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Abstract. The behavioural diversity of chaotic oscillator can be con-
trolled into periodic dynamics and used to model locomotion using cen-
tral pattern generators. This paper shows how controlled chaotic oscil-
lators may improve the adaptation of the robot locomotion behaviour
to terrain uncertainties when compared to nonlinear harmonic oscilla-
tors. This is quantitatively assesses by the stability, changes of direction
and steadiness of the robotic movements. Our results show that the con-
trolled Wu oscillator promotes the emergence of adaptive locomotion
when deterministic sensory feedback is used. They also suggest that the
chaotic nature of chaos controlled oscillators increases the expressiveness
of pattern generators to explore new locomotion gaits.

1 Introduction

Living organisms use distinctive locomotive abilities to interact adaptively with
their environment. Central Pattern Generators (CPGs) are a popular approach
inspired by the networks of neurons in spinal cords of vertebrates and inver-
tebrate thoracic ganglia to develop accurate neuro-mechanical representations
of locomotive behaviours in legged robots. Whilst traditional CPGs are often
dynamically represented by coupled of harmonic oscillators [1, 2], recent studies
envisage CPGs as a collection of coupled chaotic oscillators [4, 5] which mutually
self-regulate according to environmental fluctuations and local influences.

Although the consideration of sensory information is not essential in the
generation of synchronous pattern of motion, it increases the adaptability and
robustness of control system in unsteady real environments. Orchestrating en-
vironmental signals to achieve efficient locomotion is a difficult task, specially
when these signals come from potentially noise sources (i.e. robotic sensors).
However, this is a task at which signalling networks are evidently good at solv-
ing in a biological contexts. We collectively refer to computational analogies of
cellular signalling networks as Artificial Signalling Networks (ASNs) [8, 9].

In this article, we explore whether adaptability in multi-legged robots can be
reinforced by the structural and dynamical properties of chaotic oscillators when



compared to harmonic oscillators. Particularly, we aim to investigate whether
the use of chaos controlled oscillators offer more flexibility in the generation of
effective patterns of coordination with adequate sensory feedback loops. To do
so, a two-layered architecture is used to map environmental signals into adap-
tive locomotive trajectories. The upper layer consists of a collection of intercon-
nected ASNs. It receives real-time positional information and produces a set of
environmental-based control directives, which collectively alter in a determinis-
tic manner the dynamics of a CPG composed of either Hopf or controlled Wu
oscillators in the bottom layer. Both oscillators exhibit a stable limit circle, but
otherwise they lie at opposite ends of the dynamical spectrum: the former is a
single steady state system and the latter shows ordered and chaotic behaviours
depending on its governing parameters. We use an evolutionary algorithm to
optimise computational analogies of signalling networks that, when stimulated
with sensory feedback, tune the CPG’s oscillatory trajectories appropriately. A
simulated version of the T-Hex robot is used to evaluate the performance of both
oscillators in a challenging environment.

The rest of the article is organised as follows: Section 2 introduces the oscilla-
tors addressed in this article, Section 3 describes the CPGs, Section 5 describes
our methodology, Section 4 presents signalling networks, Section 6 presents re-
sults and Sec[8]tion 7 concludes.

2 Central Pattern Generators

Central Pattern Generators (CPGs) are a common way of modelling and gen-
erating locomotive gaits. Whilst they are often implemented using biologically-
motivated models such as feedforward neural networks [13] and artificial bio-
chemical networks [12], they can also be considered as systems of coupled non-
linear oscillators. This kind of CPG favours distributed control approaches, leg
synchronisation and the modulation of locomotion by simple control signals. Its
simple structure also eases the integration of sensory information when CPGs
made of coupled nonlinear oscillators are applied to the control of robotic loco-
motion.

2.1 Hopf oscillator

The Hopf oscillator (see Figure 1) is a single steady state dynamical system that
exhibits harmonic oscillation [14]. It is defined by the following two differential
equations:

ẏ = α(µ− r2)y − ωz ż = β(µ− r2)z − ωy (1)

where (y, z) ∈ R2 are the state variables, r =
√
y2 + z2, A =

√
µ is the oscillation

amplitude, ω is the oscillation frequency and α and β are positive constants that
determine its convergence rate to the limit circle. From our perspective, the Hopf
oscillator has three prominent benefits. First, it is able to generate smooth, stable
and cyclic trajectories in the presence of small perturbations. Second, its output



can be exclusively modulated by changing its frequency ω and amplitude µ,
whilst preserving the other parameters. This separation eases its optimisation
by evolutionary algorithms [15]. Third, it eases the development of coupling
terms in an analytical way.
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Fig. 1: Outputs of the Hopf oscillator with µ = 1, ω = 2, α = 5 and β = 50 and
a phase portrait of its stable limit circle attractor.

2.2 Wu oscillator

The Wu oscillator (see Figures 2(a)-(b)) is a four-dimensional autonomous dy-
namical system able to exhibit a large variety of dynamical states [16]. It is
defined by the following set of differential equations:

ẋ = a(y − x) + eyz − kw ẏ = cx− dy − xz (2)

ż = xy − bz ẇ = ry + fyz (3)

where (x, y, z, w) ∈ R4 and a, b, c, d, e, f , k and r are all real constants. This
oscillator is adopted for several reasons. Its four nonlinear terms help to rapidly
propagate small alterations across its variables and, when coupled, through-
out neighbouring oscillators. The Wu oscillator is also able to self-regulate and
self-sustain its internal dynamics by adjusting its amplitude and frequency in
response to external signals. When coupled, the system’s overall state can only
be deduced from the interactions amongst individual oscillators.

Trajectory Stabilisation Individual chaotic trajectories of the Wu oscilla-
tor are stabilised using the Rate Control of Chaos (RCC) method [17]. Unlike
other chaos control strategies, the RRC method does not require any a priori
knowledge about the presence of unstable periodic trajectories in a chaotic sys-
tem. This approach relies on the expansion rate of an oscillator away from its
trajectory to apply a small scale into its governing variables proportion to the
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Fig. 2: Outputs of the Wu and controlled Wu oscillators. In both cases, the state
parameters are a = 56, b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and
r = −1943. Using this configuration the Wu oscillator exhibits an aperiodic
chaotic behaviour (a) with all its trajectories converging to a toroid attractor
(b). When the RCC method is active at t = 0.8 × 104 (vertical dotted line),
the oscillator’s unstable and aperiodic trajectories (c) become harmonic with
constant frequency and amplitude after an initial transient time (wandering
period). (d) illustrates the stable limit circle attractor of the controlled Wu
oscillator.



divergence rate. Thus, it is possible to reduce the chaotic nature of the oscil-
lator but preserving its chaotic properties. The extend of the perturbation can
be calculated by determining the current proportion the variable occupies in its
space. Within a robotic locomotion context, this also allows the modulation of
the state of the robot based uniquely on the CPG’s local influences and sensory
feedback without any explicit knowledge of the robot’s surrounding environment.
The equations of the chaos controlled Wu oscillator are as follows:

ẋ = a(y − x) + eσxyz − kw ẏ = cx− dy − σyxz (4)

ż = σzxy − bz ẇ = ry + fσwyz (5)

where σx, σy, σz and σw are the rate control functions and regulate the diver-
gence rate between the variables in each of the nonlinear terms3. The controlled
Wu oscillator is shown in Figures (see Figures 2(c)-(d)).

3 Interlimb Coordination

3.1 Hopf Oscillator

Interlimb coordination amongst Hopf oscillators is achieved by coupling them in
a non-diffusive manner. It is non-diffusive in the sense that the influence amongst
oscillator is constant over time. Contralateral and lateral adjacent oscillators are
coupled through the ż variable as follows:

ż = β(µ− r2i )zi − ωixi +
∑

kij(zi + λijzj) (6)

where i, j = 1...6 are the oscillator indices, kij is the diffusive coupling and λij is
the coupling coefficient and establishes the phase relationships amongst coupled
oscillators. The value of λ is set to 1 if the oscillators excite each other and to
-1 if the oscillators inhibit each other. We chose a coupling such that the tripod
gait is stable. Figure 3(a) illustrates the coupled trajectories of the Hopf CPG.

3.2 Chaos Controlled Wu Oscillator

Chaos controlled Wu oscillators are coupled in a non-diffusive manner with time
delay feedback. Contralateral and lateral adjacent oscillators are coupled through
the ẋ variable as follows:

ẋi = a(yi − xi) + eσ(yi, zi)yizi− kwi +
∑

τij(xj(t− σ)− xi) (7)

where i, j = 1...6 are the oscillator indices, σ is the time delay and τij is the
coupling coefficient and defines the the effect of the ith on the jth oscillator
thereby establishing their phase relationship. The y and z trajectories of the
controlled Wu oscillators are chosen to describe the motion of each leg because
they increase stability when the robot moves on a flat surface. The coupling
amongst trajectories also matches the tripod gait. Figure 3(b) illustrates the
coupled trajectories of the Wu CPG.

3 Refer to [17] for additional insight about controlling unstable trajectories using the
RRC method.
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Fig. 3: Coupled y (upper plot) and z (bottom plot) trajectories of two CPGs
composed of six Hopf and controlled Wu oscillators. For the Hopf CPG, trajec-
tories are obtained for kij = 1. For the Wu CPG, trajectories are obtained using
σ = 0.0118, τ12 = 1.0, τ13 = 1.8, τ24, τ34 = τ35 = 1.1, and τ56 = 1.8. We exploit
the fact that τij = τji. Although Wu CPG trajectories are not completely syn-
chronised, their minimal phase difference does not affect the performance of the
control system and allows preserving stable forward locomotion.

4 Coupled Artificial Signalling Network

An Artificial signalling Network (ASN) is an enzyme-mediated abstraction of
a cellular signalling process. Cellular signalling is the biological mechanism by
which cells interact with other cells and their environment [7]. Broadly speaking,
cellular signalling is a chain of events that, triggered by an extracellular signal,
induces an adaptive cellular response. It begins with the binding of certain mes-
sengers and their later diffusion inside the cell. Such messengers then spread
across the cell using signalling pathways until they reach the nucleus where they
regulate gene expression and lead to the process by which a change in the cellular
activity can be achieved.

Formally, an ASN is an indexed set of enzyme-analogous elements E and a
set of continuous-valued biochemical reactions. Each ei ∈ E has a set of sub-
strates si, a product concentration pi and a regulatory function fi. Substrate
concentrations are mapped to product concentrations using the probabilistic
Michaelis-Menten function which was previously shown to lead to the best per-
formances when evolving ASNs capable of controlling trajectories in a prescribed
manner [10]. The execution of the ASN starts with the random initialisation of
the concentrations (si and pi). External inputs are delivered to the network by
the substrate concentration of nominated enzymes. At each time step, each en-
zyme ei applies its regulatory function fi to the current concentration of its
substrates si to determine the new concentration of its product pi. After iterat-
ing the network a specific number of times tS , the outputs are extracted from
the final product concentration of designated enzymes.



Biological responses to sensory information are often the result of the inter-
action of multiple pathways. Motivated by this observation, a number of authors
have investigated the coupling of computational architectures based on models
of interacting biochemical networks [11, 12]. This article focuses on the inter-
action amongst signalling pathways since this is the principal process through
which biological organisms handle environmental information. One of the main
mechanisms that allows the exchange of information between interconnected sig-
nalling networks is crosstalk. In [8], we introduced a simple model of crosstalk
within a connectionist architecture called a Coupled Artificial Signalling Net-
work (CASN). Mimicking the structure of a signalling network, different types
of external inputs are delivered to different sub-networks. These sub-networks
(which are comparable to ASNs) do not have explicit interconnections, but they
do contain crosstalk nodes which permit the exchange of information using a
simple regulatory function. In this article, CASNs are optimised using evolu-
tionary algorithms in order to transform sensory data into deterministic control
directives that when applied to the governing parameters of each oscillator in
the CPG alter its dynamics and elicit adaptive modifications in the locomotion
pattern. From a locomotive perspective, coupling adjacent ASNs also favours
the synchronisation of CASN-modulated oscillatory trajectories [8].

Fig. 4: Overview of the locomotive control system and coupling topology. Sen-
sory feedback is delivered to an upper layer composed of six interconnected sig-
nalling networks, one per leg. Coupled networks comprise 10 enzyme-analogous
elements. Gait trajectories are generated in the bottom layer, which contains
a pattern generator made of six nonlinear oscillators. This layer, whose con-
nectivity mirrors the upper layer, receives control directives that modulate the
oscillatory trajectories, also one per leg. Finally, these are transformed into ac-
tuator positions.



5 Controlling Legged Robot Locomotion

A simulated model (see Figure 5) of the commercial T-Hex robot is used to
evaluate the expressiveness of the Hopf and the Wu CPGs. The T-Hex is a 24-
DoF hexapedal robot manufactured by Lynxmotion [18]. It has four joints per
leg connected by actuators at the corners. The robot initially walks using the
tripod gait, which is described by the moving of three legs simultaneously in each
step. Its limited adaptability on irregular surfaces is exploited to determine the
capacity of the CPGs to deliver reactive locomotion using local sensory feedback.
The robot is simulated using the Open Dynamics (ODE) physics engine with a
step side of ∆t = 0.01s, friction of 200N, CFM (an ODE parameter) of 10−5 and
standard gravity. Actuators have a maximum angular velocity of 4ms−1 and
a maximum torque of 70Nm. Their movements are limited in both the z-axis
plane for the coxa joint and the x-axis for the femur, tibia and tarsal joints, to
a maximum rotation of 90o and a minimum rotation of −90o. These values are
sufficient to simulate the characteristics of the physical T-Hex [3, 10]. The CASN
is executed every 20 simulation steps.

Fig. 5: Simulated T-Hex robot in Open Dynamics Engine.

5.1 Gait Generation

The task is to evolve a CASN capable of generating control signals that when
applied to the oscillators’ governing parameters originate different outputs in the
CPG, i.e patterns of coordination which would cause the robot to displace away
from its starting point. The aim is to measure qualitatively whether chaotic
properties of the controlled Wu oscillators are sufficient to generate adaptive
patterns of movement in response to deterministic sensory feedback when com-
pared with the harmonic Hopf oscillator. The movement of each leg is controlled.
The CASN consists of six individual ASN uniquely coupled to its adjacent ASN
using a fixed crosstalk rate of 0.5. Each ASN is immediately connected with
its corresponding bottom-level oscillator, whose output dictates the gait trajec-
tory its matching leg. The controller fitness is the Euclidean distance minus the



lateral displacement walked by the robot within an evaluation period of 4000
simulation steps. Both the Hopf and the Wu CPGs are randomly initialised and
numerically integrated using the fifth-order Dormand-Prince method with step
sizes of ∆tH = 0.01 and ∆tW = 0.00001 respectively. The selected y and z tra-
jectories are scaled to a maximum height of 40mm and a maximum length of
30mm respectively, and sampled with a rate of sr = π/4 (≈ 40tH and ≈ 380tW ).
The population size is 200, with a generation limit of 100.

The rotational readings along the three Cartesian axes of each leg with re-
spect to the centre of the robot represent the inputs of each ASN. They are
the easiest feedback that gives actual insight into the robot stability and ter-
rain features. Our objective is to calculate the rate of control needed to stabilise
the robot whilst promoting the emergence of different patterns of movement.
Rotational values are matched to the [-π/3, π/3] interval, linearly scaled to the
concentration range of [0, 1], and delivered to the ASN through its substrate
concentrations. Values out of the rotation interval indicate that the robot has
fallen. For the Hopf CPG, each ASN has two outputs which match the ω and µ
Hopf parameters and modulate them in the intervals [0, 4] and [0, 8] respectively.
For the Wu CPG, each ASN has also two outputs which match the c and b Wu
constant and modulate them in the intervals [44, 54] and [11, 21] respectively. In
both cases, the outputs are in the range of [0, 1]. The behaviour of the Hopf and
controlled Wu pattern generators is evaluated on an uneven terrain consisting
of a starting zone for the robot and a randomly generated uneven terrain, which
comprises a mesh of 500 boxes with randomly chosen heights. Each box has a
side of 20mm and incremental height between 20mm and 45mm. Values over
these thresholds prevent the robot from moving forwards.

CHR0 CHR1
...

sns0
...pnp0

...mi

gng3 g4g0
...g2 tS

Enzyme (e4)

CHRn

cnc0
...

ASN1

Fig. 6: Linear encoding of the CASN network used by the evolutionary algorithm,
also showing how individual ASN and enzymes are represented.



5.2 Evolving Coupled Artificial Signalling Networks

CASNs are evolved using a standard generational evolutionary algorithm with
tournament selection (size = 4), uniform crossover (rate = 0.3), and point mu-
tation (rate = 0.05). Each individual in the population is encoded as an indexed
sequence of chromosomes, each of which represents an ASN (see Figure 6). A
multi-chromosomal representation favours the evolution of problems with grow-
ing complexity and increases modularity [19]. Signalling networks are encoded
as a set of 10 indexed genes followed by timing information. Crossover points
lie between gene boundaries and chromosome shuffling is not permitted. Inputs
and outputs (si and pi) are represented by their absolute indices. Mutation is
restricted to the set of operations in [20] to embrace biochemical plausibility in
the evolution of enzymatic graphs. Chemical concentrations and function param-
eters are represented using floating-point values and mutated using a Gaussian
function centred around the current value.

6 Results
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Fig. 7: Trajectories of each of the 10 evolved robot controllers when moving
forwards in the test arena. The box represented with a solid line illustrates the
bounds of the uneven terrain. Its initial maximum height is 20 mm and increases
in steps of 5 mm after each horizontal dashed line up to 40 mm.

The results show that CASNs can be used to deliver reactive control directives
to CPGs with distinctive dynamics. While the robots actuated by the Hopf CPG
exhibits an average walked distance of 67cm (s.d. 21cm), the robots actuated
by the controlled Wu CPG exhibit an averaged walked distance of 58cm (s.d.
12cm). However, the performance of the Hopf CPG decreases drastically when
the robot steps over the uneven terrain. Figure 7 shows the trajectories of each
robot controlled during the evaluation time. Notably, the trajectories of the



Hopf GPG start diverging apart as the robot steps over the test area. The
results is that, in some runs, the robot laterally exits the uneven section of the
terrain, giving rise to the furthest walking distances. Particularly, Hopf CPG-
based robots experience noticeable difficulties to move when the terrain’s height
is 20mm and nearly do not move when the terrain’s height is up to 25mm. On
the contrary, the trajectories of the Wu CPG remain grouped until the terrain’s
height is approximately 25mm, the movement at which they progressively diverge
always within the test arena. This may suggests that the controlled Wu CPGs
exhibit a better regulatory capacity as the intensity of the sensory feedback
increases.

(a) x-axis, Hopf CPG (b) x-axis, Wu CPG

(c) y-axis, Hopf CPG (d) y-axis, Wu CPG

Fig. 8: Rotations of the robot body along the x- and y-axes for the Hopf CPGs
(left plot) and the controlled Wu CPGs (right plot) every time the CASN is
executed during the evaluation period. The vertical solid black line indiate the
movement at which the robot reaches the uneven terrain.

Figure 8 illustrates the overall rotation of the robot body along the x-axis (a)-
(b) and y-axis (c)-(d) for both CPGs. Attending to the number CASN executions,
it is also noticeable that robots actuated by the Hopf CPG reach the uneven
part of the terrain quicker than the ones actuated by the controlled Wu CPG.



However, the controlled Wu CPGs lead to more stable and steady locomotive
movements on the flat surface despite that the Wu oscillators are not perfectly
synchronised. A possible explanation is that the coupling error may promote
stability since representative sensory feedback is received to the CASN from the
starting of the evaluation period. Further, it is also evident that the Hopf CPGs
readily produce sharp and unbalanced rotational trajectories. As can be seen
in Figure 8(c) the simulated robot is slight tilted towards the right throughout
the evaluation time. Interestingly, the robots actuated by Hopf CPGs have less
difficulty stepping over the rough terrains, but they exhibit more fuzzy rotational
trajectories as the complexity of the terrain increases. The robots actuated by the
controlled Wu CPG behave in an opposite manner. They show abrupt changes in
their walking direction while stepping over the uneven terrain, but they manage
to control their stability while walking over it. We can hypothesise that this is
a consequence of the flexibility of chaos controlled Wu oscillator to explore new
pattern of coordination which appears to enhance the stabilisation of the robot
in different terrains.
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Fig. 9: Example of the distributions of the time interval between consecutive
touchdowns for each leg of the simulated robot when actuated by a Hopf CPG
(left plot) and a controlled Wu CPG (right plot) during the evaluation time.

Adaptive locomotion is inherently difficult to analyse. This is because loco-
motive patterns of coordination not only depend on sensory feedback but also on
the local interactions amongst the oscillators in a CPG. However, techniques to
study the temporal distribution of the stepping patterns can be used to provide
some insight into the behaviour of the CPG [21]. Figure 9 exemplifies the pat-
terns of movement of two runs as the distribution of the time interval between
consecutive touchdowns for each leg of the hexapod robot. In general, we found
that the Wu CPGs have a clearly defined stepping pattern, which suggests that
some self-induced patterns of motion may exist for this type of controller.

Figure 9(a) depicts histograms whose shape resembles a Gaussian-like distri-
bution with a time lag mean steadily centred at 0.2s. This is indicative that the



robot changes its initial fast tripod gait to another locomotive gait with smaller
stance phase and longer swinging phase. This is perhaps surprising since there
is not explicit coordination between oscillators during the evaluation time apart
form the initial tripod coupling. In addition, this also suggests that anti-phase
synchronisation between legs arises despite the dissimilarity of the sensory feed-
back. To a certain extent, this is also a consequence of the RCC method which
regulates the effect that external perturbations have in the controlled Wu oscilla-
tor by allowing it to migrate to another area in the state space whilst preserving
the integrity of its limit cycle. On the contrary, the Hopf CPGs produce rather
irregular patterns of coordination (see Figure 9(b) in which no real synchronisa-
tion occurs amongst oscillators. As a consequence, the robot either preserves its
initial tripod coupling while exploring gaits around it, or explores new patterns
of coordination but it is unable to preserve any of them. Nonetheless, the Hopf
CPG is sufficient to induce reactive locomotive patterns when the irregularities
of the terrain are not severe. This also explains the differences in performance
seen in Figures 7 and 8, with the controlled Wu CPGs leading to more stable
solutions whose patterns of coordination are more likely to adapt to changing
environments.

7 Conclusions

In this paper, we have compared the performance of two different CPGs based on
the Hopf and Wu systems in a rough terrain with incremental difficulty. Sensory
information was added to the systems using CASNs, which were optimised for
each controller using evolutionary algorithms.

The robots actuated by the Hopf CPG achieve the furthest walking distances
and show the fastest locomotive paces, but also exhibit a remarkable lack of sta-
bility on rough terrains. The robots actuated by the controlled Wu CPG exhibit
more deterministic patterns of locomotion. Likewise, the intrinsic nature of the
controlled Wu oscillator allows the emergence of new patterns of adaptation in
a reactive and efficient manner and increases the flexibility of CPGs to explore
different patterns of motion when compared with the Hopf oscillator. Overall, it
appears that the chaotic nature of the chaotic rate controlled Wu CPG enhances
the development of adaptive and robust behaviours using sensory feedback.

In future work, we plan to investigate the importance of sensory feedback in
the generation of differential patterns of motion and to evaluate the performance
of both CPGs in the physical T-Hex and alternative surfaces.
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