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Abstract

Complex biological systems are considered to be controlled using feedback mechanisms.

Reduced systems modelling has been effective to describe these mechanisms, but this

approach does not sufficiently encompass the required complexity that is needed to under-

stand how localised control in a biological system can provide global stable states. Self-

Organised Criticality (SOC) is a characteristic property of locally interacting physical sys-

tems, which readily emerges from changes to its dynamic state due to small nonlinear per-

turbations. These small changes in the local states, or in local interactions, can greatly affect

the total system state of critical systems. It has long been conjectured that SOC is cardinal

to biological systems, that show similar critical dynamics, and also may exhibit near power-

law relations. Rate Control of Chaos (RCC) provides a suitable robust mechanism to gener-

ate SOC systems, which operates at the edge of chaos. The bio-inspired RCC method

requires only local instantaneous knowledge of some of the variables of the system, and is

capable of adapting to local perturbations. Importantly, connected RCC controlled oscilla-

tors can maintain global multi-stable states, and domains where power-law relations may

emerge. The network of oscillators deterministically stabilises into different orbits for differ-

ent perturbations, and the relation between the perturbation and amplitude can show expo-

nential and power-law correlations. This can be considered to be representative of a basic

mechanism of protein production and control, that underlies complex processes such as

homeostasis. Providing feedback from the global state, the total system dynamic behaviour

can be boosted or reduced. Controlled SOC can provide much greater understanding of bio-

logical control mechanisms, that are based on distributed local producers, with remote con-

sumers of biological resources, and globally defined control.

Introduction

Our physical universe is inherently nonlinear, chaotic and noisy. This makes it difficult for

biological systems to exist because they require stability to function. The concepts of dynamic

stability in complex biosystems is generally accepted [1], but not very well understood at all

organisational levels. The capacity of biosystems to control their internal state and their
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external response to the chaotic environment may be contributed to their ability to adapt in a

nonlinear manner. The facility to quickly change their dynamic state, apparently scale-free, is

essential to the survival of each organism [1]. Furthermore, the high level dynamic stability of

a larger organism must be compiled from the lower-level dynamic behaviour of many contrib-

uting elements. In particular, the local information available to each organ, cell, sub-cellular

body, or other organic organisation, is severely limited with regards to the global whole body

state, and is also limited in its ability to respond in a timely and measured manner. Here, the

global state is meant to be interpret as the total state of all the contributing elements, such as

molecules, cells or even organisms. Although there exists some robust understanding of the

mechanisms involved in global stability of an organism [2], this is certainly not the case for the

required complexity of local small elements collaborating in a nonlinear biological system to

generate a globally stable dynamic state [3].

Criticality in biosystems

To allow a biosystem to control its environment using only local control at its disposal, the sys-

tem must be able to exert a nonlinear effect on its global behaviour. To achieve this multiplica-

tive effect of each local contribution, the behaviour must be able to show exponential, or even

power law relation between its local behaviour and the global response [4]. This may well be

achieved using Self-Organised Criticality (SOC), a concept that allows a nonlinear system to

show emergent power law relations between the local behaviour and the global state. There

exists a suitably long history of identifying possible power law relations in biology, and debates

whether or not it exists, or is even functional [5]. Subsequent efforts have been made to create

such an emerging SOC system based on biological facts, from early attempts to explain this

concept in insect populations [6], epidemiology [7], neuronal behaviour [8, 9], or engineered

concepts that are based on relevant data [3, 10, 11]. It is essential to separate the various ele-

ments related to SOC, which is not an intuitive concept to grasp, and can be regarded from dif-

ferent angles depending on the view of interest for the researcher. One may find in literature a

wide range of topics that reflect these points of interest [12], the means of determining its exis-

tence within a data set [5, 13], its relevance to biophysical systems [14], and other possible con-

troversial aspects of its existence and meaning [15].

Self-organised criticality

Self-Organised Criticality is a distinct property of physical systems based on the local interac-

tions of many small components, each of which contributes to the global critical system [16,

17]. Depending on the field of study, there seems to exist different interpretations of the con-

cept of Self-Organised Criticality [18], but the concept of critical behaviour, or just criticality,
have been neatly summarised by Watkins et al. [15]. Irrespective of alternative ways of generat-

ing SOC systems, the proposed mechanism within this paper is not based on a physical phe-

nomenon as such, and focuses on the mathematical interpretation of SOC systems within

dynamic systems theory. This is described by the ability of complex systems to reside at an equi-
librium point or critical point within their parameter space, such that they will change from one

state to another with only a small perturbation to the system [19]. Therefore, weak perturba-

tions of the system from external sources may cause a state of change due to the critical point,

where the system will evolve into the new stable or unstable state. The proposed mechanism of

control ensures that the system remains stable, in the Lyapunov sense [20], where the local

neighbourhood defines the stable domain to which the system will return when perturbed.

Small interactions between the elements of a SOC system are not necessarily large with

respect to the contribution of each of those elements, but they add to the global critical state
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due to nonlinear behaviour. These nonlinear local perturbations are usually observed as rapid

transitions from one state to another. A typical illustration is an avalanche of snow or sand,

where a previously apparent stable state rapidly changes to a new stable state. Similar critical

dynamics have been determined in biological systems, at low [21] and high levels [22], and in

particular in neural dynamics [23, 24]. The functional role of criticality, the self-organised and

self-sustaining multi-stable state of the system, appears to be mostly related to network com-

plexity, and power-law relations within those networks [25]. However, it is still unclear if

power-law relations are a true property of large scale complex systems over the entire scalar

domain [26]. Furthermore, as will be shown, the emergent power-law relations may be consid-

ered only an epiphenomenon of the combined response of the nonlinear oscillators, and may

exist for only part of the parameter domain. In this domain, the essential property of the sys-

tem is stable periodic behaviour throughout these perturbations. For the described systems

below, the means by which the criticality may emerge is not based on the separation of time-

scales, but on the local adjustments by the RCC control mechanism in combination with non-

linear connectivity. The proposed method contains all three key features for a system to be in a

critical state, namely non-trivial scaling due to the external perturbation, spatiotemporal

power-law correlation in respect to the total behaviour of the network, and self-tuning to the

critical point where the network self-selects the periodic orbit [15].

Properties of SOC within biosystems

Considerable effort has been put into deciding the characteristic properties of criticality in

large and complex systems. Aspects, such as connectivity, and dynamics are known to be

important, on which the principle of Artificial Neural Networks is based. Here, I argue that the

problem can be said to lie in determining how a local system, usually at a much smaller scale,

can contribute to a global, stable system of which they form only a small part. Within dynamic

systems theory, these local systems can act as perturbations of the overall global system. Even if

the individual elements are themselves dynamically stable (in a steady state), the entire system

may become unstable due to these perturbing elements. This is commonly seen in spatiotem-

poral chaos, where individual elements are in steady state, yet they destabilise the entire system

when weakly coupled [27]. Within biosystems this property, where clusters of smaller elements

contribute to the total behaviour, is very common. For example, it may be seen clearly in the

organs of large multi-cellular organisms [28, 29]. Loss of stability in any of these localised sys-

tems may be catastrophic for the entire global system. The ability to ensure that the entire sys-

tem remains stable may not depend on a specific supervisory element, but must be provided

by the cooperative nature of the constituting elements. This, in effect, precludes the use of

supervisory control, even if that is a much higher order controller, such as the brain [30]. This

characteristic property of biological systems to exhibit emergent dynamic behaviour is based

on local small scale distributed dynamics behaviour which collaborates to produce a higher

order dynamics. In particular, the ability to respond in a characteristic nonlinear manner, such

as a log scale response to input [31], as well as the regulation of producing and consuming bio-

matter. Different parts of the organism are involved in maintaining and developing the global

system and these small conglomerates of cells or organisms can produce types of activity simi-

lar to the behaviour of larger organisations [1]. For these disparate systems to cooperate effec-

tively, it would seem that local control is not sufficient. However, if these systems share

properties with critical systems [14], it becomes feasible that by changing the response of the

local system to the external conditions, a suitable state can be found that is appropriate for con-

trol to be effective at the global scale. This means that the proposed mechanism of control per-

mits local control of homeostatic systems without external or supervisory approaches.
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SOC and homeostasis

Homeostatic control is based on negative, as well as occasionally positive, feedback of some of

the components in the feedback loop in relation to some set point. This well known concept is

enticingly simple, and has echoes of the older concepts of physical harmony, and well balanced

systems. It exists in many biological systems at almost all levels, from sub-cellular molecular

dynamics [32, 33], through physiological phenomena (e.g. glucose and blood pressure levels)

[34], neural dynamics [35], and all the way to sociological behaviour. Both from experimental

data and from physiological experiences [36], this concept seems to be somewhat flawed. In

dynamic systems theory it has been shown that feedback systems can only under the strictest

circumstances be guaranteed to be stable. For example, it is shown that a reduced system can

have multiple stable states using isolated feedback loops [37] but only for a specific parameter

set. Positive and negative feedback loops may have both stabilising and destabilising effects,

depending on the shape of the Jacobian matrix for only some determined stable states [38].

Lastly, even an unified control approach, emphasising the possibility of hierarchical control,

avoids the issue of system stability and does not consider the effect of the complexity of each of

the boxes connected within various feedback loops [2].

It has become clear that even well known homeostatic systems are very rarely stable in the

dynamic sense, appearing to have multiple stable states, and do not show the properties of sta-

ble systems when perturbed. This has now been encapsulated within the concept of allostasis

that permits multiple stable states within an homeostatic system [39]. Assuming that a homeo-

static system is the apparent result of underlying stabilising mechanisms, rather than the

mechanism itself, it may be possible to explain this concept, and its limitations in a consistent

dynamic systems manner, using criticality [14, 21]. Employing criticality to understand

dynamic interactions allows the system to be highly variable, as indicated by multiple stable

but controlled states, and at the same time be dynamically stable in the sense that each individ-

ual state does not destabilise the system. Providing dynamic stability with high variability of

the emerging system will allow for a better understanding of the underlying mechanisms, and

may provide possible ways to resolve the limitations of homeostatic control that currently can-

not be addressed appropriately [40].

Within the Methods section, it is explained how SOC is constructed based on networks of

RCC controlled oscillators. The Results section discusses weakly connected pools of these

oscillators to demonstrate that the use of localised control by RCC allows the entire system to

be globally stable. It also shows the, often considered essential property of SOC, of scale-free

behaviour that emerges from the overall dynamics. Finally, it is shown how this approach

allows SOC to underlie the basic concepts of homeostasis within a biological organisation, pro-

viding a means to understand these complex relations as a biodynamic behaviour.

Methods

Recently, it has been shown that nonlinear chaotic dynamic systems can be stabilised using the

Rate Control of Chaos method. This method adjusts the rate of evolution of part of a nonlinear

system such that the exponential growth of an unstable chaotic oscillator is controlled into sta-

ble limit cycles. The control is determined using the rate of growth of some of the variables in

proportion to the overall embedded phase space of those variables. This is then applied to an

exponential control function that, in effect, causes the rate of change of the variable to be con-

trolled to speed up, or slow down. The proportional rate of change is unity when no control is

applied or when the system is not changing exponentially [41, 42].

This method may be regarded as an extension of the traditional biochemical enzyme con-

trol concept by adjusting the reaction rate. The ability to control the stability of biochemical
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reactions, by controlling the rate of reaction based only on local information, allows the biosys-

tem to function under a wide range of conditions. Furthermore, it has been shown that this

mechanism can be extended further to control higher level spatiotemporal chaos, even if the

underlying dynamics of each element is chaotic [42]. The individual elements, as well as the

total observable system, are stable in the sense of Lyapunov stability. This means that the sys-

tem will reliably return to the same area of phase space relative to its controlled dynamics,

although it does not necessarily follow that this is the same as the uncontrolled chaotic domain.

Therefore, the RCC method does not eliminate entirely the chaotic properties of the underly-

ing nonlinear system, but applies limited localised control to the system to maintain an appar-

ently stable system. The controlled system still has many properties of the nonlinear system; it

can respond nonlinearly to perturbations and can be weakly chaotic. This is illustrated in Fig

1A, where the RCC controlled system of a bienzymatic model, described below, is controlled

into a stable orbit. In Fig 1B is shown the local Lyapunov estimates for the controlled system,

demonstrating weak chaos. The phase space of both the controlled and uncontrolled system

can be seen in Fig 1C.

The nonlinear model of a bienzymatic cycle used in this paper by Berry [43], described by

(4) to (7), has been shown to be controllable using the Rate Control of Chaos (RCC) method,

such that the control allows the stabilisation of the external environment by adjusting the

amount of enzyme based on the local amount of one of the components f [44]. This model

describes the two enzymes that control the formation of extracellular matrix m from soluble

filaments f. The proteinase p transforms the matrix into filaments, and the transglutaminase g
converts the filaments into matrix. Extracellular matrix is produced by neighbouring cells rim
at a constant rate, and each protein decays in catalytic processes proportional to p. rim is a

bifurcation parameter, that may cause the system to become unstable and chaotic. Application

of the RCC method, described by the quotient qf (1), and the two control functions σp (2), and

σg (3), controls the production of the two enzymes p and g (in (6) and (7)) such that the system

remains in controlled stable orbits for large ranges of values of the bifurcation parameter rim.

Within the subsequent simulations, the model is shown as time series of the main variables m
and f or phase space plots of f (x-axis) versus m (y-axis).

qf ¼
f

f þ mf
ð1Þ

spðqf Þ ¼ fp eðxp qf Þ ð2Þ

sgðqf Þ ¼ fg eðxg qf Þ ð3Þ

dm
d t

¼ kg
f g

KG þ f
�

mp
1 þ m

þ rim ð4Þ

d f
d t

¼ �kg
f g

KG þ f
þ

mp
1 þ m

�
f p

1 þ f
ð5Þ

d p
d t

¼ spðqf Þg
f n

Kn
R þ f n

� ka p
2

ð6Þ
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Fig 1. Dynamic controlled behaviour of the Berry model. A Example of the chaotic Berry model with control enabled at the dotted line, the system

quickly stabilises into a two orbit. Top panel shows the modelled soluble filament f, the bottom panel the fixed matrix m in time. B Lyapunov estimates

of the model in Fig 1A, showing small positive and small negative values. The control, enabled at the dotted line, does not eliminate the chaotic state,

but changes the system into a stable oscillation. C Phase space plot of the chaotic model in blue, with the RCC controlled two orbit superimposed in

gold, F versus M. D Total unweighted sum M from sixteen weakly coupled RCC controlled oscillators, with random external perturbations at fixed

intervals showing 7 stable oscillations after very short transients. E Phase space plot F versus M, of 24 stable oscillations based on the total unweighted

sum of the sixteen weakly coupled oscillators. Each coloured line is a single stable oscillations, as can be seen in time in Fig 1D. F Phase space plots of

the sixteen systems F versus M, where each coloured line is a single stable oscillation, different due to the random external perturbations (transients

removed).

https://doi.org/10.1371/journal.pone.0260016.g001
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d g
d t

¼ sgðqf Þb
f l

Kl
S þ f l

� kdeg
g p

Kdeg þ g ð7Þ

The Berry model parameters are as follows; γ = 0.026, β = 0.00075, KR = 4.5, KS = 1, KG = 0.1,

Kdeg = 1.1, kg = kdeg = 0.05, ka ¼
kdeg
Kdeg

¼ 0:0455 and the Hill-numbers l = n = 4. For different values

of the bifurcation parameter rim in (4), the model exhibits a wide range of dynamic behaviour,

including periodic cycles, bistability and chaos [43]. This parameter is kept for all oscillators

within the chaotic domain. External input is provided to this parameter in the perturbation

experiments (8), and this parameter is used to connect the different oscillators together using a

scaled relative contribution from all the other oscillators (i.e. no self-connections):

riim ¼
Xn

k¼1;k6¼i

wk mk þ � ð8Þ

where wk the connectivity strength for the oscillator which can be either 0.00011, 0.00012, or

0.00025, and remains within the chaotic domain. � is a uniform distributed perturbation term

drawn from the domain [−1, 1] and scaled to the connectivity strength of each unit. The pertur-

bation used for the oscillators is the same random uniform distributed value applied to each

oscillator, but is scaled by the randomly chosen values [7.5, 1, 8, 3.25], although each column in

Fig 1F has the same perturbation value to ensure that the network is not symmetric. Further-

more, the perturbation is redrawn after a certain number of evolution steps, allowing the sys-

tem to be explored for different values of perturbation, resulting in different oscillations. The

connectivity strength values for each oscillator may vary, and this affects the dynamics, but not

the stability. This is shown in the simulations with stepwise increase of the connectivity

strength, starting from wk = [0.0001, 0.0002, 0.0003, 0.0004] for each column, and increased

after 105 time steps by 0.00005 (Fig 2C). The connectivities were therefore kept within the cha-

otic domain of the underlying oscillators, and further work is under way to demonstrate the

utility of the connectivity strength within these models. The RCC method can be shown to sta-

bilise spatiotemporal patterns, which may become unstable due to local nonlinear interaction,

and is effective even when the underlying systems are chaotic [42]. The advantage of this

method is that it allows nonlinear systems to be stabilised into periodic stable dynamics based

only on the local dynamics of each individual oscillator. The RCC parameters were also kept

constant in these models, but can be varied to change the shape of the local oscillator. For the

first perturbation experiments (described in Figs 1–4), the control parameters in (1) are μf = 2,

and in the RCC functions for each of the enzymes p (2) and g (3) are ξp = −1, fp = 1, ξg = −1,

fg = 1. In the criticality experiments with global feedback, the control is enhanced by ξp = −3,

and ξg = −3, with no other changes. In the experiments with 64 oscillators (see Fig 4), the con-

nectivity strength for each oscillator was a randomly assigned unique value between 1 and 10.

This was to show that the parameters do not need careful tuning beyond ensuring that the sys-

tem is in the chaotic domain, and RCC controlled.

Using simple finite-difference connections between the oscillators, or more elaborate con-

nectivity schemes as required, the critical dynamics can be generated. The individual oscilla-

tors will adjust their local dynamics to accommodate the perturbations by their immediate

neighbours. The global dynamics may then become critical due to the nonlinear oscillators. As

shown in the results, imposing a linearisation method on the connectivity scheme, such as

Crank-Nicholson discretisation, will remove the high frequency nonlinear behaviour and

results in the loss of criticality of the global state. The network of oscillating nonlinear models
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is simulated using standard ODE fixed step integration methods. The fourth-order Runge-

Kutta (RK) method, as well as the higher order extensions, Fehlberg RK and Prince-Dormand

RK, provide suitable results with varying choice of integration step size. The qualitative results

are readily reproducible using any of these methods. The simulation software EuNeurone,

used for these models, is available as open source, as well as the model equations. Both are

available on Zenodo [45, 46].

The total unweighted dynamics is determined by the sum of the individual oscillators i for a

total of n, as could be seen by a remote observer for whom the individual oscillators are not

readily visible.

M ¼
Xn

i

mi ð9Þ

Fig 2. Network size in relation to power law due to random perturbations. A Log-log plot of the total unweighted sum M from 8 (blue), 16 (green),

and 32 (gold), weakly coupled RCC controlled systems, with random external perturbations. The power curve fits are M(8) = 26.88�−0.14, M(16) =

15.19�−0.22, and M(32) = 32.48�−0.29.B Power-law estimation function for the 8 coupled oscillators with a minimum of M = 64.5, and slope α = 7.05. C
Power-law estimation function for the 16 coupled oscillators with a minimum of M = 99, and slope α = 5.85. D Power-law estimation function for the

32 coupled oscillators with a minimum of M = 184.5, and slope α = 5.27.

https://doi.org/10.1371/journal.pone.0260016.g002
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F ¼
Xn

i

fi ð10Þ

The summed total of the variables m for each of the oscillators is added to Eq (8) for the

models with global feedback, scaled either negatively or positively as appropriate (vk =

Fig 3. Importance of connectivity in creating an RCC critical system. A Total unweighted sum M from sixteen weakly coupled RCC controlled

systems, with random external perturbations, as well as, incremental increases in the connectivity strengths. B Phase space plot of the total dynamic

behaviour of the perturbed systems, with incremental stepwise increases of the connectivity strengths. Each coloured line is one stable oscillation. C
Phase space plots of the sixteen weakly coupled individual systems, with incremental increases in connectivity strengths. D Log-log plot of the external

perturbation � versus the maxima of the total unweighted sum of m. Fitted power curve in black (3.9�−0.13). E Power-law estimation of the maxima of

the network with the fitted power function (dotted line) superimposed with minimum x(M) = 160 with slope α = −18.24. F Log-log plot of the external

perturbation � versus the maxima of the total unweighted sum m with Crank-Nicholson interpolation connectivity scheme. The fitted power curve in

black 2.1�−0.32. G Power-law estimation of the maxima of the Crank-Nicholson connected network with the fitted power function (dotted line)

superimposed; minimum x(M) = 41.76, slope α = −9.55.

https://doi.org/10.1371/journal.pone.0260016.g003
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±0.00001), to ensure that the individual oscillator is within the controlled domain. This feed-

back is added during the evolution of the differential equations, so that M is due to the instan-

taneous value determined at each integration step, and therefore not merely equal to the

current summed input of the previous time step reflecting the local instantaneous state of the

system.

riim ¼
Xn

k¼1;k6¼i

wk mk þ � � vkM where vk < wk ð11Þ

The Eq (11) shows that feedback for this model in effect reduces the connectivity as pro-

vided to rim for each oscillator, but because of the weaker feedback, it does not disrupt the net-

work such as much stronger connectivity or little connectivity would effect.

The log-log plots are generated by the maximal peak values of the unweighted sum max(M)

during a single oscillation, and used to determine the power plot as estimated using the power-

Fig 4. Domains of power law relations within perturbation space of RCC controlled Self-Organised Criticality. A Phase space plot of M versus F of

100 stable oscillations in a 64 oscillator network. B Plot of the maxima of F versus the maxima of M of the 100 orbits on the left. Notice the two domains

where the dynamics of the oscillators change. C Plot of the Normalised Gaussian distributed perturbation � with variance 10 versus the maxima of M,

showing that around 0.043 the oscillators change their shape. D Log-log plot of the Normalised Gaussian distributed perturbation � versus the maxima

M, same as the panel on the left. Additionally, the curve fits for the power functions 134.7�−0.328 (red), 5.38 × 105 �2.254 (orange), and exponential

function fits 715.9e−16.89� (blue), 56.59e48.26� (green). This shows clearly that the system can have a power law relation for limited size perturbations, and

a non-power law relation otherwise.

https://doi.org/10.1371/journal.pone.0260016.g004
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law estimate function according to Clauset et al. [13]. This method estimates the scaling

parameter α from the power law probability distribution p(x) = Pr(X = x) = Cxα using the

method of maximum likelihood. This is determined using the numerical maximisation of the

logarithmic likelihood function described by

LðaÞ ¼ �n ln Bða; xminÞ � a
Xn

i¼1

xi ð12Þ

The minimum bound for xmin for these estimates is determined by the Kolmogorov-Smir-

nov statistic, that is the maximal distance between cumulative distribution functions of the

data and the fitted model. It is noted that these methods would require a significantly large

data set for reliable estimation. Within the shown simulations, these estimates are provided

primarily to demonstrate that the overall probability of a power law relation is feasible.

Determining the fitness of any model that can describe the datasets is more readily achiev-

able for probabilistic approaches that allow the preplanned comparisons between models. The

goodness of fit, as used above, employing the method of maximum likelihood, is only appro-

priate to the extent that it allows the model to be reconciled with the options available, in this

case the existence of some power law relation. It also suffers somewhat from the ability to be a

suitable predictor due to possible overfitting. Similar complexity measures for model estimates

are the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC)

that can indicate the best fit of log-likelihood, often used for predictors in regression models.

These can be determined as follows, based on the Mean Squared Error.

aic ¼ �n ln
1

n

Xn

n¼1

ðxi � x̂iÞ
2

 !

þ 2 k ð13Þ

bic ¼ �n ln
1

n

Xn

n¼1

ðxi � x̂iÞ
2

 !

þ k lnðnÞ ð14Þ

where k is the number of parameters of the estimated model, and x̂i is the estimated fit. This is

used below to demonstrate the deterministic nature of the method of SOC generation and the

suitability of the model estimates.

The generic properties of a two enzymatic control of a producer and consumer system,

such as the formation of (extra-)cellular matrix of the Berry model, can be considered to be

representative of many biological processes where a resource is controlled by antagonistic con-

trol using two enzymes. The model is not considered to be solely representative of this concept,

but is recognisably typical for many types of control needed for biological control processes.

The Rate Control of Chaos has successfully been used to control many different models, e.g.

the Rössler and Lorenz models [41], but also the Grey-Scott [27], and the Lengyel–Epstein

models [47], that have been used to model biologically relevant patterns of insulin release in a

criticality based system.

Results

Local control provides global stability

To illustrate the emerging global controlled critical behaviour, a simulation of 16 coupled RCC

controlled chaotic oscillators is used. These oscillators receive local random external perturba-

tions (i.e. external to these oscillators), causing them to change their local dynamics in

response. To visualise this, in Fig 1D is shown a short series of only 7 perturbations, where the
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perturbations are randomly varied every 20,000 time steps. Note that after only very short tran-

sients, the total global behaviour of the unweighted sum of the oscillators becomes stable in a

different oscillation each time. The phase space plot of a sample of 24 randomly perturbed

oscillations is shown in Fig 1E, where the total unweighted sum of the two main variables of

each oscillator are plotted, with the transients removed. Each different coloured line represents

one of these stable oscillations, showing changes in the dynamics, but only depending on these

perturbations. The individual oscillators that combine to generate the global stable dynamics

are shown in phase plots in Fig 1F, where each coloured line represents the stable oscillation

under the perturbed conditions, with transients removed. As explained in the Methods sec-

tion, Fig 1A, shows the RCC controlled system of a bienzymatic model controlled into a stable

orbit. In Fig 1B is shown the local Lyapunov estimates for the controlled system, demonstrat-

ing weak chaos. The phase space of both the controlled and uncontrolled system can be seen

in Fig 1C.

The number of oscillators in the network naturally affects the amplitude of the summed

oscillators, but the critical multi-stability property of the network is preserved. This is shown

in Fig 2A, where the log-log plot of three networks are shown. The lower graph shows total

behaviour M of 8 coupled oscillators, the middle of 16 oscillators (same network as shown in

Fig 1, but with different random perturbations) and on top, 32 coupled oscillators. The curve

fits that are superimposed on the three sample behaviours show the power relations M(8) =

26.88�−0.14, M(16) = 15.19�−0.22, and M(32) = 32.48�−0.29. To show that the underlying relation

has some power law relation rather than an exponential or similar relation, the power law esti-

mation functions for each of the three samples of coupled networks were determined (see

Methods). In Fig 2B for the 8 coupled oscillators with a minimum of M = 64.5, and slope α =

7.05. In Fig 2C for the 16 coupled oscillators with a minimum of M = 99, and slope α = 5.85,

and in Fig 2D with a minimum of M = 184.5, and slope α = 5.27. Due to the limited number of

oscillators used, the power law function does not cover many decades. The results show that

the near power law relation holds for several sizes of networks; large scale modelling, which is

computationally expensive, will need to show the full range of scale-free behaviour.

By modelling a simple network of controlled chaotic nonlinear oscillators, it can be seen

that even with random perturbations, the control allows the total system to remain stable. It

adapts to these perturbations by stabilising into different orbits. The perturbations can still

destabilise the entire system if their contribution is disproportionally large with respect to the

ergodic properties of the individual oscillators. The number of elements affects the dynamics

by allowing higher amplitudes, but more importantly the system maintains multi-stable states

and has apparent power law relations, even for such small networks.

Scale-free emergent behaviour

To demonstrate how the network of rate controlled oscillators is capable of generating appar-

ent scale-free behaviour, the same network is used, still randomly perturbed by uniform per-

turbations on each of the oscillators, but simultaneously the network connectivity is stepwise

increased. Starting with a relatively low connectivity, strong enough to maintain some cohe-

sion between the oscillators, the connectivity between the oscillators is increased stepwise at a

constant rate. This is shown in Fig 3A, where the unweighted sum M is shown in time, with

stepwise increments of connectivity at each multiple of 105 time steps. Even though the

dynamics of the total system may change, it remains stable throughout. Not shown is that if

the connectivity becomes too large, M will explode to a singularity. In Fig 3B is shown the total

dynamics of f versus m of each individual stable oscillation indicated by individual different

colours, with transients removed. Although at higher connectivity strengths the orbits are
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more noisy, due to the amplification of the individual random perturbations, the total system

remains stable. This can be seen in Fig 3C, where the sixteen oscillators are shown, for each of

the incremental steps, clearly demonstrating their individual stability, even at high

connectivity.

The changes in connectivity could for most coupled dynamic systems be a source of insta-

bility, often causing bifurcation phenomena. However, the local control manages to stabilise

each individual oscillator, based on local information alone, and thereby ensures that the

global system remains stable as well. The subsequent total or global system also demonstrates

properties of criticality, in that the total system amplitude grows much faster than merely the

sum of the individual elements a linear (or reduced) system would show. To quantify this, the

peaks M are determined (the maximal value of M once stabilised past the transient), and plot-

ted versus the amount of local perturbation in Fig 3D. To demonstrate independence of the

connectivity strengths of this scale-free property, the data from the perturbation simulations

are used, as in Fig 1D. The log-log plot shows the apparent power-law relation, with a fitted

power curve 3.9�−0.13. The corresponding power-law estimation function is in Fig 3E, with a

minimum of M = 160, and slope α = 18.24, demonstrating that the data is partly power distrib-

uted. It is interesting to observe that this scale-free aspect results in an almost power-law rela-

tion which is characteristic for biological observations [26].

Testing the hypothesis that the emergent critical system is based on the combination of the

RCC controlled chaotic system with weak to moderately strong connectivity, the connectivity

function was modified to match the standard Crank-Nicholson interpolation method, using a

two-by-two stencil of the local neighbourhood. The peaks of M were determined based on the

uniform perturbed network of oscillators, and plotted against the perturbation in Fig 3F. No

system parameters were modified, apart from the interpolation connectivity; therefore both

the individual oscillators and the total system remained stable, but have lost the scale-free

power relation. The power-law estimation function for those data samples is in Fig 3G, with a

minimum of M = 41.76, and slope α = 9.55, showing no power law relation present.

To further investigate the effect of perturbations on a larger pool of oscillators, a network of

64 oscillators was individually perturbed with Normalised Gaussian Distributed perturbations

with mean of 0.00005 and variance of 10, to ensure that each oscillator is receiving sufficiently

different input. The choice of Gaussian distribution to replace the uniform distribution is

made to show that the approach is independent of specific distributions for criticality to

emerge. The resulting stable oscillations of 100 orbits are shown in a phase space representa-

tion in Fig 4A, where each colour represents a different stable oscillation of the total behaviour

of the summed variables F versus M. In Fig 4B can be seen the maxima of each stable oscilla-

tion of F versus M, showing that there are two distinct domains of oscillatory behaviour

emerging from this network. The first type is a single orbit that seems almost linearly related.

The second type is a two-orbit that causes an apparent cluster on the left, above the apparent

line. However, the underlying relation between the perturbations and the effect on the total

dynamic behaviour is not linear, as can be seen in Fig 4C, where the total summed perturba-

tions of the 64 oscillators is plotted against the maxima of M. It becomes clear that the left part

of this plot for � < = 0.043 (before the dotted line), exhibits a power-law relation between the

total perturbation � and the maxima of M. This is shown in a log-log plot in Fig 4D, where

superimposed are also shown four curve fits. The power function 134.7�−0.328 in red is fitted to

the curve for � < = 0.043 and clearly expresses the sub-domain where a power law relation

exits. In blue is shown the fit of an exponential function 715.9e−16.89� on the same domain,

which is clearly quite poor. The domain for � > 0.043 fits a power law 5.38e+ 05�2.254 in

orange) but also an exponential function in green 56.59e48.26�, indicating that this domain does

not have a power law relation, and may be exponential or simply linear.
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These models are based on deterministic behaviour of the perturbed network which itself is

based on controlled chaotic oscillators. The models are only perturbed from one state to

another by the random perturbations, and no noise is included in these systems. The resulting

behaviour is therefore fully stable deterministic and is completely described by the RCC con-

trol. It is possible to determine the log-likelihood of the data for model selection. The relevance

of probabilistic model selection approaches is very limited to this type of modelling because

statistics such as AIC are designed for preplanned model estimates that do not take into

account the model parameter space, which for a large set of nonlinear differential equations is

extensive [48]. It should also be considered that the underlying model is not based on probabi-

listic methods, and that the emerging power or exponential relation causes great variance in

the data, which greatly amplifies the mean squared error. As a representative example of such

estimates, the BIC and AIC were determined for both the power fit model, and the exponential

fit model on the data shown in Fig 4D.

The model fits with samples for � < 0.043 are 135.5�−0.3277, and 712.7e−16.65�. In this case,

for the power fit, the Mean Square Error is 46.2, BIC is −247.98., AIC is −254.64; and for the

exponential fit MSE is 374.74, BIC is −390.33, AIC is −396.98. Despite the relatively large value

of MSE, the power fit still seems better suited than the exponential fit. For the model fits with

samples � > 0.043, the fits are 5.387e+ 5�2.254, and 56.59e48.26�. The corresponding values for

the power fit, MSE is 304.47, BIC is −183.85, AIC is −188.43; and for the exponential fit, MSE

is 330.63, BIC is −186.65, AIC is −191.23, which shows there is little difference in these esti-

mates for model selection, possibly favouring the power fit somewhat.

It can also be concluded from this set of simulations that the relation between perturba-

tions, the number of oscillators, and connectivity strengths is not straightforward. However,

the resulting system of connected oscillators is dynamically stable, can exhibit different types

of emerging relations between the total amplitude of the oscillators and the perturbations, and

also that the emerging power law relations are an epiphenomenon of the network’s attempt to

stabilise its overall behaviour in response to external random perturbations.

The described network of nonlinear RCC controlled oscillators is also quite noise robust.

The perturbations cause the complete system to assume a specific orbit, if these perturbations

themselves also vary over time, this will result in continuously adjusting orbits, but within the

same deterministic neighbourhood. This property is derived from the original RCC control

that aims to maintain the orbit in a stable oscillation (see [42]), and can be understood by con-

sidering that the control will correct for noise in the same way as it does for chaos.

The apparent power-law relations found within a domain of the perturbation parameter

provide a strong indication that the nonlinear behaviour of each oscillator causes perturba-

tions such that the total behaviour of these oscillators is much stronger than the individual

contributions they provide. This is not based on the onset of synchronisation due to changing

coupling strengths, because it occurs for constant coupling and there is no critical coupling

strength for which the relation holds.

It has already been shown that chaotic units may generate a critical system [49], where the

effect of connectivity over time is shown to have a power-law relation between connectivity

and the connected chaotic systems. Here, the connectivity level of k-connectedness is critical

to establish the power law stability. Therefore, a locally controlled mechanism of generating

critical rate controlled systems, as described in this paper, may provide the necessary dynamics

for complex interactions found in biological systems. For example, local producers of a protein

can regulate their behaviour on local information alone, but still provide the effect needed by

remote consumers of the protein. This may be particularly important for regulatory processes

and may provide the key elements of a feedback loop process that responds rapidly to changing

global behaviours.
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Criticality as a homeostatic process

Adapting the network of sixteen coupled oscillators to include a global feedback of the total

dynamic behaviour is possible by adding the scaled total behaviour to the external perturbation

of each oscillator, ensuring that the perturbed input to each of the oscillators is not too great to

push it out of the controlled domain. By making this feedback either positive or negative, the

effect of global input to the individual oscillators as negative and positive feedback loops is

shown. In Fig 5A is shown the total dynamics of the network, with stepwise increased connec-

tivity and positive feedback, but without further random perturbations. In this case, the differ-

ent stable orbits due to the increased connectivity are amplified to higher totals than without

the positive feedback. The corresponding power-law estimation function, based on the maxi-

mal values of these orbits, shows a strong power relation between the connectivity and the

total amplitude of the oscillations (Fig 5B). Conversely, if the feedback of the total behaviour is

negative, the total dynamics is more compressed, as can be expected (Fig 5C). Also, the indi-

vidual oscillations are more limited, with less drift. The power-law estimation function of the

negative feedback (Fig 5D) shows, interestingly, that the critical system has lost its power-law

relation and appears more linear. This would suggest that, just like in classical homeostatic

Fig 5. Global positive or negative feedback causing enhancement or loss of power relations. A Total dynamic behaviour of a network of sixteen

coupled rate controlled oscillators with global positive feedback. The feedback pushes the total dynamic behaviour to new heights. Each coloured line is

one stable oscillation with positive feedback. B Power-law estimation of the maxima of the positive feedback network with the fitted power function

(dotted line) superimposed with minimum x(M) = 360.24 and slope α = −6.74. C Total dynamic behaviour of a network of sixteen coupled rate

controlled oscillators, differently coloured lines indicate different stable oscillations, with negative global feedback. The negative feedback reduces the

behaviour. D Power-law estimation of the maxima of the negative feedback network with the fitted power function (dotted line) superimposed with

minimum x(M) = 435.69 and slope α = −59.29.

https://doi.org/10.1371/journal.pone.0260016.g005

PLOS ONE Controlled bio-inspired SOC

PLOS ONE | https://doi.org/10.1371/journal.pone.0260016 January 24, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0260016.g005
https://doi.org/10.1371/journal.pone.0260016


negative feedback control, the global negative feedback can stabilise individual global states.

This in effect counteracts the local connectivity, but at the expense of less dynamic capabilities.

Due to the currently available network connectivity the network has become less complex.

Conclusion

Self-Organised Criticality emerges from local nonlinear interactions of Rate Control of Chaos

controlled elements. This allows critical states to exist where the global dynamics, as expressed

by the total unweighted sum of each element, is dynamically stable. Multiple states are achiev-

able for the dynamic system, driving the system towards the desired global state by perturbing

individual oscillators. Adjusting the local connectivity, in effect recruiting more elements,

allows different dynamic states to emerge. Increasing the number of elements allows domains

of different relations between perturbations and total behaviour to emerge. These apparent

relations, whether power-law, exponential or linear relations, appear due to the networks’ self-

stabilising properties. Given that he primary aim of any biological system is to maintain stabil-

ity, the exact nature of the emerging relation becomes therefore a mere epiphenomenon of the

ability of the system to stabilise and control its complex dynamics. Furthermore, providing

localised global feedback may allow other critical states to also become available, or allow the

control of global behaviour into a more limited stable domain.

The described models are clearly in a critical dynamic state, and can readily change state

due to local perturbations. This critical state is the result from the RCC controlled systems

with local interaction between the units and is therefore self-organising. Lastly, the emerging

power law relations and other relations are the result of the nonlinear interactions of the oscil-

latory units. Therefore, these models are said to describe Self-Organising Criticality because it

matches the characteristic key features: non-trivial scaling, spatiotemporal power-law relations

(domain bound), and self tuning to the critical state [15].

Biosystems can therefore emerge from the localised interactions between controlled nonlin-

ear systems, creating the perfect combination of complexities that supersedes the limitations of

linear systems, avoids the instability of chaotic nonlinear systems, and limits the domain of

self-emergent critical systems. This opens up the possibility of innovative research in con-

trolled nonlinear biological dynamics with direct applications to health, engineering control,

and human wellbeing.
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