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Take home message: DBS of the motor thalamus using stimulus parameters that are optimal 

for tremor relief, provides significant relief of experimentally induced hypercapnic air hunger. 

This advances our understanding of the cerebral mechanisms of breathlessness. 
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ABSTRACT   

Research question: We previously reported that Deep Brain Stimulation (DBS) of motor 

thalamus (MT), in a patient with post-stroke tremor, relieved breathlessness associated with 

chronic obstructive pulmonary disease. This raised the question of whether MT DBS 

mitigates the ascending dyspnoea signal. We therefore sought to conduct a fully powered 

cohort study of experimentally induced air hunger (AH), an uncomfortable urge to breathe in 

patients with MT DBS ON and OFF. 

Methods: 16 patients (3 females) with DBS of the ventral intermediate nucleus (VIM) as 

treatment for tremor, underwent hypercapnic AH tests, with DBS ‘ON’ and ‘OFF’. Patients 

rated AH on a visual analogue scale (VAS) every 15s. Hypercapnia and ventilation were 

matched for ON and OFF states (mean±sd 43±4 and 43±4mmHg for end-tidal PCO2, 13.7 and 

13.4 L/min for ventilation). Participants ventilation was constrained to baseline levels by 

breathing from a 3-litre inspiratory reservoir with fixed flow of fresh gas while targeting their 

resting breathing frequency to a metronome.  

Results: Overall steady state AH was 52±28%VAS for ‘ON’ and 67±20%VAS for ‘OFF’ 

(p=0.002; two-tailed paired t-test).  The mean reduction in AH during VIM DBS was -

14.4%VAS. MT DBS relieved AH in thirteen patients, heightened AH in two and caused no 

change in one. 

Conclusion: MT DBS for tremor relief also mitigates the AH component of dyspnoea. We 

posit that DBS of the MT heightens the gating control of the thalamus modulating the 

ascending air hunger signal. Extent of relief suggests that thalamic DBS may prove to be a 

viable therapy for intractable dyspnoea.  
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INTRODUCTION  

Dyspnoea, defined as “a subjective experience of breathing discomfort” that is prevalent 

across multiple conditions[1],  severely impacts quality of life[2] which may reflect a sparsity 

of safe and effective treatments. A comprehensive understanding of the central 

neurophysiology of dyspnoea will help to discover targeted therapies. This approach is 

facilitated by several advances: a) Distinct components of breathlessness, encapsulated by ‘air 

hunger’ (AH), ‘sense of breathing effort’, and ‘chest tightness’, have been characterised that 

can vary independently[3]. b) Different neural mechanisms have been postulated for the 

different components[4]. c) Methods have been established to induce specific components in 

experimental settings[5]. AH, defined as an “uncomfortable urge to breathe”, can be induced 

by raising inspired CO2 while constraining ventilation; thereby providing a reliable 

experimental model of a particularly unpleasant component of pathological breathlessness[6]. 

Cerebral mechanisms have been studied primarily using brain-imaging of experimentally-

induced breathlessness in healthy individuals. Experimental AH, and breathlessness 

associated with resistive loading, have both elicited strong activation of the insular cortex[7-

12] with consistent activation of other regions such as anterior cingulate, orbitofrontal cortex, 

thalamus, amygdala, and basal ganglia have also been implicated in the above studies. How 

these different areas function as a network for dyspnoea perception is yet to be unravelled. 

Deep brain stimulation (DBS), involving implanted electrodes providing constant electrical 

stimulation of specific brain regions, is a therapy for various neurological conditions 

including movement disorders, and intractable pain[13]. Several of the DBS sites 

coincidentally overlap with areas identified in brain-imaging studies of dyspnoea[7] thus 

offering an alternative approach to investigate cerebral mechanisms. 
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We previously reported AH relief during DBS of the motor thalamus (ventral intermediate 

nucleus, VIM), in an individual with post-stroke tremor who coincidentally had pre-existing 

breathlessness from COPD[14]. The thalamus mirrors phrenic nerve firing, representing the 

drive to breath once a certain threshold is reached[15]. One hypothesis that follows is that the 

AH signal, generated by the mismatch between brainstem respiratory corollary discharge and 

vagal afferents from the lungs, projects to the thalamus whereby a dyspnoea signal is 

distributed to cortical sensory areas. Here, we hypothesised that DBS of the VIM would 

mitigate experimentally induced AH, raising the possibility that this region could be a target 

for relief of intractable dyspnoea by neuromodulation. 

METHODS 

Participants  

Sixteen patients who underwent DBS of the bilateral VIM to treat chronic tremor were 

recruited consecutively from a single centre at John Radcliffe Hospital, Oxford, UK. All 

participants provided written informed consent. Ethical approval was provided by South 

Central Oxford REC (11/SC/0229). The trial was registered on Clinicaltrials.gov 

(NCT04058457).  Eligibility criteria included individuals over the age of 18 who have DBS of 

the VIM. Exclusion criteria included; females who are pregnant, subjects participating in a 

clinical investigation that includes an active treatment arm which may affect the respiratory 

system, and indication of acute respiratory problems at the time of the experimental session.  

Sample size 

Previous studies involving experimentally induced AH rated on a visual analogue scale 

(VAS) by healthy volunteers showed a linear increase in VAS ratings of AH with a slope of  

6.7%VAS for every 1mmHg rise in end-tidal PCO2 (PETCO2) above normocapnia (40mmHg). 

The standard deviation (SD) of this response slope was 2.4%VAS/mmHg[16]. From this data 
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we determined that an increase in PETCO2 to 47.5mmHg would produce a mean AH rating of 

50%VAS with a SD of ±19%VAS. The minimal clinically important difference (MCID) for 

VAS ratings of AH is estimated to be between 10-20mmVAS[17, 18]. We chose 15% as this 

lies in the middle of this range to determine the number of participants we would need as a 

result of a change of this magnitude to be definitive. Assuming a true difference of ±15%VAS 

in the mean VAS rating of AH at this level of hypercapnia between DBS OFF versus ON, 

which is above the minimal clinically important difference of ±10%VAS for breathlessness 

ratings using VAS, we determined that we would need to study 16 patients to be able to reject 

the null hypothesis with 85% power and a Type I error probability of 0.05 (PS v3, 

URL: http://biostat.mc.vanderbilt.edu/PowerSampleSize). 

Experimentally-induced air hunger 

Participants sat semi-reclined in a comfortable chair. They breathed through a mouthpiece 

connected via a bacterial filter to a pneumotachograph. The airflow signal was electronically 

integrated to provide online tidal volume (FV156 respiratory flow integrator, Validyne 

Engineering Corp, CA, USA). A fast-responding gas analyser (ML206, AD instruments, 

Oxford, UK) was used to measure breath-by-breath expired CO2 via a sample line inserted 

into the mouthpiece. A second sample line inserted in the mouthpiece was connected to a 

differential pressure transducer (DP45, ±50cmH20, Validyne Engineering Corp, CA, USA) 

for continuous measurement of airway pressure. One-way breathing valves (Hans Rudolph, 

Kansas, USA) separated inspiration from expiration. A 3-litre anaesthetic bag provided the 

inspiratory reservoir.   

A fixed flow of heated and humidified air (HC150 humidifier, Fisher & Paykel Healthcare, 

NZ) was fed into this bag. Participants breathed to a metronome with a beep-rate set to match 

the participant’s resting spontaneous breathing frequency. To induce AH, up to 7%CO2 was 

added to the inspiratory reserve using an air-oxygen blender (Inspiration Health, Croydon, 
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UK) to which gas cylinders containing 10% CO2 in air, and medical air were connected. Flow 

of fresh gas to the inspiratory reserve was kept constant and set to match the participants’ 

spontaneous resting ventilation. Participants rated their AH using a slider to operate an 

electronic 100mm visual analogue scale (VAS). Ratings were cued by an LED that lit every 

15s (figure 1A). Arterial oxygen saturation was measured using a finger-pulse oximeter. 

Blood pressure was measured every 2-3 minutes using the oscillatory cuff method and ECG 

using 6-lead cutaneous AgCL electrodes. 

Protocol 

Participants completed three practice ‘ramp’ tests involving 1-min increments in inspired 

CO2. For the first ramp, participants rated ‘any breathing discomfort’. Subsequently, a debrief 

questionnaire[19] involving volunteered comments followed by patient selection of 

respiratory and non-respiratory descriptors from pre-set lists, was used to ensure participants 

could differentiate AH from other sensations. Participants were then instructed to solely focus 

on, and rate AH, during subsequent testing. Two steady-state (SS) AH tests were then 

completed which involved a sustained increase in inspired CO2 for 5-min at a level targeting 

the PETCO2 associated with AH ratings approximating 50%VAS during initial ramp tests. The 

order of ON and OFF DBS was randomised between SS tests (figure 1B). End-point was 

when tolerance was reached, participants came off the mouthpiece, or PETCO2 reached 

60mmHg.  

Figure 1 here 

 

Data processing and analysis 

Analogue signals were digitised (Micro1401, Cambridge Electronic Design, Cambridge, UK) 

at a sample rate of 20Hz and stored for offline analysis using Spike2 software (v10, 
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Cambridge Electronic Design, Cambridge, UK). VAS ratings of AH and breath-by-breath 

PETCO2 were derived by peak-detection (Spike2). 

Shapiro-Wilks test was used to check if the data were normally distributed. Given that this 

was the case, a two-tailed paired Student's t-test was performed to compare average AH 

ratings in the last minute of SS between DBS ON and OFF conditions. This region of interest 

(ROI) took place 15 minutes after switching ON or OFF DBS to allow for stabilisation of the 

patient’s tremor. Figure 2 shows a sample physiological trace of the practice ramp(A) and SS 

tests (B). The green box represents the region of interest where data were averaged and 

analysed. 

Figure 2 here 

 

Brain imaging 

Lead-DBS V3[20], an electrophysiologically validated processing and analysis pipeline, was 

used to localise and visualise electrodes. One patient data set was excluded (011) as the 

subject had unilateral electrodes and this process requires bilateral electrodes. Pre-operative 

T1 MRI and post-operative CT scans were co-registered using a two-stage linear registration 

(rigid followed by affine) as implemented in Advanced Normalisation Tools (ANT’s)[21]. 

Electrode localisations were corrected for brainshift in postoperative acquisitions by applying 

a refined affine transform calculated between pre- and postoperative acquisitions that were 

restricted to a subcortical area of interest. Pre- and post-operative acquisitions were spatially 

normalised into MNI152NLin2009Asym space (MNI152)[22] using symmetric 

diffeomorphic image registration (SyN) implemented in ANT’s.  

Electrode models were selected and automatically pre-localized in native & template space 

using the PaCER algorithm[23]. If these failed to accurately localise electrodes, tips and 

 on November 15, 2024 by guest. Please see licensing information on first page for reuse rights. https://publications.ersnet.orgDownloaded from 



 

trajectories were manually processed within a user interface in Lead-DBS. Orientation of 

directional DBS leads was determined using the algorithm published by Dembek et al. 

2021[24]. 

Electrodes were then manually localized based on post-operative acquisitions using a tool 

specifically designed for this task, rendered in template space (MNI152) using a template to 

define regions of interest, in this case the DISTAL-medium atlas defining subdivisions of the 

thalamus[25]. Post-operative CT scans were also checked against the electrode positioning in 

template space. Lead-group[26] was then used to group electrode localisations in template 

space. (Figure 3A). Amplitudes were inputted for each electrode in each hemisphere, and 

active contacts selected (Figure 3B). AH responses were then correlated with active contact 

positionings(Figure 3C).  

To verify within-subject and MNI space registration accuracy of the LeadDBS model, 

individual electrode reconstructions were performed in subjects’ native space in a parallel, 

confirmatory analysis. Postoperative CT images were registered to subjects’ T1-weighted 

preoperative MR series using FMRIB’s Linear Image Registration Tool (FLIRT)[27, 28] as 

implemented in the FMRIB Software Library (FSL) version 6.0.7.10[29]. Active contacts 

were reconstructed from known electrode geometry and CT artefacts in subjects’ native space. 

The FSL FIRST toolbox[30] was utilised to provide individual model-based segmentation of 

each subject’s thalamus, applying recommended boundary-correction settings; grey-white 

matter segmentation using FSL FAST (FMRIBS Automated Segmentation Tool).  

 

 

 on November 15, 2024 by guest. Please see licensing information on first page for reuse rights. https://publications.ersnet.orgDownloaded from 



 

RESULTS 

Participants 

Thirty six patients with DBS of the VIM were approached to take part in this study. Thirty 

patients were eligible with nine declining participation. Five patients were unable to complete 

the AH test due to their tremor severity during OFF DBS. Sixteen patients (3 female) with 

essential (n=11), dystonic (n=2), both essential and dystonic (n=1) and Parkinsonian tremor 

(n=2), were studied between 12/09/2019 (date first patient was studied) and 27/06/2023 (date 

last patient was studied). Mean±sd age, height and weight were 66±10yr, 174±8cm, and 

182±26lbs (Table 1). Electrodes were implanted bilaterally in the VIM in 15(figure 3), and 

unilaterally on the left in one (014). One of the 15 with bilateral electrodes only had left -sided 

stimulation (006). One patient also had bilateral electrodes in the Globus Pallidus internus 

(Gpi) which were OFF at time of testing (008). Mean±sd time since clinical diagnosis was 

25±20years. Median time from surgery to testing was 23months (range 1-97months). 

Figure 3 here 

Steady state AH test 

VIM DBS was observed to have modulatory effects causing a relief of AH in thirteen 

patients, an increase in two and no change in one. Test levels of hypercapnia, ventilation, tidal 

volume and respiratory frequency were well-matched for ON and OFF conditions (mean±sd 

PETCO2 42.7±4.2 and 42.8±4.4mmHg; mean±sd ventilation 13.7±5.6 and 13.4±4.7L/min; 

mean±sd VT 0.9±0.5 and 0.9±0.4L; mean±sd fR 16±5.3 and 15.3±3.2 breath per minute. 

Overall mean SS AH was significantly lower in ON compared to OFF (52.1±27.8 %VAS 

versus 66.5±20.3 %VAS; figure 4A) with a significant mean reduction of -14.4±15.5%VAS 

(p=0.002) which exceeds published minimal clinically important difference of 10% for VAS 

ratings of AH[17, 18]. Individual changes in AH responses with ON condition are displayed 

in figure 4B.  
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Figure 4 here 

14 participants completed the standard debrief after the initial practice ramp to interrogate the 

respiratory sensations felt during the practice test. Figure 5 depicts the frequency of 

descriptors rated according to clusters of AH, Work and Effort (W&E) and ‘other’ 

components, showing that patients were able to distinguish AH from the other clusters. 

Patients commonly confused the mental work associated with the test, with physical work of 

respiratory muscles; this may account for the high frequency of selecting ‘breathing required 

more work’ (figure 5, A).  

Figure 5 here 

Brain Imaging 

Supplementary Figure 4 shows native space thalamic segmentations, confirming appropriate 

segmentation accuracy. Supplementary Figure 5 demonstrates 3D renderings of each subject’s 

active contacts in native space with individual thalamic segmentations (right column). This 

was compared with normalised MNI-space electrode reconstructions performed in LeadDBS, 

with thalamus and VIM estimations from the DISTAL atlas[25], shown for each subject for 

comparison (left column). This comparison confirms appropriate registration and standard-

space normalisation accuracy of the LeadDBS method by an independently  Bayesian model-

based (FSL/FIRST) approach in subjects’ native space. 
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DISCUSSION  

We have systematically studied the effect of motor thalamic DBS on experimentally induced 

AH in 16 tremor patients. During SS tests, participants gave significantly lower AH ratings 

when DBS of the VIM was ON (p=0.002). The extent of AH relief (-14.4±15%VAS) 

exceeded the published minimal clinically important difference [17, 18]. 

The ascending AH signal via the thalamus  

The ascending AH signal is generated by corollary discharge of respiratory drive from the 

brainstem tempered by vagal afferents from pulmonary stretch receptors reporting prevailing 

ventilation; Any mismatch modulates the AH signal. This is supported by a variety of 

evidence, as follows. Gorgon et al (2018) demonstrated that inhaled furosemide sensitised 

pulmonary stretch receptors relieving hypercapnic induced AH[31]. Fowler et al (1954 

showed that rebreathing after breath hold acutely relieved AH in healthy individuals[32]. 

Flume et al (1996) showed more rapid onset of AH during breath hold and lesser AH relief 

during rebreathe in lung transplant patients who had fewer pulmonary stretch receptors 

(PSRs) compared to healthy controls[33]. 

There remains speculation about the site at which the ‘mismatch’ comparison occurs. The 

thalamus has been proposed to gate, and subsequently distribute, the ascending AH signal to 

cortical sensory areas where AH is consciously perceived. Electrophysiological evidence from 

studies in cats provides direct evidence for the thalamus representing an intermediary site for 

the ascending breathlessness signal[15]. In mechanically ventilated paralysed cats, activity of 

the phrenic nerve, whose firing represents the drive to breathe, was mirrored within thalamic 

neurons during increasing hypercapnic stimulus once a threshold was reached. It would be 

interesting to see if this could be confirmed in humans, potentially with the use of iEEG. 

Human studies also report distinct structural and functional subdivisions of the thalamus 

being involved in respiratory control receiving respiratory afferents[34].  
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Role of the thalamus 

Functional brain imaging studies report correlations between the activity of thalamic nuclei 

with both hypercapnic AH and with the sense of breathing effort induced by inspiratory 

resistive loading[7, 8]. Subregions specifically activated included the dorsomedial, 

ventrolateral and ventroposterior nuclei. The ventral posterolateral nucleus (VPL), forms part 

of the sensory thalamus lying posterior to the ventral intermediate nucleus (VIM) and is 

thought to be a region which can amplify or suppress ascending pain signals[35]. The VPL 

has also recently been shown to correlate with breathlessness anticipation and its intensity in 

athletes[36]. Ventroposterior groups have also become DBS targets for neuropathic pain 

relief, demonstrating their role in sensory processing[37]. The Pulvinar nucleus, the most 

posterior group, has also been shown to become activated during induced hypercapnia[38]. 

The VIM itself has not previously been implicated in any brain imaging studies of 

breathlessness. 

Modulation of AH via VIM DBS  

The high frequencies (115-155Hz) used to relieve tremor creates a ‘reversible lesion’ within 

the field of stimulation preventing aberrant firing patterns within the VIM[39]. DBS disrupts 

inputs from outputs, determined from its similarities with effects of permanent lesion[40]. We 

raise the following possible mechanisms of AH relief by VIM DBS (noting that without 

further imaging analysis, these are highly speculative): 

(i) The VIM directly, or indirectly through its connections with nearby sensory 

nuclei, gates the AH signal to higher areas thus DBS may upregulate this gating 

control.  

(ii) The field of stimulation extends to neighbouring sensory areas that transmit the 

AH signal. Spread of stimulation to the VPL would be expected to induce 
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paraesthesia in contralateral limbs, as noted with VPL stimulation. The absence of 

this in the patients reported here undermines this proposed mechanism. 

(iii) DBS of the VIM mediates network-wide effects in other areas involved in 

processing of AH perception, akin to motor cortical stimulation (MCS) for relief 

of pain, that may act via conferring functional changes in subcortical areas 

including the thalamus[41] and areas involved in processing of sensory affect  

such as the anterior cingulate and insula cortex[42]. The motor cortex projects to 

the thalamus and zona incerta while receiving inputs from thalamic nuclei[43].  

(iv) DBS of motor regions proximal to the VIM may have a top down influence on 

respiratory control as demonstrated in sheep[44]. However, no differences in 

resting breathing between OFF and ON DBS were observed. 

(v) DBS of the VIM has been shown to significantly improve depression[45]. 

Aggravation of dyspnoea is associated in those with depression and negative affect 

[46]. Although the causal relationship between the two remains unclear, depressive 

mood could generate a heightened perception of experimentally induced AH 

during OFF VIM DBS. Despite pre- and post-operative scores of depression and 

anxiety not being measured in this study, none of the patients in this cohort had 

pre-existing depression. In an attempt to interrogate this, albeit in a crude manner, 

we compared HRV as an indirect indicator of anxiety between ON and OFF DBS 

in 10 patients and found no differences in root mean square standard deviation of 

successive differences of RR-interval (Supplementary Figure 2). 

Differences in extent of relief 

The change in AH with DBS ON ranged from +7.5 to -52.5%VAS. This wide range may be 

accounted for by differences in the volume of tissue activated (VTA; Supplementary Figure 

6) due to appreciable individual variation in position of electrodes and active contacts but 
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could also reflect natural individual variation in the response of the neural tissue to the 

stimulation. 

We posit the following explanations for the variability of electrode positionings and VTA; (i) 

different electrode trajectories selected during surgery, (ii) differences in active contact 

selections which were based on largest clinical relief and therefore varied between 

participants, (iii) that atlas based locations were used for DBS targeting as the VIM is not 

visible on MRI, which is further confounded by individual variation in brain anatomy and, 

(iv) differences in amplitude of stimulation, the key determinant of VTA, (see table 1 and 

figure 3), (v) accuracy by which Lead-DBS can localise electrodes.  

Individual differences in strength of connection between the thalamus and regions of interest 

(ROI’s) within the perceptual framework of dyspnoea may also contribute to the 

heterogeneity in AH relief. The insular cortex is considered to be a principal site for 

breathlessness perception and is universally and strongly activated in brain imaging studies of 

breathlessness. Significant connections between insular cortex and thalamus have been 

demonstrated using high angular resolution diffusion-weighted imaging[47]. 

Reports from functional resting state activity also show a connection between the thalamus 

and insula. Wiech et al, (2014) reported the most significant region connected with the 

anterior, mid, and posterior insula was the thalamus, with the anterior insula and thalamus 

representing the strongest connectivity of all subregions[48]. 

Therefore, the strength of structural and functional connectivity between the thalamus and 

insular cortex may differ between individuals thereby explaining variation in AH relief with 

DBS. 

One point to consider is the influence of tremor on respiratory muscle activity, and whether  

tremor relief during ON DBS is correlated with relief in AH. DBS could influence respiratory 
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muscle activity, potentially impacting the overall sensation of dyspnoea. Respiratory flutter at 

the same frequency of tremor (4-8Hz) has been observed on the flow volume loop in patients 

with PD which was correlated with dyskinesia and tremor[49]. The question as to whether 

this is tremor of the respiratory muscles themselves, or other muscles in the chest or neck 

remains an open one. However, if it is respiratory muscles that tremor, this is more likely to 

cause changes in sense of breathing work and effort rather than air hunger. Evidence for this 

includes complete neuromuscular block experiments showing that respiratory muscle 

feedback is not involved in air hunger perception[50, 51]. Furthermore, vibration of 

respiratory muscles has been shown to have no effect on AH[52]. Nonetheless, it would be 

interesting to assess the sense of breathing work and effort with diaphragmatic EMG 

alongside experimentally induced AH in a cohort of this type. In our cohort, we found no 

correlation between tremor improvement and extent of AH relief (Supplementary Figure 3, 

r2=0.04, p=>0.05 spearman’s correlation). 

Limitations  

(i) The frequencies and amplitudes of the DBS in this patient group are in accordance with 

individual optimal tremor relief. We do not know if these stimulus parameters are also 

optimal for breathlessness relief.  

(ii) As steady state tests were conducted with bilateral electrodes either OFF or ON, we 

cannot make assumptions about laterality of the DBS effects on AH relief. 

(iii) The time since surgery to test-date varied considerably among participants (range 1-97 

months). However, there seemed to be no correlation between time since DBS surgery 

and the extent of AH modulation from OFF to ON DBS (Supplementary material; Figure 

1). 

(iv) To see if there was any order effect which could explain the AH relief with DBS ON, we 

compared the extent of relief between those who completed the AH with DBS ON first 
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versus those who completed the AH tests with DBS OFF first (Mean AH relief ON 

first=15.1±25.2, Mean AH relief OFF first=14.2±12.5, p=0.95 unpaired t-test). Thus, we 

found no evidence of an order effect in our dataset.  

CONCLUSIONS 

We have shown that DBS of the motor thalamus is associated with a significant relief of 

experimentally induced hypercapnic air hunger in patients with tremor. The possible 

mechanism of relief by stimulation of the VIM is not yet defined. We propose that DBS 

creates a ‘virtual lesion’ that somewhat negates the ascending air hunger signal ascending via 

the thalamus dampening its distribution to perceptual areas of dyspnoea. 

The extent of relief suggests that DBS or non-invasive stimulation of the VIM, or other 

thalamic sensory nuclei, may prove to be a viable therapy for intractable dyspnoea in severe 

cases where a patient’s breathlessness has proven to be refractory to current treatment options. 

This form of treatment based on DBS of the thalamic sensory nuclei has already been 

explored for chronic pain[37]. This study advances our understanding of the cerebral 

mechanisms of breathlessness, in particular its route prior to conscious awareness while the 

potential clinical applications warrant further investigation.  
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Table 1:  Demographics, clinical characteristics, and deep brain stimulation parameters. 

Abbreviations: VIM; Ventral Intermediate Nucleus, Bilat; Bilateral, ET; Essential Tremor, DT; 

Dystonic Tremor, PD; Parkinson’s Disease. 
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ID Age Sex Ht (cm) 
Wt 

(lbs) 
DBS 

Trem

or 

Disease 

Duration 
(months) 

Medications 

Time 

since DBS  
(months) 

CO-morbidities 

Amp 

(mA/V) 
  L           R 

Pulse 

width (us)   
  L          R 

1 69 M 170 212 
Bilat 
Vim 

DT 14 

Candesartan, 

Dipyridamole, 
Duloxetine, 
Simvastatin 

1 Previous Stroke 2.9 3.5 

2 75 M 171 187 
Bilat 
Vim 

ET 15 None 1 Irregular heartbeat 2 2 

3 75 M 164 165 
Bilat 
Vim  

ET  12 None 35 OCD 3 3 80 70 

4 67 M 177 170 
Bilat 
Vim 

ET 10 None 36 None 4.15 1.2 90 90 

5 40 F 169 165 
Bilat 
Vim 

ET 51 Propanolol 40mg  6 None 1.4 1.5 80 80 

6 63 M 182 143 

Bilat 

Vim L 
side 

ON 

ET 57 Clindamycin 12 None 3.5 / 180 60 

7 53 F 173 154 
Bilat 
Vim 

DT 2 None 3 None 1.5 2.2 70 70 

8 73 F  163 185 
Bilat 

Vim  

ET+DT 

featur
es 

40 

Atenolol, 
Candesartan, 

Pravastatin, Fusidic 
acid 

25 
High blood 

pressure  
2.2 2 110 /  
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9 72 M 182 220 
Bilat 
Vim  

ET 7 

Sodium Valproate, 

Felodipine, 
Bisoprolol, Aspirin, 

Atorvastatin 

20 

 
 
 

 

Acute STEMI, 

Smoker, 
Osteoarthritis, 
BCC, Epilepsy 

3.4 
2.1
5 

90 90 

10 74 M 180 177 
Bilat 

Vim 
ET 70 

Apixaban, Digoxin,  
Clonazepam, 

salbutamol, 
salmeterol inhaler, 

Calcichew, 

4 
Subependymal 

lesion, Asthma 
2.3 2.2 120 100 

11 75 M 180 169 
Bilat 
Vim  

ET  12  None 50  None 2.3 2.3 120 80 

12 75 M 162 162 
Bilat 

Vim  
ET 14 None 97 None 2.1 2.1 80 80 

13 69 M 176 209 
Bilat 
Vim  

ET 11 

Candesartan, 

Amlodipine, 
Lansoprazole, 
Tolterodine 

37 

Hypertension, 
cataract L eye, 

acute ulcerative 
colitis,          

stomach ulcer, 

urinary urgency 

1.5 0.7 70 70 

14 71 M 190 227 L Vim  PD 27 
Sinemet, 

Pramipexole, 

Opicapone 

55 None 2.5 / 60 80 
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15 59 M 178 182 
Bilat  

Vim  
PD 18 

Stalevo, Sinemet, 

quetiapine 
91 None 5.3 3.5 70 70 

16 59 M 174 209 
Bilat 
Vim 

ET 33 None 12 
Smoker, overactive 

bladder 
0.75 3 70 /  
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Supplementary materials  

Table 2: Typical verbatim comments after experiencing hypercapnic induced air hunger in 

ramp and SS tests.  All comments were volunteered by participants during the course of the 

standard debrief questionnaire. 

 

Participant Comment  

P005 [Felt a] shortness of breath. 

P006 No oxygen there.  

P008 Can’t get enough air. Shortness of breath. A starvation.  

P009 Felt like I wasn’t taking in any air. Felt like the tubing was 

blocked and there was nothing useful.  

P011 [Felt like] being starved of air 

P015 The test (SS) felt far easier when my DBS was ON 
 

Supplementary Figure 1 

Figure Legends 

Figure 1 Experimental setup and protocol. Panel A, experimental setup: Participants breathed via a mouthpiece from a 3 
Litre anaesthetic bag into which the flow of fresh gas was set to the participants’ baseline minute ventilation (VE). A 
Metronome was used to set breathing frequency (fR) to the participants’ spontaneous rate at baseline. Panel B: Protocol: 

During the first RAMP test (RAMP 1), one-minute increments in inspired CO2 were implemented using a gas blender which 
mixed medical gases from compressed gas cylinders, while participants rated any breathing discomfort on a 100mm visual 
analogue scale. The standard debrief afterward ensured that participants recognised air hunger as a dominant component 

of their respiratory discomfort and that they had used the VAS correctly. During steady state tests a constant level of 
inspired CO2 was imposed targeting 50% full scale of the VAS which was determined from the initial practice ra mp test. 
Abbreviations: VE=Minute ventilation, fR= Breathing frequency, VT=Tidal Volume, PCO2=End-tidal CO2, PAW=Airway 

pressure, RD=Respiratory discomfort, DBS= Deep brain stimulation. 

Figure 2: Physiological recordings during ramp and steady state hypercapnic air hunger tests.  Panel A: Raw physiological 
traces for air hunger (AH), PCO2, airway pressure (PAW) and tidal volume (VT) during the practice hypercapnic ramp with 
constrained ventilation in both OFF and ON DBS conditions. Panel B; Raw physiological traces during the hypercapnic steady 

state air hunger tests. Variables which lie within the last minute of the test (Green Box) were processed and compared 
between ON and OFF DBS conditions. Abbreviations: AH=Air hunger, PCO2=End-tidal PCO2, PAW=Airway pressure, VT=Tidal 
volume. 

Figure 3  DBS electrodes and their active contacts in relation to the VIM for 15 participants visualised in standard MNI 
space using Lead-DBS V3 software. Panel A; Shows the electrode positionings (solid grey electrodes) within MNI space(25) 

with the VIM visualised using DISTAL-medium atlas(29). Panel B; Transparent electrodes and their active contacts. Panel C; 
Point-cloud visualisation of active contacts, with their colour correlated to extent of AH relief from OFF to ON DBS. Colour of 
dots represent extent of relief with blue (most relief) to red (least relief/heightening). 

Figure 4 Effect of deep brain stimulation of the VIM on hypercapnic air hunger. Panel A: Box and whisker plot showing the 

median and mean (horizontal solid, and dashed line, respectively), Interquartile range (shaded boxes), and upper/lower 
extremes (whiskers) for ratings of air hunger (AH) on a 100mm visual analogue scale (VAS) during exper imentally induced 
steady state hypercapnic air hunger with constrained ventilation with deep brain stimulation (DBS) electrodes in the VIM 

with DBS switched off (OFF) and switched on (ON) in 16 tremor patients.  Panel B: The change in %VAS air hunger responses 
when DBS of the VIM is switched ON. The dotted line represents the minimal clinically important difference of 10%VAS  for 
VAS ratings of AH (17;18). Abbreviations: DBS=Deep brain stimulation.  

Figure 5 Respiratory descriptors associated with the initial practice ramp.  The frequency of choosing air hunger (AH), work 

and effort (W&E) and the ‘other’ cluster of descriptors as one of the top three sensations experienced at the peak of  the 
initial practice hypercapnic ramp test. Participants were instructed to rate any breathing discomfort during this test. Panel A 
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represents the frequency of each descriptor while panel B represents the sum of each cluster of descriptors according to 
their category Abbreviations: AH=Air hunger, W&E= Sense of breathing work and effort. 

Supplementary figure 1: Relationship between time from DBS surgery to testing. Changes in AH responses during 

experimentally induced hypercapnic steady state tests were plotted against time from DBS surgery to testing date (months).  
Abbreviation: AH= Air hunger, DBS=Deep brain stimulation. 

Supplementary figure 2: Effect of DBS on Heart rate variability. Left panel; The root mean square of successive differences 
(RMSSD) in R-R interval during ON and OFF VIM DBS in 10 patients are compared as box and whisker plots. Right panel; 

Individual relief of AH with ON VIM DBS plotted as a function of individual change in HRV. Abbreviations; RMSSD= Root 
mean square of successive differences. 

Supplementary figure 3: Improvement in tremor versus AH relief during VIM DBS. Individual changes in AH with VIM DBS 
plotted as a function of percent change in global tremor. Abbreviations; AH= Air hunger, VIM=Ventral intermediate nucleus, 

DBS=Deep brain stimulation. 

Supplementary figure 4: Native space individual thalamic segmentations. Visual representation of individual thalamic 
segmentations (red outline) presented in the sagittal, coronal and axial planes.  

Supplementary figure 5: Verification of leadDBS electrode positioning in leadDBS versus in native space. 3D renderings of 
each subject’s active contacts (red; anode, blue; cathode) in native space with individual thalamic (yellow /orange) 
segmentations ( right column). This was compared with normalised MNI-space electrode reconstructions performed in 

LeadDBS (left column), with thalamus and VIM estimations from the DISTAL atlas (24). This comparison confirms 
appropriate registration and standard-space normalisation accuracy of the LeadDBS method by an independently  Bayesian 
model-based (FSL/FIRST) approach in subjects’ native space. Abbreviations; VIM=Ventral intermediate nucleus, 

MNI=Montreal Neurological Institute. 

Supplementary Figure 6: Field of stimulations for DBS electrodes. 3D renderings of VTAs for each subject in MNI space 
using LeadDBS. The VTA colour is correlated with the extent of AH modulation (%VAS) during VIM DBS. Abbreviations: 
VIM=Ventral intermediate nucleus, VTA= Volume of tissue activated, MNI=Montreal Neurological Institute, AH=Air hunger. 
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