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Abstract

We develop a novel a posteriori error estimator for the L2 error committed by the finite ele-
ment discretization of the solution of the fractional Laplacian. Our a posteriori error estimator
takes advantage of the semi–discretization scheme using rational approximations which allow to
reformulate the fractional problem into a family of non–fractional parametric problems. The
estimator involves applying the implicit Bank–Weiser error estimation strategy to each para-
metric non–fractional problem and reconstructing the fractional error through the same rational
approximation used to compute the solution to the original fractional problem. In addition we
propose an algorithm to adapt both the finite element mesh and the rational scheme in order to
balance the discretization errors. We provide several numerical examples in both two and three-
dimensions demonstrating the effectivity of our estimator for varying fractional powers and its
ability to drive an adaptive mesh refinement strategy.

Keywords: Finite element methods, A posteriori error estimation, Fractional partial differential equations, Adaptive
refinement methods, Bank–Weiser error estimator
2020 Mathematics Subject Classification: 65N15, 65N30

1 Introduction
Fractional partial differential equations (FPDEs) have gained in popularity during the last two decades
and are now applied in a wide range of fields [78] such as anomalous diffusion [24, 44, 54, 59, 81],
electromagnetism and geophysical electromagnetism [32, 90], phase fluids [9, 11, 58], porous media
[11, 43, 22, 36], quasi-geostrophic flows [29] and spatial statistics [23, 77].

The main interest in fractional models lies in their ability to reproduce non-local behavior with
a relatively small number of parameters [16, 42]. While this non-locality can be interesting from a
modeling perspective, it also constitutes an ongoing challenge for numerical methods since applying
standard approaches naturally leads to large dense linear systems that are computationally intractable.
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In the last decade various numerical methods have been derived in order to circumvent the main
issues associated with the application of standard numerical methods to FPDEs. The two main ones
being the non–locality leading to dense linear systems and, for some particular definitions of the
fractional operator, the evaluation of singular integrals [6, 8].

We focus on discretization schemes based on finite element methods, other methods can be found
e.g. in [1, 73, 84]. Among the methods addressing the above numerical issues, we can cite: methods
to efficiently solve eigenvalue problems [44], multigrid methods for performing efficient dense matrix–
vector products [6, 8], hybrid finite element–spectral schemes [7], Dirichlet-to-Neumann maps (such
as the Caffarelli–Silvestre extension) [14, 40, 48, 62, 81, 87], semigroups methods [50, 51, 86], rational
approximation methods [2, 72, 74], Dunford–Taylor integrals [23, 25, 26, 28, 30, 34, 65, 74] (which can
be considered as particular examples of rational approximation methods) and reduced basis methods
[52, 53, 56].

Although we focus exclusively on the spectral definition of the fractional Laplacian, there is no
unique definition of the fractional power of the Laplacian operator. The three most frequently found
definitions of the fractional Laplacian are: the integral fractional Laplacian, defined from the principal
value of a singular integral over the whole space Rd [6, 8, 27, 40, 55], the regional fractional Laplacian,
defined by the same singular integral but over a bounded domain only [47, 59, 61, 80] and the spectral
fractional Laplacian, defined from the spectrum of the standard Laplacian over a bounded domain
[7, 15, 19, 50, 72, 79]. The different definitions are equivalent in the entire space Rd, but this is no
longer the case on a bounded domain [24, 59, 76, 78]. These definitions lead to significantly different
mathematical problems associated with infinitesimal generators of different stochastic processes [78,
59].

Efficient methods for solving fractional problems typically rely on a combination of different dis-
cretization methods. For example, [30, 71] which are also the foundation of this work, combine a
rational sum representation of the spectral fractional Laplacian with a standard finite element method
in space. Both the quadrature scheme and the finite element method induce discretization errors. In
order to achieve a solution to a given accuracy while avoiding wasted computational time, these errors
need to be balanced.

A priori error estimation has been tackled for some definitions of the fractional Laplacian, such as
the integral Laplacian [5, 6, 7, 24, 30, 67] and the spectral fractional Laplacian [14, 15, 19, 30, 79, 81].
Unlike the standard Laplacian equation, solutions to the fractional Laplacian problems often exhibit
strong boundary layers even for smooth data, particularly when the fractional power is low [68]. These
singularities lead to computational difficulties and have to be taken into account using, for example a
priori geometric mesh refinement towards the boundary of the domain [5, 20, 27, 34, 62], or partition
of unity enrichment [33]. We emphasize that [30] contains already an a priori error analysis in the L2

norm for a combined rational sum finite element method that we use in this work.
A posteriori error estimation has also been considered in the literature on fractional equations. A

simple residual based estimator is proposed for the integral fractional Laplacian in [6]. A similar idea is
used in the context of non-local variational inequalities in [67, 82]. Gradient-recovery based a posteriori
error estimation has been developed in the context of fractional differential equations in [91]. In [24, 48]
the authors present another estimator, based on the solution to local problems on cylindrical stars,
for the integral fractional Laplacian discretized using the Caffarelli–Silvestre extension. A weighted
residual estimator is derived in [63] in the same context.

2 Contribution
The main contribution of this work is the derivation of a novel a posteriori error estimator for the
combined rational finite element approximation of the spectral fractional Laplacian. It is a natural
a posteriori counterpart to the a priori results developed in [30]. To our knowledge, our work is the
first to propose an a posteriori error estimator for the spectral fractional Laplacian discretized using
rational approximation techniques (as opposed to the Caffarelli-Silvestre extension).

Our work starts with rational approximation–based discretization methods. We are particularly
interested in two of these methods: a method based on the quadrature rule for the Dunford–Taylor
integral proposed in the seminal work [30] —we will refer to this method as "the BP method" in the
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following— and a method based on Best Uniform Rational Approximations, —"the BURA method"—
applied for the first time to fractional partial differential equations in [71]. These methods decom-
pose the original fractional problem into a set of independent parametric non–fractional problems.
From this point we develop an associated set of independent non–fractional a posteriori error estima-
tion problems. We compute the Bank–Weiser hierarchical estimators [21] of the error between each
non–fractional parametric problem solution and its finite element discretization, then the fractional
problem discretization error is estimated by the sum of the parametric contributions via the rational
approximation. In addition, we propose an algorithm to adaptively refine the rational scheme. When
two discretization methods are combined (here a rational scheme and a finite element method), the
respective discretization errors must be balanced in order to prevent computational resources waste.
The algorithm we propose is based on a computable a priori estimator for the rational scheme error
and rational schemes are chosen on–the–fly to balance the rational and finite element error estimators.

Our method leads to a fully local and parallelizable solution technique for the spectral fractional
Laplacian with computable L2 error. Our method is valid for any finite element degree (however, for
the sake of brevity we do not show results with higher degree finite elements) and for one, two and
three dimensional problems [39].

We implement our method in DOLFINx [69], the new problem solving environment of the FEniCS
Project [13]. A simple demonstration implementation is included in the supplementary material.
We show numerical results demonstrating that the estimator can correctly reproduce the a priori
convergence rates derived in [30]. Our newly developed error estimator is then used to steer an adaptive
mesh refinement algorithm, resulting in improved convergence rates for small fractional powers and
strong boundary layers.

3 Motivation
Given a fractional power s in (0, 1) and a rational approximation Qs(λ) of the function λ−s, it is
possible to construct a semi-discrete approximation uQs

of the solution u to a fractional Laplace
equation as a weighted sum of solutions (ul)l to non–fractional parametric problems. Then, a fully
discrete approximation of u is obtained by discretizing the parametric solutions (ul)l using a finite
element method.

An a posteriori error estimator is then computed as the weighted sum of the Bank–Weiser estimators
of the error between each ul and its finite element discretization. As we will see in the following, the
resulting numerical scheme is simple and its implementation in code is straightforward. Furthermore
it maintains the appealing parallel nature of rational approximation schemes [30, 65, 72].

We remark on why we have chosen to use the Bank–Weiser type error estimator, as opposed to one
of the many other error estimation strategies, e.g. explicit residual, equilibrated fluxes, or recovery-
type estimators (see [10, 46] and references therein). In the case of fractional powers of the Laplacian
operator, the resulting set of parametric problems consists of singularly–perturbed reaction–diffusion
equations. It has been proven in [89] that the Bank–Weiser estimator is robust with respect to the
coefficients appearing in these parametric problems when the error is measured in the natural norm. To
our knowledge, no such robustness, which our numerical experiments do indicate, has been established
for the L2-norm for the Bank–Weiser estimator. Nevertheless, our numerical experiments indicate that
this does appear to be the case. Moreover, the Bank–Weiser estimator can be straightforwardly applied
to higher-order finite element methods and higher-dimension problems. In addition, its computational
stencil is highly local which is particularly appealing for three-dimensional problems see e.g. [39].
Finally, our choice of the Bank–Weiser estimator is also justified in section 6.2.1.

In this work we focus on error estimation in the L2 norm, the estimation of the error in the ‘natural’
fractional norm is the topic of ongoing work. For simplicity, we only consider fractional powers of the
Laplacian with homogeneous Dirichlet boundary conditions.
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4 Problem statement
For any subset ω of Ω we denote L2(ω) the space of square integrable functions on ω and (·, ·)ω its usual
inner product. Let H1(ω) be the Sobolev space of functions with first order weak derivatives in L2(ω).
The space H1(ω) is endowed with the usual inner product (∇·,∇·)L2(ω) + (·, ·)L2(ω). We will omit the
dependence in ω in the subscripts when ω = Ω. We will make use of the notation ∂v/∂n := ∇v · n for
the normal derivative of a smooth enough function v. We denote H1

0 (Ω) the subspace of functions in
H1(Ω) with a zero trace on Γ.

We consider the family of eigenfunctions {ψi}∞i=1 ⊂ H1
0 (Ω) of the standard Laplacian operator with

uniform zero Dirichlet boundary condition on Ω as well as the corresponding family of eigenvalues
{λi}∞i=1 such that

(∇ψi,∇v) = λi (ψi, v) , ∀v ∈ H1
0 (Ω), ∀i ∈ [[1,+∞[[. (1)

We assume the Laplacian eigenvalues are sorted in increasing order and we assume λ0 ∈ R is a lower
bound of the spectrum

λ0 ⩽ λ1 ⩽ · · · ⩽ λi ⩽ λi+1 ⩽ · · · (2)

The family {ψi}∞i=1 is an orthonormal basis of L2(Ω) [12]. For s in (0, 1) we introduce the spectral
fractional Sobolev space Hs and its natural norm

Hs :=

{
v ∈ L2(Ω),

∞∑
i=1

λsi (v, ψi)
2
<∞

}
, ∥v∥2Hs :=

∞∑
i=1

λsi (v, ψi)
2
. (3)

Especially, for 0 ⩽ s ⩽ 1 we have H1
0 (Ω) = H1(Ω) ⊆ Hs(Ω) ⊆ L2(Ω) =: H0(Ω) and the norm ∥·∥Hs

coincide with ∥·∥L2 when s = 0 and with |·|H1 when s = 1. In the following, for a function v ∈ L2(Ω)
we will denote vi := (v, ψi) for all i ⩾ 1.

4.1 The spectral fractional Laplacian
Let s be a real number in (0, 1) and f be a given function in L2(Ω). We consider the following fractional
Laplacian problem: we look for a function u such that

Lsu = f, (4)

where L stands for the Laplacian operator in Ω, with homogeneous Dirichlet boundary conditions on
Γ. Let us consider {λi, ψi}+∞

i=1 ⊂ R+∗×L2(Ω), the spectrum of L, defined by the following generalized
eigenvalue problem

(∇ψi,∇v) = λi (ψi, v) , ∀v ∈ H1
0 (Ω), ∀i ∈ J1,+∞J. (5)

The solution u of eq. (4) is defined using the spectrum of the standard Laplacian [15]

(u, v) :=
(
L−sf, v

)
=

∞∑
i=1

λ−s
i fi (ψi, v) , ∀v ∈ H1

0 (Ω). (6)

If we notice that
ui = λ−s

i fi, ∀i ⩾ 1, (7)

then, for f in L2(Ω) we can show that

∥u∥H2s = ∥f∥L2 . (8)

4.2 Rational approximation
Our method relies on rational approximations of the real function λ 7→ λ−s for λ ⩾ λ0 where λ0 > 0
is a fixed lower bound and for s in (0, 1). We present here the two examples we are interested in: the
BP method introduced in [30] and the BURA method presented in [71].
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Both these methods are rational approximation methods; they aim at approximating the function
λ 7→ λ−s by a rational function of the form

Qs(λ) := C1(s,N) + C2(s,N)
N∑

l=−M

al(s,N)

cl(s,N) + bl(s,N)λ
, (9)

where M,N,C1, C2, (al)
N
l=1, (bl)

N
l=1 and (cl)

N
l=1 are properly chosen parameters. Many rational approx-

imation schemes have been proposed in the literature, see e.g. [2, 3, 64, 72, 88].
Before we present the two particular schemes we used in our numerical experiments, we want to

highlight again that the error estimation scheme developed later can be derived in the same manner
regardless of the choice of the rational approximation, as long as it leads to a set of well–posed non–
fractional parametric problems.

4.2.1 The BP method

The BP method is based on the following expression derived from the Balakrishnan’s formula [17]

λ−s =
2 sin(πs)

π

∫ +∞

−∞
e2sy

(
1 + e2y λ

)−1
dy. (10)

Then, the rational approximation is obtained from eq. (10) by discretizing the integral on the right-
hand side with a trapezoidal quadrature rule,

Qs(λ) :=
2κ sin(πs)

π

N(κ)∑
l=−M(κ)

e2slκ
(
1 + e2lκ λ

)−1
, (11)

where κ > 0 is the fineness parameter and

M(κ) :=

⌈
π2

4sκ2

⌉
, and N(κ) :=

⌈
π2

4(1− s)κ2

⌉
, (12)

where ⌈·⌉ is the ceiling function. Thus,

lim
κ→0

Qs(λ) = λ−s, ∀(λ, s) ∈ [λ0,+∞)× (0, 1). (13)

The convergence of the BP method has been studied in [30, 28]. Especially, it has been proved that
Qs converges uniformly to λ 7→ λ−s at an exponential rate as κ tends to zero. The method has been
applied to the discretization of various types of PDEs in e.g. [30, 31, 26, 25].

4.2.2 The BURA method

The starting point of the BURA method is the approximation of the function g(λ) = λs for λ ∈ [0, λ−1
0 ].

In this study we used the novel algorithm from [75] to compute the residuals and poles of the BURA
of g(λ). From this algorithm we obtain the following rational approximation

Rs(λ) := Rs(0) +
N∑
l=1

rl
pl

+
N∑
l=1

rl
λ− pl

, (14)

where N is the degree of the rational function, (rl)Nl=1 ⊂ R+∗ are its residuals and (pl)
N
l=1 ⊂ R−∗ its

poles. Especially, if PN is the space of polynomial functions of degree N on (0, λ−1
0 ] and

QN =

{
p

q
, p, q ∈ PN , q ̸= 0

}
, (15)

is the space of rational functions of degree N over (0, λ−1
0 ], then

Rs ≃ argmin
r̃∈QN

∥g − r̃∥L∞(0,λ−1
0 ]. (16)

5



See [75] for a detailed discussion.
Then, an approximation of λ 7→ λ−s can be obtained using partial fraction decomposition

Qs(λ) := Rs(λ
−1) = Rs(0) +

N∑
l=1

rl
pl

+
N∑
l=1

rl
λ−1 − pl

= Rs(0) +
N∑
l=1

rlpl + rl(λ
−1 − pl)

pl(λ−1 − pl)

= Rs(0) +
N∑
l=1

rl
pl(1− plλ)

. (17)

Like for the BP method, the convergence of the BURA method is of exponential rate, as proved
in [85]. However, numerical evidence in the literature show that the BURA method is more efficient
than the BP method (see e.g. [74]). In particular, it leads to a lowest number of parametric solves for
a given accuracy. For more detailed discussions on BURA methods, see e.g. [2, 72, 74, 75].

5 Discretization
We combine the rational approximation eq. (9) with a finite element method to derive a fully discrete
approximation of the solution u to eq. (4).

5.1 Rational semi-discrete approximation
The general scheme used for the semi–discrete approximation will be replaced by the BP method
eq. (11) and the BURA method eq. (17) in the numerical experiments of section 9.

We define a semi–discrete approximation of the solution u, defined in eq. (6) by replacing λ−s
i by

Qs(λi) in eq. (6). Thus,

(uQs
, v) :=

+∞∑
i=1

(
C1 + C2

N∑
l=−M

al
cl + blλi

)
fi (ψi, v) , ∀v ∈ H1

0 (Ω). (18)

If we interchange the two sums in eq. (18), we obtain

(uQs , v) = C1 (f, v) + C2

N∑
l=−M

al (ul, v) , ∀v ∈ H1
0 (Ω), (19)

where the functions {ul}Nl=−M are solutions to the parametric problems: for each l in J−M,NK, find
ul in H1

0 such that
cl (ul, v) + bl (∇ul,∇v) = (f, v) , ∀v ∈ H1

0 (Ω). (20)

Note, eq. (19) can be written as

uQs
= C1f + C2

N∑
l=−M

alul. (21)

Since the family of eigenfunctions of the Laplacian {ψi}+∞
i=1 ⊂ H1

0 (Ω) is a Hilbert basis of L2(Ω), the
space H1

0 (Ω) is dense in L2(Ω) and the orthogonal projection of f onto H1
0 (Ω) in eq. (19) is f itself.

Using eq. (19), we reduce the problem eq. (4) to a series of parametric non–fractional problems
eq. (20) to solve. As we will see in section 9, the number of parametric problems to solve can be rela-
tively small, especially when the BURA method is used in the semi–discrete approximation. Moreover,
these non–fractional problems are fully independent from each other so their solve can be performed
in parallel.
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5.2 Finite element discretization
In order to get a fully discrete approximation of u, we use a finite element method to discretize
the parametric problems eq. (20). Although it is not mandatory, we use the same mesh and same
finite element space for all the parametric problems. We discuss this choice, and possible alternative
strategies, in section 7.1.

Let T be a mesh on the domain Ω, composed of cells T = {T}, facets E = {E} (we call facets the
edges in dimension two and the faces in dimension three), and vertices. The mesh T is supposed to be
regular, in Ciarlet’s sense: hT /ρT ⩽ γ, ∀T ∈ T , where hT is the diameter of a cell T , ρT the diameter
of its inscribed ball, and γ is a positive constant fixed once and for all. The subset of facets that are
not coincident with the boundary Γ (called interior facets) is denoted EI . Let n+ and n− in Rd be the
outward unit normals to a given edge as seen by two cells T+ and T− incident to a common edge E.
The space of polynomials of order p on a cell T is denoted Pp(T ) and the continuous Lagrange finite
element space of order p on the mesh T is defined by

V p :=
{
vp ∈ H1(Ω), vp|T ∈ Pp(T ) ∀T ∈ T

}
. (22)

We denote V p
0 the finite element space composed by functions of V p vanishing on the boundary Γ. For

a given index l, the finite element discretization of eq. (20) reads: for each l in J−M,NK, find ul,p in
V p
0 such that

cl (ul,p, vp) + bl (∇ul,p,∇vp) = (f, vp) , ∀vp ∈ V p
0 . (23)

Then, combining the solutions to eq. (23) as in eq. (18) we can give a fully discrete approximation of
the solution to eq. (4) uQs,p ∈ V p

0 , such that

(uQs,p, vp) = C1 (f, vp) + C2

N∑
l=−M

al (ul,p, vp) , ∀vp ∈ V p
0 . (24)

Note, eq. (24) can be rewritten as

uQs,p = C1fV p
0
+ C2

N∑
l=−M

alul,p, (25)

where fV p
0

is the L2 projection of f onto the finite element space V p
0 . The computation of uQs,p is

summarized in the top part of fig. 1. For a detailed discussion on the derivation of uQs,p in terms of
matrices, see [74].

6 Error analysis
This section aims at studying the total discretization error defined by

e := ∥u− uQs,p∥L2 . (26)

Since for any s ∈ (0, 1), the discrepancy u − uQs,p belongs to H2s(Ω) ⊂ L2(Ω), the error can be
measured in the L2 norm for any value of the fractional power s.

Using the triangle inequality, e is controlled from above by the sum of the rational discretization
error ∥u− uQs∥L2 and the finite element discretization error ∥uQs − uQs,p∥L2 as follow

e = ∥u− uQs,p∥L2 = ∥u− uQs
+ uQs

− uQs,p∥L2 ⩽ ∥u− uQs
∥L2 + ∥uQs

− uQs,p∥L2 (27)

In the following we describe estimators for each contribution however the main novelty of this study
comes from the finite element discretization error estimation.
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6.1 Rational approximation error analysis
The estimation of the error induced by the approximation of u by uQs reduces to the estimation of the
scalar rational approximation error. First, we notice that, if we take v = ψi in eq. (18), the coefficients
uQs,i of uQs

in the basis {ψi}+∞
i=1 are given by

uQs,i = Qs(λi)fi, ∀i ⩾ 1. (28)

Then, using the expansion in the basis {ψi}+∞
i=1 , eq. (6) and eq. (28) we have

∥u− uQs
∥2L2 =

+∞∑
i=1

(ui − uQs,i)
2

=
+∞∑
i=1

(
λ−s
i −Qs(λi)

)2
f2i

⩽ max
λ⩾λ0

(λ−s −Qs(λ))
2∥f∥2L2 .

So,
∥u− uQs∥L2 ⩽ max

λ⩾λ0

(|λ−s −Qs(λ)|)∥f∥L2 . (29)

Thus, the following rational approximation error estimator

ηQs = max
λ0⩽λ⩽λ+

(|λ−s −Qs(λ)|)∥f∥L2 , (30)

for a large value of λ+, is cheap to compute since it consists in the approximation of the maximum of
a scalar function and the approximation of the L2 norm of the data f . In addition, we emphasize that
this estimator does not require the discrete solution uQs,p unlike the finite element error estimator we
describe in the next section. However, ηQs

depends on the lower bound of the Laplacian spectrum
λ0 and thus can be optimized by taking λ0 = λ1 when λ1 is known. When it is not the case, precise
guaranteed lower bounds for λ1 could be obtained following e.g. [41, 45].

6.2 Finite element discretization error analysis
Our goal is to derive a quantity η, depending on f and the finite element approximations (ul,p)

N
l=−M

such that
η ≃ ∥uQs − uQs,p∥L2 . (31)

Our method is based on the Bank–Weiser finite element error estimator introduced in [21] and its
implementation in the FEniCSx software described in [39].

6.2.1 Heuristics

Let us start with some heuristics motivating the derivation of our a posteriori error estimator. The
main idea is to derive a function ebwQs,T

that locally represents the discretization error in the solution
to the fractional problem (uQs

− uQs,p)|T on a cell T of the mesh. Combining eq. (19) and eq. (25),
on a cell T of the mesh we have

(uQs − uQs,p)|T = C1(f − fV p
0
)|T + C2

N∑
l=−M

al(ul − ul,p)|T . (32)

We approximate the difference f − fV p
0

by fV − fV p
0

where fV is the L2 projection of f onto a finer
finite element space V (e.g. we can choose V := V p+1). Note that this step is not necessary in the BP
method since the projection of f onto V p

0 is not involved in the rational sum.
To approximate the differences (ul − ul,p)

N
l=−M we can use the framework proposed by Bank and

Weiser in [21] to derive solutions ebwl,T such that

ebwl,T ≃ (ul − ul,p)|T , ∀l ∈ J−M,NK, ∀T ∈ T . (33)
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We obtain ebwQs,T
using the rational approximation sum

ebwQs,T := C1(fV − fV p
0
)|T + C2

N∑
l=−M

ale
bw
l,T ≃ (uQs

− uQs,p)|T , ∀T ∈ T . (34)

Finally, we can estimate the L2 error on the cell T by taking the norm of the function ebwQs,T

∥ebwQs,T ∥L2 ≃ ∥(uQs
− uQs,p)|T ∥L2 . (35)

The heuristic of the approximation of the parametric errors (ul − ul,p)
N
l=−M is summarized in fig. 1.

We would like to emphasize that the Bank–Weiser estimator is not the only possible choice. In
fact, the Bank–Weiser estimator could be replaced with another estimator based on the solves of local
problems, such as e.g. the one used in [81].

6.2.2 A posteriori error estimation

Let us now derive our a posteriori error estimation method more precisely. As mentioned in the
last subsection, this estimator is based on a hierarchical estimator computed from the solves of local
Neumann problems on the cells and introduced for the first time by Bank and Weiser in [21].

Let T be a cell of the mesh. We make use of the following local finite element spaces

V p
T :=

{
vp,T ∈ Pp(T ), vp,T = 0 in (Ω \ T ) ∪ (T ∩ ∂Ω)

}
. (36)

Let us now consider two non-negative integers p+ and p− such that p+ > p− ⩾ 0 and LT : V
p+

T −→ V
p−
T

the local Lagrange interpolation operator. We introduce the local Bank–Weiser space, defined by

V bw
T := ker(LT ) =

{
vp+,T ∈ V

p+

T , LT (vp+,T ) = 0
}
. (37)

The local parametric Bank–Weiser problem associated to the parametric problems eq. (20) and eq. (23)
reads ∫

T

ebwl,T v
bw
T + e2lκ

∫
T

∇ebwl,T · ∇vbwT =

∫
T

rl,T v
bw
T − 1

2

∑
E∈∂T

∫
E

Jl,Ev
bw
T , ∀vbwT ∈ V bw

T (38)

where rl,T and Jl,T are defined as follow:

rl,T := f|T − ul,p|T + e2lκ ∆ul,p|T , and Jl,T := e2lκ
(
∂ul,p|T+

∂n
−
∂ul,p|T−

∂n

)
, (39)

where T+ and T− are the cells sharing the edge E such that the normal n is outward T+. The solution
ebwl,T in V bw

T is the local parametric Bank–Weiser solution. More details about the computation and
implementation of the Bank–Weiser solutions can be found in [21, 39].

Then, we derive the local fractional Bank–Weiser solution by summing the local parametric Bank–
Weiser solutions into the rational approximation sum

ebwQs,T := C1(fV − fV p
0
)|T + C2

N∑
l=−M

ale
bw
l,T . (40)

The local fractional Bank–Weiser estimator is then defined as the L2 norm of this local solution

ηbwQs,T := ∥ebwQs,T ∥L2(T ). (41)

The global fractional Bank–Weiser estimator is then defined by

ηbwQs

2
:=
∑
T∈T

ηbwQs,T

2
. (42)
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Figure 1: Summary of the computation of the fractional solution approximation and of the fractional
Bank–Weiser solution.

7 Adaptive refinement
One of the main applications of a posteriori error estimation is to drive adaptive mesh refinement
algorithms. When the error is unevenly spread across the mesh, refining uniformly is a waste of com-
putational resources leading to suboptimal convergence rates in the number of degrees of freedom. This
problem is compounded for computationally expensive problems like fractional problems. Moreover,
it is known that fractional problems often show a boundary layer behavior, the discretization error is
consequently large in a localized region near the boundary [4, 35, 88]. This problem has been tackled
using graded meshes that are refined near the boundary based on a priori or a posteriori considerations
[24, 48, 67, 79]. As expected, the use of graded meshes improves the convergence of the methods.

Adaptive refinement algorithms are based on the loop

· · · −→ Solve −→ Estimate −→ Mark −→ Refine −→ · · ·

In this work we are concerned with developments in the modules solve, estimate and, when an adaptive
rational scheme is used, the module refine.

In section 7.1, we focus on the finite element mesh adaptive refinement, choosing a fixed rational
scheme fine enough for the rational approximation error to be negligible. We are using the Dörfler
algorithm [57] for the mark module and the Plaza–Carey algorithm [83] for the refine module.

In section 7.2, we allow the rational scheme to vary from one refinement step to another, in order to
balance the discretization errors. Thus, the refine module is composed of the Plaza–Carey algorithm
for the finite element mesh and an algorithm in charge of picking the right rational scheme in order
for the rational and finite element approximation errors to be balanced at each refinement step.

Rational approximation methods have the advantage of being fully parallelizable due to the inde-
pendence of the parametric problems from each other. Similarly, the local a posteriori error estimation
method we have presented earlier is also parallelizable since the computation of the local Bank–Weiser
solutions on the cells are independent from each other. Our error estimation strategy combines these
advantages and is fully parallelizable both with respect to the parametric problems and local estimators
computation.

7.1 Finite element mesh adaptive refinement
An example of error estimation and mesh adaptive refinement algorithm based on our method is shown
in fig. 2. In this algorithm, we focus on the finite element error approximation. Thus, the rational
scheme is fixed and chosen so that the rational approximation error is negligible. In this context, we
assume that the total discretization error satisfies

∥u− uQs,p∥L2 ≃ ∥uQs
− uQs,p∥L2 . (43)

10



Choose a tolerance ε > 0, an initial mesh Tn=0 and an initial rational scheme Qs,n=0

Generate Qs,n=0 coefficients
Initialize the total estimator ηbwQs

= ε+ 1

while ηbwQs
> ε do

Initialize the local Bank–Weiser solutions {ebwQs,T
}T and the solution uQs,p to zero

for l ∈ J−M,NK do
Solve eq. (23) on Tn to obtain ul,p
Add alul,p to uQs,p

for T ∈ Tn do
Solve eq. (38) to obtain ebwl,T
Add alebwl,T to ebwQs,T

end for
end for
Multiply uQs,p and ebwQs,T

by C2

Compute fV p the L2 projection of f onto V p and add C1fV p to uQs,p

Compute fV p+1 the L2 projection of f onto V p+1 and add C1(fV p+1 − fV p)|T to ebwQs,T

Compute ηbwQs,T
:= ∥ebwQs,T

∥L2(T ) for all T ∈ Tn and ηbwQs
:=
√∑

T η
bw
Qs,T

2

if ηbwQs
> ε then

Return uQs,p

else
Mark the mesh Tn using {ηbwQs,T

}T
Refine the mesh Tn to obtain Tn+1

end if
end while

Figure 2: Finite element error estimation and mesh adaptive refinement algorithm outline in pseudo–
code.
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The algorithm presented in fig. 2 is based on three loops: one While loop and two For loops. The
While loop is due to the mesh adaptive refinement procedure and can not be parallelized. However,
the two For loops are fully parallelizable and this parallelization can be highly advantageous for large
three-dimensional problems.

Note that there is no guarantee that the mesh we obtain at the end of the main While loop
in fig. 2 is optimal for all the parametric problems. For some of the parametric solutions without
boundary layers the mesh is certainly over-refined. An alternative approach could be to compute the
L2 norms of the parametric Bank–Weiser solutions ebwl,T in order to derive parametric Bank–Weiser
estimators and refine the meshes independently for each parametric problem. This would require the
storage of a possibly different mesh for each parametric problem at each iteration. More importantly,
this would mean summing parametric finite element solutions coming from different and possibly non-
nested meshes. Properly addressing this question is beyond the scope of this study. Nonetheless, we
give some hints in the numerical results section 9.1.

7.2 Rational scheme and finite element mesh adaptive refinement
In this section, we introduce a method to adaptively refine the rational scheme in addition to the finite
element mesh. This method is partly inspired from the Continuation Multilevel Monte Carlo method,
applied to stochastic PDEs, introduced in [49]. As in eq. (27), we can use the second triangle inequality
to obtain a lower bound on the total error

∥u− uQs,p∥L2 ⩾
∣∣∥u− uQs

∥L2 − ∥uQs
− uQs,p∥L2

∣∣. (44)

Thus, the only way to reduce this lower bound to zero is to balance ∥u−uQs
∥L2 and ∥uQs

−uQs,p∥L2 .
This also make sense from a more practical perspective, using a very fine rational approximation
scheme is a waste of computational resources if a too coarse finite element scheme generates a large
error, the inverse being also true.

The rational approximation error will be controlled via the rational estimator ηQs , defined in
eq. (30), which will be used to choose the proper rational scheme at each refinement step. According
to the results from [30] and [85] both the BP and BURA rational schemes converge exponentially fast.
On the other hand, the finite element error usually shows a polynomial convergence rate. Thus, in
order to balance the rational approximation error with the finite element error, we must reduce the
rational approximation convergence rate to match the finite element one.

At step n we choose the rational approximation scheme of step n + 1 such that the rational error
estimator matches the Bank–Weiser estimator value. To do so we need to estimate what will be the
value of the Bank–Weiser estimator. We assume that the logarithm of the Bank–Weiser estimator
follows a linear trend (this is usually true in the asymptotic regime). Thus, the next value of the
estimator can be estimated by a simple linear regression on its values at step n and n− 1.

More precisely, let us denote ρbwQs,n
= ln(ηbwQs,n

) the logarithm of the Bank–Weiser estimator and
dn the logarithm of the number of degrees of freedom at the nth refinement step. We assume that

ρbwQs,m = δdm + C, for m = n+ 1, n, n− 1, (45)

where δ is the convergence slope and C is a real constant. Then, we have

ρbwQs,n − ρbwQs,n−1 = δ(dn − dn−1), and ρbwQs,n+1 − ρbwQs,n = δ(dn+1 − dn). (46)

In other words,
ρbwQs,n+1 − ρbwQs,n

dn+1 − dn
=
ρbwQs,n

− ρbwQs,n−1

dn − dn−1
= δ. (47)

Thus,

ρbwQs,n+1 = (ρbwQs,n − ρbwQs,n−1)
dn+1 − dn
dn − dn−1

+ ρbwQs,n. (48)
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Now, if we denote ρQs,n+1 = ln(ηQs,n+1) the logarithm of the rational error estimator at the n + 1th

step, our goal is to compute the coarsest rational scheme such that

ρQs,n+1 < ρbwQs,n+1 = (ρbwQs,n − ρbwQs,n−1)
dn+1 − dn
dn − dn−1

+ ρbwQs,n. (49)

In terms of estimators values eq. (49) can be reformulated into

ηQs,n+1 < δ̃ηbwQs,n, (50)

where
δ̃ := exp

(
(ρbwQs,n − ρbwQs,n−1)

dn+1 − dn
dn − dn−1

)
. (51)

Notice that at the end of the nth refinement step, all the quantities involved in the definition eq. (51)
of δ̃ are known. Especially, dn+1 can be computed once the nth mesh is refined using ηbwQs,n

.
Since this method requires at least two levels of refinement we choose a coarse rational scheme and

keep it for step n = 0 and step n = 1. Despite the fact that eq. (45) is only true in the asymptotic
regime, numerical experiments suggest that our method stabilizes (in the sense that ηQs,n ≃ ηbwQs,n

)
after a few refinement steps.

Finally, we stop the algorithm when the total estimator, defined by

η = ηQs + ηbwQs
, (52)

reaches the prescribed tolerance (according to the bound eq. (27)). An example of algorithm based on
our method is shown in fig. 3.

8 Implementation
We have implemented our method using the DOLFINx finite element solver of the FEniCS Project [13].
Each parametric subproblem is submitted to a batch job queue. A distinct MPI communicator is used
for each job. We use a standard first-order Lagrange finite element method and the resulting linear
system is solved using the conjugate gradient method. The conjugate gradient method is preconditioned
using BoomerAMG from HYPRE [60] via the interface in PETSc [18]. To compute the Bank–Weiser
error estimator for each subproblem we use the methodology outlined in [39] and implemented in the
FEniCSx–EE package [38]. For every subproblem the computed solution and error estimate is written
to disk in HDF5 format. A final step, running on a single MPI communicator, reads the solutions and
error estimates for all subproblems, computes the quadrature sums using axpy operations, defines the
marked set of cells to be refined using the Dörfler algorithm [57], and finally refines the mesh using
the Plaza–Carey algorithm [83].

A more complex implementation using a single MPI communicator split into sub-communicators
would remove the necessity of reading and writing the solution and error estimate for each subproblem
to and from disk. However, in practice the cost of computing the parametric solutions massively
dominates all other costs.

9 Numerical results
In sections 9.1 to 9.5 we only consider finite element mesh adaptive refinement. Thus, we choose the
rational scheme Qs in order to guarantee that the rational approximation error is negligible (i.e. of
the order of machine precision). This can be achieved thanks to eq. (29). Section 9.6 is dedicated to
the application of the algorithm combining mesh and rational schemes adaptive refinement, sketched
in fig. 3, to the two dimensional test cases.
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Choose a tolerance ε > 0, an initial mesh Tn=0, an initial rational scheme Qs,n=0

Generate Qs,n=0 coefficients
Compute ηQs

Initialize the total estimator η = ε+ 1
while η > ε do

Initialize the local Bank–Weiser solutions {ebwQs,T
}T to zero

Initialize the solution uQs,p to zero
for l ∈ J−M,NK do

Solve eq. (23) on Tn to obtain ul,p
Add alul,p to uQs,p

for T ∈ Tn do
Solve eq. (38) to obtain ebwl,T
Add alebwl,T to ebwQs,T

end for
end for
Multiply uQs,p and ebwQs,T

by C2

Compute fV p the L2 projection of f onto V p and add C1fV p to uQs,p

Compute fV p+1 the L2 projection of f onto V p+1 and add C1(fV p+1 − fV p)|T to ebwQs,T

Compute ηbwQs,T
:= ∥ebwQs,T

∥L2(T ) for all T ∈ Tn, ηbwQs
:=
√∑

T η
bw
Qs,T

2 and η := ηbwQs
+ ηQs

if η > ε then
Return uQs,p

else
Mark the mesh Tn using {ηbwQs,T

}T
Refine the mesh Tn to obtain Tn+1

if n > 1 then
Compute δ̃ using eq. (51)
while ηQs,n+1 > δ̃ηbwQs,n

do
Refine the rational scheme Qs,n to obtain Qs,n+1

Compute ηQs,n+1

end while
end if

end if
end while

Figure 3: Total error estimation and rational scheme and mesh adaptive refinement algorithm outline
in pseudo–code.
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Frac. power 0.1 0.3 0.5 0.7 0.9

BP Estimator -0.92 -0.93 -0.95 -0.96 -0.97
Exact error -1.03 -1.03 -1.04 -1.04 -1.04

BURA Estimator -0.79 -0.93 -0.95 -0.96 -0.97
Exact error -0.83 -1.04 -1.05 -1.06 -1.05

Table 1: Two-dimensional product of sines test case: convergence rates of the Bank–Weiser
estimator and of the exact finite element error for various fractional powers and for fixed BP and
BURA schemes.

Frac. power 0.1 0.3 0.5 0.7 0.9

BP 1.73 2.04 1.79 1.5 1.22
BURA 1.07 2.04 1.79 1.51 1.27

Table 2: Two-dimensional product of sines test case: efficiency indices of the Bank–Weiser
estimator for various fractional powers and for fixed BP and BURA schemes.

9.1 Two-dimensional product of sines test case
We solve eq. (4) on the square Ω = (0, π)2 with data f(x, y) = sin(x) sin(y). The analytical solution
to this problem is given by u(x, y) = 2−s sin(x) sin(y). Moreover, the analytical solutions to the
parametric problems eq. (20) are also known ul(x, y) = (cl + 2bl)

−1 sin(x) sin(y). The problem is
solved on a hierarchy of structured (triangular) meshes. For this test case the solution u shows no
boundary layer behavior, therefore mesh adaptive refinement cannot improve the convergence rate.
Consequently, we only perform uniform mesh refinement.

The accuracy of the estimator is measured with the efficiency indices (defined as the ratios of the
estimators over the exact errors) shown in table 2. As we can see, the efficiency varies between 1 and 2
in most of the cases. In the case of a fixed fine rational scheme the efficiency values are not influenced
by the choice of the rational method, except when s = 0.1. This independence of the method is
remarkable since the parametric problems coefficients can be very different from BP to BURA.

Theorem 4.3 from [30] gives a convergence rate for the finite element scheme discretization error
when the BP method is used, depending on the elliptic regularity index α of the Laplacian over Ω,
on the fractional power and on the regularity index δ of the data f . Since Ω is convex the elliptic
"pick-up" regularity index α can be taken to be 1 [24] and since f is infinitely smooth the coefficient
δ can be taken as large as wanted. Consequently, Theorem 4.3 in [30] predicts a convergence rate of
dof−1 for this test case. The convergence rates we measure in practice, shown in table 1, are mostly
coherent with this prediction. These rates are computed from a linear regression fit on the values
obtained on the ten last meshes of the hierarchy (or on all the meshes when less than ten meshes are
computed). To our knowledge, there is no such convergence theorem available for the BURA method.
Convergence plots for the Bank–Weiser estimator and the exact finite element discretization error are
shown in fig. 4 for s = 0.3 and 0.7.

9.1.1 Parametric problems discretization error

Since we know the analytical solutions to the parametric problems in this case, it is possible to compute
the exact parametric discretization errors el := ∥ul − ul,1∥L2 , for each l ∈ J−M,NK. This allows us
to investigate the consequences of using the same mesh for all the parametric problems. In fig. 5 we
have plotted the exact parametric errors after five steps of (uniform) refinement. As we can notice, the
same mesh leads to a wide range of parametric errors values. These errors are particularly low when
the diffusion part of the parametric operator is dominant. When the reaction part begin to domine
the mesh seems to have a constant impact on the parametric errors (this is particularly striking for
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Figure 4: Two-dimensional product of sines test case: the Bank–Weiser estimator ηbwQs
in solid

blue line is compared to the exact error in dashed light blue line for two different rational schemes and
two different fractional powers.
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Figure 5: Two-dimensional product of sines text case: variation of the normalized exact para-
metric errors el/maxl(el) with respect to the index l ∈ J−M,NK for BP and BURA and for three
different fractional powers.

the BP scheme).
As expected these results suggest that the method can be optimized by using different meshes

depending on l. In particular, coarser meshes would be sufficient when the diffusion coefficient is
dominant. These results are obtained for mesh uniform refinement, further investigations deserve to
be carried out for mesh adaptive refinement.

As we explained earlier, using a different hierarchy of meshes for each parametric problem may be
computationally advantageous, at the expense of ease of implementation. Several hierarchies of meshes
would need to be stored and, in the case of adaptive mesh refinement, interpolation between possibly
non-nested meshes would be required in order to compute the fractional solution u. To avoid these
complications when mesh adaptive refinement is used, we propose the following:

1. use the same hierarchy of meshes for all the parametric problems but not the same mesh. Some
parametric problems might be solved on coarser meshes from the hierarchy and others on finer
ones. This would allow to keep only one hierarchy of meshes stored in memory. Moreover, it
would avoid the interpolation between non-nested meshes, since meshes from the same hierarchy
are always nested.

2. selectively refine the mesh hierarchy: estimate the error globally for each parametric problem
(this can be done using the local parametric Bank–Weiser solutions) and mark the parametric
problems for which a finer mesh is required, using e.g. a marking algorithm similar to Dörfler’s
marking strategy.

9.2 Two-dimensional checkerboard test case
We solve the problem introduced in the numerical results of [30]. We consider a unit square Ω = (0, 1)2

with data f : Ω → R given for all (x1, x2) ∈ Ω by

f(x1, x2) =

{
1, if (x1 − 0.5)(x2 − 0.5) > 0,

−1, otherwise.
(53)
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Figure 6: Two-dimensional checkerboard test case: the dashed lines represent the Bank–Weiser
estimator when uniform mesh refinement is performed and the solid lines represent the estimator when
adaptive mesh refinement is performed.

The data f belongs to H1/2−ε(Ω) for all ε > 0. So in Theorem 4.3 of [30] the index δ < 1/2 and since
Ω is convex, again α can be chosen equal to 1. Then, the predicted convergence rate (for uniform
refinement) is ln(

√
dof)dof−β with

β =

{
1, if s > 3

4 ,

s+ 1
4 , otherwise.

(54)

The predicted (if we omit the logarithmic term) and calculated convergence rates for different choices
of s are given in table 3. We recall that, to our knowledge, Theorem 4.3 is only available for BP and for
BURA. As we can see on this table, the convergence rates for the total estimator is globally coherent
with the predictions. Table 3 and fig. 6 show that mesh adaptive refinement improves the convergence
rate for small fractional powers. This is expected, the deterioration in the convergence rate is due to
the boundary layer behavior of the solution that is getting stronger as the fractional power decreases.
In the limit as the fractional power approaches s→ 1, the solution behaves like the solution to a non-
fractional problem, i.e. there is no boundary layer and mesh adaptive refinement is no longer needed
to improve the convergence rate. Nevertheless, it appears that our estimation strategy deals properly
with this limit case in terms of recovering the expected convergence rates for all s. This behavior can
be seen on fig. 7, after 10 steps of mesh adaptive refinement, the mesh associated to fractional power
s = 0.9 is almost uniformly refined while the meshes associated to s = 0.5 and s = 0.1 show strongly
localized refinement. This explains why in fig. 6 we see the expected behavior, i.e. no improvement in
the convergence rate, when the mesh is adaptively refined compared to uniformly refined when s ⩾ 0.7.
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Frac. power 0.1 0.3 0.5 0.7 0.9

BP Theory [30] -0.35 -0.55 -0.75 -0.95 -1.00
Unif. mesh ref. -0.35 -0.56 -0.77 -0.94 -1.00
Adapt. mesh ref. -0.66 -0.85 -0.95 -0.96 -1.02

BURA Unif. mesh ref. -0.34 -0.59 -0.77 -0.94 -1.00
Adapt. mesh ref. -0.54 -0.89 -0.95 -0.96 -1.02

Table 3: Two-dimensional checkerboard test case: convergence rates of the Bank–Weiser esti-
mator for uniform mesh refinement and adaptive mesh refinement and for BP and BURA methods.
In the case of the BP method, the convergence rates are compared with the values predicted by [30]
for various fractional powers.

Figure 7: Two-dimensional checkerboard test case: meshes obtained after 10 steps of mesh
adaptive refinement steered by the Bank–Weiser estimator for s = 0.1, s = 0.5 and s = 0.9 from left
to right.
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Figure 8: Three-dimensional product of sines test case: the Bank–Weiser estimator ηbwQs
in solid

dark blue line is compared to the exact error in dashed light blue line for s = 0.3 and s = 0.7 when
the BP rational scheme is used.

Frac. power 0.1 0.3 0.5 0.7 0.9

Estimator -0.56 -0.60 -0.63 -0.65 -0.66
Exact error -0.69 -0.69 -0.69 -0.69 -0.69

Table 4: Three-dimensional product of sines test case: convergence rates of the Bank–Weiser
estimator and of the exact error for various fractional powers when the BP rational scheme is used.

9.3 Three-dimensional product of sines test case
This test case is the three-dimensional equivalent of the last test case. We solve eq. (4) on the
cube Ω = (0, π)3 with data f(x, y, z) = (2/π)3/2 sin(x) sin(y) sin(z). The analytical solution to this
problem is given by u(x, y, z) = 3−s(2/π)3/2 sin(x) sin(y) sin(z). The problem is solved on a hierarchy
of uniformly refined Cartesian (tetrahedral) meshes. As for the two-dimensional case, the solution
u shows no boundary layer behavior and mesh adaptive refinement is not required. For the same
reasons as for the two-dimensional case, Theorem 4.3 from [30] predicts a convergence rate of dof−2/3

for the finite element scheme. fig. 8 shows the values of the Bank–Weiser estimator and of the exact
error (computed from the knowledge of the analytical solution) for s = 0.3 and s = 0.7. As in
the two-dimensional case, the efficiency indices are relatively robust with respect to the fractional
powers. They are shown for various fractional powers in table 5 and are computed by taking the
average of the indices from the three last meshes of the hierarchy. As we can see, the Bank–Weiser
estimator efficiency indices for this three-dimensional case are not as good as in the two-dimensional
case. We have already observed this behavior for non-fractional problems [37]. We can notice that the
convergence rates, given in table 4, are coherent with the predictions of Theorem 4.3 from [30]. The
convergence rates are computed from a linear regression on the values computed from the three last
meshes of the hierarchy.

Frac. power 0.1 0.3 0.5 0.7 0.9

Est. eff. index 2.12 3.20 3.08 2.77 2.45

Table 5: Three-dimensional product of sines test case: efficiency indices of the Bank–Weiser
estimator for various fractional powers.
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Figure 9: Three-dimensional checkerboard test case: finite element solution and mesh after six
steps of mesh adaptive refinement when s = 0.5. The unit cube domain (0, 1)3 is truncated by the
three planes passing through the point (0.25, 0.25, 0.25) and orthogonal to the vectors (1, 0, 0), (0, 1, 0)
and (0, 0, 1) respectively.

Frac. power 0.1 0.3 0.5 0.7 0.9

Theory [30] -0.23 -0.37 -0.50 -0.63 -0.67
Unif. mesh ref. -0.24 -0.38 -0.52 -0.62 -0.67
Adapt. mesh ref. -0.33 -0.46 -0.55 -0.65 -0.68

Table 6: Three-dimensional checkerboard test case: convergence rates of the Bank–Weiser esti-
mator for mesh uniform refinement and for mesh adaptive refinement compared to the values predicted
by [30] for various fractional powers when the BP rational scheme is used.

9.4 Three-dimensional checkerboard test case
This test case is the three-dimensional version of the above checkerboard problem. We solve eq. (4)
on the unit cube Ω = (0, 1)3, with data f such that

f(x1, x2, x3) =


1, if (x1 − 0.5)(x2 − 0.5) > 0 and (x3 − 0.5) < 0,

1, if (x1 − 0.5)(x2 − 0.5) < 0 and (x3 − 0.5) > 0,

−1, otherwise.
(55)

The finite element solution u1 and the corresponding mesh after six steps of mesh adaptive refinement
are shown in fig. 9 for the fractional power s = 0.5. As for the two-dimensional case, f ∈ H1/2−ε(Ω)
for all ε > 0. Consequently, once again Theorem 4.3 of [30] predicts a convergence rate (for uniform
refinement) equal to ln

(
dof1/3

)
dof−2β/3 with β given by eq. (54).

Once again, if we omit the logarithmic term, the predicted and calculated convergence rates are
given in table 6. As in the two-dimensional case, the convergence rates of the Bank–Weiser estimator
are globally coherent with the predictions and the boundary layer behavior becomes stronger as the
fractional power decreases leading to poorer convergence rates. section 9.4 shows the values of the
Bank–Weiser estimator for mesh uniform and adaptive refinement and for several fractional powers.
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Figure 10: Three-dimensional checkerboard test case: for each fractional power we compare the
values of the Bank–Weiser estimator ηbwQs

when uniform refinement is performed (light lines) and when
adaptive refinement is performed (darker lines).

9.5 Three–dimensional torus test case
We show now the application of our method on an unstructured three-dimensional mesh. We generate
a mesh of a filled torus with unit inner radius and outer radius of 1.3 using gmsh [66]. The initial mesh
has 12040 tetrahedral cells. We set s = 0.5 and f = 1 for all Ω. We estimate the lowest eigenvalue
of the standard Laplacian on this mesh λ0 ≃ 60 and calculate of the data ∥f∥L2 ≃ 1.323 giving a
quadrature fineness parameter κ = 0.48 for the BP scheme (45 quadrature points).

We perform adaptive mesh refinement until a discretization error of less than 1 × 10−2 has been
reached. The evolution of the estimator is given in fig. 11. A plot of the solution and an idea of the
mesh refinement on a cut at the third and final mesh is given in fig. 12. Clearly evident is the very
strong refinement near the boundary needed to capture the strong boundary layer in this problem.

9.6 Adaptive rational scheme
In this section, we apply our method combining finite element mesh and rational scheme adaptive
refinement (sketched in fig. 3) to the two-dimensional test cases from sections 9.1 and 9.2. We provide
a comparison between this method and the method where the rational schemes are fixed. When an
adaptive rational scheme is used the number of parametric problems is variable from one step to
another. Thus, in order to obtain a meaningful comparison, we use the total number of degrees of
freedom (i.e. the number of degrees of freedom times the number of parametric problems) on the plots
x–axis. In addition, the rational approximation error is no longer negligible so our interest is on the
total error estimator and the total discretization error (respectively defined in eq. (52) and eq. (26))
rather than the Bank–Weiser estimator and the finite element discretization error.
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Figure 11: Three–dimensional torus test case: convergence of estimator under adaptive mesh
refinement.

Figure 12: Three–dimensional torus test case: Plot of solution after the final mesh adaptive
refinement. Clipped with plane passing through origin with normal (1, 0, 0). Sliced with plane passing
through origin with normal (0, 0, 1). Slice shows mesh refinement with particularly strong refinement
to resolve the boundary layer.
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Frac. power 0.1 0.3 0.5 0.7 0.9

BP Fixed ra. scheme 1155 497 427 497 1155
Adaptive ra. scheme 504 209 178 199 358

BURA Fixed ra. scheme 96 77 63 49 35
Adaptive ra. scheme 42 33 29 20 17

Table 7: Two-dimensional product of sines test case: comparison of the total number of solves
to reach the tolerance for each method and each fractional power with and without the adaptively
refined rational scheme.

Frac. power 0.1 0.3 0.5 0.7 0.9

BP Fixed scheme Exact error -1.03 -1.03 -1.04 -1.04 -1.04
Estimator -0.92 -0.93 -0.95 -0.96 -0.97

Adaptive scheme Exact error -0.83 -0.75 -0.77 -0.73 -0.74
Estimator -0.78 -0.74 -0.83 -0.74 -0.77

BURA Fixed scheme Exact error -0.80 -1.03 -1.05 -1.06 -1.06
Estimator -0.78 -0.94 -0.96 -0.98 -0.99

Adaptive scheme Exact error -0.67 -0.83 -0.84 -0.77 -0.77
Estimator -0.71 -0.85 -0.83 -0.80 -0.79

Table 8: Two-dimensional product of sines test case: convergence rates of the total estimator
and of the exact total error for various fractional powers and for fixed or adaptive BP and BURA
schemes.

9.6.1 Two-dimensional product of sines test case

In fig. 13 we compare the values of the total estimator η and of the exact error with and without the
use of an adaptive rational scheme. As in section 9.1, adaptive mesh refinement is not required on this
test case so we only perform uniform mesh refinement.

In table 7 we compare the number of parametric problems solved with or without the use of an
adaptive rational scheme. The total numbers of parametric problems to solve in order to reach our
tolerance is reduced by 30 to 43 % for the BP method and by 40 to 48 % for the BURA method.
However, and more surprisingly, the use of an adaptive rational scheme does not induce any gain in
the overall computational cost –measured by the number of degrees of freedom times the number of
parametric problems– for this test case, as we can see in fig. 13. We notice that the introduction of
the adaptive rational scheme slightly deteriorate the convergence rates, shown in table 8. Our method
consists in reducing the convergence rate of the rational approximation to the convergence rate of the
Bank–Weiser estimator. Thus, it assumes that the rational scheme does not influence the Bank–Weiser
estimator rate of convergence. However, the results in table 8 suggest that the Bank–Weiser estimator
is influenced by the rational approximation scheme.

9.6.2 Two-dimensional checkerboard test case

In fig. 14 we compare the values of the total estimator η and of the exact error with and without the
use of an adaptive rational scheme. As in section 9.2, the boundary layer behavior, present for small
values of s, requires adaptive mesh refinement but gets less and less prominent as s tends to 1.

The gain in the number of parametric problems to solve is comparable to what we obtain in table 7.
The use of an adaptive rational scheme clearly induces a gain in the precision with respect to the total
number of degrees of freedom, except for small fractional powers when the BURA rational scheme is
used.

As for the two–dimensional product of sines test case, we can notice on table 10 that the use of an
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Figure 13: Two-dimensional product of sines test case: the solid lines represent fixed BP and
BURA schemes while the dashed lines represent adaptive BP and BURA schemes. Triangular markers
represent the values of the total estimator and circular markers represent the values of the exact total
error.

Frac. power 0.1 0.3 0.5 0.7 0.9

BP Fixed scheme 1.76 2.03 1.79 1.52 1.29
Adaptive scheme 1.69 1.75 1.73 1.51 1.85

BURA Fixed scheme 1.02 1.93 1.81 1.53 1.30
Adaptive scheme 1.44 2.25 2.00 1.64 2.07

Table 9: Two-dimensional product of sines test case: efficiency indices of the total estimator for
various fractional powers and for fixed or adaptive BP and BURA schemes.
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Figure 14: Two-dimensional checkerboard test case: we compare the values of the total estimator
for three refinement strategies, when the mesh is uniformly refined and a fixed rational scheme is used
(triangular markers), when the mesh is adaptively refined and a fixed rational scheme is used (circular
markers) and when the mesh is adaptively refined and an adaptive rational scheme is used (square
markers).

adaptive rational scheme also deteriorates the convergence rates in most of the cases. However, unlike
the test case from section 9.6.1, a gain in the computational cost clearly appears when an adaptive
rational scheme is used, especially with the BP method.

The discrepancies between the BP and BURA methods might be due to the high sensitivity of the
BURA scheme with respect to the parameter N : balancing the rational and finite element estimator
is more difficult with the BURA scheme.

10 Concluding remarks
In this work we presented a novel a posteriori error estimation method for the spectral fractional
Laplacian. This method benefits from the parallel character of both the Bank–Weiser error estimator
and the rational approximation methods, thus keeping the appealing computational aspects of the
underlying methodology in [30]. Here are some important points we want to make to conclude this
paper. First, the Bank–Weiser estimator seems to be equivalent to the L2 exact error at least when
structured meshes are used and when the solution u is smooth. Second, adaptive mesh refinement
methods drastically improves the convergence rate compared to uniform refinement for fractional
powers close to 0. Third, the use of an adaptive rational scheme can reduce the number of total
parametric problems to solve by 30 to 48% depending on the scheme and the fractional power. However,
it does not necessarily induce a gain in the precision with respect to the total number of degrees of
freedom.
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Frac. power 0.1 0.3 0.5 0.7 0.9

BP Theory [30] -0.35 -0.55 -0.75 -0.95 -1.00
Unif. mesh ref. -0.35 -0.56 -0.77 -0.94 -1.00
Adapt. mesh ref. -0.57 -0.77 -0.94 -0.97 -1.00
Adapt. mesh ref. & ra. sch. -0.44 -0.56 -0.75 -0.78 -0.82

BURA Unif. mesh ref. -0.21 -0.65 -0.83 -0.94 -1.00
Adapt. mesh ref. -0.36 -0.79 -0.97 -0.96 -1.00
Adapt. mesh ref. & ra. sch. -0.45 -0.50 -0.65 -0.80 -0.86

Table 10: Two-dimensional checkerboard test case: convergence rates of the total estimator for
uniform mesh refinement, adaptive mesh refinement and adaptive mesh refinement combined with ra-
tional scheme adaptation respectively for BP and BURA methods. The convergence rates are compared
with the values predicted by [30] (in the case of uniform refinement) for various fractional powers.

Finally, we give some future directions that we think are worth considering. More numerical tests
could be performed, especially for higher order elements and/or using variants of the Bank–Weiser
error estimator as considered in [39].

We would like also to study the derivation of an algorithm that allows to use different meshes to
discretize the parametric problems in order to save computational time, as explained in section 9.1.1.
However, the implementation of this strategy requires to interpolate functions between different meshes,
which is not currently available in the FEniCSx software and by consequence, is beyond the scope of
this study. The use of an adaptive rational scheme and in particular the dependence of the Bank–
Weiser estimator with respect to the choice of the rational scheme deserve a deeper investigation in
order to fully explain the results in sections 9.6.1 and 9.6.2. The a posteriori error estimation of the
error in the “natural” norm of the problem i.e. the spectral fractional norm defined in eq. (3) is another
extension of this work that is worth to consider. The replacement of the Bank–Weiser estimator
by an anisotropic a posteriori error estimator would improve the convergence rate even further in
case of boundary layers, see e.g. [19, 62], Another interesting extension would be to test our method
on fractional powers of other kinds of elliptic operators, following [30], on another definition of the
fractional Laplacian operator [27] and/or other boundary conditions, following [15].

Supplementary material
A minimal example of adaptive finite element method for the two–dimensional spectral fractional
Laplacian and the three–dimensional torus can be found in the following FEniCSx–Error–Estimation
repository https://github.com/jhale/fenicsx-error-estimation. This minimal example code
(LGPLv3) is also archived at https://doi.org/10.6084/m9.figshare.19086695.v3. A Docker im-
age [70] is provided in which this code can be executed.
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