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Numerical Simulation of Electric Powertrain for Examining Real World 
Performance of EVs at Sub-Zero Temperatures 

Abstract 

Electric Vehicles (EVs) are considered to be a worthy alternative to 
automobiles powered by internal combustion engines to achieve the 
goal of sustainable transportation. For their many known advantages, 
Li-ion cells are considered to be the most practical energy storage 
solution for the purpose of EVs propulsion currently. The capability 
of Li-ion cells to store energy in extreme cold operating temperatures 
is significantly lower than that at nominal operating temperatures due 
to greater power losses at cold temperatures. Therefore, it leads to 
degradation of performance of EVs in sub-zero temperatures. 

The present work proposes a novel approach to use numerical 
simulation technique to build an EV model based on BMW i3 using 
GT Suite at sub-zero temperatures. The model is validated against 
experimental data obtained from Argonne National Laboratory for 
US06, HWY and UDDS legislative drive cycles. A real-world drive 
cycle representing real-world driving in Oxford, United Kingdom, 
was used for evaluating the effect of cold temperatures on the 
performance of the Electric vehicle. This paper presents the 
methodology followed for modelling an electric vehicle that 
represents BMW i3 EV, the scheme used for modelling the battery 
characteristics to include the effect of temperature and the resulting 
state of charge, internal resistance, efficiency, terminal current and 
power, energy consumption and loss characteristics at low ambient 
temperatures. 

Background 

Internal Combustion Engine (ICE) vehicles have been the primary 
propulsion technology for more than 120 years. With the rising 
number of automobiles on the roads, their emissions in the form of 
CO2 and other pollutants along with low working efficiency of our 
transportation (an average working efficiency of around 40% to 
50%), is a concern that needs immediate addressal [1]. In the last 
century or so, the automotive industry has seen very incremental 
changes, especially in the powertrain propulsion space. This has led 
to our unprecedented dependence on fossil fuels which, not only has 
empowered people with affordable personal transportation solutions, 
but also posed a few negative consequences. 

Policy makers of major economies around the world, prominent 
environmentalists and engineers have recognized these concerns and 
are now advocating for a paradigm shift towards more sustainable 

solutions for our transportation needs. The industry believes that 
energy in the form of electricity is a viable alternative solution to 
fuel. Emadi [2] has stated that this shift towards electric mobility has 
been happening since early 1990s. The rapid improvements to power 
electronics (electric convertors, circuitry etc.) meant that processing 
electricity has become much more efficient and less complex thus 
giving electric mobility a boost. 

Upcoming and currently available battery technologies for propulsion 
in EVs were assessed on the basis of performance and safety and 
found that Li-ion fulfilled most of the requirements for a sufficient 
and reliable battery storage solution in both short and long terms [3]. 
Higher specific energy capacity, longer service life, higher 
charge/discharge cycles, lower self-discharge and higher efficiency 
over the current lot of battery technologies propel Li-ion as the most 
desirable battery technology found in EVs today and in the future. 

As EVs are an emerging technology that, in spite of witnessing 
massive popularity in recent times, are still witnessing major 
developments. This also means that the legislations and standards that 
assess EVs are also in their infancy and need major development. At 
present, SAE J1634 [4] is one of the latest standards for EV 
performance assessment. It details an approach that specifies the 
testing of EVs for both range and energy consumption. However, it 
has been pointed out by many researchers that such testing is not a 
true representation of real-world conditions, particularly for sub-zero 
temperatures. Moreover, Reyes et al. [5] points out that the testing 
strategy adopted in the standard is impractical when subjecting to a 
wide range of temperatures and operating conditions which normally 
exists in the real world (especially cold temperatures).  

JRC in its technical report “Standards for performance and durability 
assessments of EV” in 2018 [6] detailed standards present all over the 
world regarding EV battery performance assessment both on system 
level (battery pack) as well as component level (cell level) and noted 
some essential points in the current scheme of things. 

The report explicitly mentions that although various standards agree 
well with each other, the test conditions for charge and discharge 
rates should be as close to real life scenario as possible to predict a 
robust estimation of performance which is clearly missing in current 
standards. The standards for Battery Electric Vehicles (BEVs) are 
very closely set up with that of Light Electric Vehicles (LEVs) which 
requires a thorough corroboration that this is the ideal solution. 
Moreover, current standards have very limited usefulness when 
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different versions of traction batteries are assessed, for instance, 
long/short range batteries. Additionally, an essential remark the 
technical report points out is that, the current standards are inclined 
more towards battery chemistry rather than system level assessment, 
which can be an issue when new technologies arrive which is quite 
possible as electric mobility is a dynamically evolving field.  

This system level macroscopic investigation of BEVs in different 
operating scenarios, as mentioned by the JRC report, is missing in the 
current BEVs legislations and literature which this study aims to 
tackle using numerical simulation approach. 

In spite of many desirable performance characteristics, Li-ion 
batteries, like lead acid, are very sensitive to ambient temperatures 
[7]. Researchers for years now have published work that investigate 
Li-ion performance degradations in sub-zero temperatures. Study 
conducted on a battery model built by Chan [8] showed that internal 
resistance of a battery is directly proportional to variations in ambient 
temperatures. Keeping this in mind, simulations on an electrothermal 
EV model, conducted by Jaguemont et al. [9], found that energy 
delivered by the same Li-ion battery reduced by up to 39.4% at -200C 
compared to 250C, leading to reduced EV range. 

Tests conducted on real world test beds involving an actual vehicle 
also showed a similar trend of reduction in battery performance. Two 
popular EV models in the market were driven-to-depletion [5] in 
Winnipeg, Canada which experiences a broad range of temperatures 
(-260C to 280C) throughout the year on particular days at a difference 
of 100C. Maximum distance was recorded 162-165 km at 25-280C 
while least range was 48-55Km at -15 to -260C which is a reduction 
of 30-35%. Usage of cabin HVAC puts additional stress on the ESS 
of the vehicle in cold temperatures which results in further reduction 
in range. 

EVs shortcomings in diverse conditions, particularly in cold 
temperatures is quite evident from the literature widely available. An 
interesting point to note here is that, not only EVs but traditional ICE 
vehicles also perform poorly in extreme cold weather compared to 
their ideal conditions [10]. Lower temperatures cause engine oil to 
become more viscous which makes circulation more difficult, air 
becomes denser in winters which has adverse effects on the air/fuel 
ratio [1]. In spite of this, since ICE have been here for a while and 
thanks to engineering advancements, this form of propulsion has 
evolved to become more mature and reliable that these perceived 
problems are not considered as issues anymore because of a few 
established adaptations and modifications in place. For instance, 
electric block heaters are a common arrangement in cars in cold 
weathers to lessen these shortcomings. Eventually, EVs will also 
come up with their own adaptations, like this battery heating circuit 
that aids in the charge/discharge performance of batteries at low 
temperatures [11].  For that to happen, real world performance of 
EVs in sub-zero temperatures should be understood and critically 
analyzed first. This will also help, to some extent, set up better and 
more robust standards for EVs that address the system level 
macroscopic testing which is also mentioned explicitly by the JRC 
report [6]. Moreover, as it has been noted that without proper 
standards in place, potential of EVs and smoothness of its transition 
will be stunted [12]. 

Unfortunately, there lies a knowledge gap in the available literature 
and current research is very active in this sphere. This paper aims to 
address this from a numerical simulation point of view by building, 
validating, evaluating and critically analyzing a simple electric 
vehicle model to investigate its real-world performance under 

extreme cold weather temperatures. The following sections will 
further discuss the effect of cold ambient temperatures on Li-ion cell 
electro-chemistry and internal resistance.  

Effect of cold weather on Li-ion cell electrochemistry 

Cold weather has a significant effect on Li-ion cell electrochemical 
behavior. The work of Shiao et al. [13] demonstrates reduced Li-ion 
cells chemical and charge transfer activity, which reduces the ionic 
conductivity of electrolytes. Chemical experiments also show a 2-to-
3-fold drop in ionic conductivity of electrolytes at -200C [14]. This
causes a reduction in Li-ion diffusivity which is essential in a cell in
order to generate current [13]. Fundamentally, electrolyte viscosity
increases in cold weather which hampers li-ion conductivity and their
ability to undergo diffusion. This automatically results in an increase
in internal resistance because the impedance of li-ions to freely move
inside the cell also increases [15].

Another variation in cell electrochemistry in cold temperatures is the 
increase of charge-transfer resistance. It has been observed that there 
was a three folds increase in charge-transfer resistance in a LiFePO4 
cathode at -200C compared to room temperatures [16]. Lithium 
plating is another source of internal resistance generation in cold 
temperatures. Over time metallic lithium forms around the anode of 
li-ion cells during general operation. However, in cold weather when
cell temperature drops, anodes undergo polarization due to which
their potential will lead more towards graphite or other carbon anodes
than to that of lithium metal [17]. This slows down the intercalation
of lithium ions into the anodes, which in real-world translates to
longer time for the battery to charge. Lithium plating is a general
occurrence in every Li-ion cell; however, cold temperature escalates
this process reducing the healthy operating life of the battery.
Therefore, these variations in cell electrochemistry causes the cell to
spend more energy to supply current than it normally would. The cell
is less eager to give its power, which might even lead to failure in
meeting the application demand.

Internal Resistance of Li-ion cells in Cold Weather 

When studying EVs operation in extreme cold temperatures, 
macroscopic analysis of the system is required rather than cell level. 
Therefore, different individual variations that cause a hike in internal 
resistance due to sub-zero temperatures as discussed above, are of 
limited use, rather macroscopic variations of internal resistance are 
given more importance. This is also the point mentioned in the JRC 
report [6] as lacking from the current testing regulations mentioned 
earlier. 

In light of this, Awarke et al. [18] built a combination of a vehicle 
dynamics model coupled with an electric circuit battery model, and a 
3D electro thermal model to study the thermal behavior of battery 
under various urban and highway drive profiles. It predicted an 
increase in internal resistance and other electric circuit battery model 
parameters as a function of temperature and SOC and demonstrated a 
significant increase in internal resistance as temperatures dropped. 
Similarly, an electric circuit model based on the Thevenin model was 
built to conduct characterization tests on a Li-ion battery to measure 
its performance parameters under the influence of ambient 
temperatures [19]. The model estimated internal resistance to be 
around 0.15 ohms when the ambient temperature was 100C at 0% 
SOC. While internal resistance was observed to be around 0.01 ohms 
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at 350C with a 90% SOC, thus showing how internal resistance varies 
with respect to SOC and ambient temperatures. 

From the above literature it is clearly inferred that in order to estimate 
the battery characteristics and behavior in certain set of conditions, it 
is important to build a battery model that can capture battery 
performance output macroscopically on a system level when it is 
subjected to extreme temperatures. 

Choosing a Modelling Approach 

Unlike other areas of battery applications, battery modelling in 
electric vehicles should be able to combine itself with the full EV 
model to investigate its performance macroscopically. As Zhu et al. 
[20] explains, model-based design of complex systems requires one
or more components to interact with each other for the purpose of
information flow. For most applications, a battery model should be
able to predict battery parameters during operation like current and
voltage across its terminals etc.

There are a few requirements the models need to fulfil in order to be 
suitable for EVs use [21]- 

• Model should be capable to predict EV range fairly
accurately. Hence, the model should be able to estimate
SOC for range calculation.

• EV operation is quite transient in nature. Therefore, the
battery performance is also dynamically evolving with
time and operating conditions. This demands for the
model to be capable of real-time computations. Fast
models are desirable over extremely accurate and
complex models.

• EVs accelerate and decelerate rapidly which involves
quick discharging stresses on the battery. A battery model
should be able to capture this aspect.

• The models should be flexible to combine with a bigger
EV dynamics and thermal model for real world
simulations.

Primarily, battery models are divided into three categories based on 
complexity of the physical representation of electrochemistry- 
Electrochemical models (White box models), Reduced Order and 
Equivalent electric circuit models (grey box models) and Empirical 
and Neural network models (Black box models) [22]. 

Electrochemical models are a physics-based modelling approach that 
are very deeply based on the electrochemistry of the Li-ion batteries. 
Electrochemical models although details lithium cell functioning 
explicitly, it leads to very high computational loads that is very 
resource intensive when real-time simulations are required like in 
EVs [21]. This has been addressed by introducing a modified version 
called reduced order models that regulate parameters based on the 
complexity needed. But such models are not diverse and suffer from 
accuracy loss [22]. Hence, they fail to find the right compromise 
between complexity and accuracy which has led researchers to turn 
towards a different modelling approach for Hybrid and EVs that fulfil 
most of requirements mentioned earlier. 

Equivalent Electric Circuit Models (EECM) 

EECM are a lumped parameter modelling technique where a 
combination of electric elements like resistors, capacitors and voltage 
source represent functioning of a Li-ion battery. For example, a series 
resistor performs the resistance duties of a separator in a cell. They 
do not present the electrochemical phenomenon that occurs inside the 
cell like electrochemical models, but can predict li-ion cell behavior 
and output in different operating conditions with reasonable 
compromise between accuracy and computational complexity which 
is what is essential for macroscopic study of EVs. 

In view of this, Rincon-Mora et al. [23] proposed a simple 2nd order 
EECM to predict runtime current and voltage characteristics of a 
battery. This model is compatible with not only Li-ion but also NiCd, 
NiMH, Lead acid and also Li-polymer cells. Given in figure 1(a),  

• a voltage source on the left represents the open circuit
voltage (OCV) of the cell,

• a series resistor on the right, R0, accounts for terminal
voltage drop when load is connected,

• a network of one or more RC branches represents time
constant frequency response of the battery. More RC
branches result in higher accuracy but at the expense of
complex parameter estimation and high computational
loads.

• All the elements of the circuit behave non-linearly. Hence,
they are represented as a function of SOC, temperature or
even current, voltage preferably using lookup tables. This is
how such models predict battery behavior when operating
in cold weather.

Similarly, a 3rd order EECM (with 3 RC circuits in series) was used 
with an added SOC estimation circuit that uses coulomb counting 
technique and includes effect of capacity-rate after long driving 
profiles [24]. Due to the presence of 3 RC branches, the model was 

Figure 1. a) 2nd order EECM model and its functions based on [23], b) 1st 
order EECM model based on [9]. 
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validated with great accuracy against an exhaustive dynamic EV 
driving simulator, although at the expense of high computational 
load. 

Clearly, model order selection is a trade-off problem that is tackled 
based on accuracy needed and application demands. Hanlei et al. [25] 
conducted analysis of 1st to nth order EECM, found that there was a 
significant performance improvement until 3rd order models beyond 
which model performance increments were negligible while 
complexity of simulation increased exponentially. A comparison of 
12 different EECM models based on parameters like performance, 
accuracy, parameter estimation, computational load and simulation 
time was conducted [26]. The 1st order EECM model was found to 
strike the best balance among other parameters considered in the 
literature. Adding to this, a 1st order EECM was used to carry out 
macroscopic investigation of EV performance under the influence of 
hard winter temperatures and found to produce technically acceptable 
output under extensive validations [9] [27]. 

Therefore, keeping the above points in mind, an EV model is built 
using GT-Suite© numerical simulation software that represents the 
BMW i3 60Ah 2013 model, where the battery model is based on first 
order EECM. The parameters of the EECM are acquired from 
established literature. The model is then validated using Argonne 
National Laboratory’s (ANL) dynamometer testing data of BMW i3 
for different electric powertrain parameters [28]. Followed by 
validation, the BMW i3 numerical model is then investigated for 
performance evaluation using a custom drive cycle to replicate real-
world conditions. 

GT-Suite Electric Vehicle Modelling 

A complete electric vehicle model is built in GT-Suite© v2019 
numerical simulation software to investigate cold weather 
performance of BMW i3. The vehicle model consists of vehicle body, 
axles, tires and brakes along with brake switch that is controlled by 
regenerative braking control logic, differential, final drive, 
environment subsystem and road object. This vehicle model is built 
using BMW i3 60AH 2013 model specifications [29]. Basic 
specifications are listed in Table 1. 

Vehicle Body 

The vehicle body model is needed to compute the longitudinal 
motion of the vehicle along with normal load acting on each axle 
during operation. Instantaneous longitudinal motion is computed 
using the resistive forces acting on the vehicle (tire rolling resistance, 
Aerodynamic drag, inertia components), tractive forces applied on 
the tires, road grade and wind velocity with direction. Therefore, the 
torque produced by the propulsion system is given in Eq. (1), 

Table 1. BMW i3 EV Specifications [29]. 

𝑇𝑅 =
𝑟

𝑖0𝑖𝜃𝜂𝑡
{ ( 

1

2
𝜌𝐶𝑑𝐴𝑉2 + (𝑚𝑔 𝑐𝑜𝑠 𝑎 −

1

2
𝜌𝐶𝐿𝐴𝑉2)(𝑓 + 𝐾𝑉2) +

 𝑚𝑔 𝑠𝑖𝑛 𝑎) + ⅇ𝑚
𝑑𝑣

𝑑𝑡
 } (1) 

Where, r is the radius of the tire, i0 is the final drive ratio, iθ is the 
gear ratio, t is transmission efficiency, m is the vehicle mass, V is 
the vehicle velocity, g is acceleration due to gravity. 

Inertia Co-efficient ‘e’ 

The resistance caused due to inertia components have been 
represented by ‘e’ in the torque equation. Here, ‘e’ indicates the 
combined inertia of rotation due to engine and transmission and 
losses in the transmission system which is given in Eq. (2), 

ⅇ = 1 +
𝐼𝑊

𝑚𝑟2 +
𝐼𝑡𝑖0

2

𝑚𝑟2 +
𝐼𝑒𝑖0

2𝑖𝜃
2

𝑚𝑟2 (2) 

where, Iw, It, and Ie are the moment of inertia of wheel, transmission 
and engine respectively. 

Aerodynamic Drag 

The torque equation also includes the losses caused due to 
aerodynamic friction given in Eq. (3),  

𝐹𝑑 =
1

2
𝜌𝐶𝑑𝐴𝑉2 (3) 

where,  is the density of air, Cd is the drag co-efficient, A is vehicle 
frontal area. 

Specification Value Units 

Vehicle mass 1443 Kg 

Wheelbase 2570 mm 

Drag Coefficient 0.29 ------ 

Frontal Area 2.38 m2 

Final Drive ratio 9.7:1 ------ 

Tire Specifications 155/70 R19 ------ 

Rolling Resistance factor 0.015 ------ 

Differential Efficiency 0.95 fraction 

Axles Moment of Inertia 1.25 Kg-m2 



Page 5 of 16 

5/5/2021 

Tire Rolling Resistance 

Resistance caused due to deformation of tires is expressed as a 
function of load on the tires and rolling co-efficient (Cr) in Eq. (4), 

𝐹𝑟 = 𝑚𝑔 𝑐𝑜𝑠 𝑎 𝐶𝑟 () 

Additionally, lift co-efficient is also included in the model. Therefore, 
the vertical load on tires can then be represented as in Eq. (5), 

𝐹𝑟 = (𝑚𝑔 𝑐𝑜𝑠 𝑎 −
1

2
𝜌𝐶𝐿𝐴𝑉2)𝐶𝑟 (5) 

Where, Cr varies with speed of the vehicle (Cr increases as speed 
increases) and can be expressed as (f + KV2).

Electric Powertrain Modelling 

The electric powertrain subsystem includes a traction motor, battery 
pack, battery power limiter, regenerative braking model. 

Traction Motor 

The traction motor is modelled using 3D map-based traction motor 
efficiency and maximum/minimum torque curve maps of the BMW 
i3 60Ah that uses a permanent magnet synchronous motor with 
generator mode, given in table 2, for energy recuperation 
(regenerative braking). The motor is connected to a 1D mechanical 
domain (vehicle subsystem) using driveline shaft on one end and an 
electrical domain (battery pack) along with other auxiliary 
connections on the other. The control mode of the motor is brake 
torque controlled. To avoid complexity of simulation, thermal 
dependancy of the traction motor is ignored. 

The torque output of the motor/generator map in the model is based 
on a 2D torque output map, as shown in figure 3, as a function of 
motor speed acquired from BMW i3 vehicle specifications [29]. 
Based on the tractive effort demanded by the drive schedule, the 
motor will produce torque according to this torque profile. 

Table 2. EV Traction Motor Specifications [29]. 

Regenerative Braking Model 

Energy recuperation is modelled using a simple control logic that 
works on the basis of different operating conditions of the model. An 
“IfThenElse” control object is used to define this control logic which 
accepts various real-time parameters of the vehicle and outputs the 
desired action based on the control logic. The main decision making 
in this model is whether friction brakes should assist in braking or 
deceleration be carried out by the traction motor generator’s energy 
recuperation completely. Based on this decision making, brake 
switches are attached to each brake in vehicle model that operate 
friction brakes if needed, as shown in figure 2. 

Regenerative Braking Control Logic 

Inputs to the regenerative model are- 1) Actual Vehicle speed 
(VehSpeed) acquired from the vehicle model. 2) Torque Demand 
from Driver (TorqueDemand), based on drive cycle input. 3) 
Minimum Motor Torque (MinMotorTorque) maximum energy 
recuperation torque from traction motor map. 

Given in Table 3, the first condition when vehicle is stationary, brake 
pedal is imposed to 100%. In second condition, when maximum 
regen torque of motor is 10Nm (safety limit) more than torque 
demanded by driver, friction brakes are imposed based on brake 
torque vs pedal position 2D map. In rest all other cases of vehicle 
speed, third condition is activated where friction brakes are not used.  

Electric Motor Units Value 

Peak Power output kW (HP) 125 (170) 

Permanent power output kW (HP)/rpm 75 (102)/4800 

Torque Nm/rpm 250/0 

Energy Recuperation kW Up to 50 

Figure 3. BWM i3 Motor Torque Curves [29]. 

Figure 2. Vehicle Model modelled in GT-Suite. 
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Table 3. Regenerative braking model control logic. 

Battery Power Limiter 

In order to control the battery charging and discharging power limits 
of EECM battery model, a battery power limiter is used. It acts like a 
basic battery management system that suffices the needs of matching 
the battery output of model with the EV to a certain extent while 
ensuring safe current and voltage limits of battery defined by the RC 
branches. 

A combination of feedforward and feedback controls dictate the 
power limits. For power calculations, the battery controller senses 
information such as OCV and internal resistance (Rint) of EECM 
battery automatically and computes power using the equation below. 

 Feed forward controller, Power = (I  OCV) – (I2  Rint), 

Where, OCV is open circuit voltage and I = 𝑂𝐶𝑉−𝑉

𝑅𝑖𝑛𝑡
 where V is 

obtained from voltage limit calculations. Voltage and current range 
are set by user. A PI controller modelled in the limiter then corrects 
the computed power to the voltage and current limits so as to remain 
within the range given by user. 

Battery Pack Modelling 

BMW i3 60Ah has a stated 18.8 KWh Li-ion battery pack (18.2KWh 
usable). The pack consists of 96 cells arranged in 8 modules with 12 
cells in each module. The cells in each module and all 8 modules are 
connected in series [29]. Specifications of battery pack are given in 
table 4.  

The battery pack has been modelled as a first order EECM which has 
1 RC branch given in figure 1(b). The circuit parameters of EECM 
are modelled as a function of SOC, temperature and current in a 
lookup table acquired from established literature. Li-ion battery pack 
has been modelled as a lumped mass system, which means it has 
been modelled as a battery pack and not as group of modules or 
individual cells because the study is based on macroscopic variations 
and not on discrete effects on each module or cell. 

Battery Pack Scaling 

The single cell parameter of BMW i3 entered as inputs to the model 
is scaled up to form the battery pack using the equations below.  

Battery pack Capacity, Cappack  = NP  Capcell 

Open Circuit voltage, VOC,pack = Ns  VOC,cell 

Pack Resistance, Rpack = 𝑁𝑠

𝑁𝑝
   Rcell 

RC time constants, tpack = tcell 

RC Capacitances, Cpack = 𝑁𝑝

𝑁𝑠
  Ccell 

Where, Np and Ns are number of parallel and series cells respectively, 
Capcell is capacity of cell, VOC,cell is Output Circuit Voltage (OCV) of 
cell, Rcell internal resistance of single cell, Ccell is capacitance of cell.  

SOC Modelling 

A conventional SOC modelling is used where instantaneous current 
(IOC) through OCV is integrated over time to estimate change in 
capacity over time. Change in capacity is subtracted from the initial 
capacity (Capinit) to calculate the instantaneous capacity. 

State 

A
c
t
i
o
n 

Condition Brake 
Mode 

Imposed 
Brake 
Pedal 

Position 

Brake 
Torque 
Reques

t 

Vehicle 
stopped 

I
F 

VehSpeed<0 and 
TorqueDemand<0 

Impose 
brake 
Pedal 

100% 0 

Friction 
Brake 
Assist 

T
H
E
N 

TorqueDemand<0 and 
MinMotorTorque>Tor

queDemand+10 

Impose 
brake 
Pedal 

to 
supple
ment 

Regen 
braking 

Brake 
Torque 
request 

based on 
Pedal 

Position 2D 
Map 

Torque
Demand 

-
MinMot
orTorqu

e 

No 
Friction 
Brakes 

E
L
S
E 

Rest all other 
conditions of 

VehSpeed 

Impose 
brake 
Pedal 

0% 0 

Table 4. BMW i3 60Ah Battery Pack Specifications [29]. 

Battery Pack Units Value 

Total cells - 96 

Cells in Series/Parallel -/- 96/1 

Cell Capacity Ah 60 

Cell Nominal voltage V 3.7 

Pack Capacity Ah 60 

Pack nominal voltage V 355.2 

Pack Power Gross/Useable kWh 18.8/18.2 
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Change in capacity,  𝐶𝑎𝑝(𝑡) = 𝐶𝑎𝑝𝑖𝑛𝑖𝑡 − ∫ 𝐼𝑂𝐶 ⅆ𝑡
𝑡

0
 

Where, Initial capacity,     Capinit = SOCinit  Capmax  

 (Capmax= max capacity) 

State of Charge,  SOC = 
𝐶𝑎𝑝(𝑡)

𝐶𝑎𝑝(𝑚𝑎𝑥)

Circuit Parameters 

The circuit parameters for the first order RC EECM were acquired 
from the work of Jaguemont et al. [9]. In the paper, a battery was 
discharged at various temperatures in a climatic chamber to simulate 
cold temperatures and pulse characterization tests were performed. 
The cell is submitted to a partial discharge-rest cycles for a fixed 
amount of time. This process is repeated several times at different 
temperatures and at the end of each phase, circuit parameters OCV, 
R0, R1 and C1 are acquired as a function of temperature and SOC 
using data acquisition systems and software tools mentioned in detail 
in their paper. The functions of each component  in EECM are: 

• OCV is captured by the rest phases between each pulse
discharge that is modelled by the source voltage component
(Em) in EECM.

• The instantaneous response is the instant drop in voltage to
a pulse, modelled by the Ohmic resistor component (R0) in
EECM,

• Delayed response is stabilization of voltage after the pulse
which is modelled by RC branch time constant (R1 x C1) in
EECM.

The circuit parameters for the battery in the current study were 
loaded in the numerical model as 3D maps. Open circuit voltage 
(OCV) is represented as a function of SOC, it drops linearly until 
20% SOC and falls sharply after. Terminal resistance component R0, 
is detailed as a 3D map based on temperature and SOC, where it is 
highest at -200C at SOC less than 20% and lowest when temperature 
is 250C at SOC more than 10%. Similarly, transient dynamics 
components, C1 and R1 are also represented as a function of 
temperature and SOC and follows a similar pattern.  

An EECM captures the Li-ion battery behavior through its 
components. Therefore, even though a different battery is used in the 
literature, it captures the general cell behavior that is later scaled to 
represent BMW i3 battery pack. Therefore, when actual battery cell 
experimental data is not available, such as in this case, experimental 
data from established literature can also be used to conduct work.   

Driver Model 

This part models a vehicle driver which is intended to control the 
accelerator and brake pedal position. This part is used when dynamic 
drive cycle analysis is needed where the speed of the vehicle is 
controlled according to a 2D time vs vehicle speed driving schedule 

which is called a drive cycle. For such simulations, driver mode is set 
to speed targeting in which the accelerator and brake pedals are 
controlled to match the vehicle speed with drive cycle. 

The model consists of a feed forward controller which computes the 
traction motor braking torque that is needed to achieve the target 
vehicle speed. The driver part automatically senses information from 
the electric powertrain sub-system to perform computations. A PID 
controller then makes corrections to minimize error between vehicle 
speed and drive cycle.  

The numerical model schematic is given in Appendix Figure A1. 

Model Validation 

The model prepared in GT-Suite© is now validated to establish the 
level of fidelity the model is able to achieve compared to actual 
BMW i3 60Ah car for performance in different ambient 
temperatures. This is done by validating the model simulation results 
with that of the experimental results acquired by Argonne National 
Laboratory (ANL). ANL has conducted dynamometer vehicle testing 
of BMW i3 60Ah model in a temperature chamber to simulate 
ambient temperatures for various legislative drive cycles [28]. 

Some prerequisite points regarding model validation are- 

• Model validation is conducted for -200C and 250C using
ANL test data conducted at those temperatures.

• In the ANL test of -200C, HVAC system of BMW i3 car
was switched ON. This would consume additional battery
energy in the test other than the drive cycle load. Moreover,
battery thermal management system of BMW i3 will also
be functional at this temperature by default which
consumes additional energy.

• In the ANL test of 250C, HVAC system was switched OFF.
Therefore, there is no additional energy consumption from
climate control system of vehicle. Other auxiliary systems,
however, will continue to consume energy as normal,
irrespective of ambient temperature.

• Tests are conducted for US06, UDDS and HWY driving
schedules which have diverse characteristics. The diverse
nature of these driving schedules is a contributing factor to
the robustness of validation of the current model.

Some of the assumptions made in the current model are- 

• To avoid complexity of modelling and parameter
estimation, auxiliary systems like pumps or battery thermal
management/cooling system are not included in the scope
of this study.

• Due to the absence of auxiliary systems, the battery pack
temperature in the model is considered to be same as that of
the ambient temperature.

• Due to the absence of a Battery Thermal Management
System (BTMS), the battery pack temperature is kept
constant (-200C and 250C) throughout each simulation.
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Legislative Drive Cycles 

UDDS, HWY and US06 drive cycles represent diverse characteristics 
[30]. In figure 4, UDDS is a transient drive cycle with continuously 
varying acceleration and speeds throughout the range. However, it is 
not aggressive as the average acceleration and average speed are just 
0.47 m/s2 and 31.5 Km/h respectively. UDDS is approximately 11.98 
Km long and lasts 1369 seconds and is suitable for simulating city or 
urban conditions [30]. HWY is a high-speed drive cycle simulating a 
typical expressway behavior of vehicles as shown in figure 4. Its 
average speed is 78 km/h and average acceleration is a low 0.18 m/s2. 
It is 16.5 Km and 765 seconds long [30]. Such a drive cycle is used to 
test the steady cruising behavior of automobiles on high-speed 
expressways. US06 is the most aggressive driving profile among the 
three shown in figure 4. It is also a high-speed profile with massive 
variations in acceleration. Its average speed is 79.62 Km/h and 
average acceleration is a high 0.541 m/s2 [30]. It is, however, not as 
transient as UDDS, neither as steady state as HWY and is 
approximately 12.89 km and 600 seconds long. Such an aggressive 
profile adds additional load on the powertrain. 

These driving profiles will test the transient, steady cruising as well 
as aggressive response of the current model against the experimental 
data of ANL for different temperatures. 

Validation of the Numerical Model 

Validation for speed profile- To ensure the electric powertrain of the 
model is capable to  propel the EV according to the drive schedule, 
simulation data of the model speed is compared to the drive cycles. 

From figure 4 the model can be seen to follow the speed profile with 
less than 2% error. The driver model, regenerative braking system, 
traction motor and battery pack are able to maintain the load of drive 
cycle without any time delays even on aggressive drive cycle like 
US06 and transient one like UDDS.

Validation for electric powertrain 

SOC- Validation for battery SOC at 250C of the model shows a good 
agreement with ANL experimental data in figure 5(a). In spite of a 
fairly simple Coulomb counting technique for SOC estimation, the 
accuracy of the model is more than 95% on average for the three 
drive cycles at positive temperatures. The model follows the trend of 
SOC curve really well which substantiates the robustness of the SOC 
estimation model included in the battery model. The model predicts 
higher SOC value at the end of every cycle towards the end. This is 
due to the additional energy consumption by the actual BMW i3’s 
auxiliary system in ANL testing compared to the current model. 

Figure 5(b) shows the real time error between ANL and the current 
model SOC datapoints in terms of percentage for the length of the 
drive cycle. A higher order polynomial curve is fitted to the error 
datapoints to see the limits. It can be seen that the maximum error for 
the aggressive US06 cycle is around 2.5%, while maximum error of 
HWY and UDDS is less than 2.5% and 2% from ANL data 
respectively. The average error computed for SOC between ANL and 
the numerical model for the length of the three drive profiles is 
1.06%, 1.21% and 1.51% for UDDS, HWY and US06 respectively. 
Overall, the current Model varies from ANL test data by an overall 
average of 1.21% at positive temperatures. 

Figure 4. UDDS, HWY and US06 Drive cycles vs numerical model vehicle 
speed validation. 

Figure 5. a) ANL vs numerical model SOC at 25C for different drive profiles, 
b) Variations in % of SOC data ANL vs numerical model at 25C. 
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At -200C, the difference for UDDS cycle is larger than the other two 
cycles in figure 6(a). An interesting point to note here is that, the 
model performs well for high-speed HWY cycle. The accuracy is 
further improved for high speed aggressive US06 drive cycle.  

When the drive schedule is high speed and aggressive (HWY, US06), 
the additional load on the battery compensates for the lack of HVAC 
system in the current model and results in a good agreement achieved 
at sub-zero temperatures. This is evident in figure 6(b), US06 model 
has the least variation in SOC datapoints compared to ANL at an 
average 1.48% for the full cycle, while average variation for HWY 
and UDDS is 1.41% and 2.9% respectively. Overall, for the three 
cycles, the numerical model varies from ANL data by 1.93% only at -
200C. In summary, average error for ANL vs GT model SOC 
estimation is kept under 2% at -200C and 250C proving that the 
numerical model predicts SOC very well which is sufficient for the 
scope of this study. 

Terminal Current- Validation of current output requires the 
comparison of numerical model terminal current and ANL test data. 
For the purpose of validation, the major plots that capture a diverse 
set of conditions are included here. 

Figure 7(a) shows the terminal current output for the UDDS cycle at 
250C. For extremely transient applications, it can be seen that the 
model matches the current profile very well with the ANL test data. 

There are certain instances where ANL data has additional peaks of 
current. This is because of persistent current supply to the auxiliary 
systems in ANL testing. In figure 7(b) the current data points of both 
datasets are expressed as percentile for better understanding. It can be 
seen that at negative current (during energy recuperation) the current 
data points of model and ANL are exactly similar, which 
demonstrates the soundness of the simple energy recuperation control 
logic described in above section. The trend of the percentile points 
throughout the range of current is quite similar to the actual car tested 
on dynamometer. Current data points agree well until the 65th 
percentile mark. 

There are a few discrepancies visible towards the upper set of around 
eight current data points (upwards of 65th percentile) where the 
numerical model overpredicts current output. However, this 
discrepancy is computed to be less than 7% variation compared to 
ANL, when differences of those eight points were averaged. Such a 
match is acceptable at positive temperature considering the limited 
inputs given to the validated model.  

In Figure 8(a), at negative temperature of -200C as well, the model 
shows good agreement with the ANL terminal current data. The 
validation shown here is for the aggressive US06 cycle. In Figure 
8(b), current datapoints are represented in percentiles. It can be seen 
that the current output of ANL and validated model match quite well 
throughout the entire current range. Even the negative current 
datapoints (energy recuperation) match well which demonstrates the 
regenerative braking model performance at negative temperature as 

Figure 6. a) SOC comparison for ANL vs numerical Model at -20C, b) 
Percentage error in SOC datapoints of model vs ANL. 

Figure 7. a) UDDS ANL vs numerical Model Current at 25C, b) UDDS Current 
Data points expressed in Percentile at 25C. 
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well. The data points are extremely accurate for 90 percentiles of the 
points, which is very good considering the high current demands for 
the US06 cycle. 

Slight discrepancies occur towards the upper end, as can be seen in 
figure 8(b). Maximum occurs at the 99th percentile where the error is 
less than 10%. Discrepancy is slightly higher than at positive 
temperatures which is because the HVAC system in the ANL vehicle 
is in operation at -200C that consumes current, which gets amplified 
when higher currents are demanded.  

US06 is extremely transient with aggressive acceleration/deceleration 
in a span of less than few seconds after the 500th second mark. Even 
in such aggressive and transient conditions, the numerical model 
matches ANL data with more than 88% accuracy of datapoints as 
shown in figure 9. An interesting point to note in figure 8(a), at 
certain instances when the vehicle is in rest, current of numerical 
model is zero while the ANL car has persistent current input. Such 
spots are marked with green circles. This is because the HVAC 
system is operational in -200C in ANL testing that consumes current 
continuously.     

In conclusion, the numerical model predicts SOC with an error of less 
than 2% at both positive and negative temperatures compared to ANL 
test data. Current output of the numerical model also matches ANL 
data with an accuracy of 92%. This output is comparable with the 
experiment data obtained from ANL [28]. The ANL experimental 
data showed negligible test to test variation at nominal ambient 
temperature of around 230C and higher. However, at sub-zero 

temperatures, the test-to-test variation is found to be around 10% 
[28]. The level of validation done is sufficient for the scope of this 
study and the numerical simulation model is now assessed for real 
world performance. 

Real World Performance 

Real-World Drive Cycle 

The urban drive cycle used for this study represents typical driving 
pattern in Oxford UK. The drive cycle used here is largely based on 
city driving conditions with transient and aggressive characteristics at 
moderate speeds. This cycle is 23.23 km long and lasts for 2338 secs 
as shown in figure 10. Average speed and acceleration are 36 km/h 
and 0.51 m/s2 respectively. This drive cycle is suitable for the level of 
validation done at positive and negative temperatures in the previous 
section to produce results with good accuracy. 

Figure 8. a) US06 Current output for ANL vs numerical model at -200C, 
b) Current Output datapoints expressed in percentile at -200C.

Figure 9. US06 terminal current after 500th sec at -200C. 

Figure 10. Oxford Drive Cycle. 
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Real-World Investigation 

Numerical Simulation of the Validated model is conducted for -200C, 
00C and 250C temperatures for the Oxford drive profile and results of 
the battery parameters are analyzed. 

State of Charge (SOC) 

SOC depletion curve for oxford drive cycle is given in figure 11. For 
comparison purposes, initial SOC is set to 70% for every test. The 
SOC at the end of drive profile for 250C and 00C is 62% and 61.5% 
respectively. However, at -200C, SOC drops to 49% at the end of the 
cycle. The difference in the final SOC value is 13% for positive vs 
negative temperature which is a reduction of 21% when the vehicle 
operates in sub-zero temperature. While there is a reduction of 20.3% 
when comparing SOC at 00C and -200C. 

Reduction of 21% in SOC is substantial, considering that HVAC or 
other auxiliary systems are not included in the numerical model. 
Also, the difference between 00C and 250C will be bigger if effect of 
HVAC is added as it is a necessity at 00C and -200C. 

 

Efficiency 

Instantaneous efficiency for the real-world drive cycle with respect to 
time, represented in kW-h of energy consumed per 100 km is given 
in figure 12(a). Vehicle overcomes static friction when it begins to 
move from rest which explains the spike in energy consumption at 
the beginning. Later, the model constantly consumes more energy 
throughout the cycle at -200C. Figure 12(b) shows the real-time 
instantaneous difference of efficiency in percentage for 00C, -200C 
with 250C. 

After the initial spike, the model at 00C consumes a constant of 
around 6.5% or 1.5 kW-h more instantaneous energy per 100 km than 
at 250C and the peak difference is 10.1%. At -200C, model consumes 
24.2% or 4.1 kW-h more instantaneous energy  per 100 km than 
when it is operated at 250C. Maximum difference is 38.6 % in this 
case. Overall, there is a 17.7% variation in energy consumption 
between 250C, -200C and 00C, 250C which translates to substantial 
difference in range the model is able to achieve at different 
temperatures. Such variation in efficiency is not suitable in real-world 

operation as it hampers the versatility of EVs in diverse operating 
conditions. 

   

 

Energy Consumption and Losses 

The model consumes an additional 0.95 KWh more energy at -200C 
than at 250C which is a 31.9% increase in overall energy 
consumption for the Oxford drive cycle. Whereas at 00C, it is 0.21 
KWh which is 7% more than at 250C as shown in table 5.   

The model estimates battery losses based on energy lost to overcome 
internal resistant loads due to temperature effects, which is quite high 
at -200C. Energy losses due Internal resistance increased by 5545 KJ, 
which is around 1.54 kWh, when temperature was -200C compared to 
250C, which is almost 37.8% of the total losses in the entire vehicle 
compared to 8.3% and 3.9% total losses at 00C and 250C respectively. 

Comparison of the model energy consumption (Wh/km) for real-
world and legislative drive cycles is given in table 6. Energy 
consumption is highest for US06 as it is an aggressive profile, while 
it is the least for UDDS at every temperature as it is the least 
aggressive and is also transient. Second highest energy consumption 
is seen for HWY cycle which simulates expressway behavior of 
steady, high speeds. 

Figure 11. SOC depletion curve for oxford drive cycle. 

Figure 12. a) Efficiency in kW-h per 100Km, b) Percentage difference in 
energy consumed between 0C and -20C with 25C. 
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Table 5. Energy Consumption and losses for Oxford Drive Cycle. 

Table 6. Energy consumption (Wh/Km) of Model for different drive cycles. 

Internal Resistance 

The internal resistance for the oxford drive cycle is given in figure 
13. The average of the internal resistance dataset at 250C is 0.24
ohms, while at 00C and -200C, it is 0.47 ohms and 1.76 ohms
respectively. At 00C, internal resistance increases by around 0.23
ohms on an average compared to positive temperature, which is a
96% rise throughout the real-world drive cycle.

The internal resistance at -200C increases by 1.52 ohms on an average 
compared to the model operating at 250C. This results in a six-fold 
increase at negative temperatures which translates to considerable 
degradation of performance of the EV at negative temperatures. Such 
substantial rise in internal resistance at -200C is the reason for the 
increase in energy consumption compared to 250C explained in the 
previous section. 

Terminal Power 

Terminal power output (kW) of the model is compared at three 
temperatures and real time simulation graph is given in figure 14(a) 
for the Oxford cycle. It is clearly visible that the output at 00C and 
250C has the highest spikes at every instant of the cycle. In 
comparison, the -200C graph is limited to a maximum average of 
around 15-18 kW. Reduction in temperature in cold weather results 
in reduced power output, which is evident from this analysis. 

Parameters 250C 00C -200C

Overall Energy 
Consumption (KJ) 10726 11476 14151 

Overall Energy 
Consumption (kWh) 2.98 3.2 3.9 

Battery Losses (KJ) 422 952 5967 

% Of all losses 3.9 8.3 37.8 

Electric Machine 
losses (KJ) 1461 1473 1484 

% Of all losses 13.6 12.7 9.4 

Energy 

Consumption 

(Wh/Km) 

UDDS HWY US06 
Oxford 

Drive Cycle 

250C 116 144 205 128 

00C 121 149 227 137 

-200C 167 206 233 169 

Fig 20 a) Efficiency in KW-h per 100Km, b) Percentage difference in energy 
consumed between 00C and -200C with 250C

Figure 13. Internal Resistance for Oxford Drive cycle at three temperatures. 

Figure 14. a) Terminal Power Output for Oxford Drive Cycle, b) Power 
datapoints represented in terms of percentile. 
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Another point to be noted here is that, the differences between 00C 
and 250C terminal power output is not significant as much as it is for 
sub-zero temperature.  

To analyze the output data better, the datapoints at each temperature 
are categorized in percentiles, given in figure 14(b). There is no 
significant difference between 00C and 250C for the entire hundred 
percentile of points, as evident from the first graph. This is similar for 
-200C as well until the 90th percentile. It is in the last 10% of terminal 
power data points, the model at -200C manages a maximum of 17 
kW, while at 00C and 250C, the average maximum power output 
datapoints are around 36 kW. This translates to roughly 47% 
reduction in the model’s peak power output capability at -200C. 
Therefore, at negative temperatures, up to 90% of the power 
capabilities are retained, however, the remaining 10% of peak power 
of the battery pack is stunted. 

Terminal Current 

Real time terminal current output of the numerical model at different 
temperatures for the Oxford drive profile is given in figure 15(a). It is 
clearly visible that the model at -200C is unable to supply higher peak 
current like it does at 00C and 250C due to the rise of resistive loads 
as temperatures drop. 

 

Figure 15(b) shows the current datapoints in percentiles. It can be 
seen that the current datapoints match up to 65% percentile points or 
20 amps for all three temperatures. After this, -200C curve rises 

higher than others which indicates that the model at -200C demands 
more current comparatively to follow the drive profile as it has to 
overcome higher resistive loads due to increase in internal resistance 
at cold temperatures. This results in higher energy consumption and 
drop in SOC which is evident from the earlier results. Upwards of 
95th percentile, the model at 00C and 250C is also able to supply 
higher peak currents than at -200C. 

Addition of auxiliary systems like Battery Thermal Management 
System (BTMS), pumps and other power electronics in the numerical 
model are out of scope of this study. Hence, the additional energy 
that these systems consume is compensated by increasing the battery 
pack capacity in the model. Originally, BMW i3 has all its 96 60Ah 
cells stacked in series. However, in the current Model, the 96 cells 
are arranged in 2 parallel stacks to increase the pack capacity. 

 

Conclusions  

Equivalent Electric Circuit Models (EECM) was found to be the most 
suitable for evaluating the performance of the Li-ion battery powered 
EV in sub-zero temperatures because of their simplicity and their 
suitability of integration with a vehicle model. 

A numerical model based on BMW i3 integrated with a first order 
EECM parameters are capable of achieving an accuracy of current 
output more than 92% while the model predicted SOC with less than 
2% error compared to the ANL data.  

For a real-world drive cycle at -200C, the internal resistance of the 
battery was found to be one of the major causes for higher energy 
consumption of the battery, lower efficiency, stunted power and 
current outputs and substantial battery losses at extreme sub-zero 
temperatures.  

The study shows a novel approach to conduct investigations for 
performance of EVs in real-world conditions using numerical 
simulations with very limited inputs based on a typical electric 
vehicle acquired from available established literature. 

  

Figure 15. a) Terminal Current Output for Oxford Drive Cycle, b) Terminal 
Current Datapoints represented in percentile. 
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Appendix

Figure A1 Schematic of Numerical model




