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Abstract: Delay and especially delay in the transmission of agents’ information, is one of the most

important causes of disruption to achieving consensus in a multi-agent system. This paper deals with

achieving consensus in delayed fractional-order multi-agent systems (FOMAS). The aim in the present

note is to find the exact maximum allowable delay in a FOMAS with non-uniform delay, i.e., the case

in which the interactions between agents are subject to non-identical communication time-delays. By

proving a stability theorem, the results available for non-delayed networked fractional-order systems

are extended for the case in which interaction links have nonequal communication time-delays. In this

extension by considering a time-delay coordination algorithm, necessary and sufficient conditions

on the time delays and interaction graph are presented to guarantee the coordination. In addition,

the delay-dependent stability region is also obtained. Finally, the dependency of the maximum

allowable delay on two parameters, the agent fractional-order and the largest eigenvalue of the

graph Laplacian matrix, is exactly determined. Numerical simulation results are given to confirm the

proposed methodologies.

Keywords: distributed coordination; fractional-order systems; multi-agent systems (MAS);

communication time-delay

MSC: 93D99

1. Introduction

The distributed coordination of multiagent systems has attracted great interest in
recent years. Some real-world examples of coordination are the formation of birds or
fish, the mass movement of animals, and ant colonies. Additionally, it is known that the
distributed coordination of networks of agents has a wide range of applications in different
fields such as formation control [1], swarm systems [2], or in distributed sensor networks [3].
Until now, different studies have been carried out in order to investigate the properties of
distributed coordination systems (for some samples, see [4–7]). In this regard, consensus is
one of the important aims in the distributed control of multi-operating systems.

In these previous studies, the dynamics of agents are considered to be in the format
of integer-order differential equations; meanwhile, it has been recently proven that the
exact models of a lot of systems are more precisely described by fractional-order equations.
Viscoelastic systems, some kind of energy consumption systems, electromagnetic waves,
or even underwater vehicles which are moving in the lentic lakes and so on are all in
a fractional-order format [2,8–10]. As pioneering studies, refs. [11,12] have studied the
distributed coordination problem in the networked fractional-order systems. FOMAS with
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fractional-order dynamics have been also studied in [2,13,14] as fractional-order swarm
systems. In nature, some phenomena can be expressed by the coordination of fractional-
order dynamic agents, for example, the chemotaxis behavior of microbes and collective
movement of bacteria in lubrications that perspired by themselves [15]. The engineering
applications of the distributed coordination of networked fractional-order systems include
the coordination of submarines operating in lentic lakes that are composed of microbes,
bacteria, and viscoelastic materials, flying vehicles when exposed to the particles in air such
as rain or snow, and even ground vehicles when moving on top of sand, muddy roads, or
grass [2,16,17].

On the other hand, delay is one of the most important causes of disruption and even
instability in a MAS and FOMAS. Delay in the transmission of agent information, which
takes place in the communication graph, is very important. Consensus control in the
presence of delay or finding the necessary and sufficient conditions for consensus in the
presence of delay is a hot topic in this field [18–22]. In [18], the containment control of a
FOMAS with and without time-delay was studied, and using the frequency domain, a
critical amount for delay was obtained for achieving consensus in the presence of delay.
Ref. [19] considered double-integrator fractional-order multi-agent systems with undirected
graphs, and a sufficient condition of consensus was then derived along with a maximum
tolerable delay. In these papers, a specific and exact stable region for delay was not
calculated. Additionally, the exact maximum allowable delay was also not obtained. The
consensus problem in a FOMAS with input time-delay is also presented in [20]; they
showed that by using intermittent sampled-data control, the necessary and sufficient
conditions of consensus were obtained depending on some parameters such as order,
input delay, and so on. However, the maximum time-delay or a stable region for stability
was not calculated. Using iterative learning control (ILC) and fractional PD control, the
convergence condition of consensus in a delayed fractional-order multi-agent system is
proposed in [21]. The containment control of FOMAS when the dynamics of agents are
different along with bounded time-delays was investigated in [22]. In this reference, it is
shown that as long as a follower has a path in the topology graph from at least one leader,
the followers will finally arrive in a convex hall around stationary leaders [22]. Neural
adaptive consensus in a fractional-order nonlinear MAS with both fault and delay was also
studied in [23]. They found that in order to deal with the severe faults, an adaptive controller
needs to be designed; regarding time-varying delays, two methods are presented based
on Lyapunov and Lyapunov Krasovskii functions. Recently, in [24], the leader–follower
non-fragile consensus in nonlinear fractional-order MAS in the presence of state time-delay
and uncertain parameters was dealt. In this paper, the order-dependent sufficient condition
for consensus protocol was obtained.

Most of the necessary and sufficient conditions for consensus in a delayed FOMAS
which have appeared in the literature and depend upon some conservative assumptions do
not explicitly provide the maximum allowable amount of delay or do not provide a specific
stability region.

Notably, in the present study, the aim is to find the exact allowable delay in a FOMAS
with non-uniform delay, i.e., the case in which the interactions between agents are subject to
non-identical communication time-delays. Like other related works, Ref. [25] obtained the
necessary and sufficient conditions on the values of time-delay using a frequency domain
approach. However, the point is that the delay-dependent stability region is not obtained,
and the maximum allowable delay is not explicitly calculated.

The most important innovations of the present paper compared to the previous studies
can be highlighted as follows:

(1) Obtaining the exact maximum allowable delay at the stability boundary of FOMAS
(obtaining the sufficient and necessary condition of consensus in the presence of delay)
and comparing with the counterpart integer-order case.

(2) Providing a new drawing method for calculating the boundary of stability in the
presence of delay.
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(3) Drawing the delay-dependent stability region in the FOMAS system.
(4) Determining the exact dependence of the maximum allowable delay on two param-

eters: 1—the fractional order of agent models, and 2—the largest eigenvalue of the
graph Laplacian matrix among agents.

This paper is organized as follows: The problem formulation is given in Section 2.
Section 3 presents the main results of the paper which include the stability analysis of a
coordination algorithm for networked fractional-order systems in the presence of time
delays. Simulation results in Section 4 are given to confirm the analytical results. Finally,
the conclusions in Section 5 close the paper.

2. Problem Formulation

Consider a network of N agents whose dynamics are described by

Dα
t xi(t) = ui(t) i = 1, 2, . . . , N (1)

where α ∈ (0, 1], xi ∈ R is the pseudo state variable [13,16], ui ∈ R is the input variable,
and Dα

t denotes the Caputo fractional derivative operator, defined as follows [26]:

Dα
t f (t) =

1

Γ(α − ⌈α⌉)

t∫

0

f (⌈α⌉)(τ)

(t − τ)α−⌈α⌉+1
dτ, 0 < α /∈ n (2)

where n − 1 < α < n is the order of Caputo fractional derivative, t is time, τ stands for the
Caputo integration variable, Γ(x) denotes the well-known Euler’s Gamma function and
notation; ⌈α⌉ maps α to the least integer that is greater than or equal to α [26–28].

The communication among agents is expressed by a weighted undirected and simple
graph G of order N such that each agent is corresponding to a vertex. Additionally, the
value of the arc weight of graph G between ith and jth agents, denoted by wij ≥ 0, can
be considered as a measure for the strength of the information link. Such a graph can be
denoted by its adjacency matrix W, i.e.,

G : W =




w11 . . . w1N
...

. . .
...

wN1 · · · wNN


,

which is a symmetric matrix. In this paper, we use the following communication protocol:

ui(t) = ∑
j∈Ni

wij

{
[xj(t − τj)− δj]− [xi(t − τi)− δi]

}
τi,j > 0 , (3)

which its non-delayed version has been considered in [11]. In Equation (3), wij is the
(i, j)th entry of the adjacency matrix W, Ni is the neighbor set of agent i, τi denotes the
communication time-delay, and δi is a constant. By defining δij = δi − δj, the objective of
the algorithm is to guarantee coordination, i.e., xi(t)− xj(t) → δij where t → ∞ for any
initial conditions xi(0) and xj(0). Using Equation (3), the network dynamics in Equation (1)
can be written as

Dα
t x̃i(t) = ∑

j∈Ni

wij

{
[x̃j(t − τj)]− [x̃i(t − τi)]

}
(4)

where i = 1, 2, . . . , N and x̃i(t) = xi(t)− δi. If the pseudo state vector of agents is defined

as X̃(t) = [x̃1(t), . . . , x̃N(t)]
T , then the system dynamics in Equation (4) can be expressed as

Dα
t X̃(t) = −LX̃(t − τ) (5)

where X̃(t − τ) = [x̃1(t − τ1), . . . , x̃N(t − τN)]
T and L = L(G) is the Laplacian matrix of

graph G [27]. The following lemma deals with the properties of the Laplacian matrix.



Mathematics 2023, 11, 1267 4 of 13

Lemma 1. The Laplacian matrix L of the undirected graph G has exactly a single zero eigenvalue

with the corresponding eigenvector φ = [1 1 , . . . , 1]T if, and only if, G is connected. Moreover, in
this case, the other eigenvalues of L are positive real numbers [13,14].

Remark 1. As a real application of the fractional-order equation of a multi-agent system similar
to Equation (4), we can refer to the formation of aerial vehicles in Figure 1, of which fly in snowy
or rainy weather and communicate with each other like graph Ga in Figure 1. The motion of these
agents is a real application of the fractional-order swarm system [2]. The aim here is the consensus on
the orientation axis of these aerial vehicles in a two-dimensional plane. In this case, the orientation of
each vehicle depends on the difference in its orientation with his neighbors. Therefore, the orientation
of each agent is described via the following fractional-order model [2]:

D0.8
t xi = Aixi + Fi

3

∑
j=1

wij((xj − τj)− (xi − τi)) i = 1, 2, 3

where xi = [
→
x i,

→
y i] stands for the orientation in X − Y plane (Figure 1).

→

   


= − − −

= = −
=

 = − −

  − = − − =

 =

 
=

= + − − − =

= −

 

 

Figure 1. Triangular formation of aerial vehicles and graph Ga, which indicates the communications

among these agents [2].

As other applications of FOMAS, we can refer to the underwater vehicles which are
moving in the lentic lakes, mobile robots when they are moving on sandy and muddy
ground, or even inverted pendulums that are interconnected by coupling elements and
linear springs (Figure 2), in which the equation of the angle of pendulums is written by

D0.85
t ϕi = ai ϕi +

4

∑
j=1

σij(ϕj − ϕi) for i = 1, 2, . . . , 4. These are all some real applications of

FOMAS, of which are described by Equations (1)–(4).

    
=

= + − =

–

 

J L

   += 

−

 
  = =
 
  

..,   −=

 = − −

  − = − −






 
 
 
 
 
 

 L

  = − − (7)

   + += − − − −

Figure 2. A multi-inverted pendulum system with fractional-order creep elements and the graph

that shows the connection among them [2].
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3. Stability Analysis of the Coordination Algorithm

Let J denote the Jordan canonical form of the Laplacian matrix L with eigenvalues
λ1 = 0, λ2, . . . , λN ∈ R+. This means that the non-singular matrix T is found such that

J = T−1LT =




Λ1 0 · · · 0
0 Λ2 · · · 0

· · · · · ·
. . .

...
0 0 · · · Λm




where Λ1, Λ2, . . . , and Λm are standard Jordan blocks. If Y(t) = T−1X̃(t), Equation (5) is
transformed to

Dα
t Y(t) = −JY(t − τ) (6)

note that Y(t − τ) = [y1(t − τ1), . . . , yN(t − τN)]
T and each Jordan block is in the form



λi 1 · · · 0
0 λi · · · 0
...

...
. . .

0 0 · · · λi


 where λi is an eigenvalue of the Laplacian matrix L. By considering this

point, it is deduced that Equation (6) can be decoupled into n fractional-order differential
equations having one of the following forms:

Dα
t yi(t) = −λiyi(t − τi) (7)

or
Dα

t yi(t) = −λiyi(t − τi)− yi+1(t − τi+1), (8)

where Y(t) =
[
y1(t) · · · yn(t)

]T
. If τi,i+1 = 0, Equations (7) and (8) are converted to

Equations (9) and (10) in [11]. Before deriving the conditions guaranteeing coordination,
we need to express and prove a theorem on the stability of the class of fractional-order
differential equations described by Equation (7).

Theorem 1. The time-delay fractional-order system (7), where 0 ≤ λi ∈ R has the following properties:

(1) If λi > 0 and τ ∈ [0, τ∗) where τ∗ = π
2 (2 − α)λi

(− 1
α ), this system is stable and

lim
t→∞

yi(t) = 0.

(2) If λi > 0 and τ > τ∗ where τ∗ = π
2 (2 − α)λi

(− 1
α ), this system is unstable.

(3) If λi = 0, yi(t) = yi(0) for all t ≥ 0.

Proof.

Proof of Properties 1 and 2: Taking the Laplace transform from both sides of Equation (7)
results in

L(yi(t)) =
sα−1

sα + λie−τis
yi(0

−) (9)

where α ∈ (0, 1]. According to Equation (9), system in Equation (7) is stable if all roots of
the equation f (s) = 0 where

f (s) = sα + λie
−τis (10)

are in the region C− = {s ∈ C|Re(s) < 0} where C stands for the complex number set [28].
Define hi = λiτi

α and suppose that τ = maxi=1,...,Nτi. Now, given that function h(τ) = λτα

is an ascending function relative to τ, by variable changing τs → s , equation f (s) = 0 is
converted to equation g(s) = 0, where
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g(s) = sα + hie
−s. (11)

�

Clearly, all roots of equation f (s) = 0 are in the region C− if, and only if, all roots of
equation g(s) = 0 are placed in such a region. All roots of equation g(s) = 0 are in the
region C−, if it has no root in the following region:

DR =
{

s ∈ C||s| ≤ R & −
π

2
≤ arg(s) ≤

π

2

}
, (12)

when R → ∞ (Figure 3). The boundary of the semicircle DR, denoted by CR, consists of
two parts:

C1
R =

{
s ∈ C||s| = R & −

π

2
≤ arg(s) ≤

π

2

}
(13)

and
C2

R = { s ∈ C|s = jω & − R ≤ ω ≤ R}. (14)  =  = −  

the Cauchy’s argument principle, we know that equation =
→

    =  = −   
 

(15)

   

( ) =  

     + = 
 

(16)

     − = 
 

(17)

 


  = −

k 0   


( )
  + − = − 

 

Figure 3. Region DR and its boundary in the complex plane.

By considering the approach presented in [29] which has been constructed based on
the Cauchy’s argument principle, we know that equation g(s) = 0 does not have any roots
in the region DR if g(CR) does not encircle the origin. If R → ∞ , the image of part C1

R
under mapping g(s) is like an arch that is described by

g(C1
R) =

{
s ∈ C||s| = Rα,−α

π

2
< arg(s) < α

π

2

}
. (15)

If system (7) is stable for τ < τ∗ and is unstable for τ > τ∗, then gh∗i
(C2

R) should pass

from the origin where h∗i = λi(τ
∗)α. In this case, ω > 0 is found such that

ωα cos
(

α
π

2

)
+ h∗i cos(ω) = 0 (16)

and
ωα sin

(
α

π

2

)
− h∗i sin(ω) = 0. (17)

By multiplying both sides of Equations (16) and (17) by sin(ω) and cos(ω), respectively,
and then adding the resulting equations together, one can easily obtain ω as

ω = kπ − α
π

2
, (18)
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where k is an integer. Since ω > 0 and 0 < α ≤ 1, k should be a positive integer. By
substituting ω from Equation (17) in Equation (16), it is deduced that

(
kπ − α

π

2

)α
= h∗i (−1)k+1 (19)

Equation (19) implies that k should be an odd positive integer. Therefore, some boundaries
described by (

kπ − α
π

2

)α
= hi , k = 1, 3, 5, · · · (20)

can specify the stability region for system Equation (7) in the α − hi plane.
From the mentioned discussions, we know that for each pair (α − hi) settled in the

stability region, g(CR) does not encircle the origin where R → ∞ . Hence, selecting a
sample point in each region in Figure 4 and checking the encirclements of g(CR) around the
origin lead us to find the stability region. It can be easily verified that for each point settled
in the southern region in Figure 4 (the region between the horizontal axis and the curve
specified by Equation (20) where k = 1), g(CR) does not encircle the origin where R → ∞

(see the sample mapping shown in Figure 5a). Additionally, if the pair (α − hi) placed
on the boundary of this region, g(CR) passes from the origin (see the sample mapping
shown in Figure 5b). Moreover, if the pair (α − hi) is in the region between boundaries
Equation (20) for k = 1 and k = 3, g(CR) encircle the origin twice (see the sample mapping
shown in Figure 5c). For the region between boundaries given by k = 3 and k = 5, the
number of encirclements will be 4 (see the sample mapping shown in Figure 5d), and for the
next regions, the number of encirclements will be increased. According to this discussion,
the stability boundary can be written as follows (Figure 6):

(
π − α

π

2

)α
= hi (21)

since hi = λiτ
α, system (7) is stable if

τ <
π

2
(2 − α)λi

(− 1
α ) (22)

and is uneatable if
τ >

π

2
(2 − α)λi

(− 1
α ). (23)

  − = = 
 

 −
 −

→

=

→  −

 −

= =
=

=

  − = 
 

=

  
−

 −

  
−

 −

 

Figure 4. Boundaries specified by Equation (19) for different values of k in the α − hi plane.
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 −

 

 

100=
( ) −  − =  − =

 − =  − =

Figure 5. The image of CR under mapping g(s) (right figures) where R = 100 for different

pairs (α − hi) (a) (α − hi) = (0.5, 1.3), (b) (α − hi) = (0.5, 1.535), (c) (α − hi) = (0.5, 1.8),

(d) (α − hi) = (0.5, 3) (the place of these pairs are shown in the left figures).

Proof of Property 3: The proof of Property 3 is the same as the proof of Property 2 in Lemma
2 of [11] and follows from [30].

The following lemma is an extension for Lemma 3 which has been presented in [11]
for the case τ = 0.

Lemma 2. In fractional differential Equation (8), if λi > 0,α ∈ (0, 1],τi ∈ [0, τ∗) where

τ∗ = π
2 (2 − α)λi

(− 1
α ), and yi+1(t) is a continuous function with condition lim

t→∞
yi+1(t) = 0, then

lim
t→∞

yi(t) = 0.
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0 =

    

  
−

= − + +→
=

→
=



 

+−− −
+

−

−
=

+

1]
  −+ =

      
 − 
 = −



 

+−−
+

−→ →

−
=

+

0+→
= +→

=

0
→

= □



Figure 6. Stability region for system (7).

Proof. Taking the Laplace transform from both sides of Equation (8) brings about

L(yi(t)) =
yi(0

−)sα−1 − e−τi+1sL(yi+1(t))

sα + λie−τis
, (24)

where α ∈ (0, 1]. According to the proof of Property 1 in Theorem 1, we know that the
solutions of equation sα + λie

−τis = 0 are located in the open left half of the plane if λi > 0

and τ ∈ [0, τ∗) where τ∗ = π
2 (2 − α)λmax

(− 1
α ). Hence, according to the final value theorem,

Equation (24) results in

lim
t→∞

yi(t) = lim
s→0

yi(0
−)sα − e−τi+1ssL(yi+1(t))

sα + λie−τis
.

Since lim
t→∞

yi+1(t) = 0, we have lim
s→∞

sL(yi+1(t)) = 0. Therefore, from the above equality, it

is deduced that lim
t→∞

yi(t) = 0. �

Based on Theorem 1 and Lemma 2, we can find conditions on the time-delay τi and
the interaction graph, such that coordination is guaranteed. These conditions are presented
in the following theorem.

The following Theorem provides the maximum allowable delay to achieve consensus
in FOMAS in Equation (1) with protocol in Equation (3).

Theorem 2. Consider the networked FOMAS in Equation (1) with communication in Equation (3).
In addition, assume that the fixed interaction graph G is undirected and connected. In this case,

coordination is achieved if τi ∈ [0, τ∗) where τ∗ = π
2 (2 − α)λmax

(− 1
α ) and λmax denotes the

maximum eigenvalue of the Laplacian matrix L.

Proof. Since the interaction graph is undirected and connected, from Lemma 1, it is deduced that L has
a simple zero eigenvalue. Additionally, the other eigenvalues of L are real and positive. Without a loss of
generality, assume that λ1 = 0, and 0 < λ2 ≤ · · · ≤ λn−1 ≤ λn. For λ1 = 0, according to Property
3 in Theorem 1, we have y1(t) = y1(0). Moreover, since assumption 0 < λ2 ≤ · · · ≤ λn−1 ≤ λn

results in τ∗ = π
2 (2 − α)λn

(− 1
α ) ≤ π

2 (2 − α)λn−1
(− 1

α ) ≤ · · · ≤ π
2 (2 − α)λ1

(− 1
α ) from Property

1 in Theorem 1 or Lemma 2, it is concluded that lim
t→∞

yi(t) = 0 for i = 2, . . . , n. From these results, we
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have lim
t→∞

Y(t) = [y1(0), 0, . . . , 0]T. The rest of the proof is similar to the proof of Theorem 1 in [11]

and is omitted here. �

Remark 2. In the case α = 1 and τ1 = . . . = τN (the integer-order case with uniform communication
time-delay), Theorem 2 concludes that the consensus is achieved if τ ∈ [0, τ∗) where τ∗ = π

2λmax
.

This result is exactly the same as what has been previously presented in Theorem 10 of [31] for the dis-
tributed coordination of networks of integer-order agents with uniform time-delay, of which was firstly
presented in [31] by Olfati Saber et al.

Consider the maximum time-delay in Theorem 2, i.e., τ∗ = π
2 (2 − α)λmax

(− 1
α ). It

can be easily verified that ∂τ∗

∂α < 0 if 0 < λmax ≤ 1 and α ∈ (0, 1], and ∂τ∗

∂α > 0 if

λmax > e = 2.7183 and α ∈ (0, 1]. Additionally, if 1 < λmax ≤ e, then ∂τ∗

∂α > 0 ( ∂τ∗

∂α < 0) for
α ∈ (0, α0) (α ∈ (α0, 1]) where

α0 =
− ln(λmax) +

√
ln (λmax)

2 + 8 ln(λmax)

2
. (25)

Therefore, the following corollary is resulted from Theorem 2.

Corollary 1. If λmax denotes the maximum eigenvalue of the Laplacian matrix L and α ∈ (0, 1] is
the order of the networked fractional-order system considered in Theorem 2, the maximum time-delay
resulting in coordination (i.e., τ∗) has the following properties:

(1) If 0 < λmax ≤ 1, the larger values of α results in the smaller allowed maximum time-delay
for coordination.

(2) If λmax ≥ e = 2.7183, the lower values of α results in the smaller allowed maximum
time-delay for coordination.

(3) If 1 < λmax < e, the allowed maximum time-delay for coordination will be maximal if the
order of system equals Equation (25).

4. Numerical Simulations

In this section, the previous section results are verified by numerical simulations. To
this end, consider the following networked fractional-order system with five agents and
constant time-delay.

D0.8
t xi(t) = ∑

j∈Ni

wij

{
[xj(t − τj)− δj]− [xi(t − τi)− δi]

}
, i = 1, . . . 5 (26)

Graph Ga expressing the communication among these agents is shown in Figure 7.
Additionally, the adjacency matrix of this graph is considered as

W =




0 0.5 0 0 0
0.5 0 0.4 0 0.75
0 0.4 0 0.3 0.6
0 0 0.3 0 0.6
0 0.75 0.6 0.6 0




.

In this case, the eigenvalues of the Laplacian matrix for the mentioned graph are as
follows:

λ(Ga) = {0, 0.431, 1.219, 1.903, 2.747}

We have used the nid simulation block in the integer matlab toolbox (fractional control
toolbox for MatLab) to implement fractional derivatives such as D0.8 [32]. Here, for simplic-

ity, we have chosen δi = 0, i = 1, . . . , 5, i.e., X(t) = X̃(t) = [x1(t), . . . , x5(t)]
T . According

to Theorem 2, coordination is achieved if the time-delay τi is less than 0.53. This point is
confirmed by numerical simulation results. Like some samples, Figure 8 shows the state
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trajectories of the considered fractional-order network for τi = 0, τi = 0.4, τi = 0.5 and
τi = 0.56 for i = 1, . . . , 5.

  = 

 

    


= − − − − − =

 
 
 
 =
 
 
  

 =

 = = = =



 =
.4 = .5 =  = =

Figure 7. Graph Ga in a numerical example of Section 4.

 

 =  =  =  =

– 

 =


Figure 8. Trajectories of agents in the numerical example of Section 4 for different time delays.

(a) τi = 0, (b) τi = 0.4, (c) τi = 0.5, and (d) τi = 0.56.

As we can see, coordination is achieved in Figure 8a–c in which the time-delay τi is less
than the maximum admissible time-delay in the network that is τ* = 0.53. The time-delay
in Figure 8d is more than τ*, and therefore, the system is unstable according to Theorem 2.
It can be concluded from Figure 8 that when the amount of communication delay increases
and exceeds the permissible limit, the location information of each agent is provided to
the neighboring agents with a long delay, causing instability and divergent fluctuations in
the agents.

Remark 3. It is worth mentioning that the detailed analysis of the behavior and the trajectory of
each agent in Figure 8 is not simple due to the different values of communication delays for each
agent and the different weights of the communication graph for each agent. However, it can be
concluded from Figure 8 that agents 1 and 4, who have less communication with others, are less



Mathematics 2023, 11, 1267 12 of 13

affected by the communication delay and, as a result, have less fluctuations and oscillations as we
can see in all four figures in Figure 8.

5. Conclusions

The distributed coordination of networked fractional-order multi-agent systems in
the presence of non-uniform communication time-delays was studied in this paper. In this
study, the necessary and sufficient conditions to achieve coordination in the presence of
communication time-delays were presented. Based on these conditions, the maximum
acceptable delay to guarantee the coordination was found. A delay-dependent stable
region was also provided, which is based on the maximum eigenvalue of Laplacian matrix
of the graph and fractional order of the system. Extending the paper results to FOMAS
with directed graphs, considering the high-order networked fractional-order systems
(second-order, third-order, or even systems such as point mass, of which is second-order
integer-order dynamics with a fractional-order damping), and finally considering the inter-
action links with time-varying non-equal communication time-delays can be considered to
be interesting topics for future research.
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