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Abstract 

 
New results related to maximising the reliability of common systems with interchangeable 
redundancies at a component level have been obtained by using the method of algebraic 
inequalities. It is shown that for systems with independently working components with 
interchangeable redundancies, the system reliability corresponding to a symmetric arrangement 
of the redundant components is always inferior to the system reliability corresponding to an 
asymmetric arrangement of the redundant components, irrespective of the probabilities of 
failure of the different types of components. 

It is also shown that for series-parallel systems, the system reliability is maximised by 
arranging the main components in ascending order of their probabilities of failure while the 
redundant components are arranged in descending order of their probabilities of failure.  

Finally, the paper derives rigorously the highly counter-intuitive result that if two 
components must be selected from n batches containing reliable and faulty components with 
unknown proportions, the likelihood that both components will be reliable is maximised by 
selecting both components from a randomly selected batch. 

 
Keywords: method of algebraic inequalities; maximising system reliability; improving 
reliability; reducing risk; generic methods for reliability improvement 
 
 
1. Introduction 

 
Algebraic inequalities have numerous 
applications in mathematics and 
engineering and discussion related to 
algebraic inequalities can be found in 
(Kazarinoff 1961; Bechenbach and 
Bellman 1961; Engel 1998; Hardy et al. 
1999;  Fink 2000; Pashpatte 2005; Marshall 
et al. 2010; Steele 2004; Sedrakyan and 
Sedrakyan 2010; Cvetkovski 2012; Saif, 
2007).  

In engineering (Cloud et al. 2014; 
Samuel and Weir 1999; Rastegin 2012; Liu 
and Lin, 2013), design constraints are often 
expressed through algebraic inequalities. 
The design constraints form a design space 
for the design parameters which guarantees 
the absence of failure modes.  

In reliability and risk research, inequalities 
have been used as a tool for characterisation 
of reliability 
functions (Ebeling, 1997; Xie and Lai, 
1998; Makri and Psillakis, 1996; Hill et 
al., 2013; Berg and Kesten, 1985; Kundu 
and Ghosh, 2017; Dohmen, 2006).  

In reliability theory, inequalities have 
also been used to study the preservation 
properties related to coherent systems 
(Navaro et al., 2016). 
Previous publications on the application of 
algebraic inequalities in engineering (Cloud 
et al 2014) are primarily focused on 
generating upper and lower bounds.  
An application of the method of algebraic 
inequalities to improve reliability and 
reduce risk has been demonstrated in 
(Todinov, 2020) where algebraic 
inequalities have been used to rank the 
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reliabilities of systems with unknown 
reliabilities of their components. This 
approach can be summarised as follows. 
For each of the two competing alternatives 
1 and 2 of a system, a reliability network is 
built first. Next, by using methods from 
system reliability analysis, the system 
reliabilities 1R  and 2R  of the competing 
alternatives are determined. The final step 
is trying to prove one of the inequalities 

1 2 0R R−   or 2 1 0R R−   (irrespective of 
the specific reliabilities of the components), 
which demonstrates the superior reliability 
of one of the alternatives. We need to point 
out here that the direct approach of the 
method of algebraic inequalities has a 
limitation: is not guaranteed to work for all 
compared alternatives. This means that in 
some cases it is not possible to prove any of 
the of the inequalities 1 2 0R R−   or 

2 1 0R R−  , irrespective of the reliabilities 
of the components building the systems. 

Very few publications exist that are 
related to generating new knowledge by 
interpreting non-trivial algebraic 
inequalities, which is subsequently used for 
optimising engineering systems or 
processes. The inverse approach in using 
the method of algebraic inequalities, is 
based on a recently formulated by the 
author principle of non-contradiction: if the 
variables and the different terms of a 
correct algebraic inequality can be 
interpreted as parts of a system or process, 
in the physical world, the system or process 
exhibit properties or behaviour that are 
consistent with the prediction of the 
algebraic inequality. 

Consider a particular process/system 
that can be developed in two different 
variants. Suppose that the left and right part 
of a correct algebraic inequality can be 
interpreted as models of the outputs related 
to the competing variants. The algebraic 
inequality can then be used to establish 
which of the competing alternatives is 
superior.  

Algebraic inequalities are suitable for 
modelling processes and systems with 

inherent unstructured uncertainty, which is 
a significant advantage. This is because 
algebraic inequalities do not require values 
of the variables present in the inequalities. 
This aspect makes algebraic inequalities 
superior to conventional approaches for 
modelling uncertainty which require 
various assumptions.  

Modelling based on probabilities and 
Monte Carlo simulations for example, 
requires assumptions related to 
probabilistic models assigned to the random 
variables. These assumptions often do not 
reflect correctly the modelled phenomena 
and lead to incorrect predictions. 

Furthermore, the method of algebraic 
inequalities is a domain-independent 
method. It can be applied for reliability 
improvement across very different domains 
of human activity. The method of algebraic 
inequalities: (i) does not rely on reliability 
data; (ii) is appropriate for new designs, 
with no failure history and (iii) encourages 
simple, low-cost solutions. 

The physical interpretation of algebraic 
inequalities involves meaningful physical 
interpretation of the variables present in the 
inequalities and meaningful physical 
interpretation of the separate terms of the 
inequality. Following this approach, new 
knowledge can be derived for the reliability 
of systems in series, with arbitrary number 
of independently working components and 
interchangeable redundancies. This 
knowledge can serve as a basis for 
increasing the reliability of common 
systems. 

The question on optimal redundancy 
allocation for systems with series 
arrangement of independently working 
components has been considered in (Valdes 
and Zequeira, 2006). The results obtained 
however, have limited validity because they 
are related to very simple systems, 
incorporating only two-components.  

For other inequalities obtained from the 
standard Muirhead's inequality, important 
meaningful interpretations have also been 
made. Thus, for suppliers with unknown 
fractions of reliable products a powerful 
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strategy has been derived for maximising 
the probability that all purchased 
components will be reliable.  
 
 
2. Improving the reliability of a system 
with interchangeable redundancies by 
interpreting algebraic inequalities 

 
If the variables 1 2, ,..., na a a  entering a 
correct algebraic inequality are subjected to 
the constraints 1 20 , ,..., 1na a a  , 

1,...,i n= , they can, for example, be 
interpreted as probabilities of failure of 
components working independently from 
one another. In addition, if the left or right-
hand side of an algebraic inequality is 
composed of products of terms of the type: 
(1 )i ja a− , the term (1 )i ja a−  can be 
interpreted as the reliability of a section 
including two components logically 
arranged in parallel (Figure 1a). The 
product 1 1(1 )(1 )...(1 )i j i j r sa a a a a a+ +− − −  of 
several such terms can be interpreted as the 
reliability of a series-parallel system 
including a number of sections logically 
arranged in series, within each of which, the 
components are logically arranged in 
parallel (Figure 1b).  
 

 
Figure 1. Series-parallel systems, including sections 
whose reliabilities are given by products of terms 
(1 )i ja a− . 

 
Accordingly, the left and right-hand side of 
inequalities including these terms can be 
interpreted as reliabilities of alternative 
system configurations. Next, through 
algebraic inequalities, the intrinsic 
reliabilities of the alternative configurations 
can be compared. 
To illustrate this approach, consider the 
simple algebraic inequality: 

2 2
1 2 1 2 2 1(1 )(1 ) (1 )(1 )a a a a a a− −  − −         (1) 

where 1 20 1; 0 1a a    . Proving this 
inequality is equivalent to proving the 
equivalent inequality 

2 2 2 2 2 2
1 2 1 2 1 2 1 21 1 2a a a a a a a a− − +  − +         (2) 

which, in turn can be proved by proving 
the equivalent inequality 

2 2
1 2 1 22 0a a a a+ −                       (3) 

Inequality (3) however, is true because 
2 2 2
1 2 1 2 1 22 ( )a a a a a a+ − = −  is non-negative. 

Inequality (1) can be generalised for more 
than two types of components. Thus, for 

2n   types of components 1A , 2A ,..., nA  
with probabilities of failure 1a , 2a ,..., na , 
correspondingly, inequality (1) is 
generalised to 

2 2 2
1 2

1 2 2 3 1

(1 )(1 )...(1 )
(1 )(1 )...(1 )

n

n

a a a
a a a a a a

− − − 

− − −
          (4) 

Proof. Inequality (4) can be proved by 
induction. For 2n = , inequality (4) 
coincides with inequality (1) which has 
been shown to be true. 
Without loss of generality, we can assume 
that either 1 2 1... k ka a a a +     or 

1 2 1... k ka a a a +     holds. (The 
probabilities of failure ia  of components 
can always be arranged in ascending or 
descending order). 
Let us assume that inequality (4) is true for 
n k=  (induction hypothesis): 

2 2 2
1 2

1 2 2 3 1

(1 )(1 )...(1 )
(1 )(1 )...(1 )

k

k

a a a
a a a a a a

− − − 

− − −
             (5) 

It can be shown that the inequality is also 
true for 1n k= + . 
Multiplying both sides of inequality (5) by 

2
1(1 )ka +−  gives the inequality 

2 2 2 2
1 2 1

2
1 2 2 3 1 1

(1 )(1 )...(1 )(1 )
(1 )(1 )(1 )(1 )

k k

k k

a a a a
a a a a a a a

+

+

− − − − 

− − − −
    (6) 

If it can be shown that 
2

1 1

1 1 1

(1 )(1 )
(1 )(1 )

k k

k k k

a a a
a a a a

+

+ +

− − 

− −
                        (7) 

This means that replacing the expression 
2

1 1(1 )(1 )k ka a a +− −  in the right-hand side of 
inequality (6) by the larger expression 
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1 1 1(1 )(1 )k k ka a a a+ +− − , will only strengthen 
inequality (6). 
Consequently, to prove inequality (7), the 
equivalent inequality: 

2 2
1 1 1 1

2
1 1 1 1 1

1
1

k k k k

k k k k k

a a a a a a
a a a a a a a

+ +

+ + +

− − + 

− − +
          (8) 

must be proved, which is obtained from 
expanding the left- and right-hand side of 
(7). Proving inequality (8) is equivalent to 
proving 

2
1 1 1 1 1 0k k k k ka a a a a a a+ + ++ − −           (9) 

The left-hand side of (9) can be factorised 
as: 

2
1 1 1 1 1

1 1 1( )( )
k k k k k

k k k

a a a a a a a
a a a a
+ + +

+ +

+ − − =

= − −
         (10) 

and because the probabilities of failure are 
arranged in ascending 

1 2 1... k ka a a a +     or descending (

1 2 1... k ka a a a +    ) order, the 
inequality 1 1 1( )( ) 0k k ka a a a+ +− −   holds. 
The case 1n k= +  has been proved. 
Because inequality (4) is true for 2n = , the 
inequality is also true for 3n = , 4n =  and 
for any other 2n  . 

A natural interpretation of inequality (4) 
can now be given in terms of reliability of a 
series-parallel system including 
components that work and fail 
independently from one another. If the 
variables ia  in inequality (4) are interpreted  
as probabilities of failure of statistically 
independent components iA , the left-hand 
side of inequality (4) gives the reliability of 
the system configuration in Figure 2a while 
the right-hand side of inequality (4) gives 
the reliability of the system configuration in 
Figure 2b. Figure 2a and 2b depict 
reliability networks of common systems 
with interchangeable active redundancies at 
a component level.  

Suppose that components iA  ( 1,...,i n=

) stand for interchangeable sensors of n 
different types logically arranged in series. 
The sensors collect critical information 
from n zones in the system. For the system 
to operate successfully, at least a single 

sensor from each zone (block) must be 
operational. Each zone (block) includes a 
pair of sensors working in parallel. 

Any particular type of sensor can work 
as a redundant sensor in any zone (block). 

 

 
Figure 2. Reliability network of two alternative 

systems built with the same types and number of 
components A1,A2,...,An. 

 
The interpretation of inequality (4) 

yields new knowledge: For systems built 
with components that work and fail 
independently from one another, the 
reliability of the system with asymmetrical 
arrangement of the active redundancies in 
Figure 2b is always greater than the 
reliability of the system in Figure 2a with 
symmetrical arrangement of the 
redundancies. This result holds irrespective 
of the actual reliabilities (or probabilities 
of failure) of the components building the 
systems. A conclusion has been reached that 
the natural arrangement of the same type 
redundancies (A1/A1, A2/A2,...,An/An) 
results in a smaller system reliability 
compared to an asymmetrical arrangement 
A1/A2, A2/A3,...,An/A1. 

The same approach to improving system 
reliability is valid for other interchangeable 
components, for example, for 
interchangeable switches of different types, 
seals, pumps, etc. 

The knowledge derived from the 
interpretation of inequality (4) can be used 
for optimising series-parallel systems. The 
system reliability is substantially increased 
if the symmetry in the arrangement of the 
different types of redundant components is 
destroyed. 

If the probabilities of failure ia  of the 
components are known, the reliability of the 
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system in Figure 3a, with symmetrical 
arrangement of the redundant components, 
can be maximised by arranging the 
components in the upper branches in 
ascending order of their probabilities of 
failure while the components in the lower 
branches are arranged in descending order 
of their probabilities of failure. The 
reliability network of the system with the 
largest reliability is given in Figulre 3b. 

Without loss of generality, we can 
always assume that the components A1, 
A2,...,An in the upper branches in Figure 3b 
are arranged according to their probabilities 
of failure in ascending order. Suppose that 
the main components (in the upper 
branches of Figure 3b) are arranged in 
ascending order of their probabilities of 
failure: 1 2 ... na a a   . The redundant 
components (the lower branches of Figure 
3b) are arranged in descending order of 
their probabilities of failure: 

1 1...n na a a−   . 
 

 
Figure 3. a) Reliability network with 

interchangeable redundancies b) Reliability network 
of the system characterised by the largest reliability. 
 
It can then be shown that the permutation in 
Figure 3b is characterised by the largest 
reliability, compared to the any other 
permutation. Since the reliability of the 
system in figure 3b is given by 

1 2 1 1(1 )(1 )...(1 )n n nR a a a a a a−= − − − , it is 
effectively required to show that the 
inequality 

1 2 1 1

1 1 2 2

(1 )(1 )...(1 )
(1 )(1 )...(1 )
0 (1 ) 1

n n n

p p n pn

i j

a a a a a a
a a a a a a

a a

−− − − 

− − −

 − 

     (11) 

holds, where 1 2, ,...,p p pna a a  is any 
particular permutation of the components 

(probabilities of failure) in the lower 
branches. 
Proof. Inequality (11) can be proved by 
using the extreme principle. Suppose that 
there is an arrangement where the 
components in the lower branches are not 
arranged in descending order of their 
probabilities of failure and the system 
reliability given by the product 

1 1 2 2(1 )(1 )...(1 )p p n pna a a a a a− − −  is the 
largest possible. In this case, there must 
exist at least two terms (1 )(1 )i px j pya a a a− −  
where ; ;i ji j a a   and px pya a . 
Otherwise, if no such terms can be found, 
for which px pya a , the components in the 
lower branches would have been already 
arranged in descending order. 
We will show that if px pya a , the system 
reliability given by the product  

1 1 2 2(1 )(1 )...(1 )p p n pna a a a a a− − −  cannot be 
the largest possible which leads to a 
contradiction with the assumption that this 
is the largest possible system reliability.  

Compare the product 
(1 )(1 )i px j pya a a a− −  with the product 
(1 )(1 )i py j pxa a a a− −  obtained by swapping 
the redundant components with indices 
' 'px  and ' 'py  in the lower branches. We 
will show that  

(1 )(1 ) (1 )(1 )i px j py i py j pxa a a a a a a a− −  − −   
(12) 

Expanding the left- and right-hand side of 
inequality (12) leads to the equivalent 
inequality 

i px j py i py j pxa a a a a a a a− −  − −        (13) 
Inequality (13) is equivalent to the 
inequality 

( )( ) 0py px j ia a a a− −               (14) 
Inequality (14) is true because j ia a  and 

py pxa a . 
This shows that inequality (12) holds and, 
contrary to the assumption, the system 
reliability is not the largest possible. 
This means that a larger product  

1 1 2 2(1 )(1 )...(1 )p p n pna a a a a a− − −  
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cannot be obtained from a permutation 
1 2, ,...,p p pna a a  that is different from a 

permutation corresponding to arranging the 
values pia  in descending order: 

1 2 ,...,p p pna a a   . 
which completes the proof of inequality 
(11). 

It is difficult to see how these general 
results related to the reliability of a series-
parallel system with n sections could be 
obtained without using the non-trivial 
inequalities (4) and (11). 

The difference in the system reliabilities 
of the competing systems in Figure 2a,2b 
and Figure 3a,3b, for example, can be very 
large as the next, deliberately simplified 
example based on n=4 components 
demonstrates. Thus, for interchangeable 
sensors of types A,B,C and D, characterised 
by probabilities of failure of 1 0.28a = , 

2 0.53a = , 3 0.82a =  and 4 0.85a =  ) for 
two years of continuous operation, the 
arrangement in Figure 2a ( 4n = ) is 
characterised by a system reliability of 

2 2

2 2

(1 0.28 )(1 0.53 )
(1 0.82 )(1 0.85 ) 0.06

aR = − −

 − − =
 

while the arrangement in Figure 2b is 
characterised by a system reliability of 

(1 0.28 0.53)(1 0.53 0.82)
(1 0.82 0.85)(1 0.85 0.28) 0.11

bR = −  − 

 −  −  =
 

The largest system reliability is obtained 
for the arrangement in Figure 3b ( 4n = ): 

(1 0.28 0.85)(1 0.53 0.82)
(1 0.82 0.53)(1 0.85 0.28) 0.186

bR = −  − 

 −  −  =
 

The result related to maximising system 
reliability can, for example, be used for any 
system involving a new (N), medium-age 
(M) and old component (O) and 
interchangeable redundancies of the 
corresponding age (Figure 4a). Making the 
natural assumption N M Oa a a   for the 
probabilities of failure of the components, 
arranging the components and the 
redundancies as is shown in Figure 4b 
yields the largest system reliability. This 
arrangement always brings the largest 

system reliability, irrespective of the 
specific probabilities of failure 
characterising the components. The only 
requirement is the ranking assumption 

N M Oa a a   related to the probabilities of 
failure which, after eliminating early-life 
failures, commonly holds for new, medium-
age and old components. 
 

 
Figure 4. a) Reliability network with 

interchangeable redundancies involving new, 
medium-age and old components b) The reliability 
network of the system characterised by the largest 
reliability. 

 
An inequality similar to inequality (4) 

can also be proved for a more complex 
system, for example, for the system in 
Figure 5a.  

It can be shown that the inequality  
1 2

1 2 2 3 1

(1 )(1 )...(1 )
(1 )(1 )...(1 )

m m m
n

m t t m t t m t t
n

a a a
a a a a a a− − −

− − − 

− − −
   (15) 

holds, where 2m   and 1 t m  . 
As a result, the system in Figure 5a, has 

a lower reliability compared to the system 
with asymmetric redundancy arrangement 
(corresponding to 1t = ) in Figure 5b. 
In this case, the inequality  

1 2
1 1 1

1 2 2 3 1

(1 )(1 )...(1 )
(1 )(1 )...(1 )

m m m
n

m m m
n

a a a
a a a a a a− − −

− − − 

− − −
     (16) 

is obtained from (15), which corresponds to 
1t = . The proof of inequality (15) is similar 

to the proof presented for inequality (4) and 
has been given in the Appendix. 
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Figure 5. Reliability networks of two alternative 
systems: a) a system with m-1 active redundant 
components and b) a system for which the redundant 
components in one of the branches have been 
cyclically shifted. 
 
3. Interpretation of an algebraic 
inequality to increase the probability of 
selecting a set of reliable components 
 
Commonly, the components sourced from n 
batches (suppliers) can be of two varieties: 
'reliable components' and 'faulty 
components'. Two components (e.g. ball 
bearings) must be selected from the n 
batches and installed in a system. For the 
system to work properly, both selected 
components must be reliable. 
Suppose that the percentage of reliable 
components characterising the n batches are  

1r , 2r ,..., nr , correspondingly. These are 
unknown quantities. 
If two components are purchased from the 
same, randomly selected batch with 
probability (1/n), the probability that both 
components will be of the variety 'reliable 

components' is given by 2
1

1

1 n

i
i

p r
n =

=  . 

If the two components are selected from 
two different, randomly selected batches, 
the probability that both components will 
be reliable is given by 

2
1 2

[ ( 1) / 2] ( 1)i j i j
i j i j

p rr rr
n n n n 

= =
− −

   

It can be shown that 1 2p p : 

2

1

1 1
[ ( 1) / 2]

n

i i j
i i j

r rr
n n n= 


−

         (17) 

It needs to be pointed out that each batch has 
an equal chance, equal to 1/n, of being 
randomly selected. 
Inequality (17) can be obtained from the 
classical Muirhead's inequality (Hardy et 
al., 1999). 
Let { }c  be a non-decreasing sequence of 
non-negative real numbers, where  

1 2 ... nc c c    and { }d  be another non-
decreasing sequence where 

1 2 ... nd d d   . The sequence { }c  
majorises the sequence { }d  if the following 
is fulfilled: 

1 1c d ; 1 2 1 2c c d d+  + ;  

1 2 1 1 2 1... ...n nc c c d d d− −+ + +  + + +  and 

1 2 1 1 2 1... ...n n n nc c c c d d d d− −+ + + + = + + + +

. 
Indeed, if a sequence { }c  majorises the 
sequence { }d  and 1 2, ,..., nr r r  are non-
negative, the Muirhead inequality states that 

1 2 1 2
1 2 1 2... ...n nc dc c d d

n n
sym sym

r r r r r r            (18) 

where the symmetric sum 1 2
1 2 ... ncc c

n
sym

r r r  is 

obtained by adding the terms corresponding 
to all distinct permutations of the elements 
of the sequence { }c  while the symmetric 
sum 1 2

1 2 ... ndd d
n

sym
r r r  is obtained by adding 

the terms corresponding to all distinct 
permutations of the elements of the 
sequence { }d . 

Consider now the sequence 
{ } [2,0,...,0]c =  and the sequence 
{ } [1,1,0,...,0]d = . Sequence { }c  majorises 
sequence { }d  because 2 1 , 2 0 1 1+  +  
and 2 0 0 1 1 0+ +  + + ,...,
2 0 0 ... 0 1 1 0 ... 0+ + + +  + + + + . 
Consequently, the Muirhead inequality 

2 0 0 1 1 0
1 2 1 2... ...n n

sym sym
r r r r r r               (19) 

holds. Inequality (19) is equivalent to 
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2 2 2
1 2( 1)![ ... ]

( 2)! 2

n

i j
i j

n r r r

n rr


− + + + 

−  
          (20) 

Dividing both sides of inequality (20) by !n
gives inequality (17). 
To simplify the interpretation of inequality 
(17) consider the special case of inequality 
(17), for 3n = : 

2 2 2(1/ 3) (1/ 3) (1/ 3)
(1/ 3) (1/ 3) (1/ 3)

a b c
ab bc ca

+ + 

+ +
      (21) 

where a,b and c are real values. Let  a,b and 
c in inequality (21) stand for the fractions of 
reliable components in three batches 
(suppliers) A,B and C:  0 1; 0 1a b     
and 0 1c  . The fractions a,b and c, 
characterising the reliable components in 
the separate batches are unknown 
quantities. The left-hand side of inequality 
(21) can be interpreted as probability of 
selecting two reliable components from a 
randomly selected batch (supplier). Indeed, 
two reliable components from a randomly 
selected batch can be selected in three 
mutually exclusive ways:  
(i) Batch A is randomly selected with 
probability 1/3, followed by selecting two 
reliable components from batch A (the 
probability of this compound event is 

2(1/ 3)a );  
(ii) Batch B is randomly selected with 
probability 1/3, followed by selecting two 
reliable components from batch B (the 
probability of this compound event is 

2(1/ 3)b ); and (iii) Batch C is randomly 
selected with probability 1/3, followed by 
selecting two reliable components from 
batch C (the probability of this compound 
event is 2(1/ 3)c ). Since these are mutually 
exclusive events, the probability of their 
union is a sum of the probabilities of the 
separate events. 
In a similar fashion, the right-hand side of 
inequality (21) can be interpreted as the 
probability of selecting two reliable 
components from two different, randomly 
selected batches. Indeed, two reliable 
components from two randomly selected 

batches can be selected in three mutually 
exclusive ways:  
(i) The pair of batches A,B is randomly 
selected with probability 1/3, followed by 
selecting two reliable components from 
these batches (the probability of this 
compound event is (1/ 3)ab );  
(ii) The pair of batches B,C is randomly 
selected with probability 1/3, followed by 
selecting two reliable components from 
these batches (the probability of this 
compound event is (1/ 3)bc );  
(iii) The pair of batches C,A is randomly 
selected with probability 1/3, followed by 
selecting two reliable components from 
these batches (the probability of this 
compound event is (1/ 3)ca ).  
Since these are also mutually exclusive 
events, the probability of their union is the 
sum of the probabilities of the separate 
events. 
The interpretation of inequality (21) yields 
a counter-intuitive result: Irrespective of the 
fractions of reliable components 
characterising the individual batches 
(suppliers), selecting two components from 
a single batch (supplier) is always 
associated with a larger probability of 
getting two reliable components than the 
corresponding probability if the two 
components are selected from two different 
batches.  
The edge provided by this strategy can be 
significant as the next numerical example 
clearly demonstrates. Suppose that the 
fractions of reliable components (unknown 
to the purchaser) are equal to 0.85a = , 

0.24b =  and 0.57c = . The probability of 
selecting two reliable components from a 
randomly selected single batch is given by: 

2 2 2
1

2 2 2

(1/ 3) (1/ 3) (1/ 3)
(1/ 3) 0.85 (1/ 3) 0.24 (1/ 3) 0.57
0.368

p a b c= + + =

=  +  +  =

=

 

while the probability of selecting two 
reliable components from a randomly 
selected pair of batches is given by: 
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2 (1/ 3) (1/ 3) (1/ 3)
(1/ 3) 0.85 0.24 (1/ 3) 0.24 0.57
(1/ 3) 0.57 0.85 0.275

p ab bc ca= + + =

=   +   +

+   =

 

As a result, 1 2p p . 
It must be pointed out that selecting two 

components from a single, randomly 
selected batch will also maximise the 
probability that both components will be 
faulty. 
This, however, does not mean that it is more 
beneficial to select the components from 
two different batches. Despite that selecting 
from two different batches decreases the 
probability that both selected components 
will be faulty, for a faulty system to be 
present it is not necessary both selected 
components to be faulty. Selecting a single 
faulty component is sufficient. Selecting 
components from two different batches 
decreases the probability of having a 
reliable system (two reliable components). 
This conclusion remains unchanged if the 
fractions of reliable components are 
considered to be fractions of faulty 
components.  
Indeed, if we consider 0.85a = , 0.24b =  
and 0.57c = , to be the fractions of faulty 
components in the batches, the probability 
of selecting two reliable components from a 
randomly selected batch is  

2 2 2
1

2 2 2

(1/ 3)[(1 ) (1 ) (1 ) ]
(1/ 3)[0.15 0.76 0.43 ] 0.262

p a b c= − + − + −

= + + =
 

while the probability of selecting two 
reliable components from two randomly 
selected batches is  

2

(1/ 3)[(1 )(1 ) (1 )(1 ) (1 )(1 )]
(1/ 3)[0.15 0.76 0.76 0.43 0.43 0.15] 0.168

p
a b b c c a

=

= − − + − − + − −

=  +  +  =

 

Again, 1 2p p . 
No matter what ,a b  and c  denote 

(percentage of reliable components or 
percentage of faulty components) the 
probability that both components will be 
reliable is always maximised by selecting 
both components from the same randomly 
selected batch. With this, the probability of 
a reliable system is also maximised. 

In a similar fashion, by using the 
Muirhead's inequality, inequality (13) can 
be generalised for more than two selected 
components. (The reasoning is very similar 
to the reasoning in deriving inequality (13) 
and will not be repeated). 

Thus, for three selected components the 
inequality: 

3 3 3

2 2 2

2 2 2

(1/ 3) (1/ 3) (1/ 3)
(1/ 6) (1/ 6) (1/ 6)
(1/ 6) (1/ 6) (1/ 6)

a b c
a b a c b a
b c c a c b

+ + 

 + + +

+ + +

 (22) 

follows directly from the Muirhead's 
inequality (18). 
The right-hand side of inequality (22) is the 
probability of selecting three reliable 
components from two different, randomly 
selected batches.  

The inequality 
3 3 3(1/ 3) (1/ 3) (1/ 3)a b c abc+ +    (23) 

can also be obtained from the Muirhead's 
inequality (18). The right-hand side of this 
inequality is the probability of selecting 
three reliable components from three 
different batches. 

Inequalities (22) and (23) can be 
interpreted as follows. Irrespective of the 
fractions of reliable components 
characterising the individual batches, 
selecting three components from a single, 
randomly selected batch is always 
associated with a larger probability of 
selecting three reliable components than 
the probability of selecting three reliable 
components from different batches.  

For four selected components, the 
inequality: 

4 4 4

3 3 3

3 3 3

(1/ 3) (1/ 3) (1/ 3)
(1/ 6) (1/ 6) (1/ 6)
(1/ 6) (1/ 6) (1/ 6)

a b c
a b a c b a
b c c a c b

+ + 

 + + +

+ + +

 (24) 

can be obtained from the Muirhead's 
inequality (18). The right-hand side of 
inequality (24) is the probability of 
selecting four reliable components from 
two batches if three components are 
selected from one of the batches and one 
component from the other batch. 

The inequality: 
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4 4 4

2 2 2 2 2 2

(1/ 3) (1/ 3) (1/ 3)
(1/ 3) (1/ 3) (1/ 3)

a b c
a b b c a c
+ + 

 + +
(25) 

can also be obtained from the Muirhead's 
inequality (18). The right-hand side of 
inequality (25) is the probability of 
selecting four reliable components from 
two randomly selected batches if two 
components are selected from one batch 
and two components from the other batch. 

Finally, the inequality: 
4 4 4

2 2 2

(1/ 3) (1/ 3) (1/ 3)
(1/ 3) (1/ 3) (1/ 3)

a b c
a bc b ac c ab
+ + 

 + +
 

(26) 
can be obtained from the Muirhead's 
inequality. The righthand side of inequality 
(26) is the probability of selecting four 
reliable components from three randomly 
selected batches if two components are 
selected from one of the batches and two 
components from each of the other two 
batches. 

Inequalities (24)-(26) can be interpreted 
as follows. Irrespective of the fractions of 
reliable components characterising the 
individual batches, selecting four 
components from a single batch is always 
associated with a larger probability of 
selecting four reliable components than the 
probability of selecting four reliable 
components from different batches.  

The generalisation of these results for 
different number of components and 
different number of batches (suppliers) 
leads to the following counter-intuitive 
result related to suppliers delivering the 
same type of products and characterised by 
unknown fractions of the reliable products 
they deliver. Irrespective of the fractions of 
reliable products characterisng the 
individual suppliers, purchasing all 
products from a single, randomly selected 
supplier, maximises the probability that all 
purchased products will be reliable. 
 
CONCLUSIONS 
 
1. New results related to the reliability of 
common systems with dual redundancies at 
a component level have been obtained by a 

physical interpretation of algebraic 
inequalities. The knowledge derived from 
the interpretation of the inequalities can be 
used for increasing the system reliability.  
 
2. For systems with interchangeable 
redundant components, the system 
reliability corresponding to a symmetric 
arrangement of the redundant components 
is always inferior to the system reliability 
corresponding to an asymmetric 
arrangement of the redundant components. 
This result holds irrespective of the 
probabilities of failure characterising the 
different types of components. 
 
3. For a system with components logically 
arranged in series, with interchangeable 
redundancies at a component level, the 
system reliability is maximised by 
arranging the main components in 
ascending order of their probabilities of 
failure while the redundant components are 
arranged in descending order of their 
probabilities of failure.  
 
4. The interpretation of an algebraic 
inequality led to a counter-intuitive result 
related to suppliers delivering the same type 
of product and characterised by unknown 
fractions of the delivered reliable producrs. 
Irrespective of the fractions of reliable 
products characterisng the individual 
suppliers, purchasing all products from a 
single, randomly selected supplier 
maximises the probability that all 
purchased products will be reliable. 
 
 
APPENDIX. Proof of inequality (15) 
 
Inequality (15) can be proved by 
induction, by proving first the case for two 
sections ( 2n = ): 

1 2

1 2 2 1

(1 )(1 )
(1 )(1 )

m m

m t t m t t

a a
a a a a− −

− − 

− −
               (A1) 

1 20 1; 0 1a a    ; 1 2a a , 1 t m  . 
Proving this inequality is equivalent to 
proving the equivalent inequality 
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1 2 1 2

1 2 2 1 1 2

1
1

m m m m

m t t m t t m m

a a a a
a a a a a a− −

− − + 

− − +
         (A2) 

which, in turn, can be proved by proving 
the equivalent inequality 

1 2 1 2 1 2 0m m m t t t m ta a a a a a− −+ − −     (A3) 
Inequality (A3) however, is true because 

1 2 1 2 1 2 2 1 2 1( )( )m m m t t t m t t t m t m ta a a a a a a a a a− − − −+ − − = − −  
is non-negative. 
Inequality (15) can now be proved by 
induction. For 2n = , inequality (15) 
coincides with inequality (A2) which has 
been shown to be true. 
The probabilities of failure of the 
components can always be ordered in 
ascending ( 1 2 1... k ka a a a +    ) order. 
Let us assume that inequality (11) is true for 
n k=  (induction hypothesis): 

1 2

1 2 1 3 1

(1 )(1 )...(1 )
(1 )(1 )...(1 )

m m m
k

m t t m t t m t t
k

a a a
a a a a a a− − −

− − − 

− − −
  (A4) 

We will show that the inequality is also 
valid for 1n k= + . 
Multiplying both sides of inequality (A4) 
by 1(1 )m

ka +−  gives the inequality 

1 2 1

1 2 2 3 1 1

(1 )(1 )...(1 )(1 )
(1 )(1 )(1 )(1 )

m m m m
k k

m t t m t t m t t m
k k

a a a a
a a a a a a a

+

− − −

+

− − − − 

− − − −
   

(A5) 
If it can be shown that 

1 1

1 1 1

(1 )(1 )
(1 )(1 )

m t t m
k k
m t t m t t
k k k

a a a
a a a a

−

+

− −

+ +

− − 

− −
      (A6) 

This means that replacing the expression 
1 1(1 )(1 )m t t m

k ka a a−

+− −  in the right-hand side 
of inequality (A5) by the larger expression 

1 1 1(1 )(1 )m t t m t t
k k ka a a a− −

+ +− − , will only 
strengthen inequality (A5). 
Consequently, to prove inequality (A6), the 
equivalent inequality: 

1 1 1 1

1 1 1 1 1

1
1

m m t t t m t m
k k k k
m t t m t t t m t m
k k k k k

a a a a a a
a a a a a a a

− −

+ +

− − −

+ + +

− − + 

− − +
        (A7) 

must be proved, which is obtained from 
expanding the left- and right-hand side of 
(A6). Proving inequality (A7) is equivalent 
to proving 

1 1 1 1 1 0m m t t m t t m t t
k k k k ka a a a a a a− − −

+ + ++ − −     (A8) 

The left-hand side of (A8) can be factorised 
as: 

1 1 1 1 1

1 1 1( )( )

m m t t m t t m t t
k k k k k

t t m t m t
k k k

a a a a a a a
a a a a

− − −

+ + +

− −

+ +

+ − − =

= − −
    (A9) 

and because 1 2 1... k ka a a a +    , 

1 1 1( )( ) 0t t m t m t
k k ka a a a− −

+ +− −  . The case 
1n k= +  has been proved. Because 

inequality (15) is true for 2n = , the 
inequality is also valid for 3n = , 4n =  and 
for any other 2n  . 

The same argument is valid if the 
probabilities of failure were arranged in 
descending ( 1 2 1... k ka a a a +    ) order.  
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