar in (a) and (b). In (c) the dynamic version reuses primal and 
dual olution from the previous frame in the video sequence and results in 3-4 
tim e p ed-up. We al 0 how that the strategy of maintaining only one graph 
while recycling olution (denoted by '1 Graph ') provides insignificant speed-up 
( ee text). 

given by: 
if X i = s, Vi E c, 

otherwise, 
(3.5.4) 

where A3 and A4 are model parameters. The function G(c, s) is the minimum 

difference between the RGB values of clique patch c and all patches in the dic-

tionary P s ' The patch dictionarie are learnt from a manually segmented key 

fram in the as of video segmentation, e.g. Dayton sequence (Fig. 3.5(b)) , or 

u er-mark d bru hed strokes in the case of an image segmentation, e.g. Bench 

imag (Fig. 3.5(d) ). We u ed patches of size 4 x 4, with the following parameters: 

Al = 0.6, A2 = 6, A3 = 0.6, A4 = 6.5 and a = 5. More details of the higher order 

potential can be found in [42]. 

Th following ctions de cribe the results of primal and dual, and partially 

optimal olution initializations. Standard, publicly available implementations are 
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Figure 3.7: Comparison of run-times and solution energy of standard and dynamic 
versions of a-expansion and Fast-PD are shown for (a) 'Building ' image, (b) 
Tsukuba (Left image). Although there is a small change in energy after iteration 1, 

Standard a-expan ion spends much more time compared to our Dynamic version 
to obtain a new lower energy solution. The time vs energy plot for Fast-P D is 
very similar to dynamic a-expansion, except for iteration 1 in (a) , where Fast-P D 
takes 0.07 econd m01'e than our dynamic algorithm. 

used for compari on.6 All experiments were performed on a Intel Core 2 Duo, 2.4 

GHz, 3GB RAM machine. Source code for the proposed methods is available at 

http://cms.brookes.ac .uk/research/visiongr oup. 

3.5.1 Dynamic a-expansion 

We now discuss the effect of various primal and dual solution initializations on 

the a-expansion algorithm. We tested a simple of way of using the flow/cut 

from the solution of the previous expansion move (i. e. with a different label) 

as an initialization for the current move. From (3.3.1) it can be observed that 

the energy functions corresponding to two consecutive moves are substantially 

different. Hence, this scheme provides no significant speed-up. Fig. 3.6 confirms 

thi expected behaviour. 

In Figures 3.6(a) and 3.6(b) we show the results of the proposed 'recycle' 

strategy for two single MRF examples. The primal and dual solutions are recycled 

acro s iterations (cf. §3.3.1). The standard and dynamic versions take the same 

time in the first iteration, as no flow is recycled. In the subsequent iterations, the 

6We thank V. Kolmogorov, N. Komodakis and M. Pawan Kumar for providing the original 
implementation of their methods for comparison. 
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3.5. Experiments 

Time (in seconds) 
a-exp dyn a-exp opt a-exp 

Dayton (3) 1.31 0.49 0.21 
Garden (4) 1.20 0.44 0.19 
Bench (3) 1.76 0.59 0.38 
Beach (4) 1.59 0.51 0.25 

Table 3.1: Running times (in seconds) for various examples (from {43j} using the 
pn Potts model. Results are shown for the a-expansion algorithm. 'a-exp' refers 
to the times obtained using the standard alpha expansion algorithm and 'dyn a-

exp' refers to the dynamic version (which recycles primal and dual solutions). 
'opt a-exp' refers to the optimized version which computes the partially optimal 
solution followed by a-expansion on the energy projection. It is observed that both 
'dyn' and 'opt' methods provide a speed-up of at least 3-6 times compared to the 
standard method. The numbers in () denote the number of labels in the problem. 

dynamic version provides a speed-up of 4-10 times. Similar results were observed 

for other problems as well. The approach of initializing both primal and dual 

solutions in a dynamic MRF was tested on the cow video sequence [39,46]. These 

run-times for a sequence of 6 images are shown in Fig. 3.6(c). Our initialization 

method provides a speed-up of 3-4 times in this case. The graphs also compare 

the dynamic methods with Fast-PD [53]. Note that our methods resulted in very 

similar run-times compared to Fast-PD. Fig. 3.7 shows a comparison of run-time 

and solution energy for standard and dynamic versions of a-expansion. From 

Fig. 3.6 and Fig. 3.7 we see that the speed-up achieved by our dynamic version 

is due the fact that small changes in energy can be computed very efficiently. 

Table 3.1 shows the speed-up obtained for the pn Potts model. Our approach 

provides a speed-up of at least 3-5 times compared to the standard a-expansion 

algorithm. 

3.5.2 Using Partially Optimal Solutions 

We now show the results of our partially optimal solution based method (d. 

§3.3.2) on a variety of energy minimization algorithms for the problems defined 

above. Specifically, a-expansion, BP and TRW-S algorithms are used in the ex-

periments. Optimized versions of BP and TRW-S refer to the computation of 
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3.5. Experiments 

Time (in seconds) 
a-exp Fast-PD opt a-exp BP opt BP TRW-S opt TRW-S 

Colour-based Segmentation: 
Cow (3) 2.53 1.31 0.21 95.93 0.32 98.36 0.33 
Cow (4) 3.75 1.72 0.38 108.32 0.42 111.69 0.43 
Garden (4) 0.28 0.14 0.04 5.59 0.17 5.89 0.21 
Stereo: 
Tsukuba (16) 5.74 1.47 0.84 38.19 4.47 41.74 4.67 
Venus (20) 11.87 3.07 3.03 67.04 14.97 71.46 16.02 
Cones (60) 42.23 9.48 4.36 173.35 29.41 182.66 30.70 
Teddy (60) 44.25 9.56 8.27 172.30 60.35 182.50 63.77 
Object-based Segmentation: 
Plane (4) 0.39 0.35 0.15 9.41 0.29 9.89 0.30 
Bikes (5) 0.82 0.54 0.22 10.69 0.64 11.19 0.70 
Road (5) 0.91 0.51 0.18 10.67 0.60 11.26 0.62 
Building (7) 1.32 0.89 0.38 12.70 2.57 13.52 2.66 
Car (8) 0.99 0.53 0.11 13.68 0.23 14.42 0.24 

Table 3.2: Running times for various single MRF problems: Comparison of 
the run-times (in seconds) of the standard and optimized (opt) versions of (}:-
expansion (a-exp), BP, TRW-S is shown. The optimized version refers to com-
puting the partial solution followed by solving the energy projection with the cor-
rrspondiny ai!Jorithm. The. optimized versions an~ significantly faster in all the 
examples. The speed-up obtained depends on the nature and difficulty of the prob-
lem. The run-times shown for both BP and TRW-S '(I(T8'ion8 con"(:8pond to the fin,t 
70 iterations. The number of iterations was chosen such that acceptable quali-
tative results (segmentation or stereo map) were obtained for all the problems. 
Some of the smaller problems produce results after 30-40 iterations, while others 
take 70-80 iterations. A better comparison oj time vs energy is shown in Fig. 3.7 
and Fig. 3.10. The numbers in () denote the number of labels in each problem. 

partially optimal solution followed by running the corresponding algorithm on 

the projected energy function. A comparison of the run-times for all these algo-

rithms is shown in Table 3.2. It is observed that our method achieves a speed-up 

is 10-15 times for most of the examples. In some cases (e.g. Cow image with 

3 labels), the speed-up is more than 100 times for optimized versions of TRW-

sand BP algorithms. The amount of speed-up depends on the strength of the 

pairwise terms and the number of labels in the problem. The speed-up increases 

with a decrease in both the number of labels and the strength of the pairwise 

terms. This is because the pairwise potential of the partial optimality auxiliary 

problem (3.3.6) is closely related to that in the original problem (3.2.3). Images 
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Figure 3.8: (a) The percentage of nodes labelled by the partially optimal solution 
algorithm by varying the moothness cost for two energy functions. The Tsukuba 
stereo matching problem with energy functions given in [54] (Energy 1) and [99J 
(Energy 2) is used as the example here. For the smoothness cost 'Y = 20, only 
13% of the node are labelled in the case of 'Energy 2'. (b) The energy fun ction 
in [99] (Energy 2) with moothness cost'Y = 20 is used for this experim ent on the 
Tsukuba sequ nee. The peed-up obtained by reusing the flows from the partially 
optimal olution auxiliary problems (Par-opt) for this smoothness cost is shown. 
Reu ing the flow provides a run-time improvem ent of at least 5 times in the last 
two iteration and more than 2 times overall improvement. Note that even when 
the partially optimal olution algorithm fa ils, we obtain a significant speed-up. 

with highly textured regions also show orders of magnitude speed-up for segmen-

tation and t r 0 problems. Table 3.1 shows the speed-up obtained for the p n 

Potts model for variou example (from [42]). Using partially optimal solutions 

provides a speed-up of at least 4-6 times compared to standard a -expansion. 

An analy i of the partially optimal solution algorithm shows that in some 

cases v ry few node may be labelled. One such case is when the smoothness 

cost 'Y is very high as shown in Fig. 3.8(a). For illustration purposes we chose 

the Tsukuba tereo problem, which showed the most significant change in the 

number of labelled nodes. We used two energy functions [54, 99J on the stereo 

problem to demonstrate t he effect of varying the smoothness term. The unary 

pot ntial in [54J is computed using a normalized cross correlation approach on 

pixel window of size 15 x 15, while [99J uses the sub-pixel window approach 

propo d by [lOJ. The pairwise potential in both cases is the Potts model given 

by (3.2.3). As the smoothness cost is increased, the percentage of labelled nodes 

decreas s and the proj cted component of the energy function remains large. 

56 



3.5. Experiment 

(a) (b) (c) 

Figur 3.9: A ampl r ult of object-ba ed egmentation is shown in (a) Plane. 
Som ofth t r 0 matching results are hown in (b) Tsukuba-Left and (c) Teddy-
L it. The fir t row how th original images. The second row shows the partially 
optimal olution. Th 1 gion marked in red denote the unlabelled pixels, which 
hav low textur d tail. Our m ethod provides more than 6 x speed-up even when 
majority of th nod are unlabelled in the Teddy example. (This figure i best 
vi w d in colo'l.tr. ) 

mor dramatic u ing the energy function in [99] . This effect is 

au th partially optimal olution algorithm relies on strong unary 

pot n ial . of [99] a larg smoothness term dominates the unary 

potential , and I ad to many unlabelled node . Thus, only a small improvement 

in run-tim p rforman achiev d. However, our strategy of reusing the flow 

from th partially optimal olution auxiliary problems always provides improved 

p rforman e in the c Fig. 3. (b)). 

gm ntation and t r 0 matching results of some of the images u d in our 

xp rim n s ar hown in Fig. 3.9. Note that even when majority of the nodes are 

unlab 11 d in th partially optimal solution, e.g. Teddy sequence in Fig. 3.9( c), 

our m thod provid mor than 6 times speed-up. The propo ed method is not 
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Figure 3.10: (a) Energy of the solution and lower bound obtained by running 
TRW-S algorithm on the Road image example [95]. Note that optimized TRW-S 

algorithm finds b tter energies (lower solution energy and higher lower bound) at 
any giv n point in tim . It aL 0 finds an optima in only 0.64 seconds. Standard 
TRW- conv rged to thi energy after 37.24 seconds. Thus, the optimized version 
is more than 50 time fa ter. (b) Solution energies obtained by running standard 
and optimized BP algorithm on the Building image example [95]. Optimized BP 

refers to the computation of partially optimal solution followed by running the BP 

algorithm on the project d energy function. It finds an energy closer to the global 
optimum. whil tandard BP does not reach this energy even after 30 seconds. 

only computationally fficient, but also provides a lower energy solution empiri .. 

cally in th ca e of TRW- and BP. Furthermore, the optimality of the solutions is 

not compromi ed. Fig. 3.10(a) compares the energies of the solutions and lower 

bound obtain d u ing tandard and optimized versions of TRW-S. The optimized 

version using th nergy function projection converges to the global optima of the 

energy in only 0.64 e onds. Fig. 3.1O(b) compares the energies of the solution 

obtained using the standard and optimized BP algorithms. Optimized BP con-

verges to a low nergy although not the global optima, in 0.85 seconds, while 

standard BP converge to a much higher energy in 11.12 seconds. Standard BP 

solves the original (large) problem and converges to a local optima. On the other 

hand, optimiz d BP olves th projected energy function defined on a subset of 

nodes and converges to a better local optima. Empirically, we observe that BP 

is more lik ly to provid a better local optima on the smaller problem (defined 

by the proj ted nergy function) , which is easier to solve compared to the orig-

inal larg problem. The solutions corresponding to these energies are shown in 

Fig. 3.11. Note that the optimized BP solution is closer to the global optima in 
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3.6. Summary 

(a) (b) (c) (d) 

Figure 3.11: (aJ Building image /95/, and (b) the global optimum solution com-
puted by the TRW- algorithm. Solutions obtained using (c) standard BP, and (d) 
optimized BP with an 8-neighbourhood. Neither the optimized nor the standard 
versions converg to the optimal solution. However, optimized BP is closer to the 
optima. 

thi ca . 

3.6 Summary 

This chapter propo t chniques for improving the performance of algorithms for 

solving multi-lab 1 MRF . As there are no disadvantages in using them and many 

advantage we would expect them to become standard. Our methods work by 

r cycling olution from previous problem instances, and reducing energy func-

tion utilizing algorithm for generating partially optimal solutions. Our work 

on recycling the dual (flow) solution for computing optimal label moves across 

succes ive iterations of the a-expansion algorithm results in a dynamic algorithm. 

It can be seen as an e:xtension of the work of [39,46] for minimizing multi-label 

non- ubmodular energy functions. Experimental results show that our methods 

provide a sub tantial improvement in the performance of a -expansion, TRW-S, 

and BP algorithm . Our method also provides similar or better performance com-

pared to Fast-PD. VVe expect that our techniques for simplifying energy functions, 

and th ub quent recycling of computations performed during this procedure 

can al 0 be u d to make Fast-PD faster. The main contributions of this chapter 

ar : 

1. Proposing novel efficient methods for solving multi-label energy functions. 

2. EA't nding the work on dynamic graph cuts to a certain class of non-

submodular nergy functions. 
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3. Proving that partially optimal solutions can be computed for pn Potts 

model. 

4. Dcmonstrating that our cfficient methods are widely applicable. 

60 



Chapter 4 

Exact Inference for Higher Order 

CRFs 



In the previous chapter we have addressed the problem of efficient approximate 

inference for energy functions involving certain higher order potentials. This 

chapter addresses the problem of exactly inferring the MAP solution of such multi-

label higher order energy functions. We present a framework to transform special 

classes of multi-label higher order functions to submodular second order boolean 

functions (referred to as F;), which can be minimized exactly using graph cuts, 

and we also characterize those classes. The basic idea is to use two or more 

boolean variables to encode the states of a single multi-label variable. There 

are many ways in which this can be done and much interesting research lies in 

finding ways which are optimal or minimal in some sense. We study the space of 

possible cncodings and find the ones that can transfofm the most general class 

of functions to F;. 

4.1 Introduction 

Recall (§2 .3.1) that a special class of functions called submodular functions can be 

minimized globally in polynomial time. These functions are discrete analogues of 

continuous convex functions. The current best algorithm for general submodular 

function minimization has complexity 0 (n 5Q + n6 ), where n is the number of 

random variables and Q is the time taken to evaluate the function [73]. This 

makes their use infeasible for problems in computer vision which, in general, in-

volve a large number of variables. However, certain subclasses of submodular 

functions can be minimized much more efficiently. For example, boolean sub-

modular functions of order l at most three can be minimized by solving an st-

MINCUT prohlelll, fOf which efficient algorithms are known [8,32,50]. Freedman 

and Drineas [25] extended this work and proved that a subclass of submodular 

boolean functions of order four or more can be minimized. It was also shown that 

multi-label CRFs with convex energy functions of order two can be minimized in 

polynomial time [37,88]. However) it has not been known what the analogue of 

this is for higher order cliques. We aim to study this in the chapter. 

Most labelling problems in computer vision involve multi-label MRFs or CRFs [18, 

1 Clique size in a CRF corresponds to order of the energy function. 
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86]. Furthermore, the use of higher order clique structures has proved benefi-

cial [43,65,79] for solving certain computer vision problems. However, {~fficicnt st-

MIN CUT based algorithms used for minimizing submodular second order boolean 

functions are not directly applicable to these functions. Our work overcomes 

this restriction by showing how we can transform some submodular multi-label 

higher order functions to submodular boolean functions, thus enabling their exact 

minimization. Before procceding further, we briefly introduce our notation for 

denoting differcnt classcs of energy functions. Let F: and :1": denote the class of 

submodular and non-submodular boolean energy functions of order k respectively. 

Similarly, let M! and M~ denote the class of submodular and non-submodular 

multi-label energy functions of order k respectively. 

A generic transformation framework. The basic idea of our framework is 

to use two or more boolean variables to encode the states of a single multi-label 

variable. While doing this, we have to ensure that the minimum cost labelling of 

the boolean problem also encodes the minimum cost labelling of the multi-label 

energy function. There are several possible ways to encode a multi-label variable 

using boolean variables. In the rest of the chapter, we use the term encoding 

to refer to the mapping between the labellings of a multi-label variable and its 

corresponding binary variables. The term transformation refers to the conversion 

of multi-label energy functions to functions of binary variables. 

It is important to study different transformations because the choice of trans-

formation dictates the size of the resulting boolean function, and the class of 

multi-label functions that can be transformed to n. For example, Ishikawa [37] 

described a transformation that used l boolean variables to encode a single l-label 

variable. Using this transformation pairwise convex functions of thc difference of 

labels, which is a subclass of M;, can be transformed to F;. Later, Schlesinger 

and Flach [88] gave a ('ondsc definition of submodularity for (ordered) multi-label 

functions, and used l - 1 boolean variables to transform any function in M; to 

:r;. In this chapter, we study the space of all possible transformations and find 

the subclasses of multi-label functions that they can transform to F;. In other 

words, the transformations we develop will lead to submodular boolean functions 

under some constraints. These constraints will serve to characterize the class of 
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Mk that can be minimized exactly. 

The main novelties of our work are as follows: 

• A principled framework for transforming M! functions to F;. 

• The identification of constraints that enable the transformation of Mk of s 

any order into F; in polynomial time. 

• The result that there exists no polynomial transformation from submodular 

multi-label functions of order four or more (M!~4) to submodular boolean 

second order functions (F;). 

• The use of higher order functions to improve the performance of single view 

3D reconstruction algorithms [36]. 

4.1.1 Outline of the Chapter 

In section 4.2 we describe the basic theory of pseudo-boolean optimization and 

its relation to minimizing multi-label higher order functions with st-MINCUT al-

gorithms. The problem statement is formalized in section 4.3. Section 4.4 shows 

how to encode multi-label variables using boolean (or binary) ones. A charac-

terization of multi-label higher order functions that can be transformed to F; in 

polynomial time is given in section 4.5. We describe the single view 3D reconstruc-

tion problem, and provide details of our solution in section 4.6. In this section 

we also present a comparison with the work of [36]. Other potential applications 

of our work and directions for future research are discussed in section 4.7. 

4.2 Notation and Preliminaries 

Let IIi denote the boolean set {O, I}, and lR the set of reals. Let the vector 

x = (Xl, ... , Xn) E Ilin, and V = {1, 2, ... , n}, be the set of all boolean variables and 

their indices respectively. A pseudo-boolean function f : Ilin ---+ JR, is a function 

which takes a boolean vector as an argument and returns a real number. These 

functions can be uniquely represented using a multi-linear polynomial form [14]. 
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The following is an example of a pseudo-boolean function: 

(4.2.1) 

containing four boolean variables. Another useful representation known as posi-

form involves the complements (Xl, ... , Xn) of variables. Such a representation for 

the above example is: 

(4.2.2) 

An important property of the posiform representation is that all the coefficients, 

except the constant, are non-negative [14]. 

4.2.1 Graph Cuts for Energy Minimization 

Here we recap some of the graph cuts and st-MINCUT concepts introduced in sec-

tion 2.3.2. We denote the st-MINCUT graph with g = (V, E), which has directed, 

non-negative edge weights and two special nodes, namely, the source s and the 

sink t representing labels 0 and 1 respectively. The st-MINCUT problem involves 

finding the st-cut with the minimum cost. Any F; function can be minimized 

exactly by computing the st-MINCUT in an equivalent graph [50]. The key idea 

is to design a graph such that cuts in the graph correspond to labellings of the 

binary variables. with the cost of the cut equal to the cost of the labelling (plus 

a constant). We call this an equivalent gmph. 

Consider a second order boolean energy: 

Eb(X) = L Eb(Xi) + L Eb(Xi, Xj), (4.2.3) 
iEV (i,j)ee 

where Eb(Xi) and Eb(Xi, Xj) represent the first and second order terms of the 

binary energy function respectively. Let (}i;a be the cost of assignment Xi = a, 

and (}ij:ab be the cost of the assignment Xi = a, Xj = b (a, b E ]B). The graph 

constructed for minimizing a :F'; function has a vertex i for each boolean random 

variable Xi E B. There is a mapping between st-cuts in the graph and label 
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[!] 

(hI - (ho! ' , 
XiO 

• (a) 

XiO 

lfho - Bi-1 , , 

• (b) (c) 

Figure 4.1: Converting an energy minimization problem to an t-MINCUT prob-
lem [50). (a) and (b) show how unary potentials are represented using edges in 
the graph, while (c) shows the same for submodular pairwise potentials. 

assignments. A node i in the source set implies X i = 0, while i in the ink s t 

implies X i = 1. We now show how to create the equival nt graphs for functions 

belonging to the elas es F; and F;. 

The class F;. The unary term Eb(Xi) of the energy can be writt n as: Eb(Xi ) = 

OijOXi+Oi j1Xi . If Oij1-0ijO ~ 0, we write the energy as: Eb(Xi ) = (Oij 1 - 0 iiO)Xi +OijO. 

The minimization of this energy is equivalent to finding the st-MINCUT in the 

graph shown in Fig. 4.1(a). Cutting the edge (s, i) is qui valent to the assignment 

Xi = 1. Similarly, if Oi i] - OiiO < 0, we write the energy as Eb(Xi ) = (OijO - Oi i1 )Xi + 

Oi i1 ' and the corresponding graph is given in Fig. 4.1 (b). 

The class F;. The pairwise energy Eb(x; , Xj) = Oij iOOXi Xj+Oij i01Xi X j +Oijj l0Xi X j + 

Oi j jl1XiXj can be written as: Eb(Xi' Xj) = CijX jXj + (Oij j10 - Oij iOO)Xi + (Oi j i10 -

Oij il1 )Xj + Oij jOO + Oij jl1 - Oij j10 , where Ci j = (Oij i01 + Oij jlO - Oij iOO - (}ij ;l1). The 

equivalent graph construction is given in Fig. 4.1 (c) . Since our ov rall goal is to 

transform multi-lab I functions to F; , we do not focus on F: and higher order 

functions [25,50] . 

Multi-label functions. Let Ym = (Vm, Em) be a directed graph with a set of 

vertices Vm = {I, 2, ... , m} , and edges Em. Let Yi be a variable taking valu 

in some discrete space .c = {I, 2, ... , l}, and let y = {Y1 , .. . , Ym}. We use e to 

denote the set of higher order potentials whose sum defines th nergy function. 

The unary potential is denoted by 8 i ja , pairwise by 8ij jab , where i , j E Vm , and 
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a, b E C. Let i = i)i2 ... ik E V~ = Vm X Vm",Vm (k times) and a = a}a2 ... ak E 

Ck = C X C ... C (k times). Under this notation, a kth order energy function is 

written as: 

where 

4.2.2 

Em(Y) = L 8 1;a II fJ(Yi' a), 
lEV!. ,aECk iEI,aEa 

6(y;.a) = { ~ if Yi = a, 

otherwise. 

Submodular functions 

(4.2.4) 

(4.2.5) 

Submodular functions are set functions f : 2" -- JR, satisfying the following 

condition: 

f(X) + f(Y) ~ f(X U Y) + f(X n V), (4.2.6) 

where X and }" are subsets ofthe set V, and U and n denote union and intersection 

of sets f('sl)('(~t iwly. \\.(' hri('fiy descrihe how the above definition of submodularity 

maps to functions of boolean variables [50]. A function of one boolean variable 

is always suhlllodular. A function (J : D2 -- JR of two boolean variables {Xi, Xj} is 

submodular if and only if: 

(4.2.7) 

A function (J : D" -+ R, is submodular if and only if all its projections on 2 

variables are submodular [14.50]. The submodularity conditions can be extended 

to multi-label variables. Let C be a completely ordered set, where between every 

pair of states il and l2. au ordering (above/below) is present. A functioll 8 : 

C2 -+ R, is submodular if: 

(4.2.8) 

for all 11 ,i2 [88]. Using the work of Schlesinger [87] on permuted submodular func-

Uems we nUl finel all orelc·rillg (if it exists) for which the functions become submod-

ular. Thus. we can work with a notion of sub modularity of multi-label functions 

which is independent of the ordering of the labels. A function 8 : em -- R is 
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4.3. Problem Statement 

submodular if and only if all its projections on 2 variables are submodular [22]. 

4.3 Problem Statement 

The main goal of this chapter is to obtain a boolean second order function Eb(x), 

equivalent to a given multi-label higher order function Em(Y), in polynomial time. 

The boolean function also needs to satisfy the following conditions: 

• There is an encoding T : .cIVml -+ Bivi which is 1-1 between the feasible 

labellings of x and y, and bijective between the set of optimal labellings of 

the boolean and multi-label variables . 

• The minimum value of Em(Y) over y is equal to the minimum value of Eb(X) 

over x: 

( 4.3.1) 

The energy functions need not be equal at labellings that are not their 

respective minima. 

We also want to answer the following questions: 

1. What is the class of multi-label higher order functions for which we will 

always he abl<> to find an equivalent :F; function? We characterize the class 

by finding the constraints OIl the potentials e of the function. 

2. How can the boolean function with the smallest number of variables be 

obtained? 

We now summarize the three important steps in our algorithm, before pro-

ceeding to explain them in detail. 

1. A second order pseudo-boolean function is constructed which enforces 1-1 

mapping between the feasible labellings of y and x (See §4.4). 

2. Encoding functions that can replace all occurrences of y in Em(Y) using x 

are computed (See §4.5). 
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4.4. Boolean encoding for multi-label variables 

3. We transform the problem of minimizing the multi-label energy function 

into that of minimizing a F; function (See §4.5). 

For simplkity, we demonstrate our method on a specific 4-label energy func-

tion. The algorithm is presented as an interplay between graph constructions 

and transformation of energy functions. As studied in §4.2.1, both operations are 

closely related. 

4.4 Boolean encoding for multi-label variables 

In this section we propose a method to construct a second order pseudo-boolean 

function such that the labellings of the boolean variables have a 1-1 mapping with 

the labellings of the original multi-label variables. For example, in Fig. 4.2(a) we 

show a graph construction2 to encode a 4-label variable YI using three boolean 

variables {II, X2. I3}' The encoding representing the change of variables is: 

{YI = I} +--+ {Xl = I,x2 = l,x3 = I}, 

{YI = 2} +--+ {Xl = 0, X2 = 1, X3 = I}, 

{YI = 3} +--+ {Xl = 0,X2 = 0,X3 = I}, 

{YI = 4} +--+ {Xl = 0,X2 = 0,X3 = O}. 

(4.4.1) 

( 4.4.2) 

( 4.4.3) 

(4.4.4) 

Since three binary variables can take eight (23 ) different labellillgs, the re-

maining four labellings (23 - 4) are not mapped to any labellings of Yl. In order 

to ensure a bijective encoding between the binary variables and the multi-label 

variable, these labellings need to be made infeasible. This can be achieved by 

assigning a very high cost to the unused labellings. In the above encoding the 

unused labellings are given by XIX2X3 = {0l0, 101, 100, 110}. Thus, we have the 

following penalty term: 

(4.4.5) 

where ..\ -+ 00. This can also be seen as using the following third order penalty 

2This is sometimes referred to as the battleship construction. 
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4.4. Boolean encoding for multi-label variables 

Yl = 1 em"" , \ Yl = 1 
Yl = 2 Xl • 1:00 00 Yl = 

• 
Yl = 3 X 2 • • • too 00 • 
Yl = 4 X3 • .-1 

(a) (b) 

Figur 4.2: (a) Th battl hip tronsformation [37, 88, 108}: The cuts in the graph 
aTi annotat d by gre narrow . Four po ible cuts are shown and each cut corre-
ponds to th ignm nt of one of the four labels to YI . For example, if the edge 

(Xl X2) i ut th n th lab lling for XIX2X3 is 011 and the corresponding labelling 
for YI i 2. 0 rail. th four lab ls of a multi-label variable YI = {I , 2, 3, 4} are 
mapp d to th lab lling of thre binary variables X I X2X3 = {111 , 011 , 001 , OOO}. 
(b) Til log tran formation: The four labels of Yl = {I , 2, 3, 4} are m apped to the 
lab lling (cut) of two binary variables XIX2 = {11, 10, 01 , OO}. 

fun tion: 
¢>123:000 ¢>123;OOl 0 0 

¢>123;OlO ¢>123;OI1 00 a 
- ( 4.4.6) 

¢>123;lOO ¢>123;lOl 00 00 

¢>123:110 ¢>l 23; 111 00 a 
It an b c' i1 verified that the above function is submodular. It has four (23 -4) 

P nalty t rm ( rr ponding to values in (4.4.6)) to restrict the infeasible 

lab Bing . Th p nalt fun tion in (4.4.5) can be simplified to: 

(4.4.7) 

usmg impl b I an alg bra. Th two pairwi e terms in P(x ) correspond to the 

dg (X2 Xl) and (X3 X2) with co ts in Fig. 4.2 (a) .3 

A natural quP tion to k would be whether a different encoding i possible 

for a 4-lab 1 pr bi m. To addre this question we consider Fig. 4.2(b), where 

two bool an ariabl ar u d to encode a 4-label problem. We refer to this 

graph 1 tru tion the log tran formation, since it uses log( l ) boolean nodes 

JIn practice w do not nN:'d a.n edge with infinite cost, but some edge having a cost greater 
than th um of all edg co t . 
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4.5. Encoding Functions 

to encode an i-Iahel variable. In this work, we chose a specific transformation to 

describe our algorithm. So from this point onwards, we will propose alg~rithms 

spN.:ific to the battleship transformation shown in Fig. 4.2(a). It can be shown 

that this transformation handles the most general class of energy functions [77]. 

4.5 .Encoding Functions 

Our overall goal is to transform a given multi-label higher order energy function 

into a boolean Ol)('. To do this, we nced. to define a boolean function which maps 

the labels of the multi-label variable to that of the encoding boolean variables. We 

refer to these functions as encoding functions. They enable us to replace multi-

label variables in the energy function by boolean ones. More precisely, an encoding 

function is defined as !,/I;a(I), X2, X3) : 133 - B, such that !Yl;a(XI, I2, X3) = 1, 

when Yl = a. and 0 otherwise. The following example is shown to illustrate the 

key ideas. 

Let us assume that the function !Yl;a(xt. I2, X3) is linear.4 We assume the 

following rf'presentation for the linear function using four unknown parameters 

C-i). CI. C2. and C3: 

(4.5.1) 

Returning to our example (4.4.1-4), the possible solutions for the triplet XIX2X3 

are (111,011,001,000). When YI = 1, XIX2X3 = 111. This can be written as 

!Yl;l (Xl = 1. X2 = 1. I3 = 1) = 1 and !Yl;l (Xl, X2, X3) = 0 for other values of Xl, 

I2 and X3. Since there are only four possible solutions for the boolean variables 

III2X3. we obtain the following conditions: 

!Yd(II = l.I2 = I,I3 = 1) - eo+cI +C2 +C3 = 1, 

!Yd(II = 0,I2 = I,I3 = 1) - eo + C2 + C3 = 0, 

!YI;l(X\ = 0, X2 = 0, X3 = 1) eo + C3 = 0, 

!Yd(Xt = 0,X2 = 0,X3 = 0) - Co = O. 

4The function f,lI;o nre<i not always be linear, e. g. the log construction has a bilinear encoding 
function. 

71 



4.5. Encoding Functions 

On solving the above linear system, we get !"I;1 = Xl. Using the same ap-

proach we solVE> for !YI:2. !"1:3 and !"I:4· 

6(Yb 1) !"I;l Xl 

6(y., 2) !"1;2 X2 - Xl - - (4.5.2) 
6(yt. 3) !"1;3 X3 - X2 

6(Yl.4) !"1;4 1 -X3 

\\·it h t 1)(' (,Jl(·odiug functions in place, we can finally address the energy trans-

formation problem. The main idea is straightforward; the encoding functions are 

used to replace all occurrences of the multi-label variable in the energy function 

by boolean variables. This substitution produces a pseudo-boolean higher order 

function. \Ve study this reduction and give a characterization of the class of 

multi-label higher order energy functions that can be transformed to :F;, and 

thus be minimized exactly using graph cuts. 

\\.p first show t hat it is possible to transform all functions in class M~ to 

functions in :r;. if k ~ 2. This is not a new result and follows from [87,88]. We 

then go on to show that it is not possible to transform all functions in M~ to :F; 
in polynomial time when k ~ 4. 

The class M!. \\~(' now show how to transform a first order energy function 

Em (y), involving a single 4-label variable Yb to a first order boolean energy 

function Eb(x). composed of three boolean variables x = {xt. X2, X3}. Let £, = 

{I, 2. 3, 4}. The energy Em (y) can be written as: 

Em(Y) = L Hl;a6(Yl, a). (4.5.3) 
aEl. 

We replace all occurrences of 6{y}, a) using the corresponding boolean functions 

f yl ;a(x}.X2,x3) given in (4.5.2). This results in an energy function that depends 

only on x as shown below: 

(4.5.4) 
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4.5. Encoding Functions 

Since the above energy function belongs to F: , alllIlulti-label first order fuuctions 

can be minimized exactly. 

The class M~. Let YI and Y2 be two 4-label random variables in the following 

second order energy function: 

Em{Y) = L 8 12;abO(Yl, a)o{Y2' b). (4.5.5 ) 
a,bE.c 

We transform this energy into a boolean energy function Eb{x), involving triplets 

(Xl, X2, X3) and (x~, x~, x~) replacing Yl and Y2 respectively. The encoding function 

ha, given by (4.5.2), is used to replace O(Yi' a), resulting in the following boolean 

energy function: 

Eb(X) = L QijXiXj + L1 , 
i,jE{1,2,3} 

(4.5.6) 

where Qij = (812;ij - 8 12;(;+1)j - 8 12;i(j+l) + 8 12;(Hl)(j+l»), and Ll stands for 

some first order terms. According to [25,32]' if the coefficients of all quadratic 

terms in a boolean second order energy function are non-positive, then the energy 

function is submodular. Thus. for the above energy function in equation (4.5.6) 

to be submodular, we need to ensure that Qij ~ 0, i.e. 

8 12;ij - 8 12;(Hl)j - 8 12;i(j+l) + 8 12;(Hl)(j+l) ~ O. (4.5.7) 

Note that the above condition is nothing but the submodularity condition for sec-

ond order multi-label functions (See (4.2.8)). Thus we prove that all submodular 

four-label second order functions M~ can be transformed to F;. Similarly, we 

can show that this approach generalizes to functions with more than four labels. 

The class M!. Here we focus on transforming energy functions involving cliques 

of size three. Let Yl, Y2 and Y3 be three multi-label variables in a third order en-

ergy function Em (Y), given by: 

Em(Y) = L 8 123;abcO(Yb a)O(Y2, b)O(Y3' c). (4.5.8) 
a,b,c 
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4.5. Encoding Functions 

. 8123:ijk + 8 123;(H1)(j+l)k - 8 123;(Hl)jk - 8 123;i(j+1)k-
o.ijk 

8 123;ij(k+1) - 8 123;(H1)(j+1)(k+I) + 8123;(i+1)j(k+1) + 8 123;i(j+l)(k+l) 

o.ij 8123:ij4 + 8 123;(Hl)(i+l)4 - 8 123;(HI)j4 - 8 123;i(j+l)4 

f3ij 8123:4ij + 8 123;4(i+1)(j+1) - 8 123;4(Hl)j - 8123;4i(j+1) 

lij 8123:i4j + 8123;(Hl)4(j+1) - 8 123;(i+1)4j - 8 123;i4(j+1) 

o.j 8 123;i44 - 8 123;(Hl)44 

f3i 8 123;4i4 - 8 123;4(Hl)4 

Ii 8 123;44i - 8 123;44(i+1) 

Lo 0123;4,4,4 

Table 4.1: Coefficieuts m the third order binary energ:1J function (equation 

(4·5.9)). 

We use three boolean triplets (x}, X2, X3), (x~, x~, x;) and (x~, x~, x~) to encode 

Y1, Y2 and Y3 respectively. After replacing d(Yi' a) with Aa and applying algebraic 

transformations we can rewrite the energy function using boolean variables as: 

E(x) 2: o.ijkXiXjXZ + L OijXiX'j + L f3ijX'i X"j + 
i.j.kE{I.2.3} i,jE{1.2,3} i,jE{I,2,3} 

L lijXiX"j + 2: aixi + L f3i X'i + 
t.jE {1.2.3} iE{I.2,3} iE{I,2,3} 

~ " L ~ liX i + 0, (4.5.9) 
iE{ 1.2.3} 

where the coefficients of the trilinear, bilinear and unary terms are functions of 

8, and are given in Table 4.1. 

We observe that the transformed energy function E(x), is of order three. We 

are interested in reducing this energy function to a second order one in order to 

minimize it using any st-mincut algorithm. To do this we will first transform 

the above fUllction involving the SUIll of first order, second order and third order 

terms to a function involving only third order terms. We can always rewrite a 

first order term, such as Xl, as XIX2+XIX2 using simple boolean operations, where 

X2 can be any variable other than Xl. Similarly, it is also possible to rewrite a 

second order term, such as X1X2, as XIX2X3 + X1X2X3' Thus, the above function 

shown in (4.5.9) can also be written as a sum of third order binary functions: 

Eb(X) = 2: (Jijk;abcd(Xi, a)d(xj, b)d(x%, c), (4.5.10) 
i,j.kE{I,2.3}.a.b.cEB 

where d(Xi, a) - Xi. if a = 1. and d(Xi' a) = Xi, if a - O. Now, the function 
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(4.5.10) is a sum of third order terms of the form: 

(4.5.11) 

If each third order function belongs to the class F;, then we can obtain a graph 

construction for the whole function using the techniques described in [25,50]. 

However, the individual third order functions in (4.5.10) need not be submodular. 

We use the following result from [22] to express Eb(X) as a sum of submodular 

third order functions along with a constant. 

Lemma 4.5.1 Let G be a function in M~ defined a.., a ..,um of third orde1' func-

tions, as given below: 

G= (4.5.12) 
i.j ,kE Vm ,a,b,cE C 

where each 8 ijk;abc need not be in M~. Then, there exists an equivalent transfor-

mation satisfying the following condition: 

Bijk;abct5(Yi, a)t5(Yj, b)t5(Yk, c) - 8ijk;abct5(Yi, a)t5(Yj, b)t5(Yk' c) + 

L Wlm;abt5(YI,a)t5(Ym, b), (4.5.13) 
l,mE{i,j,k} 

where Bijk;abc is a function in M~, and the sum of pairwise energy terms intro-

duced during the tronsformation is a constant. 

Using this lemma, we transform our energy function in (4.5.10) as shown 

below: 

E(x) = (4.5.14) 
i,j,kE{ 1,2,3};a,b,cEB 

where 'II, a constant, refers to the spawned pairwise potentials during the transfor-

mation, and all 0 belong to F;. Each individual Oijk;abc in F; is now transformed 

to :r; using the method given in [25,50]. Note that the above transformation 

is only possible when the original multi-label energy function, Eb(X) in (4.5.10), 

belongs to M~. We now provide the conditions which will ensure this. In order to 
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do this, we first explain the notion of submodularity using the concept of deriva-

tives [22J. The derivative of a kth order fundion 8 i ;a with respect to a variable 

Yj is given by:5 

Derivatives can also be obtained with respect to several variables as shown below: 

(4.5.15) 

The submodularity condition is equivalent to saying that the second derivative 

of E(x) with respect to any two variables Xi and Xj is less than or equal to zero, 

for all values of the remaining variables [22]. Using this definition, the energy 

function in (4.5.10) is submodular, if the following condition is satisfied: 

0ij + L CkOijk ~ O. 
kE{I,2,3}.CkEB 

(4.5.16) 

In summary, submodular multi-label third order functions M~ can be trans-

formed to :r;. if they satisfy the additional constraint (4.5.16). 

The class M~. We now consider the problem of transforming fourth or higher 

order functions. We will show that not all functions in M~, k ;:::: 4, can be 

transformed to the class ;:; in polynomial time. To prove this we need the 

following lemma. 

Lemma 4.5.2 The recognition of sub modularity in quartic (degree 4) posiforms 

is co-NP-complete6 [28]. 

In other words, this lemma shows that it is a hard problem to say whether a 

general posiform, involving quartic or higher order terms, defines a suhlIlodular 

function or not. 

5Recall that aj sp<'Cifics the label taken by variable Yj._ 
6 A problem X is c~NP if and only if its complement X is in NP. 
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Theorem 4.5.3 There is no preseroing transformation with respect to:Fk (p: U 

:F:) for k ~ 4, which works in polynomial time7 unless P = N P. 

We say that a transformation Tp : :Fk ---+ P is a preserving transformation, if 

it satisfies the following conditions: 

• If f E :F:, then T(J) E :r; . 

• If f ¢ :F:, then T(J) ¢ :r;. 

Proof of Th. 4.5.3: If such a transformation exists, we can transform any 

function in :Fir to P. Since submodularity can be checked in :F2 in polynomial 

time8 , this gives a way to check whether any function in :Fk is submodular or not 

in polynomial time, which is in contradiction with the Lemma 4.5.2. I 
The above theorem states that it is not possible to transform all functions in 

MZ to:r; in polynomial time. However, we show that a subclass of MZ can still 

be transformed to :r;. 

Characterizing :F;-transformable Mk functions: We will now characterize 

some Mk functions that can be transformed to :F.? function in polynomial time. 

The charaderizatioll will be specified by a set of constraints on the potentials of 

the multi-label higher order functions. We will refer to these constraints as { ~ O. 

Using the derivatiw definition of suhmodularity [22], the constraints { ~ 0 that 

will enable us to transform MZ functions to ;:; functions are: 

(4.5.17) 

For illustrative purposes we now present the graph construction for functions 

belonging to a subclass of the MZ family. The functions belonging to this subclass 

have the form: 

{
a 3i E i : Yi < li' 

Hk;l = o otherwise. 
(4.5.18) 

7We say that a transformation works in polynomial time when we can compute a second 
order multi-linear polynomial expression for T,.(f) in O(nk) time, where n is the number of 
variables, and k is the order of the boolean function. 

8The recognition of submodularity in P can be done in polynomial time by checking the 
coefficients of the quadratit· terms [321· 
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[!]I----

X11 0 0 
~--

o o 
II 

Any labelling above this ocurve would be penalized 

Figur 1.3: Th graph co truction for characterizing a general kth order rnulti-
lab 1 n rgy fun tion. Th ariabl z is an auxiliary node that is connected to k 
bool an nod and th oun with the arne edge cost o . As a result if all the 
k bool 11 nod tak th lab 1 0 then the cost of the cut is O. In all other cases 
th . i , a uniform co t of o. Thi can been a a generalization of the graph 
co truction giv n in {50}. 

Th rr 'p nding graph on tru tion i hown in Fig. 4.3. We connect a set of 

n ding variabl to an auxiliary nod z , and connect z to th source node s 

with dg having th am t o. It i important to observe the functionality 

of z: £ r a gr up of variabl Yj j E i. if an variable Yi takes a label less than a 

'pc ifi d lab .1 l , th ria p nalt of o. Our method can automatically find the 

r qUlr uxiliary nod and variou edg costs for the graph ne ded to minimize 

any Mk-fun ti n that ati fy on traint ( .5.17). 

4.6 Application: Single View Reconstruction 

\V n w h w h w th high r order functions characterized in th previous sec-

ti n an bud to improv ingl view r con truction r ult. Given a 2D image 

of an. th goal i to l' ov l' a th atr stag representation containing ma-

jor urfa ' and th ir g In trical relation hip to each other. Hoiem et al. [36] 

~ rmulatcd tbi . a'] ifi ation probl ill, wher every pixel in the image is as-

thr lab 1 . nam ly, upport (surfaces that lie parallel to the 
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(c) 

50 
40 

'ii:30 
:120 
. 10 

o 

aIM:lnE!d superpixels • d -groun 
"--.--?I Triple • - vertical 

Clique. - sky 

Figur 4.4: (aJ Original image. (bJ Triplets of vertically aligned superpixels 
ar; cho n from th up rpixel egmented images. The labellings for individual 
tripl t combinatio ar; tudied from everal ground truth images. Negative log-
lil.: lihoods are comput d for each of the e triplets and used as third order priors in 
th lab lling probl m. forrmtlated a an energy minimization task. (c) The three 
coZwnn . from 1 it to right, how the unary likelihood images of ground, vertical 
and ky 7' P tiv ly. 

gr und plan ), \ erti al ( urfac s that rise from the ground plane) , and sky. They 

obtaind impr iv r ult by I arning appearance based models of the three 

cl c . Their method work as follow . The given image is first segmented into 

up rpix I [20] ( ond column of Fig. 4.5) , which provide spatial support 

for omputing ~ atmc lik tcxture filter responses and vanishing points. Using 

bot d d i ion trc elas ifiers, g ometrical likelihoods are computed for indi-

vidual up rpixel (cf. Fig. 4.4). The final geometrical labelling is achieved using 

th lik lihood along with pairwi e smoothness priors in an energy minimization 

fram work. 

In thi work. w fo u on improving the results in [36] using priors obtained 

from natural tati ti . Such prior can only be imposed through CRFS with 

high r rd r liqu [65. 79]. The sup rpixels extracted from the image act as 
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Figur 4.5: Original image. up rpixel segmentation, ground truth labelling, re-
ults from [36} and our re ul are hown (left to right). Street, highway, buildings 

and road are th imag in row 1 to 4 respectively. (Best viewed in colour) 

nod (variabl ) in a high r order CRP. The most probable labelling of the 

up rpix I i ~ und by minimizing an equivalent energy function. We minimize a 

third ord r thr lab I n rgy function, wh re the three labels for each superpixel 

orr pond to gr und, v rti al and kyo 

Th un f . likelihood (}i;a of the energy function are computed using boosted 

d ·ifi r .9 Motivat d by the work of [114J we compute the second 

and third ord r 11 r~ t rm using natural statistics. Yang and Purves [114J 

udy th di tribution of g ometrical f atur like size, shape and depth of planar 

mfa . fr m a larg training database. U ing a similar approach, the second 

ord r t rm ar omput d b I arning the statistics of all neighbouring superpixel 

pair in th training datas t. 

A th imag ar g n rally taken by people tanding on the ground, with the 

opti al axi approximat ly parallel to the ground there is a natural ordering of the 

up rpix I lab I in th v rtical direction. To capture this ordering, we study the 

9http://wwv.cs .cmu .edu/-dhoiem/projects/software.html. 
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Image I Results of [3£] I Our method I 
street 20.78 5.82 

highway 19.47 7.32 
buildings 31.94 13.36 

road 18.52 10.82 
college 29.47 13.26 

Table 4.2: Here we show the error percentages obtained by our method in compar-
ison to {36}. It is computed using the ground truth provided in the dataset. Note 
that our mdllOd .<;ignijicantiy improt7es the accuracy of single view reconstruction. 

distribution of the labelling of vertically-aligned superpixel triplets from several 

ground truth labelled images. These statistics, in the form of negative log likeli-

hoods, are shown in Fig. 4.4(b). The likelihoods are directly used as the higher 

order potential Oijk:abc ill the energy function. As an example, to see the effcctive-

ness of natural statistics, consider the cost of the triplet labelling [Top:Ground, 

Middle: Vertkal, Bottom:Sky] from the figure. Givcn the label ordering, this con-

figuration is unlikely to oc(,ur naturally, aud thus has a high cost. We use our 

algorithm explained in §4.5 to construct the equivalent boolean graph. A simple 

truncation method is used to remove the negative edges in the graph [83]. 

\V(, obs<'rved signifi(,ant improvcmcnt over the results of [36], as shown in 

Fig. 4.5. The labelling accuracy is summarized in Table 4.2. The accuracy is 

reported in terms of the misdassification of individual pixels in the image. In 

Fig. 4.5 we show the original image, superpixel segmentation, results using only 

pairwise clique potentials. and our results using higher order clique potentials. 

In the street illlage showu in the first row of Fig. 4.5, the grouud between the 

two buildings is incorrectly labelled as vertical, when only pairwise smoothness 

prior is used. On the other hand. the usage of higher order priors results in the 

correct labelling. The major advantage comes from the ability to impose priors 

based on natural statistics. For example, in the second row of Fig. 4.5, unary 

potentials favour the labelling sky for the van'due to its high similarity to the 

'sky' region. However. our method using priors learned from natural statistics 

obtains the correct labelling. 
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4.7 Summary 

We presented a principled framework to transform a certain class of multi-label 

higher order functions to submodular second order boolean functions, which can 

be minimized exactly using graph cuts. Our key idea is to use two or more boolean 

variables to encode the states of a single multi-label variable. Our transformations 

can be used for other vision problems, such as stereo [37], panoramic stitching [69], 

image restoration. Recently, the transformation proposed by [37] was used to 

develop a new move algorithm [108]. Similar techniques can be proposed for 

the transfonnations proposed in our work. Our framework can also transform 

any higher order multi-label function, for instance, potentials learnt using the 

fields of ('xperts Illodel [79], to a boolean second order function. If the resulting 

second order boolean energy function is non-submodular, then we can use QPBO 

techniques [14]. The main contributions of this chapter are: 

1. A principled way to incorporate natural image statistics into the single view 

reconstruction problem. and to show that they can be solved efficiently. 

2. Delllollstrat illg t hat our llovel priors provide a significant improvement. 

3. Presenting the constraints that enable the transformation of M~ into F; 
in polynomial time. and thus extending the subclass of st-MINCUT-solvable 

submodular energy functions. 
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Chapter 5 

Efficient Piecewise Parameter 

Learning 



In the pre\;ous chapters we have addressed the problem of inference in Con-

ditional Random Fif'ld models. assuming that the model parameters are given 

or set empirieall~·. This chapter deals with the problem of learning the model 

paraulC'ters ('ffi«'i('nt Iy frol1l training data. Although several methods have been 

propoS('(1 t I) (Il'al wit h t his problem. they suffer frolll various drawbacks. Learning 

the parameters involves computing the partition function, which is intractable for 

several low-Iewl vision problems. To overcome this, state-of-the-art structured 

learning m('thod8 frame the problem as one of large margin estimation. Iterative 

solutions haw bl't'n propo...<>ed to solve the resulting convex optimization problem. 

Each iteration ill\'olves solving an inference problem over all the labels, which 

limits t 1)(' ('ffki('))("~' of t 1)('8(' stru('tured methods. In this chapter we present an 

eflki('lIt Jarg(' Illarl!;ill pi('('('wise learning method which is widely applicable. We 

show how tl)(' f('Sulting optimization problem can be reduced to an equivalent 

convex prohlem with a small number of constraints, and solve it using an efficient 

scheme. 

5.1 Introduction 

A Conditional Random Field (CRF) is defined over a graph 9 = (V, E), where 

V denotes a 8('t of wrtices and £ is the set of edges, which specifies a pairwise 

relationship hetw(>('n the wrtices.) The vertices represent discrete random vari-

ables X = {X).··· . X,\· }. A labelling of a CRF corresponds to a classification 

of the vertirt'S b~' assigning a label to each vertex (variable) from a set of la-

bels C, = {l ..... K}. In oth('}' words, a lahelling is specified by a binary vector 

x = {II:I.··· .I):I\'.I2:)··· .IN:K}. where N is the number of vertices, i.e.IVI = 
N. Each binar~' indicator variable Xi:k = 1. if the corresponding random variable 

Xi takes til(' label k E C. and Ii:k = 0 otherwise. Also, Lk Xi:k = 1, Vi. In the 

context of t he vision problems we have seen so far, the vertices correspond to 

image pixels. ano tIl{' labels can be image segments, disparity, object categories, 

etc. Given SOIll{' OhS(lf\'f."d data (denoted by D), a CRF models the conditional 

1 Nott' that Wt' haw I\SSUlllro a pairwise CRF. However, this assumption is not restrictive 
sinet' any CRF ('au 1* ('011\'ert.ro to all equivalent pairwise CRF, e.g. using a method similar to the 
OOt' d\~rih("t ill I11GI. aJllI \'ffidl'llt illfer(,Ill'(' algorithms are available for many such CRFs [63]. 
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probability of a labelling x as follows2: 

(5.1.1) 

where 8 = (8k • 81.-1) E 'R,dx 1 are the parameters of the CRF. The vectors hieD) 

and vij(D) reprffi('nt fpaturE:'S for the vertex i E V and the edge (i, j) E £ respec-

tively. ThE' unary poh'ntial exp(x;:k8J hi(D)) denotes the cost of the assignment 

Xi = k. while the pairwise potential exp(xi:kxj:l8J1vij(D)) denotes the cost of the 

assignment: X, = k and Xj = I. The normalizing factor Z(8) given by: 

(i.j)E£ 
IdEC 

(5.1.2) 

is the partition function. \Vhen using a CRF model (with known priors), there 

are two main iSS1U'S that nN'd to be addressed: (i) How to set the value of the 

parameters 8: and (ii) How to perform inference in order to obtain the optimal 

labelling. i.F. til(' lahelling with the maximum conditional probability Pr(xID, 8). 

The latter is:mp ha.~ re<'piwd great attention and several inference algorithms have 

been prop()S('(1 ill thp litprature (for an overview, see [99]). Our work described in 

the pre\'ious chaph>rs also addresses the inference problem. However, parameter 

estimation in a CRF model still remains a challenging problem, with considerable 

progres.'i being madt' in t ht' past few years. 

C{)nsid('r thp partition funrtion in (5.1.2). which contains a sum over the 

entire labt'l Spa('E' C'·. To E'Stimate the cost of computing the partition function, 

let us aSSU11l(' a CRF cl«'fhU'd OWf a 300 x 200 image with l.el = 10. In this case, 

the partition function is a sum of 1060000 terms, and its computation is clearly 

intractable. H(,I1C(,. methods for estimating parameters of a CRF model must be 

designed to O\1.'rCOlllt> this issue. Based on the way in which the partition function 

is handled. f('('Pllt paralllt'h'r learning methods can be broadly classified into three 

categorit"S maximum likplihood based methods [62,84,97]' large margin based 

approaclws [i1.100.102]. and other iterative methods [90,117]. 

2Usillg tht' notation of \5). 
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Owing to the illtractabilit~· of computing the partition function Z(8) for com-

puter vision applications. maximum likelihood based methods resort to using 

approximations. such as pseudo-likelihood [62], some form of local training [97], 
mode of the model distribution [84]. or sampling [80]. While these likelihood 

approximat ion met hods haw shown encouraging results, they can lead to poor 

accuracy due to noi. ... ~· estimates. as noted in [84,97]. Methods using a large margin 

approach poSt' parameter estilllation as a convex optimization problem.3 The con-

vex prohlem is solved it('ratiwly, and each iteration involves performing inference 

for every training imag('. which can be computationally expensive. By restricting 

th('IIls«,lwl'i to a suhs«,t of random fi('ld mod('ls, some methods [100,102] provide 

effiei('ut sohlt iOlls. TIll' nll't hod propo,,,«~l by Taskar et ai. [102] uses approxi-

mate illferPllce for multi-label problems, and exact inference for binary labelling 

problems in ('aeh it£'ratioll. Szummer et al. [100] use dynamic graph cuts [46] to 

I}{'rform infpn'lwP ill l'\I("("('S. ... ivt' itt'rations ('ffici('nt ly.4 

Another larg(> margin approach [71] uses the structured output regression 

formulation propoSf'd h~' Tsochantaridis et al. [105]. The algorithm employs a 

cutting-plam> method to solw the quadratic optimization algorithm. The model 

parameters are llpdat('(i using the most violated constraint (in this case, the 

labelling with tht' smallest cost value) in every iteration. Finding the exact most 

violat('(1 ("Ollst raillt is liCIt t rart abl(, for ralldom fields {'olllllHmly encountered in 

computer vision. thus approximation algorithms are used. Other iterative based 

methods an' .. ith('r limitro to CRFs with a few hundred nodes, thus impractical 

for the lah('llillg prohl(,llls \\'(' consider [90], or require an initial model with pre-set 

paramet ('[8 [11 i]. 
In SUllllllar~·. pr('violls nH'thods can lead to poor accuracy due to approxima-

tiolls, or an' n'stric-t('(l to a suhst't of random fidd mod('ls. W(' aim to address 

theSf' is. ... IlI'l'i ill this ..Ilapt PI'. To oht ain an efficiellt and an'urate learning scheme, 

w(' d('('olllp0l'i(' tilt' randolll field into tf(~'-strud,ured graphs, where each graph 

comprises of mriahl .. X, and its corresponding Markov blanket, which is the set 

3Large lJutrgiu ha.~l panuneter learning approaches eliminate the partition function by 
considering the Il.llin of til«' true labels over any other labelling. We will discuss this in more 
detail in ~5.2.2. 

4Note that thill work rau extt'udl'd to 8 larger d/l..<;S of energy functions using our efficient 
dynamic n-t'xpansion (~3.3.l). 
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of its neighbours. This decomposition results in an optimization problem with 

a large numbf:'r of constraints. We reduce this problem to an equivalent con-

vex problem with a small number of constraints, similar to the approach of [60]. 

An dJki('ut llI('t hod to sol\'(' it using stoc:hastk gradient descent is then proposed. 

One of the main ad\'ant ages of our method is the ease of training, as demonstrated 

in the SE'<:tions to follow. 

5.1.1 Outline of the Chapter 

In section 5.2 w(' fonuulat{' thf:' parameter learning problem. We also describe 

two m(>thod.. ps(>udo ... likt'lihood and max-margin learning - related to our work. 

Section 5.3 ('xplains our pi('('(>wise large margin approach for parameter learning. 

Details of th(' optimization probl(>lll and the gradient descent approach are also 

given hE-rE'. ImplE'Ill(,lltatioll d('tails and experimental results on the man-made 

structur(> [62] ami ~liddl('hur~· ... 2005 [84] datasets are shown in section 5.4. In this 

section w(' also pn'St'llt a comparison with other parameter learning methods. 

Section 5.·1.3 pr('S('llts a ff:'w gf:'lleralizations of our model. Concluding remarks 

are prm'idp<l in S('(,tioll 5.5. 

5.2 Preliminaries 

We begin by formulating the CRF parameter estimation problem. The unary 

and pairwise potentials are given by exp(Ii:k9~hi(D)) and exp(xi:kXj:19rllJij(D)) 

respectivf:'ly (from (5.1.1». The unary and pairwise feature vectors (hi (D) and 

lIij(D)) ('IUl 1)(' d .. fiIH'(1 ill Humy ways. For example, in case of the image segmen-

tation prohlE'lll. til(' ullary f('aturf:' vector of a vertex can be composed of functions 

of the iIltf:'Il ... it~·, rolour aud f(>xture, while the pairwise feature of an edge can be 

a ciiffpr(,II('(' of t t)(' f('at un' wd orB of the two vertices the edge connects. 

Givell a Sl't of training data D = {Dm, m = 1, . " , M}, along with their ground 

truth lah('ls X = {x"'. 111 = 1. ... ,.\f}. the problem of parameter estimation is to 

obtain a value for t 11(' paral11(>t(>r 9. such that the model assigns a high probabil-

ity to the rorr('('t Iahf'lling and 8 low Ollt' to all possible incorrect labellings. In 
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(8) (b) (c) (d) 

Figur .1: 11' on ld a b 'nary imag egmentation problem in this example. 
(aJ Toy xamplf of a 3 x 3 imag . (b) Ground truth labelling showing the two 

gm lIt foreground (u hit ) and background (black), and (e,d) Two incorrect 
. gm ntatrOll, from th t of po ibl 29 - 1 egmentation. The training data 
on. 1 t. of lmag . th IT ground truth lab is. and all the po sible incorrect la-

b lImg . 

ulld- und gm ntation problem, an element of the 

an imag , and the ground truth labels contain 

bin ry \'RIu • r pr . ntin ~ r ground or background at each pixel. The model 

high probability to the correct segmentation and 

W 11 t nil th r p ibl gm ntation . Fig. 5.1 shows a toy example of 

I id r a binary image segmentation problem a rid . Hr. w 

and illu:trat a trainin imag, it gr und truth egmentation, and a few pos-

r ~ rr 

imag and its ground truth segmentation is 

i iv training xarnpl, while the image and an incorrect 

ativ training xampl . Not that the number of negative 

11 ntially larg . P udo-lik lihood and Max-margin learning ar 

tw p pul m th d ' t 1 arn th pararnet r in this setting. 

ibl in rr t 

5.2.1 P eudo-likelihood 

Th maximum lik lih timat of the parameters fJ (using equation (5.1.1)) 

i giv 11 by: 

!II 

fJ = arg nULX L L ':kOJ h.(Dm
) + I: x~kxjlOJIVij(Dm) -log zm(o), (5.2 .1) 

8 1n=1 .EV ( •. ])E£ 
kEC k.lEC 
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where m indexes owr the training images and AI denotes the number of train-

ing images. Solving this t'Stimation problem for loopy random fields commonly 

encoWlteroo in computer vision is intractable. as discussed in §5.1. 

A common approach to overcome this issue is the use of pseudo-likelihood [7] 

to approximatt' the likelihood [12.62]. The estimation problem now becomes: 

AI 
iJ = arg max L L PL(i, om). 

, m=l iEV 

Here P 1..( .) is t ht' IN·udo-likelihood. and is given by: 

PL{i. om) = L r~k8: h1 {om) + L x~kxT,8:,Vij(om) - z;n + b, 

whert' 

kEC 1 E.", 
IdEC 

::~' = log L n exp(rci8: h.(om)) II x?:'kxT,8J,Vij(om), 
z'"E C A:E C lEN, 

• IdEC 

(5.2.2) 

(5.2.3) 

(5.2.4) 

is tht' local partitio1l function. b is a constant, and N; is the Markov blanket at 

vertex i. i. t'. t hc' ~·t of its 11I'ighhouTS ill tlw random field model. For example, in 

the 4-lleighhourhood cast· u.wd for CRF based image segmentation, the Markov 

blanket of a pixt'l i is t h(' set of 4 pixels-above, below, left of, and right of the 

pixel. This prohl('m can be solved by gradient-descent like approaches [62] or 

auto-regrf'SSiOll [12]. Ont' of the main advantages of using pseudo-likelihood is 

the asymptotic guarantee (i. e. as t he size of the data tends to infinity) that its 

maximum matches that of the original likelihood. However, parameter learning 

methods using pst'lldo-likt'lihood can lead to poor accuracy due to noisy estimates, 

88 noted ill [84.97]. 

Another approach to approximate the likelihood estimation in (5.2.1) is to 

use the pi(>(,t'wiSt' pseudo-likelihood (PWPL) model proposed by Sutton and Mc-

Callum [97]. Hen'. t ht' likt'lihood is conditioned on all the variables in the factor 

graph 8.t;S()ciatt'li with the vRriablt'. Figure 5.2 illustrates the difference between 

PWPL and l)S('udo-likt'lihood models. They show interesting results on linear-

chain eRFs. HO\\'t'\'er. it is 110t cit-aT if tlus method generalizes to large random 
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(a) (b) 

Figure 5.2: Difference between pseudo-likelihood (PL), 111 (oj, and piecewise 
pseudo-likelihood [97) (PWPL), in (b) is shown here. In PL, a variable is condi-
tion d on all its neighbours in the Markov blanket, while in PWPL it is conditioned 
only on the neighbours within a single factor. Figure taken from (97j. 

field problems, involving millions of variables, commonly occurring in computer 

vision. 

5.2.2 Max-Margin Learning 

Taskar et at. [102] proposed an alternative approach to learn the parametC'rs of 

a random field discriminatively. Consider the logarithm of the probability in 

equation (5.1.1). It can be re-written, according to the notation in [5], as: 

log Pr(xI D , 0) = OFx -log Z(O), (5.2.5) 

wh re 0 = (Ok; Okl) with the operator (;) denoting vector concatenation. The 

vector x contains the labels of all the variables in the random field, and the 

matrix F is compo ed of unary and pairwise features, i. e. hi (D ) and Vij (D ). 

Given a training image5 (D , x), the goal is to maximize the confidence in the true 

label as ignment x with respect to all other possible assignments x # x.6 This 

gain of the true label assignment x ov r a possible as ignment x is defined by: 

log Pr(xI D , 0) -log Pr(xID , 0) = OF(x - x). (5.2.6) 

5For ease of understanding we descrihe this approach u ing one training image. It can he 
easily extllded to multiple images easily, e.g. by concatenation. 

6This obj tive is imilar to that in support vector machines [106]. 
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The problem of maximizing the gain of the true label assignment can be 

formulated as tIle following quadratic program (QP): 

max "'f s.t. 6F(i - x) ~ 'Yf(i, x); 11911 2 ~ 1, (5.2.7) 

where t he gain depcnds on t hc llUlllber of misdassified labels in x, and is denoted 

by t(i. x). This optimization problem can be re-formulated as the following QP 

by dividing through by "'f and adding a slack variable { for non-separable data: 

min 

subject to 

~1I6112 + C{, 

9F(i - x) ~ f(i, x), Vx E eN. 
(5.2.8) 

(5.2.9) 

This quadratic program has a constraint for every possible label assignment x, 

resulting in an exponentially large optimization problem. Taskar et al. [102] re-

placed the exponential set of linear constraints with a single equivalent non-linear 

constraint using maxxEcN x. Finding this single constraint7 involves performing 

inference at every step of the algorithm. The advantage of max-margin framework 

is that it eliminates the partition function by using the gain (5.2.6). However, 

it can be computationally expensive if the inference step to fiud the constraiut 

cannot he l)('rforllled dfkiently. 

In summary. pseudo-likelihood learning approximates the partition function 

and is easy to compute. However, it can lead to poor accuracy. On the other hand, 

max-margin learning eliminates the partition function, but suffers from compu-

tational issu('s for certain random fields. Inspired by the successes of pseudo-

likelihood and max-margin learning, we present a new method, which has the 

belwfits of til<' two approa('hes. We first decompose the random field into dis-

tinct pieces (according to pseudo-likelihood structure), and treat each piece as an 

individual training exemplar. We then perform efficient discriminative learning 

(similar to the max-margin approach) with these exemplars. In other words, our 

proposed approach is a max-margin piecewise learning method, which exploits 

the pseudo-likelihood graph structure. Our discriminative approach is not only 

efficicnt, but also applkahle to any random field model. W(' describe the details 

7 Also referred to as the most violated constraint. 
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of our method in the following section. 

5.3 The Piecewise Model 

COI18ider the pseudo-likelihood method to approximate the joint likelihood of the 

labelling discussed in §5.2.1. The joint likelihood of the image labelling is ap-

proxilllah'(l as product. of pseudo-likelihood terms defined over each pixel. The 

pseudo-likelihood term for a pixel i, denoted by PL(i, Dffl), is given by equation 

(5.2.3). This term depends only on the labels taken by the pixel i and its imme-

diate neighbours. i.e. its Markov blanket. We can interpret pseudo-likelihood as 

the (exact) likelihood of the vertex i in a new tree-structured graph consisting of 

the pixel i and its Markov blanket. In our piecewise framework we consider each 

of these new graphs8 as an individual training exemplar to learn the parameters. 

TIl(' c)U'rgy function defincd Oil the tree-structured graph for a vertex i, in vector 

form, is given by9: 

Ei(x} = 8T f(i,j, D, x) + b, (5.3.1) 

where i is the set of all nodes in the tree-structured graph, 8 = (8k ; 8 k1 ), 'tIk, l E .c,1O 
is the parameter vector, which is to be learnt, and j = {jJj EM}, is the set of 

neighbours of the vertex i. The feature vector f(i,j, D, x} is formed by concate-

nating the unary and the pairwise features of all the nodes in the tree-structured 

graph. The number of possible labellings for each pseudo-likelihood tree structure 

is given by 1.cI Np , where Np is the number of vertices in the tree. For example, the 

number of vertices in the tree is 5 when using a 4-neighbourhood CRF. Among 

the set of possible labellings, one of them is the ground truth labelling, which 

is referred to as the positive training example. All the other labellings form the 

negative example set, which is exponentially large. Let 111+ and ilL denote the 

number of positive and negative training examples in the entire training dataset 

respectively. Furthermore, the feature vectors corresponding to the mth positive 

and the nth negative training example are denoted by f~(-) and eo respectively. 

SOne for each pixel in the image. 
9For brevity we have dropped the index m over training images. 

lOThe operator {j} denotes vector concatenation. 
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5.3.1 Parameter Learning 

The parameter vector 8 and the bias b should ideally satisfy the following margin 

constraints: 

8T~(i,j,D,x)+b > 1, 

8 Te(i,j,D,x)+b < -1, 

\lmE{I, ... ,M+}, 

\lnE{1,···,M_}. (5.3.2) 

These constraints ensure that the parameters discriminate between the positive 

and negative examples with respect to the quality function E i (.) in equation 

(5.3.1). The most discriminative parameter vector is obtained by maximizing the 

margin. This is equivalent to minimizing 11811 2 , the L2 norm of the parameter 

vector. However. it is not always possible to separate the data by solving this 

hard-margin optimization problem. It is common to introduce slack variables 

in such cases [106]. The optimal parameter vector is then learnt by solving the 

following soft-margin optimization problem: 

subject to 8T~(i,j,D,x)+b~ l-C;, \1m, 

8 Te(i,j,D,x)+b:S; -1+C, \In, 

c; ~ 0, \1m E {I,··· ,M+}, 

C ~ 0, \In E {I,··· ,M_}. 

(5.3.3) 

(5.3.4) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

The tra<i{'off between the accuracy and regularization of the parameter vector is 

controlled by the user-defiued coustant C ~ O. The slack variables C; and e 
denote the hinge loss for positive and negative examples respectively. 

The above convex problem is seemingly easy to solve. However, it cannot 

be solved efficiently because the inequality {5.3.5} specifies l.qNp - 1 constraints 

for each tree-structured training example. Felzenszwalb et al. [21] and Kumar et 

ai. [60] proposed methods to address similar issues in other learning problems. 

An iterative method proposed for the supervised case in [21] approximates the 
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large optimization problem using a small subset of constraints. The algorithm 

alternates betweeu two &1:eps: (i) Given a current estimate of the parameters, a 

subset of labellings that maximize 8 T e for each negative example is found using 

max-sum belief propagation (BP) [75]; and (ii) Using the subset of labellings 

obtained in step (i). a new parameter vector and bias are computed. As noted 

in [60]. this met hod is susceptible to local minima and is heavily dependent on 

obtaining a good initial estimate of the parameters. Recently, Kumar et al. [60] 

pro]>oS('(i all ('ffici('nt algorit hm to obtain the globally optimal solution to this 

problem. The key step in their approach is reducing the original large problem 

to an {'(}ui\lllent Olle with a polynomial number of constraints. We explain this 

reduction step in the conte>..-t of our learning problem in the next section. 

5.3.2 Constraint Reformulation 

The main hottleue<'k in solving problem (5.3.3) is the inequality (5.3.5), which 

sp('('ifi('s all ('x}>OJl('ut ially large llllIllher of ('ollstmints. For example, consider a 

stereo matching problem where every pixel in the image can be assigned anyone of 

25 disparity labels. Assuming that the CRF is defined llsing the 4-neighbourhood 

structure. each tree-structured negative exemplar results in nearly 10 million con-

straints. The inequality (5.3.5) can be reduced to an equivalent set of 0 (Np \.e\2) 
constraints. wh('re Np is the number of nodes in the pseudo-likelihood graph, and 

l.el is the llumb('r of labels [60]. We begin by reformulating inequality (5.3.5) as 

follows: 

tn+b~ -l+C, 

t n ~ 8T e(i,j,D,x), 'tin. 

(5.3.8) 

(5.3.9) 

In other words. we introduce tn, which is an upper bound on the set of values 

8 T f:1(i.j. D. x). "In. \Ve uow show that this upper bound can be specified by a 

polynomial Illllllher, spedfically 0 (Nv l.e1 2 ), of constraiuts. We define variables 

Sn. using lei constraints such that, IJ .II,,/r 

(5.3.1O) 
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where j E i - {i} and k E C. Note that i is the set of vertices in the pseudo-

likelihood graph. Since one Sij;Y;:k is defined for each j E i - {i} and l E C, the 

number of constraints is 0 (Np ICI2). The smallest value of Sji;Xi:k which satisfies 

the above inequality is the message that j passes to i when performing max-sum 

BP on the pseudo-likelihood graph with potentials given in (5.1.1). Thus, the 

upper hound is sp('('ifiecl by: 

(5.3.11) 

The inequality (5.3.5) can now be replaced by inequalities (5.3.9), (5.3.10), 

and (5.3.11) in the soft-margin optimization problem (5.3.3). The original opti-

mization problem is now reformulated as: 

(8*, b*) = arg min ~1I8112 + C(L(~ + L(~), 
~ m m 

S.t. 8T~'(i,j,D,x)+b~ 1-(~, (~~O,V'm, 

fn + b ~ -1 + C, C ~ 0, V'n, 

t n ~ 8T Xj:khj(D) + L Sji;X;:k' V'Xi:k, n, 
jEV,,-{i} 

8'ft:Xd ~ 8i xj:lhj(D} + 8J, Xi;kXj:lvij{D), V'Xj:l, n. 

(5.3.12) 

The number of constraints can be further reduced if the pairwise features 

Vjj{x} are restricted to form a Potts model, as shown in [60]. In fact, this is 

applicable to other commonly used pairwise features such as truncated linear, 

and truncated quadratic models using the distance transform technique of [20]. 

The optimization problem (5.3.12) can be solved using the dual decomposition 

method as shown in [60]. \Ve follow an alternative method and solve the problem 

in the primal itself. 

Stochastic Gradient Descent. The form ofthe problem (5.3.12) is very siIn-

ilar to the Support Vector Machine (SVM) learning problem. Many methods exist 

in literature to solve the SVM learning problem. We use a Stochastic Gradient De-

scent algorit hm h('('auBe of its efficiency [13]. It is an iterative algorithm to solve 
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linear SVMs. where every iteration consists of choosing a random training sample, 

and updating the weight vector. The iterative updates are chosen according to 

the quasi-Newton method described in [13]. Empirically, we found that using a 

vanilla stochastic gradient descent provided a very similar result, but required a 

larger number of iterations. The gradient at every step is computed by perform-

ing max-sum BP on the chosen training sample. We repeated the update step 

over the entire training set a few times until convergence. Note that any other 

cfii<-i('llt OHlil1(' SVM solver can be used instead of this gradient descent method. 

We chose to use this algorithm owing to its theoretical and empirical advantages 

when solving max-margin problems similar to (5.3.12). The reader is referred 

to [78J for a discussion on these advantages. 

5.4 Experimental Results 

We evaluatro the proposro learning framework on two publicly available datasets, 

namely man-made structure database [62] and the Middlebury-2005 stereo vision 

data in [84].11 Images from these datasets are shown in Appendix A. We compare 

our results with those reported in [62,71]. 

5.4.1 Man-made Structure Database 

This dataset contains images of man-made structures, such as houses, cathedrals, 

buildings. The task is to detect these structures in natural scenes, and assign 

structured or non-structured labels to the pixels in the image. The training and 

the test set contain 108 and 129 images respectively. The images are selected 

from the Corel image database, and are of size 256 x 384 pixels. Each image is di-

vided into non-overlapping 16 x 16 pixel-blocks, and each such block is assigned a 

ground truth annotation (structured or non-structured) manually. The block-level 

quantization introduces noise in the labels of the blocks lying on object bound-

aries, which leads to errors in quantitative evaluation. Kumar and Hebert [62] 

cir(,umvent this problem by not counting a misdassification that is adjacent to 

l1We thank S. Kumar and Y. Li for help with datasets used in this work. 
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a block with ground truth label structured as false positive. We follow the same 

procedure in order to perform a fair comparison with their work. In all, the 

training set contains 3, 004 structured and 36, 269 non-structured blocks. Each 

pixel-block is represented as a node (random variable) in the CRF framework, 

thus resulting in a 16 x 24 grid structure. 

Feature computation. We used the feature set described in [62]. The unary 

feature h;(D) of a node (pixel-block) i was computed using histograms of intensity 

gradients at various scales. Each histogram count was weighted by the gradient 

magnitude at that pixel. The histograms were also smoothed to alleviate the 

problem of hard binning. The average spikeness (computed using central-shift 

moments) of the smoothed histogram was used an indicator of the structuredness 

of the pixel-block. An orientation based feature obtained by passing the abso-

lut«> diffef('Il("e hptW('('1l t he locations of the two highest peaks of the histogram 

through sinusoidal non-linearity was also used. Three scales (16 x 16, 32 x 32, 

and 64 x 64 pixel windows) were considered to compute the features, and in each 

scalp. thrpe ll10mpnt and two orientation based features were computed. Two 

features were additionally chosen from these multiscale features using highest 

peaks from the histograms. A 14-dimensional vector is composed by taking the 

first two IJlOI1U'l1ts and orientation based features at each scale, and the two ad-

ditional 'peak' features. The unary feature vector contains the 14 moment and 

orientation features. their squares and all their pairwise products. Thus, hi(D) 

is a 119-dimensional unary feature vector. The pairwise feature vector vij(D) is 

a diffeH'Ilce of ullary feature ved,ors h;(D) and hj(D). 

Results. The weight vectors corresponding to the unary and pairwise features 

have 119-dimensions each. These were learnt using our piecewise model (§5.3). 

The algorithm was run until convergence (on average 120 iterations, depending on 

the initialization). The learnt unary parameters are used as is, but the pairwise 

terms are truncated using a common approximation [83] such that graph cut 

inference is po..'*iible [17,50]. The qualitative results are shown in Figure 5.3. 

It can bE:' observed that our performance is comparable to the state-of-the-art 

results [62] on this dataset. Table 5.1 shows a quantitative evaluation of our 
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I Method I FP per image I DR % I 
MRF shown in [62] 2.36 57.20 
DRF [62] 1.37 70.50 
DRF [61] 1.76 72.54 
Our method 1.40 72.60 

Table 5.1: Quantitative results on the man-made structure database. We show the 
average False Positive (FP) and Detection Rates (DR) on the test set containing 
129 images. A comparison with both the Discriminative Random Field (DRF) 

methods proposed in [62} and [61} is also shown. Bold fonts indicate the lowest 
false positive error rate or the highest detection rate. Note that our performance 
is comparable to these methods. In fact, we provide a better false positive (per 
image) measure and similar detection rate accuracy. However, our method is 
computationally ('Jjicicut and scales well to multi-class problems. 

I Method I Art I Books I Dolls I Laundry I Moebius I Reindeer I Average I 
Grid structure in J71 J 14.66 19.12 12.70 19.16 10.88 11.72 14.71 
Long-range in [711 12.11 15.68 12.14 15.82 10.80 15.26 13.64 
Our method (without 12.94 16.24 12.21 16.72 10.82 11.10 13.34 
long-range edges) 

Table 5.2: Quantitative results showing the error rates measured as the percentage 
of bad pixels in the non-occluded regions on the Middlebury-2005 database. We 
compare our results with the models using the standard loss function (i.e. ignore 
the pixels in the occluded region when comparing with ground truth result) in [71]. 
'Grid structure' refers to the model without long-range edges, and 'Long-range' 
is the one with these edges. Average denotes the average error rate over all the 
images. Bold fonts indicate the best performance {or lowest error rate}. Note 
that our method shows better results than 'Grid structure' on all the images, and 
shows comparable performance to 'Long-range' on most of the images. 

Drumsticks, Dwarves) ~ they were discarded for this performance evaluation. We 

used the other images, namely, Art, Books, Dolls, Laundry, Moebius, Reindeer, in 

a leave-one-out training framework (i. e. for each stereo pair problem, we train the 

model on all the other pairs). As noted in [71], these scenes are more challenging 

than the previous ones on the Middlebury Stereo Evaluation page [86]. This 

experimental setup is identical to that in [71]. The unary features are composed 

of Birchficld-Tomasi matching costs for each disparity label, and the pairwise 

term is a difference of disparity labels. The number of disparity levels for each 

image pair is identical to that used in [71]. Inference is performed on the learnt 

energy function using the a-expansion move making algorithm [18]. 
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5.5. Summary 

Results. A quantitative evaluation of our method is shown in Table 5.2. Er-

ror rate is measured as the percentage of incorrectly labelled pixels in the non-

occluded regions. Our piecewise method performs better than the 'Grid struc-

ture' model proposed in [71]. We achieve an average error rate of 13.34 compared 

to 14.71 of 'Grid structure' model. As we do not use long-range edges in our 

approach. we perform slightly worse than the 'Long-range' model. We believe 

indll<iing t heS(' edges ill our energy function will significantly improve the results. 

5.4.3 Discussion 

In the formulation discussed so far, we restricted ourselves to decomposing a CRF 

into sub-graphs corresponding to the Markov blanket of a single pixel. This is not 

an inherent limitation of the framework. Any other tree structured sub-graph, 

including scan-lines. can be solved in the same way. In these cases, our approach 

will efficiently find thc most violating constraint using the trick proposed by [60]. 

Under our formulation. each Markov blanket (or sub-graph) is an individual 

training exemplar. and a unique slack variable corresponds to each sub-graph, 

while existing max-margin approaches treat the entire image as a single exem-

plar [100J. Of the two approaches, ours should be more robust to errors in data 

annotation - for example consider the problem of learning models for image 

segmentation. In these problems [62,95]' annotation of the training and test set 

must he dOllC by hand, and it is COllllllon to find inaccurate ground truth labelling 

in large regions of the image, particularly near object boundaries. Such data is 

often inseparable in these regions, and global approaches such as [100] can only 

learn a limited amount from these images. By way of contrast, our decomposi-

tion of the image into sub-graphs allows us to disregard some of these mislabelled 

exemplars while learning from the remainder of the image. 

5.5 Summary 

This chapter presents a novel method to compute the parameters of a Condi-

tional Random Field model. Inspired by the advantages of pseudo-likelihood and 
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5.5. Summary 

max-margin If:'arnillg nwthods. we propose a piecewise discriminative learning 

fralIu',,·ork. ()ur 1I1('t hod first d('('olllpose the random field into sub-graphs, and 

treats each sub-graph as an individual training exemplar. We then perform effi-

cient discriminative If:'arnillg with these exemplars. We show the effectiveness of 

our approach on two publicly available datasets. The main contributions of the 

chapter are: 

1. Proposing a parauwter learning method applicable for large random fields 

commonly used in computer vision. 

2. D"l1Iollst rat ill~ til(' pffici(,lU'Y of the method in terms of memory and com-

putation. 

3. Prt'S('ut iug an efficient max-margin ba..'1oo method for a larger class of ran-

dom (ip)d lIutd.,)s. 

4. Showing that our method is easily applicable for multi-label problems. 
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Chapter 6 

Discussion 



In this thesis. we addressed three main issues that arise when formulating la-

belling problems in an energy minimization framework, viz. (i) How to perform 

efficient inferen<:(~ to <:Olllpute the optimal solution; (ii) How to incorporate prior 

knowledge into the model; and (iii) How to learn the parameters of an energy 

fUD<:tion. Spedfkally, our work is focussed on modelling computer vision labelling 

problems. such as image segmentation, stereo matching, single view reconstruc-

tion, object recognition. 

6.1 Our Contributions 

In Chapter 3, we present.ed methods to improve the efficiency of energy mini-

mization algorithms. Our first method works by recycling results from previous 

prohlcm instances. The se<:ond method simplifies the miniminization problem by 

reducing the number of variables in the energy functions. We also showed how 

t.hc rooudioll step can he used to generate effective problem initializations. We 

demonstrated that our methods for improving computational efficiency call be 

used for a wide range of miniminization algorithms, such as a-expansion, a{3-

swap, BP. and TRW-S. Our method for recycling solutions extended the work 

on dynamic graph cuts} to certain non-submodular energy functions. We also 

proved that our method for reducing the number of variables is applicable for an 

important class of higher order energy functions. A substantial improvement in 

the running time of many large labelling problems was demonstrated. 

In Chapter 4, we demonstrated how natural image priors can be used to 

improve single view 3D reconstruction results. We introduced a new class of multi-

label higher order functions to model these priors, and showed that the resulting 

energy function can be solved exactly. There are three main contributions of 

this work. Firstly, we presented a framework to transform certain multi-label 

higher order functions to boolean submodular second order functions, which can 

be minimized exactly using graph cuts. Secondly, we extended the sub-class 

of submodular energy functions that can be formulated as st-MINCUT problems. 

1 Recall that the original dynamic graph cuts was only limited to binary submodular energy 
functions. 
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6.2. Future Work 

Thirdly. we introduced higher order potential for single view reconstruction, based 

on the distribution of geometrical features of planar surfaces. 

In Chapter 5. we addressed the important problem of learning the parameters 

of energy functions. Previous attempts to solve this problem suffer from various 

drawbacks. such as limited applicability or noisy estimates due to poor approxi-

mations. Our proposed method is applicable for any pairwise Markov/conditional 

randolll fidd lllodel, and shows impressive results on challenging publicly avail-

able datasets. We can also interpret our approach as extending the class of energy 

functions where efficient max-margin learning methods are viable. We demon-

strated that our learning method can be used with equal ease for binary and 

multi-label energy functions. Lastly, we showed that our method is efficient in 

terms of memory and computational complexity. 

6.2 Future Work 

Recently. many new energy minimization algorithms have been proposed in the 

literature. New move making algorithms [57,59,108] have extended the class of 

(~n('rgy functions effidently solved by a-expansion and a,B-swap. There has also 

been a renewed interest in proposing integer programming relaxation methods 

for discrete energy minimization [58]. All these methods provide a very promis-

ing direction for solving a large class of energy functions with approximation 

guarantees. However, solving them for large computer vision problems can be 

computationally expensive. It would be interesting to explore our proposed ideas 

for making algorithms efficient in light of these recent advancements. 

We believe that our work on extending the sub-class of submodular higher 

order functions that can be solved exactly is of great interest to the community. 

However, there is still a large set of functions for which no algorithms with poly-

nomial run-time exist. Existing algorithms can only provide a locally or partially 

optimal solution. In fact, most of these algorithms provide no or very loose ap-

proximation guarantees. The development of exact or approximation algorithms 

with tighter bounds on the solutions for these problems remains a challenging 

problem. 
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6.2. Future Work 

Our work in chapter 5 is focussed on learning parameters of a pairwise random 

field. In the past few years there has been much interest in using higher order 

random fields, where the potentials can be functions of hundreds of random vari-

ables. These:' indud(' potentials defined on groups of pixels (superpixels) [43,63]. 

It is possible to learn parameters in this context by converting these random fields 

to equivalent pairwise models. However, such an approach is limited to a small 

class of energy functions due to the lack of widely applicable and efficient infer-

ence algorithms. Therefore, learning parameters in higher order energy functions 

is still an interesting and challenging problem to be explored. 

Another potential direction for future research is to learn the structure of 

the random field. At the moment, we are imposing a structure on the labelling 

problem in terms of unary, pairwise, and higher order potentials. It would be 

more appropriate to learn the order and structure of the random field from a set 

of training data. There has been some work [90] in this area, but is limited to 

very small random fields with a few hundred variables. It is not clear if their 

approach is scalable to the large models in computer vision. In the future, the 

hope is to be able to give all our supervised training data to a black box, which 

would come up with the best random field structure for the ta..<;k, and also provide 

solutions for unseen (test) data. 
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Appendix A 

Datasets 



(a) (b) (c) 

Figul' .1 : [mag from Middl bury- 005 data t u ed in our exp riments in 
110pt ,. \J. (a) Til 1ft imag . (b) Th right imag . and (c) Ground truth dis-

1Klrtty map f01" 11 '. 'n ok'" 'Dolls', 'Laundry' 'Moebius') and 'Reindeer are 
. "ou 1/ (top to bottom). 
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