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Abstract

Parallel Algorithms for Three Dimensional Electrical Impedance
Tomography.

K. S. Paulson.

This thesis is concerned with Electrical Impedance Tomography (EIT), an imaging
technique in which pictures of the electrical impedance within a volume are formed
from current and voltage measurements made on the surface of the volume. The focus
of the thesis is the mathematical and numerical aspects of reconstructing the impedance
image from the measured data (the reconstruction problem).

The reconstruction problem is mathematically difficult and most reconstruction
algorithms are computationally intensive. Many of the potential applications of EIT in
medical diagnosis and industrial process control depend upon rapid reconstruction of
images. The aim of this investigation is to find algorithms and numerical techniques
that lead to fast reconstruction while respecting the real mathematical difficulties
involved.

A general framework for Newton based reconstruction algorithms is developed
which describes a large number of the reconstruction algorithms used by other
investigators. Optimal experiments are defined in terms of current drive and voltage
measurement patterns and it is shown that adaptive current reconstruction algorithms
are a special case of their use. This leads to a new reconstruction algorithm using
optimal experiments which is considerably faster than other methods of the Newton
type.

A tomograph is tested to measure the magnitude of the major sources of error in the
data used for image reconstruction. An investigation into the numerical stability of
reconstruction algorithms identifies the resulting uncertainty in the impedance image. A
new data collection strategy and a numerical forward model are developed which
minimise the effects of, previously, major sources of error.

A reconstruction program is written for a range of Multiple Instruction Multiple
Data, (MIMD), distributed memory, parallel computers. These machines promise high
computational power for low cost and so look promising as components in medical
tomographs. The performance of several reconstruction algorithms on these computers
is analysed in detail.
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Chapter 1

Introduction

1.1 Electrical Impedance Tomography

Electrical Impedance Tomography (Eli') is a technique for imaging the interior

of a region by the application and measurement of electric fields at the surface of the

region. The calculated image reflects the spatial variation of the electrical impedance
within the region. Such images have application in medical research, diagnosis and

patient monitoring. Other industrial applications include non-destructive testing,

process monitoring and geophysical exploration.

In Eli' a volume with boundary	 and unknown conductivity distribution

a is imaged by applying electric current to a finite number of electrodes fixed to the

boundary. Within a source-free conductor the potential	 is governed by the

conduction equation:

V• aV=O	 inn.

This is a second order partial differential equation in which, for arbitrary

conductivity distributions, can only be solved numerically. For a unique solution to

exist, a complete set of boundary conditions needs to be known. The determination

of 4 given the conductivity distribution, a, and these boundary conditions is known

as the forward problem. In EIT the inverse problem is solved; a is calculated from

boundary measurements of and 4/an.

1.2 EIT in Medicine

Non-invasive techniques for gauging the form and function of the human

body have long been popular with both patients and doctors. Listening to the sounds
of the human chest has provided information about the heart and lungs to clinicians

for hundreds of years. Technical developments lead to the production of images of

the interior of the human body. X-rays pass through human tissue in straight lines

until they are scattered or absorbed. Medical X-ray photographs are images of the

proportion of X-rays that pass through the body without interacting with tissue.

Each point on the image indicates the X-ray interaction characteristics along a straight

line path through the body. More recently, techniques have been developed that
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produce images of cross-sectional planes through the body. The first and most

widely known example of these Toino graphic Imaging techniques is X-Ray

Computerized Axial Tomography, or CAT scan. Other tomographic imaging

techniques are Ultrasound and Magnetic Resonance Imaging, MRI. Each of these

techniques images a different property of the tissue under investigation and so has

different application. MRI images the water contained in tissue while Ultrasound

images its acoustic reflectance. Thus, different tissues may be resolvable by one

imaging technique and not by others. Both CAT and MRI tomographs are physically

large and require investments of the order of millions of pounds. All three imaging

techniques are labour intensive to use.

EIT aims to image tissue impedance. This property is very difficult to

measure in vitro, as changes in tissue impedance are strongly linked to changes in

moisture content and temperature after death. The impedance changes at different

frequencies can vary enormously as the cell membranes decay. Measurement of the

impedance of living tissue in vivo poses equal problems. Despite these difficulties

tables of approximate conductivities of human and animal tissue have been
published, see [3]. These indicate conductivity contrasts between soft tissues of the

order of 10:1. The maximum conductivity contrast between soft tissue and adult

bone is of the order of 50:1. An impedance tomograph will be able to distinguish

organs with conductivity contrasts of this magnitude given sufficiently accurate

surface measurements.

An impedance tomograph will be compact, portable, cheap and harmless.

Unlike CAT and MRI, EIT could be used for the continuous monitoring of patients

over extended periods of time. Although EIT will never compete with these

physiological imaging techniques in the resolution of images, it can compete with

other functional imaging techniques such as Emission Computed Tomography, ECT.

Functional techniques image the operation of organs rather than their physiology.

ECT typically images the distribution of radioactive substances introduced into the

body and concentrated by the action of organs. EIT has potential application in the

measurement and monitoring of lung perfusion, lung ventilation, gastric emptying

and cardiac output as each of these involve the circulation of highly conductive or

non-conductive fluids through the body. Measurements of these functions are

difficult with other techniques. An important application of EIT could be the
measurement of lung water content. Physiological imaging techniques give no

information about this important parameter. Other medical applications that have been

proposed or tested are the measurement of pelvic congestion in women, gastric

motility and bladder filling. A review of these and many other possible medical
applications of ElTis given by Brown [12].
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13 EIT in Process Tomography

EIT will certainly have many applications in the monitoring and control of

industrial processes. Applications exist in the monitoring of conducting liquids in

vats or their flow through pipes. Industrial applications lack the constraints imposed

on medical EIT systems to ensure the complete safety and comfort of the patient and

unlike human patients, vats may have electrodes fixed or built into them with their

locations known precisely. Once the electrodes are in position they may be left there

indefinitely. Vats may have electrodes placed inside their volume, something patients

object to vociferously! This allows images with much greater resolution to be

calculated. Greater currents can be applied to vats of chemicals and so larger, more
accurate signals can be measured. Much of the fail-safe electronics required to protect

a human patient from injury is totally unnecessary when imaging industrial processes.

All these factors make EIT an attractive imaging technique for industry where it can

achieve much better results than is possible working under the constraints imposed by

human subjects. In the past twelve months many papers have appeared in the

literature describing industrial applications ranging from the measurement of solid

material transport in sewers [20] through velocity measurement in two-phase flow

through pipes for the petro-chemical industry [40] to distributed pressure

measurement [25].

1.4 Description of EIT

The general structure of an electrical impedance tomograph can be represented

as in Figure L4a. Electric currents are applied to a region to be imaged through

electrodes attached to its surface. The current passes between electrodes and induces

a potential field throughout the region. The potential is measured on, possibly the

same, surface electrodes. These electrode current and voltage measurements are the

data used for image reconstruction. An iterative reconstruction algorithm includes a

model capable of predicting the voltages that would be measured on a region of

arbitrary conductivity distribution, during the application of currents to surface

electrodes. Image reconstruction proceeds by comparing the voltages measured on

the region to be imaged with those predicted by the model using the present best

estimate of the conductivity distribution. Where no a priori information is available

the best estimate could be a uniform conductivity distribution. For medical imaging

the best estimate could be a uniform distribution with the mean conductivity of human

tissue or a conductivity distribution consistent with a typical placement of organs. A

correction to the model conductivity is calculated from the the difference in the

experimentally measured potential and that predicted by the model. The corrected

3



model conductivity forms the image after a single iteration of the reconstruction

algorithm. The process can be repeated, reducing the difference in the experimental

and model voltage measurements at each stage. When no currents applied to the

region to be imaged yield voltage measurements different from those predicted by the

model, the method is said to have converged and the model conductivity is the

resulting image.

Calculate Current
Patterns

Region
tolrnag

Subtract
yoltages

Calculate Correction to
Model Conductivities

Figure 1 .4a The general structure of an electrical impedance tomograph.

1.4.1 Dynamic Imaging

Two forms of impedance imaging are prevalent yielding differential or

absolute images. Differential imaging produces images of conductivity differences

between two regions or changes within one region between two times. This form of

imaging was originally advocated by Barber and Brown [4] [11], working at the

Royal Hallamshire Hospital in Sheffield, and has gained wide application. The

4



differences in the two sets of voltage measurements are the data used for

reconstruction. The reconstruction algorithm developed by the Sheffield group,

known as Back Projection, calculates a single correction to a uniform first estimate of

the difference in the two conductivity distributions. These voltage differences are
effectively "back projected" along equipotentials to form an image. Kim et a!, [48],

suggest an alternative algorithm which back projects along current stream lines. Both

these algorithms use a linearised approximation for the conductivity to voltage

measurement map is used and so reconstruction is a single matrix-vector operation.

The method has four major strengths. Firstly, as only a single iteration is performed,

the matrix that transforms the measured data into a conductivity update can be pre-

calculated and stored. Secondly, many of the systematic errors in the data cancel to

first order when the difference in the voltage measurements is calculated. In

particular, the method appears to be relatively insensitive to errors in electrode

placement. This is a great simplification in clinical situations where electrodes are

attached to patients. Thirdly, image reconstruction using back projection is

numerically trivial and so images can be calculated very rapidly on small and

inexpensive computers. Fourthly, the equipment used to acquire the data for Back

Projection applies current between adjacent pairs of electrodes. These are known as

APT current patterns and are accomplished by multiplexing a single current source to

adjacent pairs of electrodes. The simplicity of this arrangement leads to inexpensive

and compact tomograph electronics.

The Sheffield system has been extremely successful with many research

centres throughout the world testing its performance on a wide range of applications.

Perambulatory systems have been built to monitor patients during typical daily
activities, [51], and real-time systems have been constructed capable of acquiring the

data for, and calculating 25 images per second [13]. Many of the draw-backs of the

APT technique are those common to all forms of differential imaging. At best,

difference images represent changes in conductivity from one moment to the next.

The function of organs, such as the profusion of the lungs with blood, can, in theory,

be imaged but disorders such as tumours, whose conductivity does not change during

the imaging period, are invisible. Important quantities such as the water content of

the lungs cannot be measured with differential imaging techniques. The back-

projection algorithm also transforms changes of other variables into changes of
conductivity. In particular, changes in boundary shape are interpreted as changes in

conductivity. Lastly, back-projection along equipotentials is inherently a two

dimensional reconstruction algorithm and no way is known to extend its application

to three dimensions.
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1.4.2 Static Imaging

Static, or absolute, imaging attempts to calculate the true impedance

everywhere in the region to be imaged. This problem is considerably more difficult

than differential imaging. The data used for reconstruction is the difference in the

voltages measured on the physical region and those predicted by a numerical model.

This data includes many of the systematic errors that differential imaging avoids. For

multiple iteration reconstruction algorithms to converge to the correct conductivity

distribution the forward model must correctly and accurately mimic the physical
processes involved in passing electric current between electrodes attached to the

region to be imaged. Where complicated conductivity distributions or geometries are

being modelled, this part of the reconstruction is complex and numerically intense.

The research group at Rensselaer Polytechnic Institute have developed an

imaging system with reconstructions based on a single iteration starting from a

uniform first estimate of the conductivity distribution. This system has been shown

to produce useful images on phantom and dog trials. As with Back Projection, the

matrix system linking the electrical measurements and the conductivity update may be

pre-calculated analytically and be used to calculate each image, as long as current

patterns are used which lie in a space spanned by predetermined basis. Thus their

reconstruction algorithm, known as NOSER - an acronym for Newton One Step

Estimated Reconstructor [14], is potentially as fast as back-projection. Unlike Back
Projection the algorithm is equally applicable in three dimensions as in two. The

images indicate conductivity contrasts within the region to be imaged but do not yield

correct conductivities. More iterations of the reconstruction algorithm would be

necessary for the model conductivities to be an accurate indication of the region's

conductivity distribution. However the images may prove to be medically useful for

identifying tumours or embolisms and there may be correlations with NOSER images

and other useful medical parameters.

1.4.3 Adaptive Imaging

One of the developments pioneered by the Rensselear group has been the use

of optimal currents. Absolute imaging is more susceptible to distortion by noise than
difference imaging and it is, therefore, more important for an absolute tomograph to

collect high quality data. Isaacson [44], formulated a method for calculating the

optimal currents to apply to the electrodes to yield the highest quality data. Optimal

currents are calculated from voltage measurements made on the region to be imaged

and the numerical model. The applied currents are adapted to maximise a quantity
called distinguishability (see Section 2.2.7). This measures the size of the difference
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in the voltages measured on the region and the model for current patterns of unit

power. Unlike APT patterns, the use of optimal current patterns typically means

applying current to all the electrodes attached to the region. A large number of

matched current sources are necessary to apply optimal current patterns to a region,

and so the driving electronics are considerably more complex than the APT system.

The systems built by the Rensselaer group, known as ACT I, ACT II and ACT Ill,

dedicate a matched current source to each electrode [64]. Some loss of data quality is

incurred as voltage measurements now take place on electrodes that are applying

current to the region. Any variation of the contact between electrodes and the region

contaminates the voltages measured on current carrying electrodes. At the present

time it is not known if the benefit gained by using optimal current patterns

compensates for this degradation of the voltage measurements.

When both the physical and model conductivity distributions are rotationally

symmetric disks, the optimal current patterns are trigonometric; J(0)=sin(ke) or

J(e)=cos(ke) where J is the current density normal to the boundary at the point

whose polar angle is B and k is an integer. The first two optimal currents, yielding

the largest distinguishability, are J(0)=sin(B) and J(9)=cos(8). Higher values of k

yield decreasing distinguishabilities. The NOSER algorithm typically assumes that

trigonometric current patterns have been applied.

1.4.4 Permittivity Imaging

At the frequencies generally used for medical impedance imaging, 10 to 100

kHz, the reactive part of the body is relatively small. Typical phase angles between

the current and voltage measured on electrodes are approximately 20. Commonly, the

real part of the voltage measurements will be used to reconstruct an image of the

conductivity, , of the region. However, at lower frequencies or in industrial

applications, the reactive component of the measured voltages may not be

insignificant and both the real and imaginary part of the region's impedance

distribution can be imaged. Although the small reactive component makes static
imaging of tissue difficult, it is possible to produce differential images from

difference measurements. Griffiths [36] has demonstrated the reconstruction of

conductivity and permittivity images from synthetically generated data and later, [38],
from real data collected from the thorax of human subjects. A Back Projection

algorithm was used acting on voltage data measured at two different frequencies.

Reconstructions of absolute permittivIty images produced by a Newton type

algorithms have been reported in industrial applications.
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1.4.5 EIT at Oxford Polytechnic

The work of the group at Oxford Polytechnic has had much in common with

the activities at Rensselaer. Like the Rensselaer group our aim has been to produce a

tomograph capable of forming absolute images of conductivity from data acquired in

clinical applications. From the beginning it was decided that the system should be

capable of applying optimal current patterns. The reconstruction algorithms have

used multiple iterations to produce images of true conductivities. By 1988 a
tomograph, designed by Murphy [62] and known as OXPACT I, had been

constructed and tested on several phantoms in the laboratory. Despite the fact that

this system never produced a recognizable image, much was learnt from the

experience and the group was encouraged to continue. OXPACT II, designed and

built by Zhu [90], was completed in 1991. Much of this thesis is concerned with

theoretical considerations affecting the specification of this system and

reconstructions from data acquired with it.

1.5 Computing in EIT

For single step reconstruction algorithms such as back-projection and NOSER

the computing requirements are minimal. Existing impedance tomographs are capable

of imaging a few hundred conductivity parameters. To compute the image a pre-

factored matrix system of this dimension needs to be solved. The Sheffield and

Rensselaer systems require of the order 0(10) floating point operations to calculate

an image. The most modest desk top computer can perform this task in less than one

second. This task becomes more numerically intense as the resolution of the system

increases. A system with N electrodes can theoretically calculate an image with

0(N2) conductivity parameters. This requires 0(N4) floating point operations.

Thus the computation required increases dramatically with increasing numbers of

electrodes. A three dimensional imaging system can easily have ten times as many

electrodes as a two dimensional system and so the reconstruction could take 10000

times longer. If two dimensional reconstruction took one second, three dimensions

would require almost three hours. The use of sophisticated computing equipment can

reduce the reconstruction time using these algorithms to acceptable levels.

Multiple iteration reconstruction algorithms face a more daunting task. For

each iteration a numerical forward model needs to be formulated and solved. The

results of this operation are used to calculate the voltage differences and hence, the

conductivity update. This system needs to be calculated and factorised at each

iteration. The forward problem is usually solved using the Finite Element method.
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This involves the construction and factorisation of a square matrix whose dimension

is proportional to the number of electrodes squared. The factorisation is an 0(n3)

operation where n is the dimension of the matrix thus the solution of this system

requires 0(N6) floating point operations. The computer capable of performing two

dimension, single step, reconstruction in one second would require several weeks to

execute a single iteration of a multiple iteration reconstruction scheme. Extending this
calculation to three dimensional reconstruction would require a much longer period of

calculation again.

1.6 Parallel Computers.

The system envisaged by the Oxford group requires formidable computational

power to calculate an image in a reasonable amount of time. The obvious way to

achieve this is to employ a super computer. However the constraints placed upon a

clinical system make this approach unacceptable. Among the advantages of the

proposed system are its cheapness and portability. The incorporation of a super-

computer into the system nullifies both these potential desirable features. For use in

a hospital environment the system needs to be compact, robust and "medic-friendly".

A key to the continued increase in the speed of computing devices in the last

few years has been utilisation of parallelism. This applies the principle of "divide

and conquer" to the computational work that needs to be accomplished. The principle

can be applied at all levels of computing. The fast microprocessor and digital signal

processing chips that are now available achieve their high speeds, in part, by

performing many independent operations concurrently where the hardware inside the
chip allows. Typically, arithmetic operations can be executing on the ALU
(Arithmetic Logic Unit) while data or instructions are fetched from memory. More
highly granular parallelism is possible where a parallel computer is constructed from a

network of processors, each capable of independent operation. If the computational

work is split between the processors then the time required to perform the calculation

decreases as the number of processors is increased. Some overhead is introduced by

the requirement for the processors to pass data and intermediate results around the

network. In general it is a non-trivial task to distribute a given computation between a
set of inter-connected processors so as to minimise this overhead. The success with

which this task is performed determines the computation rate achieved by the parallel

computer for that calculation.
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In the last five years components designed to be the processors in parallel
computers have been available. These components are microprocessors with the

added hardware necessary for inter-processor communication and in many cases

these components have been fabricated on single chips. In the case of the Inmos
Transputer these chips have been powerful computers in their own right. In addition

they have the hardware necessary to communicate data between pairs of Transputers

at very high rates. For a few thousand pounds, boards containing several

Transputers, each as powerful as a typical workstation, could be purchased as

extension boards to IBM PC's. A parallel computer, possibly hosted in a micro-

computer, would appear to be a solution to the problems posed by the requirements

of a medical electrical impedance tomograph.

1.7 Summary

The problems of difference imaging and single step, two dimensional,
absolute imaging appear to be solved in the sense that the prototype tomographs exist

and are presently being tested by other research groups. Absolute imaging in both

two and three dimensions has not been achieved. Work is required both to make it

possible and practical.

This thesis investigates algorithms for absolute imaging. In Chapter 2

reconstruction based on Newton's Method is investigated and algorithms designed to
minimise the computation and execution time are explored. Chapters 3 and 4

investigate mathematical and numerical models for EIT. In Chapter 5 some of the

issues involved in choosing parallel hardware and parallel software are discussed.
Reconstruction algorithms are looked at in detail and parallel algorithms for each stage

are explored in Chapter 6. In Chapter 7 the OXPACT II system is described.

Several Newton type algorithms are detailed and their performance is analysed by
comparing images reconstructed from both synthetic data and data measured on

physical test objects.
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Chapter 2

EIT Reconstruction

2.1 Introduction

Electrical impedance tomography poses the problem of reconstructing the

conductivity distribution inside a region from electrical measurements made on the

boundary. In practice this boundary data is obtained by applying currents to

electrodes placed against the boundary and measuring the voltages induced on,

possibly the same, electrodes. It is well known, [61 and [7], that the determination of

the interior conductivity distribution from electrical measurements on the boundary is

a highly non-linear and ill-posed inverse problem.

The calculation of conductivity images, known as reconstruction, can be
achieved by explicitly non-linear techniques, such as the method of Nachman [63] or

the more recent Layer Stripping algorithm of Cheney and Isaacson [15] and [77].

Alternatively, methods based on iterative improvement can be used. These methods

repeatedly calculate corrections to an estimate of the conductivity distribution. At
each step voltage measurements are made on the region to be imaged and the same

experiment is simulated on a model based on the present best estimate of the

conductivity distribution. A correction to the model conductivity distribution is

calculated which minimizes a cost function based on the difference between the

simulated and measured voltage measurements. This process is repeated until the

differences are less than the experimental error. These methods are commonly

known as iterative linearized algorithms" since the conductivity correction is often

calculated assuming linear variation of the voltage measurements with conductivity

changes.

Linearised reconstruction algorithms may be broken down into four stages:

determination of the experimental measurements the

measurements on the region to be imaged, the simulation of the same measurements

on a model, and the calculation of the correction to the conductivity distribution. In

Chapter 2 the first and last of these steps are considered. Chapters 3 and 4 investigate

the forward modelling component necessary in iterative reconstruction methods.
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2.2 Which Measurements to Make?

For an Eff system capable of applying any current pattern and measuring the

voltage anywhere on the boundary, an important question is, what are the best current

patterns to apply and the best voltages to measure? Clearly, current patterns that

produce the same voltage measurements on both the imaged region and the

reconstruction model reveal little about the differences between their conductivities.

Another consideration is that small voltage measurements are likely to have a large

relative error due to both random and systematic error. Thermal fluctuations and

digital quantization add a random background of noise to every voltage measurement.

Similarly, modelling, electronic gain and electrode placement errors add systematic

noise to the reconstruction data. Systematic errors scale with the size of

measurements while random errors often do not.

2.2.1 The Forward Model

In Eff a volume with boundary Q and unknown conductivity distribution

is imaged by applying electhc current to a finite number of electrodes fixed to the

boundary. Within a source-free conductor the potential is governed by the

conduction equation:

= 0	 in .	 (2.2a)

This is a second order partial differential equation in which, for arbitrary
conductivity distributions, can only be solved numerically. For a unique solution to
exist, a complete set of boundary conditions needs to be known. These may be
Dirichlet conditions in the form of potentials on the boundary or Neumann conditions

in the form of current densities on the boundary or a mixture of both. The potential

needs to be subject to at least one constraint for a unique solution to exist. The

boundary conditions associated with the injection of current through a finite number
of electrodes are explored in Cheng et al [16] and Paulson et al [70]. In EIT the

inverse problem is solved; the conductivity distribution 	 is calculated from

knowledge of the currents injected into the region and measurements of the boundary

voltages.

To describe mathematically the operator which maps boundary currents to

boundary voltages it is necessary to define norms for the spaces that these functions

occupy. The Sobolev norm of the function f, '111m' where m is a positive integer is
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defined as:

Ift1m	

J 
DafI2dxi...d,ri

IaI^m

I	 I

f of order Ia=ai^...+^m

Folland [28], details the extension of the definition of the Sobolev norm, 1111m' to all

real m. The Sobolev norm not only measures the size of a function but also the size

of its derivatives and so it describes the smoothness of a function. If m is the largest

number such that liflim is finite then f is said to lie in the spaces I-P' Vn^m.

The voltage, V, induced on the boundary of a region with conductivity can

be expressed in terms of the transfer impedance operator, R(c) acting on the applied

current pattern, J, V=R( y)J. To include all current patterns of finite power the

transfer impedance operator acts on current patterns in the Sobolev space H-"2 and

yields voltage patterns in the space H"2, [32]. If the transfer impedance operator is

restricted to R(a):110 -*H0, it is self adjoint and compact and thus, not invertible.

As there are no sources or sinks in the interior of the region, the net current

crossing the boundary is zero. This is a constraint on the current patterns we can
apply. Similarly, as the potential is only defined up to an additive constant we can

eliminate the ambiguity by choosing the average potential on the boundary to be zero.

This is a constraint on the voltage patterns we can measure. These constraints

remove one dimension from the spaces of current and voltage patterns. Thus, for

quantities defined on the boundary, Hs is understood to be the subspace of Hs

orthogonal to the constant function 1. These constraint equations can be written:

2.2.2 Measurements Made on Electrodes

If the boundary current and voltage patterns are approximated in bases of

functions, tX} : X E H"2 and ():€ 11+1/2 respectively, then the transfer
impedance operator can be represented by a matrix:

13



V=R(cy J	 wher

The domain and range of the transfer impedance matrix are the spaces spanned by the

bases for the voltage and current patterns. If then the restricted transfer

impedance operator is self adjoint.

If the bases are orthonormal, i.e.

=

and <Xil>

then the dual pairing of two functions, F and G, approximated in the same basis may

be written as a vector dot product, <F,G>=FG. If F and G are both H° functions

then:

<F.G>= FG.

For a full description of Sobolev spaces and dual pairings the reader is directed to

Folland, 1281.

For real E1T systems, current is applied and voltages are measured via
electrodes attached to the boundary of the re gion. If current is applied through n

electrodes and voltages measured on m electrodes then an invertible transfer

impedance matrix can be defined, R()EC(m)(), using a current and voltage

basis function associated with each electrode:

V = R I

VE C	 and IE C rn-i are vectors of the voltages and currents measured on the

electrodes. The current and potential on the last current driving and voltage

measuring electrodes are determined via the constraints:

m
II = Vl=O

The electrode bases are not orthonormal and even when currents and voltages are

measured on the same set of electrodes the transfer impedance matrix is not self

adjoint.
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2.2.3 Experimental Measurements

An experiment in Eff can be defmed as a measurement of a component of the
difference between the voltage pattern induced on the surface of the region to be

imaged and that predicted by a numerical model. Each experimental measurement

involves the application of a current pattern to the boundary of the region. A

component of the resultant boundary voltage pattern is measured with respect to a

particular basis of the space of measurements. An experimental measurement thus
results in a single number.

Eij (Gm) = <Mi,(R( Ym) - R( Ye)) Jj>	 (2.2b)

where:

m is the model conductivity distribution,

is the test volume conductivity distribution,

R() is the transfer impedance operator,

Mj is a measurement pattern,

is an applied current pattern,

<•,•> is the appropriate dual pairing,

Q is the volume to be imaged and Q is its boundary,

The subscripts i and j on the measurement and current patterns range over the patterns

used. The number of independent patterns will be determined by the number and

position of electrodes used to apply current to the region and to make voltage

measurements on the region, see Section 3.7.3.

2.2.4 Current Patterns and Measurement Patterns

Three different forms of current pattern, J, are in common use. The Back-
Projection reconstruction algorithm of Barber and Brown, [3] and [4], assumes

current patterns approximating current di-poles on the boundary. Their APT current

patterns achieve this by driving current through adjacent electrodes attached to the
surface. Isaacson, [44], derived an algorithm for calculating optimal current patterns

which maximise the norm of the difference between the voltages measured on the

region to be imaged and those predicted by the numerical model. These current

patterns vary smoothly around the surface of the region and are approximated by

driving current through all the electrodes simultaneously. Some researchers,

including those at Rensselaer Polytechnic Institute and at Oxford Polytechnic, have
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used trigonometric current patterns, I=cos(kO1) k=1,2,3..., where Jig is the

current delivered to the ith electrode and 8 is its angular position.

All other researchers known to the author use measurement patterns

corresponding to measuring the voltage between pairs of electrodes. Barber and

Brown measure the voltage difference between adjacent electrodes. In this thesis we

consider trigonometric measurement patterns m:

N-i
m=	 cos(kO)e k=1,2,3..

i= 1

and optimal measurement patterns.

In practice, trigonometric measurements are calculated from a linear

combination of voltage measurements made between pairs of electrodes. Thus, the

trigonometric measurements have a larger noise component than the physical

measurements made between pairs of electrodes.

2.2.5 Optimal Current and Measurement Patterns

The experimental measurements which provide the most reliable information
on which to base a reconstruction step are those for which the experimental

measurement, as defined in Equation 2.2b, is largest. Similarly, for

measurements with a background error of fixed amplitude the measurements with the
highest relative precision are those for which E 1 is largest.

An understanding of the relationship between current and measurement

patterns and the resulting experimental measurements can be gained by considering

the singular value decomposition, SVD, of the difference in the transfer impedance

operators. The SVD of operators is described in detail in Groetsch, [39], and the

SVD of matrices is described in Golub and Van Loan, [33]. There exist functions,

and V, and positive real numbers ?-j such that:

(R(m)_R(e))UiAiVi

(R(cYm) - R(cye))* V = X u
?^A^o Vi<j

= <V1.V> =

where R* is the adjoint of R. The U1's and the Vi's are called the right and left
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singular functions of (R(m) - R(e)) and form orthonormal bases for the spaces of

current patterns and voltage patterns respectively. The are singular values of the

difference in the current to voltage maps of the model and imaged region. Equation

(2.2b) can be rewritten in terms of this singular decomposition:

since	 = Ek<Uk,JiUk

= <M1, Ek VkXk<UkJJ>>

= Zk <Ml,Vk> k <Uk,JJ>	 (2.2c)

If M = V and = U then the measurement made using the i'th singular

measurement pattern and the jTh singular current pattern is:

= Ek < i'k> Xk <UkUJ>

=	
=	 (2.2d)

From Equation 2.2c it is clear that the supremum value of E 1 over all

orthogonal bases of current and measurement patterns is and that this is attained

when M = V 1 and = U 1 . Once this choice has been made, the next highest value

of E 1 :i,j^l occurs when M = V2 and Jj = 2• Again we can set i=i and continue

this process. All measurements	 with i^j are zero. Further, if the restricted, self

adjoint operator ( R(m) - R(e)) :H ° —>H 0 is used, the optimal current and

measurement patterns are the same, i.e. Vk=Uk and belong to the space C°°, [32].

Using the discrete quantities, Equation 2.2b may be more concisely written:

= M1T VAUT j.

where U and V are basis matrices whose columns are orthonormal vectors and

A=Diag(21,?2,?3, •••'N-1)' although the singular values will not be the same as the

continuous ones. J is the vector of electrode currents and M1 is a vector of the

weights used when forming the weighted sum of the electrode voltages.

Thus, there exists orthonormal bases of current pattern vectors and

measurement pattern vectors which diagonalise the transfer impedance matrix. These

vectors can be used to form optimal experimental measurements, which are the
largest possible given constraints on the size of the applied currents. All experimental

measurements, E1 with i^j are zero.
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2.2.6 An Example of Optimal Current and Measurement Patterns

To demonstrate these optimal current and measurement patterns we can

consider two unit disks with uniform conductivities m and	 m <e The

application of a boundary current density of J( = cos k8 to a unit, uniform disk

produces a boundary voltage pattern of 	 = l/(k) cos kO. The left and right

singular functions of (R(o) - R (ae)), in this case, are Uk=Vk=(l/ir) cos kB or

Uk=Vk=( l /lt ) sin kO and the singular values are 	 = l /( mk) -	 ek), k=l,2,3.....

In this case the value of the optimal experimental measurements are the difference in

the power applied to the regions by the optimal current pattern.

Ekk=<Vk,(R(e) R(m)) Uk>=<Vk,? kVk>=<Uk ,XkVk>= ac Jk(4:ek_4mk)

where 1Pe' and m1 are the potentials induced in the region to be imaged and the

modelled region respectively.

2.2.7 Distinguishability

The cm-rent and measurement patterns above are optimal in the sense that they

yield the largest voltage measurements. Other workers in the field have introduced

current patterns that optimize measurements given other constraints. Isaacson er at,

[44], optimize a measure called distinguishability. Two conductivity distributions,

and e' are said to be distinguishable by measurements of precision c if there

exists a current density pattern J of unit norm which produces a voltage pattern with

norm greater than e.

II (R(Ye) -
>E

'IJI'

The number is called the distinguishability. The "best" current patterns to apply, in

terms of maximising the distinguishability, are the eigenfunctions of self adjoint

operator IR(e)_R(m)l:H° -3H°. If the SVD is performed on the restricted

operator then:

I (R() - R(m)) = Zk Uk?k<Uk,J>

It is clear that the Ui's are eigenfunctions of this operator and so Isaacson's optimal

current patterns are the same as those calculated in Section 2.2.5.
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The formulation proposed by Isaacson et a! includes a range of definitions of

"best" measurements in the norms used in the definition of distinguishability.

Usually the L2 norm is used for the current, IIJII, as this corresponds to the power

applied to the region. The L 2 norm of the difference in the voltage patterns induced
by the application of the corresponding optimal current is the same as the optimal

measurement derived earlier.

II (R( Ym) - R(e)) U II =	 = <M,2V> =

Using the L norm for the numerator in the definition of distinguishability yields

optimal currents which give the largest electrode voltage measurements. In the same

way other definitions of <F,G> will result in other, possibly interesting, definitions

of optimal patterns.

In a later paper, [31], Gisser eta! refine the definition of distinguishability to

cover all current patterns of finite power:

II(R(Yrn)R(e))JII+it2
(J) =

IIJ

where IlAlim is the Sobolev norm of A. As the unrestricted operator is not self adjoint,
the optimal currents are defined as the eigenfunctions of the self adjoint operator

(R((Ym)_R (e))*(R(om)_R(;)). These optimal currents are the same as the right

singular functions of the unrestricted operator.

2.2.8 Conclusions

In this section, the transfer impedance operator, which maps boundary

currents to boundary voltages, has been defined. A discrete transfer impedance
matrix has been introduced based on the use of electrode characteristic functions to
model the behaviour of electrodes attached to the boundary. Optimal current and

measurement patterns have been defined which maximise the size of experimental

measurements. These optimal experimental patterns use the currents which maximise

the distinguishability and the measurement patterns which translate the resulting

boundary voltages into the largest experimental measurements.

The advantage of the formulation based on singular value decomposition, as

presented in this thesis, is that it makes explicit the properties of different

measurement schemes. A number of research groups apply optimal currents yet all
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groups known to the author use voltage measurements made between pairs of

electrodes. Physically, voltage measurements are always made between pairs of
electrodes, yet it must be remembered that optimal currents were chosen to maximise
the distinguishability, not these pair voltage measurements. Breckon, [10], describes

the calculation of pair optimal currents which maximise voltage differences for

measurements made between pairs of electrodes. These current patterns are more

appropriate if the pair voltage measurements are going to be used for reconstruction.

Combining pair voltage measurements to simulate the use of optimal measurement

patterns yields larger, albeit more noisy, experimental measurements but compresses

the data into a single measurement for each current pattern. This compression is used

by a novel reconstruction algorithm, known as POMPUS, described in Section

7.5.2.

2.3 Reconstruction based on Newton's Method

At each stage of an iterative reconstruction algorithm a correction to the

present best approximation to the conductivity field needs to be calculated. The data

used to calculate this correction are the differences between experimental

measurements that have been made on the region to be imaged and the results of

simulating these measurements on a computer model. Typically, Newton based
algorithms are used to calculate a correction consistent with these data.

2.3.1 Newton Iteration

If C(x) is a function of one variable and we wish to find x' such that x* is a

turning point of the function C, i.e. C(x*)=0, then the standard Newton iteration

scheme applied to the derivative of C may be used to achieve this. It may be stated

as:

REPEAT

• Find Ax: C"(x) Ax —C'(x)

• x - x+zXx

If the initial value of x is within a sufficiently small neighbourhood of x and C C4,
then this algorithm is well known to converge quadratically to the turning point of C,

x -p x*. Where C(x) is a function of several variables a multidimensional form of the

Newton method can be used:
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REPEAT

• Find iXx: Hcz1X	 VC

• x f- x+Ax

where FL is the Hessian matrix of C. This process will converge to either a local or

a global minimum of C depending upon the initial value of x. Variations of this
procedure which perform line minimizations of the cost function along search

directions generated by the Newton method will minimise a quadratic function with

positive definite Hessian matrix in a finite number of steps, see Lootsma et al, [55].

If CE C4 is a function which is bounded below, then the multi-variable Newton

method given above will converge quadratically to the global minimum of the
function C as long as the initial value of x lies within a sufficiently small

neighbourhood of it.

2.3.2 The Error Function

For Eff, an error function may be defined by C(&m) = (Eij(CTm+A(Ym))2 , where

Mm is the conductivity update and ij indexes the experimental measurements used for

reconstruction. This error function always takes non-negative values. If the error

function is equal to zero, C=O, then the model conductivity field and that of the region

to be imaged cannot be distinguished by the experimental measurements we perform.

If the current and measurement patterns are bases of their respective spaces then the

error function measures the Frobenius norm of the difference in the transfer

impedance operators. The use of optimal current and measurement patterns allows a

simplification of the error function as:

C(0)	 E IIR(mR(Ye)II	
11

1 J	 i	 i

We wish to find the conductivity update that is the global minimum of this function.

The functions Eij(am+Lm) are highly non-linear and so typically, their behaviour can

only be approximated locally. It is usual to work with an approximation to the

function C(Mm), usually linear, and to repeatedly calculate corrections to the model
conductivity distribution until C(0) is sufficiently small.

2.3.3 Newton's Method and EIT

From the multi-dimensional Newton's method and the definition of the error

function the following relationships can be derived:
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M aE aE + E1
	 EIJ - 2 

I E j 	 \
(HC)KL2	 _

ij=1	 aSKaSL)	 IJ	 KSLJ
M 

EVCK=2
ij=1' ii—)

where K and L index the rows and columns of the Hessian matrix and the gradient

vector. It is assumed that M experimental measurements are used and that these are

indexed by ij. Typically the conductivity and the conductivity update are expressed in

a finite basis of continuous functions {B), The derivatives are thus with

respect to this parameterisation of the conductivity field. Methods of calculating the
derivatives are described in detail in Section 2.5. The second order terms in the

calculation of the Hessian matrix are usually omitted as they are both relatively small

and expensive to calculate, see Breckon [9] for an explicit formula for the Hessian

matrix. Alternatively, the second term is approximated by t 2I where i is the

Tikhonov regularisation parameter. Dennis et al, [21], approximate the second term

by a symmetric matrix based on the first derivatives. A correction to the approximate

Hessian is calculated before each Newton step. If these terms are neglected, the

Newton method reduces to the task of calculating the conductivity update to the

construction and solution of a set of linear equations.

2.3.4 The Least-Squares Method and EIT

The Least Squares method is commonly used when minimising a function
contaminated by noise. In this subsection the Least Squares method is applied to the

calculation of the conductivity update.

For each experimental measurement, E1 we can find a conductivity update

such that Ejj(Yrn+im) 0. If the Taylor expansion for Ejj(Ym+cYm) is truncated after

the linear term this can be expressed as:

Ejj(am+Aaj Eij(m) +	 = 0

aElJ'A	
- F

1J

Given that the conductivity field is represented in a basis of continuous functions,

(B ),	 is used to represent the gradient of the function E(o) with respect to the

coefficients Sk,	 The conductivity update, A0m, is also a vector in the basis

(B}. Collecting these expressions for each experimental measurement yields:
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= E	 (2.3a)

IiE 1 E2 E3	EM \T
and E =-(El,E2,E3,...,EM )T for somewhere J	 ---, ---, -b--- •••

numbering of the experimental measurements, E 1 . The Jacobian matrix J R<N

where N is the number of conductivity parameters.

Typically the system defined in Equation 2.3a may be either underdetermined

or overdetermined depending on the number of measurements used for the

reconstruction. It may be inconsistent due to the linearization assumption or errors in

the experimental measurements. For these reasons a solution in the least squares

sense will be calculated using the Moore-Penrose inverse of J, jt • jt is defined to be

the unique matrix which satisfies the four Moore-Penrose conditions:

jjtjj	 JtJJtJt

(JJt)T = jjl-	 (JtJ)T jtj

These conditions amount to the requirement that jjt and jtj be orthogonal projections

onto the column spaces of J and jt respectively, [33]. Thus the conductivity update

may be calculated using:

	

= J E (JTJ)_JTE	 M^N

	

m 3t jT(jjT)_ l E	 M^N	 (2.3b)

The model conductivity field can be adjusted by the addition of the correction

calculated using the above equation; m + m After this, the process may

be repeated by calculating a new correction based on a new set of measurements on

the region to be imaged and the model. This process can be repeated until physical

and simulated measurements agree to measurement accuracy, known as Morozov's

stopping criterion [61].

The first of Equations 2.3b is equivalent to solving the Newton step

'm	 derived in the previous section. The Hessian matrix and the gradient

vector are related to the Jacobian matrix as follows:

Hc JTJ	 —VC=JTE

Thus, Newton's method yields the conductivity update which minimizes, in the least
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squares sense, the differences in the voltage measurements made on the region to be

imaged and the numerical model.

2.3.5 Regularisation

Breckon, [9], has shown that the methods described in this section are

adequate for the reconstruction of overdetermined data which is error and noise free.

Experimental experience with synthetically generated data has shown them to

converge to a region close to the global minimum of the error function when the

conductivity fields are homogeneous with homogeneous anomalies and the first

estimate conductivity distribution has been sufficiently close, see Section 7.5.2.

Small amounts of noise added to the data reduce the resolution of the image by

introducing large anomalies, particularly near the centre of the imaged region, see

section 7.5.3. Larger errors can prevent convergence by introducing negative

conductivities in the model conductivity distribution.

For real data measured on physical objects the largest accumulation of errors

is in the experimental measurement vector E. These errors are a combination of

random errors, such as thermal and digitization noise in the electronics used to apply

the current patterns and make the voltage measurements, and more serious systematic
errors such as electrode misplacement and matching errors in the driving electronics.

The ill-posedness of the inverse problem means that small errors in the voltage
differences are translated into large errors in the conductivity correction. A small

relative error in E, certainly less than 1%, will result in the conductivity corrections

generated by Equation 2.3b converging to an unrecognizable image or oscillating

wildly.

The problem may be circumvented to some degree by regularising Equation

2.3b. This process replaces the ill-posed problem of 2.3b with a more stable, well-

posed one. As a linear step in an iterative method, Levenberg [49] and Marquardt

[57] suggest the Tikhonov regularised linear approximation:

- (jTj + i. J)1 JTE	 M^N	 (2.3c)

or
jT (JJT + i iy' E	 M^N	 (2.3d)

where .t is the Tikhonov factor. This is equivalent to finding the Aam which

minimizes llJAm. Eli2 + 2 ll\ U2. Thus Tikhonov regularisation limits the

magnitude of the conductivity correction by penalizing large corrections in the error
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function This is equivalent to the constrained optimisation problem: minimise

IIJA mE II2 subject to	 II<p. Here p. is the Lagrange multiplier when the

constraint is active. The ball of radius p centred at the current approximation m is

called the "trust region " as it represents a region in which we can trust the linear

approximation to R(am). For p.=O the method becomes simply the Newton-

Kantorovich method but for large p. the direction of the update vector tends to the

direction determined by the Steepest Descent method, JTE. In this way the

Levenburg-Marquardt update can be thought of as an interpolation between the slow

but sure Steepest Descent method, and the rapid but unreliable Newton-Kantorovich

method.

2.4 Error Analysis using Singular Value Decomposition

Each iteration of the reconstruction algorithm requires the solution of the

system of Equations 2.3b. An understanding of the effect of varying the

regularisation parameter p. can be gained by studying the singular value

decomposition, SVD, of the Jacobian matrix, JE RMXN . The SVD factorizes the

matrix J into a product of orthonormal basis matrices ue gMXM and VE RNXN and a

diagonal matrix of monotonically decreasing positive singular values, ?,

A=Diag( l ,X2 ,? 3 ,...?.mjfl(M ) by writing J =UAVT. The columns of U and V are
the right and left singular vectors of the matrix J and lie in the space of voltage

differences and conductivity distributions respectively.

J U = V
	 J* V = x u

xi ^ x ^ 0 V i<j
	

<U i ,Uj> <V,V>

The solution of the regularised Least Squares system, Equation 2.3c, may be

written:

Ix= 

IX+p.2) 
(U,E)V

i

where (X,Y) is the usual dot product, (X,Y) = E X1Y 1 . It is clear from this

formulation that the conductivity update is a weighted sum of the right singular

vectors where the weighting is a product of an amplification factor, A, and a

projection factor, P:

25



3.

n

-3.

>

, -I.

-

A
= _____	 (U,E)

2

While the projection factor is clearly bounded, (U,E)2^(E,E), the amplification

factor grows without limit as both A. and t approach zero.

Figure 2.4a The singular values of the derivative matrix for a uniform disk driven

by trigonometric current patterns. The upper curve was calculated using

trigonometric measurement patterns and the lower curve from adjacent pair

measurement patterns.

Figure 2.4a shows the singular values of a derivative matrix corresponding to

a disk with a uniform conductivity distribution driven by trigonometric current

patterns applied to thirty two, equally spaced, electrodes covering 30% of the

boundary. Two sets of voltage measurement patterns were tested; voltages measured

between adjacent electrodes and trigonometrically weighted voltage measurements.

Voltages were measured on point electrodes half-way between the current injection

electrodes. Trigonometric measurement patterns result in larger voltage
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measurements and so the singular values of the derivative matrix using trigonometric

weights are larger. The singular values decay with a similar pattern. Breckon, [9],
reported a correlation between steps in the decay curve of the singular values and

breaks in the symmetry of the singular functions. Singular values were found to

decay faster than e where n is the singular number. This is consistent with the

results of Breckon, [9] for sixteen electrode systems, who found that the decay of the

singular values was of the order O(ePO')) where p is a polynomial of degree two or

more. This very rapid decay in the singular values is indicative of the extreme ill-

posedness of the Eff inverse problem.

'I

5•

4

Figure 2.4b The ainp1cation factor A(X) =	 for, from top to bottom; u=O,

1u=O.25, u=O.5 and u=1 .0.

If the model conductivity distribution is changed by the addition of V then the

voltage difference measurement would change by Thus the singular

conductivity clisthbutions with small singular values are those that, when varied,

make the least change in the voltage difference measurements. These are the

components of the conductivity image that are least determined by boundary voltage

measurements. As the amplification factor, without regularisation, is l/ j these

components of the conductivity field are associated with the largest amplification

factor. Adding U to the data used for reconstruction changes the conductivity update
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by (l/X)V. Typically the voltage difference vector will be degraded by systematic

and random noise introduced by the measurement apparatus. Random noise will
include components of all the left singular vectors, U. The noise in the components

with small singular values will be greatly amplified when its contribution to the

conductivity update is calculated. Introduction of the Tikhonov factor limits the

maximum amplification to l/2jt which occurs for X=j.i and, as the singular values

tend to zero, the amplification factor also decreases to zero so preventing these noise
components swamping the calculated conductivity update, see Figure 2.4b.

In general, conductivity perturbations farthest from the boundary result in the

smallest voltage changes on the boundary, see Section 2.5. Hence, right singular
functions with the variation closest to the centre of the region are those with the

smallest singular values. Similarly, the first few singular functions are those with

conductivity perturbations near the electrodes as these produce the largest voltage

changes. Decreasing singular values are associated with conductivity variation with

increasing spatial frequencies, decreasing amounts of symmetry and variation further

from the boundary of the imaged region.

Regularisation, therefore, is equivalent to choosing the conductivity update

from a space of smooth functions (i.e. functions with low spatial frequencies) with

high degrees of symmetry and their principal variation near the boundary. The

Tikhonov regularisation factor needs to be chosen to fit the singular noise spectrum of

the electrical measurements. If the vector of experimental measurements is written in

terms of the left singular vectors, E= (s+n)U, where s 1 and n 1 are the singular

components of the signal and noise respectively, then the signal to noise ratio in the

conductivity update is:

SNR=
	 (A1s

(A1n

The Tikhonov factor needs to be chosen to maximise the signal to noise ratio in the

conductivity update. The spectrum of the noise, the n 1 s, is uniformly distributed for

most forms of random noise such as electronic noise in the data acquisition system

but can be concentrated in a few singular components for systematic errors such as
inaccuracies in electrode placement. The singular spectrum of the experimental

measurements is typically strongly weighted towards the first singular components

with the largest singular values. Thus, large Tikhonov factors include only the most

reliable data with the highest signal to noise ratio.
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In practice, the singular spectrum of the noise in the experimental

measurements is unknown, so the Tikhonov factor is adjusted dynamically based on
the reliability of the conductivity update. A conductivity update with large amplitudes
near the centre of the region is indicative of too small a Tikhonov factor.

Sophisticated schemes for the dynamic adjustment of the Tikhonov factor are

described by Hebden, [42]. In practice these were found to be unnecessary. A

conservatively large Tikhonov factor kept constant throughout reconstruction was

found to work as well as other methods. This minimizes the contamination of the

image with conductivity components which produce small voltage measurements on

the boundary. Once these are included in the image they are very difficult to remove.

The disadvantage of this conservative approach is that resolution is lost and large

conductivity gradients are smoothed.

2.5 The Derivative Matrix

In order to calculate the conductivity update it is necessary to calculate the

Jacobian matrix, J, whose coefficients are aE/aSk where is a measurement of the

boundary voltage induced by the application of a current pattern and 5k is a parameter

of the conductivity, see Section 2.3.3. Approximations to this matrix, sometimes

called the sensitivity matrix, have been calculated by a number of other workers in

the field. Kim [47] and Tarassenko [79] use a perturbation technique to calculate a
finite difference approximation to this derivative. The calculation of each coefficient

of the matrix involves the construction of a fmite element model for the given current

pattern and conductivity component. This scheme is impractical for iterative

reconstruction techniques that require repeated calculation of the derivative matrix.

Yorkey [86] and [87] describes a method of calculating derivative matrices, based on

the Compensation Theorem, where the forward model is a resistor network.

A more efficient scheme to calculate the derivative matrix is given by Breckon

[9] where it is shown that to a linear approximation:

<Mi,(R(m+A) - R(Ym))Jj> () 1S

=1 
V4j.VJ

where j is the potential field induced in the region IT^ with conductivity Ym by the

application of the current pattern J. The conductivity update is expressed as a finite

linear combination of independant continuous functions: A=sB=sTB. The lead

29



field, ir , is the potential field that would be induced if the measurement pattern, M,

were applied as a current pattern. From Equation 2.5a the following expression for

the ij,kth element of the Jacobian matrix may be derived:

= jXkV i .V1i
	

(2.5b)

where Xk is the Finite Element nodal basis function associated with node k.

The derivative is much easier to calculate in this form as the finite element
model of only a single conductivity distribution need be calculated. A further
simplification is obtained if the conductivity distribution is defined in the finite

element approximation space. Once the potential fields have been calculated the

coefficients of the derivative matrix may be readily calculated from the

S (ij,k,element_shape) data.

Equation 2.5a explains why boundary voltage measurements are relatively

insensitive to interior conductivity perturbations. The sensitivity of voltage

measurement	 to a conductivity change at x is V4(x).VW(x). For optimal

experimental measurements on a uniform disk, see Section 2.2.6, the sensitivity of

the measurement	 to a conductivity change at x=(r,O) is proportional to k2r2k_2

where M 1 =J 1=(l/it) cos kG. Thus the sensitivity drops off dramatically as

perturbations are made further from the boundary

2.6 Solving the Newton System

Once the rows of the derivative matrix, (EjJ/sk)E RM XN , have been

calculated it is necessary to construct the system of equations required to solve the

regularised Least-Squares problem, Equations 2.3c,d. There are two cases to

consider, M>N and M<N.

2.6.1 Overdetermined Systems

If the number of independent, experimental measurements used for

reconstruction is larger than the number of parameters used to model the conductivity

distribution, then the system JAc=E, where J is the Jacobian matrix, is technically

overdetermined. However, due to the decay of the singular values compared to the
errors in modelling and experimental measurements, the system may be numerically
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underdetermined. The regularised Least Squares matrix, (JTJ+p.J), is positive

definite, symmetric and dense, and so Cholesky factorization is the standard solution

method. Without regularisation the Least Squares system may not be positive definite

and so Cholesky factorization could fail. By factorizing (JTJ+lI)=LLT the Least

Squares system can be solved by forward and backward substitution. An alternative

scheme is suggested by recognizing that the matrix (JTJ + .t I) can be written as DTD

where DT is the augmented matrix (JT I 1/2J)• If D is written as the product of a

orthonormal matrix Q and an upper triangular matrix R then the Least Squares system

may be calculated via:

(JTJ + 
1Wm = DTDt ym = RTQTQR Am RTR Am = JTE

This scheme allows us to factorize the matrix (JTJ + p. I) without explicitly forming

the product jTj• As the Jacobian matrix is ill-conditioned the product matrix, jTj, is

far more so since K(JTJ) = K(J)2 where K(A) is the condition number of the matrix

A. By not forming this product we expect to obtain better accuracy in the result. To

decide which of these two schemes is numerically faster we need to compare the

number of operations for each of the steps of these algorithms. The table below lists

the number of operations needed for the steps involved in the solution of the Least

Squares system as calculated by Golub and Van Loan, [33].

A

B

C

A+B

Operation

form the product jTj

Cholesky factorization of (JTJ + p. I)

QR factorization of [3 p.1121]

steps A and B together

Number of Floating Point
Operations

N2MJ2

N3/6

N2(M + 2N13)

N2(M12^N/6)

Steps A and B together require fewer operations what step C and so the Cholesky

factorization method is faster than using QR factorization A comparison of the

efficiencies of each of these algorithms in a parallel environment is required to

determine which is better, see Sections 6.5.6 and 6.10.

2.6.2 Unclerdetermined Systems

If the number of independent experimental measurements is less than the

number of conductivity parameters, i.e. M<N, the system is underdetermined and the
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desired solution is the minimum norm Am in the subspace spanned by the columns

of J. The regularised system to be solved is:

(JJT+ I)Y = E	 = jTy

The same analysis can be applied to this set of equations and the Cholesky

factorization method produces the result with fewer operation. In the reconstruction

algorithms described in Chapter 5 which use underdetermined systems the number of

rows of the matrix J is considerably less than the number of columns. In this case

solution of the Least Squares system is an insignificant part of the whole

reconstruction step.

2.7 Conclusions

In this chapter the general framework for Newton based, iterative

reconstruction algorithms has been explored. A new definition for an experimental

measurement in EIT has yielded expressions for optimal current and measurement

patterns which are applicable to a wide variety of tomographs. These patterns

optimise the size of experimental measurements and the distinguishability between

conductivity distributions. Their use has lead to the development of an efficient

reconstruction algorithm which is described in detail in Section 7.5.2.
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Chapter 3

Forward Modelling in EIT

3.1 Introduction

Our ability to predict the current and potential fields in a conductor accurately

gives information vital to the design of tomographs. The forward model is also a

critical stage of any iterative reconstruction algorithm. Modelling errors are

equivalent to data collection errors in their effects on the image produced by an

impedance tomograph. The larger of the modelling and data collection errors limits

the resolution of practical tomographs. For a forward model to be incorporated into

an iterative reconstruction algorithms it must not only be accurate but also fast.

Chapter 3 investigates a range of mathematical models used for EIT. A semi-analytic

solution of one of the most successful mathematical models is developed and its

implications in the design of tomographs is explored.

3.2 Forward Modelling

The solution of the forward modelling problem involves the calculation of the

voltages induced by the application of electric current to the surface of a region with
known conductivity. It is a vital part of the Newton algorithm described in this thesis

and an important check on the results of all other reconstruction algorithms. The

problem posed is the solution of Equation 2.2a in the interior of a region() with

boundary conditions imposed on the surface. The assumption that there are no

sources or sinks of current in the interior of the region leads to the equation:

V.cV4=O	 in1

where is the known conductivity distribution and 4 is the potential field. This is a

second order, elliptic, partial differential equation in 4 . Sufficient boundary

conditions need to be specified to make the solution of this equation unique. These

may be potentials on the boundary, known as Dirichlet conditions, or current

densities crossing the boundary, known as Neumann conditions, or a combination of
both. For the calculated potential field to be unique at least one Dirichlet condition

needs to be specified. This is commonly achieved by setting the average potential to
be zero over a region considered to be earthed.
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3 .3 Analytic Solutions

Analytic methods for solving these problems are limited to simple

conductivity distributions, boundary conditions and domains. In two dimensions,
classes of solutions exist which are linked by conformal mappings. The potential

inside domains with uniform conductivity and polygonal boundary may be calculated

using the method of Schwarz and Christoffel [601. Circular regions with uniform

conductivity, enclosing circular regions with, possibly a different, uniform

conductivity may be conformally mapped to known analytic solutions [79]. Where

the boundary conditions are complicated a linear combination of these solutions may

be required. In three dimensions known analytic solutions are restricted to regular

shapes such as concentric spheres or concentric cylinders with uniform conductivity
regions. In EIT these analytic methods are only useful for calculating the potential

induced by an initial approximation to the conductivity e.g. the NOSER algorithm

[ 1 6] . If a more elaborate first guess is available or iterative methods are to be used, it

is necessary to use numerical techniques.

3.4 Approximate Solutions

The three most readily available numerical methods for solving partial

differential equations are the Finite Difference Method (FDM), the Finite Element

Method (FEM) and the Boundary Element Method (BEM). In the FDM the potential
in the region is approximated by its value at nodes lying on a regular grid. A system

of linear equations is generated by replacing the differential operators by difference

operators. This reduces the calculus problem to a linear algebra problem requiring the

solution of a, possibly large, sparse set of simultaneous equations. In the FEM the

region is decomposed into a mesh of irregular polygons or polyhedra (known as

finite elements). The potential is approximated by interpolating within elements using
a set of element basis functions. These basis functions are polynomial within

elements and so the resultant potential approximation space is piece-wise polynomial.

A set of simultaneous equations is constructed by applying a weak form of the
differential equation over the region. This also results in a set of sparse, linear

equations. The conductivity distributions for the FDM and FEM are also represented

in the relevant approximation space. The BEM is different in that the conductivity
distribution is assumed to be uniform between surfaces. These surfaces are

decomposed into meshes of elements of one dimension less than the region being

modelled. An integral form of the differential equation is constructed using Green's

Theorem leading to a set of equations linking nodal potentials. The major advantage

claimed by the BEM is that in many cases the number of nodes required to model a

region is smaller than that required by the FDM or the FEM. This advantage is
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balanced by the fact that the resulting equations are dense and so require more

numerical operations to solve.

For the work described in this thesis it was decided to use the FEM. There is
no consensus as to which of the three methods provides solutions of a given accuracy

with the minimum computational effort. The FDM has the advantage that the regular

grids are easy to generate, the programs are less complex and the resultant regular

systems of equations may be solved by highly efficient algorithms. For EIT this
advantage is countered by the difficulty in applying boundary conditions and adapting

the regular meshes to irregular regions. The irregularly shaped elements of the FEM
are fitted to the regions encountered in the application of UT. The FEM is also more

adaptable to the application of complex boundary conditions. Lastly, the size of

elements in the mesh can be adjusted to take into account the complexity of the
potential field being modelled resulting in greater accuracy and fewer nodes. The

BEM was not used because the piece-wise constant approximation to the conductivity

would be difficult to adapt to an iterative reconstruction algorithm. Changing the

number and position of the interior surfaces during reconstruction would introduce a

very large numerical overhead during each iteration of the algorithm.

The use of the FEM has become close to universal in the EIT field. One

group in Nijmegen, the Netherlands (Van Oosterom, [59] and [65]) uses the BEM for

modelling electrical fields in the body but has not used the method as part of a
reconstruction algorithm. Following Tarassenko [79] and Breckon [9] we chose to

use the Finite Element Library of Greenough and Robinson [35] now distributed by

Numerical Algorithm Group (NAG).

3.5 Modelling electrodes

The unique solution of the problem posed in Section 3.2 depends upon the

boundary conditions we impose on the surface of the region. On the physical region

to be imaged these boundary conditions must be consistent with the application of
current through electrodes in contact with the surface. To accurately predict the

physical measurements made on the region it is necessary to model the physical

processes occurring throughout the region, and in particular on the boundary near

electrodes.

3.5.1 The Continuous Mode)

Several levels of boundary condition complexity have been investigated by
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Cheng et al [16] and the results compared with phantom measurements. The first

level of approximation ignores the localizing effects of electrodes completely and

considers a current pattern which injects current on electrode i: = cos k9 1, to be

equivalent to the application of a continuous current density J(0) = A cos k. A is a

normalizing constant to match the total current crossing the boundary. Voltage
measurements on the current delivering electrodes were equated to the potential on the

boundary at the middle of electrodes. This formulation, known as the continuous

model, was found to be totally inadequate for the prediction of voltage measurements

on physical phantoms.

3.5.2 The Gap Model

The continuous model was refined by recognizing that current only crosses
the boundary under the electrodes. The current density under electrodes was

assumed to be uniform. This leads to the gap model defined by the boundary
conditions:

a V4).n = 0	 between electrodes	 (3.5a)

a V4).n I / A1	beneath electrode i.	 (3.5b)

where A 1 is the area of electrode i and n is a vector perpendicular to the boundary.

This model has been successfully applied in EIT reconstruction and is the one

presently used by the Rensselaer group.

3.5.3 The Complete Model

Further refinement is possible. The gap model assumes that only the current

delivered to an electrode from the driving electronics crossed the boundary and that

this spreads itself out evenly along the electrode-region interface. Analysis of the two

dimensional situation where a finite electrode delivers current into a half space with
uniform conductivity tells us to expect a square root singularity in the current density

at the edges of electrodes, [73]. Furthermore, there is the problem of contact between

the electrode and the region. Many workers, e.g. Pollok [75], Gedes et al [29] and

Yoshida [88], have reported the existence of a high impedance layer between

electrodes and electrolytes. Lui [56] has linked the characteristics of this high

impedance layer to a fractal measure of the roughness of the interface. A proportion
of the voltage measured on a current carrying electrode is due to current crossing this

high impedance layer. The phantom measurements of Cheng et a! suggest a value

for this contact impedance (z) large enough to seriously contaminate Eff voltage
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measurements. The Complete model was designed to take these effects into account:

a V.n =0
	

between electrodes. 	 (3.5c)

a V4.n dy=11	 for electrode i. 	 (3.5d)

+ z1 a V.n =
	 beneath electrode i.	 (3.5 e)

This model was found to be very successful in the prediction of voltage

measurements on phantoms. Its difficulty in practice is the estimation of the contact

impedances zj . Cheng assumed a single constant value beneath all the electrodes, yet

in situations other than highly controlled phantom experiments this is unlikely to be

the case. In clinical situations, z is expected to be a wildly varying function of both

position and time. This observation calls into question the practice of making voltage

measurements on current carrying electrodes. The current density distribution under

electrodes is determined by the contact impedance there. This in turn determines the

potential in the region and hence the voltage measurements made on even passive
electrodes.

3.6 Semi-Analytic Solutions in Two Dimensions

Analytic solutions to the forward problem provide an important test for the
numerical algorithms used for EIT reconstruction. They provide a standard against

which the accuracy and speed of convergence of the numerical methods are

measured. The best standards are analytic solutions to problems of similar

complexity as those routinely solved during EIT reconstruction. Standard results

exist for the analytic solution of Laplace's equation for simple regions and boundary

conditions. Problems with more complex boundary conditions may be solved by
forming linear combinations of these solutions.

3.6.1 The Boundary Fourier Method

The Boundary Fourier Method (BFM), Paulson et a! [70], calculates linear

combinations of solutions of Laplace's equation on a disk which solve problems with
complex boundary conditions, such as those proposed by Cheng et al, to arbitrary

precision. Consider a two dimensional, homogeneous disk of radius R 1 and

conductivity a 1 surrounded by an annulus of outer radius R0 and conductivity a0.

By solving Laplace's equation on this configuration, together with the continuity of 4
and a(/n) on the inner circular boundary, it is easy to show that trigonometric

boundary current densities k(0) are associated with boundary voltages vk(0). Hence
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j(B)=C0SkO

where

2k
1-pf	 R1

R0'

Vk(0) =Akjk(e)

11=r

I

If we restrict ourselves to even functions of e, then, by Fourier
decomposition, all solutions of Laplace's equation on the disk can be written as linear

combinations of these basis solutions as follows:

J(8) =	 akjk(0)	 V(9) =	 a Vk(0)
k	 k

where k can run from 1 to infinity. An approximate solution to the problem described

by the Complete model, Equation 3.5c,d,e, may be found by obtaining the equations

linking the Fourier coefficients ak, 1^k^n. Consider, therefore, a disk driven by

currents applied through L=2m, m N, identical, symmetrically placed electrodes on

the surface, each delivering a current Ij at a voltage V1. The boundary conditions 3.5c

and 3.5e may be rewritten:

zJ(9)— { v-v(0) on electrode i;
elsewhere.

Linear equations linking the Fourier coefficients may be obtained by multiplying each

side of this equation by cos(mO) and integrating around the boundary as follows:

zlcam =	 (vij cos(mø) dy -	 AkJ cos(mO)cos(k9) dy) (3.6a)
O k	 -

where the integrals are over y1, the segment of the boundary under electrode i. The

unknowns in these equations are the n Fourier coefficients ak and the electrode

voltages V1. There are as many independent, linear equations as Fourier coefficients

but the system is underdetermined due to the unknowns V1 . The equations necessary

to make a fully determined system may be formed by applying boundary condition

3.5d to each electrode i = l,2,...L;
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J(0)Ro dO=1 1	=	 akRoj cos(kO) dO=I, (3.6b)

The system of linear equation formed by the two equations 3.6a and 3.6b, may be

solved to yield the Fourier coefficients a and the electrode voltages V.

The BFM can be extended to three dimensional, spherical regions using basis
solutions in the form of surface spherical harmonics 176]. These functions, related to

Ferrer's polynomials, are eigenfunctions of the three dimensional transfer impedance

function and so are the analogue of simple trigonometric functions on two

dimensional circular surfaces. Such solutions were found to be inefficient to

calculate, due to the large number of basis functions needed to adequately model

electrode edge effects and the difficulty of using a standard based on a spherical
region. Similarly, solutions based on linear combinations of Bessel functions can be

found for cylindrical regions.

3.6.2 The Boundary Fourier Method and EIT

Figure 3.6 displays the boundary current density and potential predicted by
the BFM for a homogeneous disk of radius 15 cm driven by 32 symmetrically placed

electrodes covering 50% of the surface. The first 1000 non-zero frequencies up to a
wave number of 16000 were used. Doubling the number of frequencies used from
500 to 1000 resulted in less than a 0.5% change in the predicted voltages. It is clear

that the current density across electrodes is far from uniform. The singularities in the

current density field are associated with Neumann conditions which are discontinuous

on the boundary and ohmic conductors, [76] and [73]. The BFM shows large

current densities near the edges of electrode which are prevented from being

singularities by the contact impedance under the electrodes. The current crossing the

boundary beneath passive electrodes is significant. As electrodes are modelled as
perfect conductors they "short circuit" the part of the boundary they press against. A

proportion of the current applied to image the region is instead shunted along

electrodes, decreasing the amount of useful information provided by the experiment.

Total shorting of the boundary under each electrode is prevented by the layer of high

contact impedance. Cheng et a! found the magnitude of the contact impedance to be

proportional to the resistivity of a uniform disk, zocp. In this case the shunt currents

are independent of the impedance of the disk. For a uniform disk with current being

driven between a diagonal pair of four symmetrically placed electrodes, half of the

applied current is shunted through the passive electrodes when they cover 80% of the

boundary. This proportion is drastically reduced when more electrodes are used.
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Figure 3.6 The boundary current density and voltage on a disk of uniform

conductivity and radius 15cm, driven by thirty two symmetrically placed electrodes

covering 50% of the swface as predicted by the Boundary Fourier Method.
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For systems with a large number of electrodes the loss of information due to shunting

is important only when the size of electrodes is very large i.e. when the gaps between

electrodes are small.

3.7 Electrode Configurations

The results obtained from the BFM clearly show the difficulties faced by the
forward modelling component of an EIT system. The voltages measured on large

electrodes are strongly determined by the profile of the current density beneath them.

The electrode voltage is very sensitive to the impedance of the region just beneath the

edges of electrodes and to variations in the contact impedance there. In a clinical

situation this would be very difficult to control and so accurate modelling would

require the difficult determination of the contact impedance between each electrode

and the boundary.

3.7.1 Separate Current Drive and Voltage Measurement Electrodes

Several alternative electrode configurations are possible. One possibility is to

measure voltages on small, passive electrodes interleaved with much larger, current

driving electrodes. This hybrid system is explored in detail in Paulson [711, see

Appendix, and in section 4.11. Voltage measurements half-way between drive
electrodes are the least sensitive to variations in the current density beneath electrodes.

The insensitivity of voltage measurements made mid-way between electrodes to the

current density profile on the electrodes can be demonstrated by comparing the mid-

point voltages predicted by the gap model and those calculated by the BFM. The

predicted voltages show differences of less than 0.1% for trigonometric current

patterns with a spatial frequency less than eight applied to a thirty two electrode

system. The current density profile under an electrode is determined by the variation

in the contact impedance there. This insensitivity to contact impedance and current
density profile is countered to a degree by the loss of voltage amplitudes for patterns

with high spatial frequencies. The gap model predicts that the amplitude of the

voltage pattern measured at points half-way between drive electrodes is a half of what

it would be for measurements on the current driving electrodes. When the current

driving spatial frequency equals half the number of electrodes the amplitude of the

voltage pattern is zero. In practice the amplitude of the voltage pattern degrades faster

than the gap model predicts, see Section 7.2.1. This limits the imaging resolution

near the boundary. However, most of the information about objects in the interior of

the region is in the low spatial frequency patterns which are relatively unchanged.
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3.7.2 Compound Electrodes

Another configuration implemented by Eung, [24], uses compound electrodes

with two, electrically isolated, surfaces. A large annular region delivers current to the

imaging region while a small electrode within the annular region measures voltage.
Van Oosterom, [66], studied directional sensitivity of electrodes of this design for

ECG. This configuration does not suffer from the voltage attenuation for high spatial
frequencies as the voltages are measured near the points on the boundary where

current is applied. For the same reason we would expect higher sensitivity to current

density variation across the electrode and to contact impedance. At present it is not

clear which of these two configurations has the advantage.

3.7.3 Independent Measurements

The electrode configuration determines the number of independent

measurements that can be made with a system and hence the rank of the Jacobian

matrix. This limits the number of parameters in the conductivity distribution that can

be reconstructed and so determines the resolution. A tomograph with N electrodes
used for both current driving and voltage measurement yields N(N-1)/2 independent

experimental measurements, [9]. Of the N2 measurements made by measuring the

voltages on N electrodes for a basis of N different current patterns, N(N-1)/2 are

dependent due to the Reciprocity Theorem. This theorem states that driving current

between electrodes A and B and measuring the voltage between electrodes C and D

yields the same result as driving current between electrodes C and D while measuring

the voltage between electrodes A and B, Geselowitz [30]. Another N measurements

are dependent due to the normalization of each voltage and current pattern to have an

average value of zero. Thus, of the N2 measurements, at most N(N-1)/2 are linearly

independent with further redundancies introduced by other symmetries, see [52].

The Reciprocity Theorem is expected to hold approximately for compound

electrodes so the system of Hua would be expected to have the same number of

independent measurements. For the hybrid arrangement, however, reciprocity does

not apply as currents are applied and voltages measured at different places on the

boundary. This system would have twice the number of independent measurements

for the same number of current driving electrodes. The above analysis tells us the

theoretical rank of the Jacobian matrix. However the numerical rank is determined by

the noise level and the decay of the Jacobian's singular values. Although the hybrid

arrangement has twice the number of independent equations the singular values

would be expected to decay more rapidly due to the increasing insensitivity of the
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system to current patterns with high spatial frequencies. Both these systems are

worthy of investigation and in all probability, both will find their niche.

3.8 Conclusions

In this Chapter a range of mathematical models relevant to EIT have been
investigated. The Complete Model is known to give results which agree well with

physical measurements and so is the one best suited for use in reconstruction

algorithms. A semi-analytic method for the calculation of electrical fields consistent

with this model has been developed. Investigations based on the use of this model

have suggested a new configuration of electrodes to be used for EIT measurements.
This configuration yields experimental measurements which are relatively insensitive
to contact impedance.
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Chapter 4

The Finite Element Method in EIT

4.1 Introduction

The Finite Element Method is used to perform forward modelling in a large
majority of tomographs which use iterative reconstruction algorithms. It is well

understood and it is known to converge to exact solutions for many of the models

used in EIT. As a forward model needs to be calculated at each iteration of the

reconstruction algorithm, the calculations involved must be minimised. A Finite

Element Model can be highly optimsed to execute quickly on a digital computer. In

this Chapter the mathematics of Finite Element Modelling in both two and three

dimensions is investigated. In particular, boundary conditions consistent with the

application of current through surface electodes are introduced to Finite Element

Models.

4.2 The Finite Element Method

As stated in Section 3.4 the OXPACT system uses the Finite Element Method

(FEM) to predict the voltage measurements made on a region of given conductivity

after the application of a current pattern to the boundary. This is a problem that needs

to be solved repeatedly for different conductivity distributions during an iterative

reconstruction.

The region is divided into a mesh of irregular polygons or polyhedra known

as elements with nodes lying on their common vertices. Associated with each node is

a basis function which has the value one at that node and decays polynomially to zero

at all the other nodes in adjacent elements. In all other elements the basis function is

zero. The basis function associated with node i is called its characteristic function Xi

Scalar functions of position within the mesh, such as the potential and conductivity,

may be approximated by linear combinations of these basis functions:

=	 pe

where X is a vector of characteristic functions and e a vector of nodal potentials.
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The FEM uses the Rayleigh-Ritz-Galerkin method to transform the differential

equation 2.2a into a set of simultaneous equations, one for each node, of the form:

fx(V.Vp =0

By applying Green's theorem this integral may be rewritten:

-s^vx i.v + S xov.n = 0

= _(fVX.VXT). e =	 (4.2)

When all these equations are collected they may be expressed concisely in matrix

notation as:

K e = F.

Many other equilibrium and potential problems reduce to equations of the same form

so, in FEM jargon, K is known as the system stiffness matrix and F as the system

forcing vector. The original partial differential equation problem has been reduced to

the numerical calculation of the system stiffness matrix and forcing vector coefficients
and the solution of the matrix equation.

The system forcing vector contains the information in the Neumann boundary

conditions. For the forward problem of EIT the forcing vector is a piecewise

polynomial approximation of the current crossing the boundary expressed in the mesh

basis restricted to the boundary.

4.3 Calculation of The System Stiffness Matrix

The system stiffness matrix is a discrete approximation to the transfer

admittance operator, R 1 (). It is symmetric and positive definite if the conductivity

obeys the physical restriction of being greater than zero and bounded above. A large

part of the computational effort of the FEM in two dimensions occurs during the

calculation of the coefficients of the system stiffness matrix. In practice the system
stiffness matrix is calculated by summing the contributions from element stiffness

matrices, Ke, associated with each element. The coefficients of Ke are the volume

integral of Equation 4.2 restricted to the region of a single element e. The

characteristic functions of element nodes, restricted to an element, are known as the
shape functions, N. Typically the nodes in element e are given an element node
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numbering from one to n(e) which is different from the mesh node numbering. The

element node numbering is specific to a single element. The i,jth element of the
element stiffness matrix can be expressed as:

Ke1J = SeNjNj
re}	 e)

=	
k JçNkVNiNj 

=	 k 
S(i,j,k,e)	 (4.3)

k=1	 k=1

for 1^i,j^n where n is the number of nodes in that element. If the conductivity is

approximated in the FE basis the coefficients of Ke are a weighted sum of the nodal

conductivities, ak, with the weights given by integrations of functions of the shape

functions over the element. Typically the conductivity is parameterised on a coarser

mesh than the potential and so the nodal conductivity values need to be found by
interpolation. The weights, S(i,j,k,element), are independent of element position and

orientation and so computational savings may be made by precalculating and storing a

set of weights for each element shape used in the FE model. Typically many
elements with the same shape will exist in a mesh. Each set of element weights is

symmetrical in i and j and so further computational savings can be made by

calculating and storing only the upper triangular part of the S(i,j,k,element) matrix in
a S(ij,k,element_shape) data structure.

4.4 Finite Element Modelling in Two Dimensions

Each element in the finite element model is a polygon with nodes at each

vertex and possibly on the edges or in the interior. Each node is associated with a

shape function which is non-zero only within elements which include that node. It is

a polynomial function of position which takes the value one at the node in question

and zero at all other nodes. Thus, three sets of data are required to define an element;

the position of the nodes that form the element, a list of edges defined by the nodes at

the ends of each edge, and the shape function associated with each node. A mesh is a
collection of non-overlapping elements such that the nodes that lie on edges shared by

adjacent elements belong to both.

4.5 Triangular Elements

A host of elements are in common use of which the simplest is the Turner or

Courant triangle. Historically this was the first element to be studied during the

development of the Finite Element method, [18]. The Turner element is triangular
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Six NOded Triangle.
Quadratic interpolation

Ten NOded Triangle.
Cubic interpolation

with a node at each vertex and linear interpolation functions. The characteristic
functions are pyramid shaped and formed from the shape functions associated with a

node at the junction of three or more elements. The associated approximation space

contains functions which are continuous across element boundaries and linear within

elements. It is a subspace of H1 as the first derivatives are piecewise constant. A
major step in the development of the Finite Element method was the generalisation of

elements to higher order approximations. If the element shape functions are quadratic

functions of position i.e. f(x,y)=a+bx+cy+dx 2+exy+fy2, then three more degrees of

freedom per element are introduced. These extra degrees of freedom can be

associated with nodes which, if placed on the mid-points of the edges of the triangle,

guarantee continuity of the basis functions across element boundaries. This process

can be continued to cubic approximations with the ten noded triangle and beyond, see

Figure 4.5.

Turner Triangle.
Three nodes.
Linear interpolation

Figure 4.5 Triangular finite elements for Iwo dimensional modelling.

The approximation spaces associated with all these elements belong to the

space of continuous functions, C°. Extending this formulation to approximations

spaces that have continuous first derivatives across element edges is surprisingly

difficult. The simplest C 1 element is the 21 noded triangle with quintic

approximation functions, [78]. Triangles of lesser degree that match first derivatives

at the vertices are in use but are not guaranteed to converge to the correct solution as
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the mesh is refined.

4.6 Quadrilateral Elements

The quadrilateral cousin of the Turner triangle is the four noded rectangle with

a bilinear approximation function, f(x,y) = a+bx+cy+dxy. The shape functions are

graphically known as pagoda functions and are the product of the piecewise linear

roof functions of x and y. Only the isoparametric form of this element is continuous
across element boundaries, [78]. Quadrilaterals are potentially more accurate than
triangles due to the non-linear, xy, "twisting" term and have the advantage that fewer

are needed to fill a region. However, they approximate smooth boundaries badly.

This problem can be overcome by mixing isoparametric bilinear quadrilaterals with

Turner triangles on the boundary. Quadratic elements can be generalised in the same

way as triangles and the use of both biquadratics and bicubics is reported in the

literature.

4,7 Convergence of The Finite Element Model

Many more complex elements are reported in the literature to solve problems

with special boundary conditions or boundary shapes. However, the majority of

finite element problems are solved using triangular or quadrilateral elements, or their

three dimensional equivalents. There are several reasons for this: as the complexity

of elements increases the task of mesh generation becomes increasingly more

difficult. Elements with greater numbers of nodes require considerably more

calculation to form the element stiffness matrix. This is not only due to the larger

element stiffness matrix but also the requirement to perform numerical integrations

over polynomials of greater degree. The resulting system stiffness matrix is less

sparse and so the fmite element system requires more computational effort to solve.

Ultimately the forward problem in EIT is to predict, for a given conductivity

distribution, the boundary voltages to an accuracy predetermined by the resolution
demanded from the reconstruction algorithm. This accuracy is governed by the ill-

posedness of the inverse problem and the minimum resolution of useful images. The

ultimate performance of a tomograph is determined by the greater of the measurement
and the modelling errors. Clearly there is no advantage to be gained from exceeding

the precision of electrical measurements made on the region to be imaged, including

those errors introduced by contact impedance and electrode placement. For iterative

reconstruction algorithms the modelling must be both accurate and fast. The accuracy

and speed of computation of a finite element solution is limited by the characteristics

of the elements, coarseness of the mesh and the complexity of the boundary
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conditions. There is no a priori way of determining which combination of these will

yield the result to the desired accuracy with the minimum of computational effort.

The convergence of the finite element approximation, (p to the solution, (p,of
a second order elliptic partial differential equation can be summarised in Equation 4.7
given by Strang, [78]

(paII ^ 

C	 (4.7)
I4 k^1

where s is non-negative and HflI is the Sobolev norm of the function f. Here, the

radius of an element, h, is defined as the radius of the smallest circle that can contain

the element. For a mesh, the radius is the maximum radius of any of its elements.

The degree of the interpolation polynomials, k>O, is defined as the maximum degree

of polynomial present in all of its terms. For example, the degree of the bilinear

rectangle is k=1 as the interpolating polynomial has the term xy but neither of the

terms x2 or y2 . In the case of three noded, linear, Turner triangles the L2 error of the

potential, corresponding to a Sobolev norm with s=O, has convergence of 0(h2).

Ch' 1 -° = Ch2 =0(h2)
U (p IIi^i

This inequality may be applied locally to show that in a region where any of the first

k+1 derivatives of (p are large, the absolute error (p4 will be large. For the finite

element solution to have uniform error across the region the element radius, h, needs

to be locally tuned to the variation of the potential field. In practice this is impossible

as the field inside the region is not determined from the known boundary conditions

unless the conductivity is known. This is, of course, what we are trying to find out.

For a homogeneous conductivity distribution on a disk and current patterns of

J=cos(Ke), the element radii would need to vary as h(r) = Cr 2; K^2. Therefore, to
adequately model the application of current patterns with high spatial frequencies, the

meshes must become finer near the boundary of the region. For a given mesh the
predicted voltages will become less accurate for fields with higher spatial frequencies.

4.8 Finite Element Modelling for EIT

Due to symmetries in our present experimental apparatus the region to be

imaged can be modelled as if it were two dimensional, see Section 7.2. The potential

we are modelling is the one induced by the injection of current through finite
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electrodes on the boundary. These result in near singularities in the current density

on the edges of these drive electrodes and so the Fourier spectrum of the current

density on the boundary decays slowly. This implies large potential gradients near

the edges of electrodes and hence very fine meshes are required there. The

coarseness of the mesh imposes a low pass filter to the spatial frequencies in the finite

element solution. For an accurate solution nodes need to be concentrated near the

boundary and especially near the edges of electrodes. Limits also exist for the rate at

which the element radii can change. For a mesh of triangular elements, no two angles

subtended by any edge can sum to more than it or the system stiffness matrix may not

be positive definite, [78]. It follows from this that elements should be close to
equilateral and their radii must vary smoothly across the region.

For the EIT forward problem some experimentation led to the choice of

Turner triangles as the preferred element. Although bi-linear quadrilaterals promise
greater accuracy for the same number of nodes they were found to be difficult to

combine into meshes with the desired degrees of symmetry. Quadrilaterals near the

boundary which were not symmetrical with respect to the electrodes introduced errors

into the surface potential that were not present with meshes of triangles. Equation

4.7, describing convergence of finite element solutions, suggests faster convergence

for higher degrees of interpolating polynomial. The six noded quadratic triangles

would be expected to yield more accurate solutions for the same number of nodes due
to their quadratic interpolation functions. They were not used in this investigation

due to the difficulties of mesh generation and the application of boundary conditions.

4.9 Mesh Generation

The program RMESH, originally created by Breckon [9], has been written to

calculate a finite element mesh of Turner triangles covering a two dimensional disk.

The nodes of the mesh lie on concentric circles and the layers of elements form

annuli, see Figure 4.9. Nodes on the outer boundary are grouped into 'cells' where a

cell describes the relative positions of all the boundary nodes that model the region of

an electrode. This allows the user to define meshes where the nodes are concentrated

around the edges of electrodes. For rings of nodes in the interior this clustering of

nodes is smoothed out until the nodes are uniformly disthbuted near the centre.

RMESH sorts the nodes to minimise the computational effort involved in factorizing

the system stiffness matrix. The details of the algorithms used to achieve this are

described in Section 6.5.5. RMESH forms lists of nodes on electrodes, and

precalculates the S(ij,k,element_shape) data. This data is written to a file called a

mesh file which includes all the information required to specify and perform

calculations on a finite element mesh.
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Figure 4.9 A Finite Element mesh composed of Turner triangles used to model the

potential on a two dimensional circular region driven by thirty two electrodes

covering 30% of the boundary
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4.10 Finite Element Modelling of Electrodes

The physics of conduction around electrodes that leads to the boundary

conditions described in Section 3.5 needs to be implemented in a finite element model

used for electrical impedance reconstruction. The constraints involved in doing this

are different depending on whether the voltage measurements are made on current-

carrying electrodes or not. Systems such as the typical optimal current systems

described by Newell, [64], and Ping, [74], measure voltages on large, current

carrying electrodes. To model these electrodes to sufficient accuracy requires the

sophisticated boundary conditions of Cheng [16]. These boundary conditions,

Equations 3.5c-e need to be implemented in the finite element model. Equation 4.2

was the basis of the finite element model used to solve the conduction equation. The

right hand side of this equation associates with each boundary node a weighted

integral of the current density crossing the boundary. By introducing boundary

condition 3.5e to this term for node i beneath electrode lit becomes:

i J v, - - JX1OVn	 --i- x'-z
.!i	 7'	 -

where y1 is the section of the boundary beneath electrode I and V 1 is the voltage

measured on electrode 1. Combining these results into Equation 4.2 yields:

- (L 
rVx.VXT +
	

(4. lOa)

This equation becomes a row of the system stiffness matrix for node i beneath

electrode I. If node i is not beneath an electrode both boundary integrals are zero and

they need not be calculated. The linear system of equations defined by Equation

4.lOa is underdetermined due to the introduction of the unknown electrode voltages,

V1. A further equation for each electrode may be derived from boundary condition
3.5d. These equations constrain the net current crossing the boundary beneath each
electrode to be the current delivered by the driving electronics, I,., while allowing for
shunt current along the electrodes.

IX1YVP.n =11

1)7

There is one equation for each electrode so all the variables are completely
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KA	 = 0

AT O V t 	It
(4.lOb)

determined. The resulting system is:

where K is the system stiffness matrix defined by the left hand side of Equation

4.lOa. The matrix A contains the coefficients on the right hand side of Equation

4.lOa. The columns of A are the same as the rows defined by Equation 4.lOb so the

entire system is symmetric.

The system of Equations 4.lOb was solved for a mesh of 761 nodes

composed of Turner Triangles. The system modelled a homogeneous disk of radius

15cm driven by thirty two electrodes covering 30% of the boundary. Figure 4.10

displays the boundary current density and voltage during the application of the

trigonometric current patterns I=cos(O 1). The voltages predicted by this model were

compared with the predictions of the Boundary Fourier, see Figure 3.6a. The

electrode voltages predicted by the two methods agreed to 1%. It was concluded

from Equation 4.7 that of the order of ten times as many nodes would be required for

a finite element model of linear triangles to predict the voltages on current-carrying

electrodes to 0.1%, even given the unlikely event that the contact impedance is

uniform and known. These assumptions are even less likely in clinical situations

where the contact impedance is known to be large and vary rapidly in both space and
time due to variation in skin condition and wetness, [85].

4.11 Finite Element Modelling of Phantoms

On the basis of these experiments the "hybrid" measurement scheme

described in Section 3.7.1 was proposed. It was wished to retain the advantages

derived from the use of optimal current patterns and also to avoid measuring voltages

on current carrying electrodes. A sixty four electrode system was proposed where

current was applied to the region through thirty two electrodes and voltages were

measured on thirty two separate electrodes interleaved with the current driving

electrodes. Once the function of the two types of electrodes has been separated these

electrodes can be customized to their different roles.

Using the Gap Model, Gisser er a!, [32], have shown that as the size of
current driving electrodes is increased the measured signal increases as the square

root of the proportion of the boundary covered by electrode. This result was

confirmed by Paulson er a!, [70], for the discrete case with contact impedance.
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Figure 4.10 The boundary current density and voltage on a disk of uniform

conductivity and radius 15cm, driven by thirty two symmetrically placed electrodes

covering 50% of the surface as predicted by the Finite Element Method.
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For this reason, groups applying optimal currents have often used very large

electrodes covering up to 98% of the boundary. However, it is extremely difficult to

model large electrodes adequately due to the complex fields they induce. This is
particularly the case where the edges of electrodes are very close, in which case the

shunt current increases dramatically. Large electrodes also cause problems in the
construction of phantoms. The electrodes need to be placed very precisely due to the

narrow gaps between them. Misplacement of an electrode or the growth of a

conduction path bridging the gap can lead to significant errors in voltage

measurements.

The opposite constraint is placed on the voltage measuring electrodes. They

need carry only the miniscule current necessary to measure the voltage; approximately

amps. To ease the modelling problem we wish to limit the effects of the voltage

measuring electrodes on the current and potential fields. As even passive electrodes

shunt current this requires them to be as small as possible. There is no reason for

them to be larger than needles. Very small electrodes suffer from large thermal noise

problems but it was found by experiment that electrodes with a diameter of 0.5mm

are small enough to neglect in a finite element model but large enough not to suffer

from this problem.

Placing the passive voltage measuring electrodes half-way between the large

current driving electrodes limits the effects of contact impedance on the measured

voltages. As the voltage measuring electrodes are virtually passive their contact

impedance does not effect the voltage they measure. The tomograph electronics

delivers the same current to an electrode no matter what its contact impedance.

Contact impedance effects the voltage measurements only in the effect it has on the

current density distribution under the drive electrodes. Voltage measurements half-
way between electrodes are the most insensitive to this distribution. This was tested

using the Boundary Fourier Method by comparing voltage measurements made half-

way between electrodes on two homogeneous disks. One was driven by electrodes

covering 30% of the boundary and the other by electrodes covering 10% of the

boundary. The difference in the boundary current density patterns for these two

systems is much larger than would be expected due to variation in contact impedance

alone. The difference in the voltage measurements between these two systems was

0.25% for the first optimal current pattern and showed a maximum variation of 0.6%
for the last optimal current pattern.

This system can be simulated using a standard finite element model. The

insensitivity of the measurements to current density distributions under electrodes
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means that coarse meshes can adequately model the behaviour of configurations of

small electrodes. Larger electrodes inject current current closer to the point of voltage

measurement and so are difficult to model. By comparing the predictions of the

Boundary Fourier model with those of the finite element method using a reasonable

number of nodes, it was found that electrodes covering 30% of the boundary gave the

best agreement. The voltage measurements predicted by the Boundary Fourier Model

for a homogeneous disk driven by electrodes covering 30% of the boundary and a

finite element model of 761 nodes were compared. The predictions agreed to better

than 0.1% for the first sixteen trigonometric currents.

4.12 Finite Element Modelling in Three Dimensions

4.12.1 Three Dimensional Elements

To model three dimensional volumes a mesh composed of three dimensional

elements is required. At the present stage of Eli development the volume to be

imaged is a cylinder with electrodes attached to the curved surface. One way of

constructing a mesh filling a three dimensional disk is to translate a two dimensional,

circular mesh in the direction perpendicular to the plane and extend the triangles into

triangular prisms, known as wedges. Six noded wedges have interpolation functions

that have a subset of the terms in a quadratic polynomial in three variables. As the
interpolation functions are not fully quadratic the 6 noded wedge Counts as a linear

element in terms of its speed of convergence, k=l in Equation 4.7. To make the three

dimensional mesh an analogue of the two dimensional one we would prefer it to be

composed of four noded tetrahedra with the full linear interpolation function,

N=a+bx+cy+dz. As the S(ij,k) data structure has a size proportional to the number

of nodes in an element cubed the tetrahedral elements represent a considerable saving
in terms of memory requirements without compromising convergence speed. A mesh

of tetraheda can be achieved by decomposing each wedge into three tetrahedra as

shown in Figure 4.12. The cylindrical mesh can be constructed by stacking these

disks of tetraheda on top of each other.

4.12.2 Three Dimensional Mesh Generation

The program RMESH3D has been written to construct three dimensional

cylindrical meshes of tetrahedra. The electrodes lie on circles at levels up the sides of

the cylinder. A typical configuration would consist of four levels with sixteen equally

spaced electrodes at each level. Part of the input to the program is the number of

electrodes on each level and the number of levels that make up the cylinder.
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Associated with each electrode is a rectangular area on the curved surface of the

cylinder called a cell. The input to the program includes the relative position of all

the surface nodes in a cell including identification as to which form part of an
electrode.

Figure 4.12 Part of a three dimensional mesh illustrating how a space filled with

wedges can be cut into tetrahedrons.

RMESH3D constructs a two dimensional mesh with one dimensional cells of

surface nodes, as described in Section 4.9, and then extends this mesh into a three

dimensional disk of tetrahedra. These disks are stacked on top of each other to build
a cylindrical mesh with surface nodes at the relative cell locations in the other

dimension. As with RMESH, the nodal numbering is chosen to minimise the

computational effort involved in factorizing the system stiffness matrix, see Section

4.9. RMESH3D produces a mesh file with the same format and information as

RMESH. The suite of finite element programs developed during the course of this

project will operate on a mesh file produced by either program. Useful three

dimensional meshes tend to be very large and often consist of tens of thousands of

nodes.
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4.13 Conclusions

In this Chapter numerical models have been developed which agree with
analytic and semi-analytic calculations to sufficient accuracy to be used for two

dimensional impedance image reconstruction. Similar models for three dimensional

imaging have been developed. A novel data structure has been described which

greatly increases the speed at which the matrices required by these models can be

calculated.
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Chapter 5

Parallel Computing

5.1 Introduction

A taxonomy of computers has been described by Flynn [27]. This scheme

classifies computers by the number of instruction streams executed concurrently and

the number of sets of data executed upon concurrently. At any time the classical Von

Neumann machine is executing a single instruction operating on a single set of data.

It is classified as a Single Instruction Single Data machine, SISD. Supercomputers

are typically vector machines capable of performing operations on vectors of data

with single instructions. These operations are typically the level one Basic Linear

Algebra Subprograms, BLAS, such as the Linpack GAXPY (Generalised

D 1=aX1+Y1, i=l,N), [22]. The hardware of these machines will often allow parts of

this vector calculation to execute concurrently. This is achieved by allocating

physically different pieces of hardware to different parts of the operation that can

execute concurrently. These computers are described as Single Instruction Multiple

Data, SIMD. Fully parallel computers have many instruction streams executing on

different, possibly vector, sets of data on independent processors. These Multiple

Instruction Multiple Data, MIMD, computers have greatly increased the speed of high

performance computing. The MIMD class of computers can be decomposed into two

sub-classes depending on whether the data storage is shared by the processors or

distributed with them. By offering potentially unlimited scalability of computing

power and eliminating contention for data access, distributed memory MIMD

computers appear to be the key for high performance computing in the near future.

This Chapter explores the issues involved in the choices of parallel hardware and
parallel software.

5.2 Computing for Eli

One of the alms of research into Eff is to produce a medical imaging tool for
monitoring or imaging patients in hospitals. This puts severe restrictions on the

computing hardware that is appropriate. The amount of computation required to

reconstruct an impedance image can be of the order of 106 floating point operations

for a two dimensional image and 1010 operations for three dimensional tomography.

An image should be calculated within a minute so that medical staff can wait for the

image to be produced. If an image can be calculated in a second then Eff can image

changes in the chest during an inhalation-exhalation cycle. Real time cardiac imaging
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will require images to be produced in a tenth of a second to monitor changes in the

heart during a single beat. Faster imaging makes Eff applicable to a greater range of
problems. The computation rates needed to calculate an image in less than a second
are those associated with present day super-computers. These machines are very

large, expensive and completely inappropriate for a hospital environment. The

desired computer hardware for EIT has very high, scalable performance and is both

compact and cheap. In the last few years a range of parallel computing elements have

become available which fit these requirements.

5.3 Parallel Computers

In this thesis only MIMD machines with distributed memory will be

considered. The components of a distributed memory MIMD machine are known as

processors and function like small computers. Each processor has a computation

unit connected to its own local memory and a number of channels to other

processors along which data can be exchanged. The computation unit on a processor

runs its own programs, known as processes, which can access the memory local to

that processor. To use data stored in memory local to another processor, a process

on that processor must access the data and pass it along a channel connecting the two.

If two processors are not directly connected the data will need to be passed between

processes executing on the processors along a connected path between the processor

whose local memory contains the data and the processor requiring the data.

A computer of this type has the potential to perform calculations very quickly.

Each processor is connected by its own bus to its own memory so there is no
competition between processors for buses or memory resources. The speed at which

data can be delivered to the computation unit can be tuned to its requirements so that

no operation is delayed waiting for operands. As each processor can perform
calculations concurrently the theoretical computing power of a machine with P

processors is P times the computing power of a single processor. It is this linearly

scalable performance that has increased the peak calculation rate advertised for new

computers from Megaflops (Mflops) to Gigaflops and, recently, Teraflops.

In the last few years several parallel processors have become available. The
first and most well known is the Inmos Transputer family of parallel processors.

These processors are very cheap, designed to be connected into parallel computing

machines and each processor has a computing capability of 1 to 4 Mflops. Intel

produces the i860 chip as a component in a parallel computer. These chips are

considerably more expensive than Transputers but have a peak computation rate of 60

Mflops in double precision arithmetic. As the i860 has no communications channels
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they are commonly partnered by Transputers which control the inter-processor

communications. In 1992 Texas Instruments released the TMS 320C40, capable of

peak calculation rates of 50 Mflops and able to handle its own communications.

5.4 The Transputer

The Inmos Transputer family of processor chips were designed to be

components in concurrent programming systems. Each Transputer is a VLSI device

with processor, memory and communications links (channels by another name) for

direct communications with other Transputers. Parallel computers can be constructed
from a collection of Transputers operating concurrently and communicating through

links.

The Inmos T800 is the chip designed for numerically intensive applications.

It consists of a CPU including a hardware scheduler, a floating point unit, four

communications links, 4 Kbytes of on chip RAM and an external memory interface;

all packaged onto a chip 26 mm square. On the chip with 20MHz clock rate the

floating point Unit iS capable of sustaining 2.25 Mflops on 64 bit, double precision

numbers concurrent with the operation of the CPU. Each of the four links can

transfer data bi-directionally at up to 2.35 Mbytes per second. The external memory

interface can directly access a 32 bit wide, linear, address space of 4 Gbytes and

transfers information at a rate of 4 bytes every 100 nanoseconds corresponding to 40

Mbytes/sec, [45].

Typically, Transputers are purchased on a printed circuit board called a

TRAM (an abbreviation of TRAnsputer Module) A TRAM will include at least one

transputer together with its own local memory, generally in the range 1 to 16 Mbytes,

and possibly extra hardware to control communications with the host computer.
These TRAMS can either plug directly onto a PC expansion slot or, more commonly,

onto a motherboard that acts as an interface between the transputer network and the

host computer. As only one Transputer need be connected to the host only one set of

host interaction hardware is required and this is usually included on the motherboard.

TRAMs designed to plug on to a motherboard may therefore be more simple. Inmos

have set a standard, public domain, interface to TRAMs from an early stage allowing
third party production of TRAMs and other transputer based application boards. This

has resulted in fierce competition between TRAM manufacturers and corresponding

low prices. The TRAM market is highly volatile with prices varying enormously

between companies and over short periods of time. Memory fast enough to

effectively service the 35 MHz transputers is expensive. A large proportion of the

price of a TRAM is invested in the fast memory and so TRAM prices are linked to the
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world RAM markeL

The hardware purchased for this Eli' project is a TMBO4 motherboard with a

20 MHz T800 Transputer and 4 Mbytes of DRAM, [83]. Three TTM17 expansion

boards attach to the motherboard each with a T800 Transputer and 4 Mbytes of

DRAM. This system cost £1850 in 1990. The transputer system occupies a single
expansion slot in a Zenith XT clone.

At the time of writing Inmos had postponed the release of the next generation

of Transputer, the T9000, until the fourth quarter of 1992. It is expected to achieve a

peak performance of 25 Mflops and maintain a link communications rate of 100 Mbits

per second. Apart from increased performance the major innovation expected in the

T9000 is hardware control of the routing of communications through a network of

Transputers. Typically, messages passed between Transputers not directly connected

in a network must be routed through intermediate Transputers. On each of these

Transputers a process must run to receive messages and re-transmit them towards

their destination Transputer. The implementation of the routing processes is often a

major undertaking and their operation in parallel with application processes degrades

performance. It is hoped that automatic through-routing of messages under hardware

control will greatly ease the use and increase the performance of the T9000. It is

known that Inmos aims to introduce virtual links. A Transputer cannot execute a set

of processes which require more than four links to the rest of the network. The

number of links available places restrictions on how processes are allocated to

processors in a transputer network. This restriction is commonly circumvented by
the use of multiplexer processes that communicate with several processes on a

transputer and pass all their inter-processor communications along the available links.

With the T9000 it will be unnecessary to implement this in software and any

application will map onto any connected, Transputer network with any processes on

any processor.

5.5 Models for Parallel Computing

The model primarily used for the design of parallel algorithms is that of

Asynchronous Communicating Sequential Processes, (ACSP). This models a

parallel program as a collection of processes that communicate with each other along
communication channels. Each process may itself be a collection of inter-

communicating processes, see Figure 5.5a. At the lowest level a process will be a

sequential program that could be written in any standard programming language with

extensions to implement communications.
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Figure 5.5a An Occam model of a parallel application which consists offour inter-

communicating processes. Each process is indicated by a circle with the

communication channels linking them. A process may be composed of a number of

sub-processes linked with their own communication channels.

There are several protocols controlling the passing of messages between

processes. The Occam model assumes a double blocking protocol, [2], which

prevents either process involved in a communication from continuing until the

communication is complete. Thus a process wishing to send a message must wait

until the destination process is ready to receive it and vice-versa. The double

blocking protocol allows processes to be synchronised. This is an advantage as it

allows the determination of the order that events will occur in different processes.

The Transputer and the concurrent programming language Occam were

developed together to be the hardware and software implementations of the Occam

model of concurrent computation. The Transputer's hardware scheduler allows many

processes to appear to run concurrently on a single Transputer by quickly and

efficiently sharing the available processing time and resources between them. This

allows an entire application of many concurrent, asynchronous processes to appear to

run in parallel on a single Transputer. Furthermore, a network of Iransputers can be

constructed by connecting them together via their links. A link is a hardware

implementation of the Occam model ts communication channels. Thus an application

based on the Occam model may be configured to run on a network of Transputers as

long as the number of channels between processes on different processors is less than

63



the number of hardware links between them. This ability means that some degree of

portability is introduced into parallel applications from the earliest design stage. To

the programmer of a process, inter-processor and inter-process communication is

identical. No modification to the application source files is needed to reconfigure an

application to run on a different network of transputers.

5.6 Parallel Software

5.6.1 Languages For Parallel Programming

At the beginning of this PhD project several parallel languages were

commercially available but the most commonly used was Occam. This language was

developed specifically for concurrent programming environments, in particular the

Transputer. Parallelism is inherent in Occam. Every program statement is

specifically labelled to be executed sequentially or concurrently. Occam is still the

most natural parallel programming language and compiles into the fastest code to run

on Transputers. Unfortunately, Occam for the Transputer was integrated into a

folding editor and set of development tools called the Transputer Development

System (TDS). TDS has a number of inadequacies which have limited its

application. Standard operations such as input/output to files are poorly

implemented. For example, Occam does not use named files but accesses areas that

are a specified number of "folds" away in the folding directory system. This would

be a major handicap when writing a flexible reconstruction package.

The alternatives to Occam were standard sequential languages, such as

Fortran and C, with extra intrinsic functions to enable inter-process communications.

These were widely available from many software producers in the UK and the
Continent.

5.6.2 Constructing a Parallel Application

A parallel application is constructed by designing and writing a set of inter-

communicating processes in any suitable language. Both TDS and systems based on

sequential languages require further information to map the suite of concurrently

executing processes onto the processor network. This is generally achieved by a user

written configuration file which contains a description of the processor network; the

processor types and the links between them, a list of all the processes and allocation

of each process to a specific processor. All the channels connecting processes need

to be declared in the configuration file. An executable file is then built by combining
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these with the information in the configuration file. During configuration the

application is checked to see if it can be physically mapped onto the network of

processors as described in the configuration file. The executable file, called the

application file, must load all the processes onto the correct processor by worming

its way through the network booting one processor at a time, and initiating all the

processes simultaneously.

5.6.3 Error Handling on Transputer Networks

Transputer networks are marketed as add-on components to a host computer

and all interaction with them is made via the host's operating system. The Transputer
network has no operating system or environment of its own. All interaction with the

Transputer network is made via user-written processes executing on the single

Transputer connected to the host system. As there is no monitoring or error reporting

whatsoever the Iransputer network is a naked and extremely hostile environment for

the software developer. Developing and debugging in this environment is a

nightmare.

Parallel programs can have many errors that do not exist for sequential

programs. These arise from problems with communications between processes.

Two processes must cooperate when a message is to be passed between them. If this

cooperation does not occur, one or both processes will be left permanently waiting

for communication to take place. The situation, called deadlock, can develop when

two processes are waiting to communicate with each other. Errors which are far

more difficult to correct occur when messages get mixed up. As processes are

asynchronous, the order in which communications arrive at a process can be

indeterminate and can vary between executions of an application. These

communication races can lead to intermittent errors which are extremely difficult to

debug. There is no way that a compiler can detect the circumstances in which this

may arise without running the application. These communication errors and all the

errors that sequential programming is prone to, occur in the development of parallel

programs. No error report will be generated and the most likely result of any of these

errors will be a hung system.

Any error trapping and reporting on the Transputer network must be

implemented by the user. Creating such a system is a difficult task on its own which

relies heavily on network wide communications as error messages often need to be

transmitted via intermediate processors to reach the host computer. Any problems on

the intermediate processors will prevent the user initiated error messages from

reaching the host. Errors such as over-writing the end of an array will often hang a
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Transputer before a user-initiated error message can be transmitted. This is

particularly true when receiving arrays of data from other processes. Worst of all,
user diagnostic messages will often interact with the algorithms communications to

cause new problems.

5.6.4 Development Tools on Parallel Computers

Interactive debuggers are still a recent innovation in the programming of

Transputer networks. Tbug, [811, is a debugger produced by 3L Ltd. to be used in

conjunction with their range of languages with parallel extensions. It allows the user

to single step through independently executing processes and to set break points. As

with all such debuggers, it has the disadvantage that applications run differently while

under the control of Thug due to delays introduced by its presence. This is especially

the case with TBUG which reconfigures the application so that all the processes

execute on a single Transputer. The changes forced on the application to make this

possible are likely to introduce errors of their own.

Higher level development tools for parallel programs were, and mostly stIll

are, unavailable. Within the last two years there have been several developments

which improve the interface between the network and the user. A distributed

operating system known as Helios has become available. This fully distributed, Unix

like operating system is, unfortunately, very expensive and so has had little impact on
the users of small networks of processors. Atari developed a transputer based

workstation, known as the ATW, based on networks of T800's and Helios, but went

out of business within six months of its release. Other systems, marketed as

environments rather than operating systems, have also become available. CStools

extends SunOS, the operating system produced by Sun Microsystems Inc., to

transputer networks hosted on Sun workstations. CStools provides communications

processes for the user and monitors application processes for errors. It also allows

direct communications between the host and Transputers in the network. It allows

interactive debuggers to be used on any processes on any processors. A similar

system called PARIX has been developed by Parsytec for an European Community

project.

5.6.5 Parallel Software for EIT

At the beginning of this PhD project a large suite of sequential software was

available. This included a reconstruction program based on the NAG Finite Element

Library written by Breckon, [91. All this software was written in Fortran 77 and

resident on a Sun workstation. Considerable effort would have been necessary to
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rewrite this software in Occam and it was therefore decided that the benefits incurred

would not warrant the time involved. The other option was to port the software with

as little modification as possible to the transputer environment. For this reason it was

decided to build a parallel reconstruction program in parallel Fortran. A Fortran with

parallel extensions produced by 3L Ltd. was chosen, [80]. Towards the end of this

PhD project, when it became available, Tbug was purchased to speed up

development. It was found to be useful while developing small portions of program

but it could not cope with the full reconstruction algorithm as this was far too large to

fit on a single Transputer.

Porting a sequential program to a parallel computer is a formidable task. This

is particularly the case where an algorithm requires many, varied, complex

operations. Enormous changes were introduced to the program to rewrite it as a

collection of processes capable of concurrent execution. The task is more difficult

than replacing calls to sequential subroutines with calls to parallel ones. As the data

used throughout reconstruction needs to be distributed, the parallel subroutines must

be designed to use consistent data structures. Besides the main Suite of

reconstruction processes considerable amounts of programming is required to

implement a general, network wide, communications system. Some method to trap

and report errors through the communications system must also be designed and

implemented. Many other changes in working practices were introduced by the move

from Unix to MSDOS. A set of batch files needed to be created to compile, link, and

configure parallel applications.

5.7 Parallel Algorithms

5.7.1 When Is a Parallel Program Appropriate?

The parallel programmer faces many more choices than the programmer of a

sequential computer wishing to perform the same calculation. S/he must decide upon

the algorithm to use to achieve the desired result. The algorithm must be formulated

in an Occam model and then the Occam processes must be implemented in an

appropriate programming language. For numerical analysis problems the goal of all

these design stages is to produce a computer solution to a problem that runs quickly.

The extra design effort required to produce a parallel application would be wasted if

speed of calculation was not of the essence. For some industrial control applications

where the data acquisition systems are physically distributed around a factory, a

parallel program executing on a distributed, parallel computer may be the most

practical solution. For EIT the reason for substituting a parallel computer for a
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sequential one is only to increase the speed of execution. In practically all cases the

implementation of a numerical analysis application on a parallel computer is

considerably more effort that on a sequential computer. This large, and often

massive, investment of human resource is only worthwhile if speed of solution is the

primary goal of an implementation project.

5.7.2 Choosing a Sequential Algorithm

When choosing an algorithm to achieve a result on a sequential computer there

are generally two major considerations, the number of floating point operations

necessary and the amount of data storage required. There is often a trade off between

these features; allowing the use of more data storage will often yield a result in fewer

operations. However, the choice of algorithm is generally straightforward. The

maximum storage requirement is a pre-determined constraint, often set by the

hardware, and the algorithm that requires the least number of operations to achieve

the result with a storage requirement less than the maximum is chosen. The time
required to perform the calculation is proportional to the number of operations. For

this reason sequential computers are characterised by their benchmark performance on

typical applications. Several standard benchmarks have been designed to simulate

common mixes of integer and floating point, scalar and vector operations, [50]. They

have been in existence for a decade or more and are commonly quoted as a measure

of a computers performance. Often this is all the information necessary to chose an

optimal sequential algorithm to calculate a desired result.

5.7.3 Modelling a Parallel Application

It is more difficult to use a parallel computer to its full potential. If used

optimally a network of P processors could potentially complete a task P times faster

than a single processor. In practice this is never achieved. For a processor to take

part in a calculation it must have data communicated to it and it must communicate a

result back. These communications introduce an overhead that does not exist when

using sequential computers. The larger a network of processors the larger this

overhead is. For communications purposes, the size of a network of P processors is

often measured by its diameter, D(P). The distance between two processors is the

minimum number of links required to pass a message between them. If a message

needs to be routed along at least three links, through two intermediate processors, to

be transmitted between processor A and processor B then they are said to be 3 units

apart. The diameter of a network is the maximum distance between any two

processors in the network. For all the processors in a network to contribute to a

calculation, some data needs to be transmitted at least the diameter of the network and
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results transmitted back again. For an application of some fixed size, the time

required to perform the calculation, T(P), on a network of P processors is the sum of

the communications time, COM , and the computation time, CAL of the longest
running process. This is generally the process connected to the host computer as it is

involved with the transmission of data to the network and passing the results back.

T(P) = COM(D(P)) + CAL(P)	 (5.7 a)

The communications time is an increasing function of the diameter of the network. A

network in which every processor is connected to every other processor, known as

completely connected, has a diameter of unity independent of the number of

processors in the network. Completely connected systems are technically difficult to

build so existing systems are based on compromise networks. Large networks with

the topology of hypercubes, see Figure 5.8, have been built both in Europe, for

example at the University of Liverpool, and the US. A hypercube network has a

diameter that increases as the logarithm of the number of processors; D(P) = log2(P).

The computation time can be bounded above by the time required or a sing'e

processor to complete the ca]cuJation. At best the computation time decreases' as the

inverse of the number of processors: CALoc 1/P. This assumes that the problem can

be distributed in such a way that all the processors have useful calculations to perform

all the time and at no stage does one processor need to wait to be communicated an

operand. It also assumes that no computational overhead is introduced in distributing

the application. Attempting to achieve this goal is known as load balancing.

Optimal load balancing is unachievable for networks with more than one processor as

no processor can begin execution until it has had data supplied to it..

Assuming the communication time is proportional to the hypercube diameter,

COM(P)=K 1 log2(P), and the calculation time is inversely proportional to the number

of prossessors, CAL(P)=K 2/P, an expression for the run time of a particular

application is:

T(P) = K 1 log2(P) + K2IP	 (5.7b)

where K 1 and K2 are constants. This expression has a minimum at P= ln(2) K2/K1.

For any given application there is an optimal number of processors. If more

processors than this optimal number are used the benefit gained from sharing the

calculation with the extra processors is more than compensated by the increase in

communication time. The optimal number of processors increases as the amount of

calculation increases or the time required for a communication decreases. If
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communications are made faster, K 1 is decreased, and the optimal number of

processors increases. Similarly, if the rate that calculations can be performed is

increased, K2 is decreased, and the optimal number of processors is decreased. Thus

the ratio, K2/K 1 , is an important design consideration when algorithms are being

chosen for a given parallel computer.

5.7.4 Measuring the Efficiency of a Parallel Application

Two measures of the effectiveness of parallel implementations are in common

use. The speedup, S(P), and efficiency, E(P), of an implementation is defined as:

	

S(P)=1--	
T(1)	 S(P)

E(P)=	 =

	

T(P)	 PxT(P)	 P

If the communications time is negligible and the application is perfectly load balanced
then the optimal speedup is P and the optimal efficiency is 1. More realistically we

could aim to keep efficiency bounded away from 0 for increasing P, [5]. There are

many different interpretations of S(P) and E(P) depending upon the definition of

T(1). A common definition sets T(1) to be the run time of a sequential version of the

algorithm on a single processor. This definition leads to a large drop in efficiency as

the number of processors is increased from one to two. The single processor version

can be written as a single process and needs no processes to implement the data

communications. This eliminates the overhead of simulating concurrency on a single

processor. It can be argued that this is not a fair comparison of the performance of

sequential and parallel machines. The optimal algorithm on a parallel computer is

likely to be a function of the number and mixture of processors and the configuration

of the network. In particular, the optimal algorithm on a single, sequential processor

is almost certainly different from the optimal parallel algorithm, If T(1) is defined as

the run time of the optimal sequential algorithm, then the speedup and efficiency are

relative to the best achievable on a single processor. This definition makes explicit

the benefit of moving to a parallel computer. Another definition of T(l) is the run

time of the P processor algorithm configured to run on a single processor simulating

concurrent processing. With this definition, the single processor performs exactly the

same calculations as the distributed version and consequently the speedup and

efficiency reveal multi-processor and communication effects but nothing about the

relative merits of the particular algorithm chosen. In this thesis the first definition of

T(l) is used.

Given any of these definitions an observation known as Amdahl's law, [1],

holds. Suppose that a program consists of two sections, one part that is inherently
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sequential and another that can execute fully in parallel. If the inherently sequential

section consumes a fraction f of the total computation, then the speedup is limited by:

S(P)= 1	 VP.
f^.if f

As the number of processors is increased, the time required for the parallel part of the

task decreases to zero leaving the inherently sequential part. One counter argument

to Amdahl's law is that as the size of problems is increased, the proportion that is

inherently sequential typically decreases so any speedup is achievable if you can find

a problem large enough.

5.7.5 Choosing a Parallel Algorithm

The parallel programmer faces the task of finding the algorithm and

configuration of network which minimizes T(P). Generally the programmer will

already have a fixed number of processors but will often have freedom to connect

them within constraints. A Transputer network may be configured to have any pairs

of links on different Transputers wired together, as long as there is one connection to

the host computer. Reconfiguration generally requires the physical connection of

wires to the transputer boards and so it is impossible to reconfigure the network part

way through the execution of a program. Minimization of T(P) over all possible
choices of algorithms and configurations is a problem so formidable it has not even

been attempted rigorously. Typically, an application involves several stages where

each stage involves a choice of algorithm and each could have an different optimal

configuration. As it is not practical to reconfigure before each stage a common

problem is minimising T(P) given the configuration as a constraint.

The four transputer system purchased as a component of the impedance

tomograph is the largest that can be configured as a completely connected network

while leaving one link to connect to the host. However, if the implementation of the

reconstruction algorithm assumed a completely connected network it would be

impossible to port it to a system with more than four transputers. This would put an

absolute upper limit of 4 on the achievable speedup. A gain in speed of a factor of 4

is just not worth the effort of moving to a parallel computer. The reconstruction

algorithm must be designed to take advantage of any number, up to the optimal

number, of processors. A topology needs to be used that can be generalised to much

larger numbers of Transputers.
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5.7.6 An Example of Parallel Algorithm Design

An understanding of the problem of parallel algorithm design can be gained

by looking at a specific problem. For example, forward substitution is a method for

the solution of the matrix equation Lx=b where L€ RN is a lower triangular matrix,

b is a known vector and x is a vector of unknowns to be calculated. In pseudo-code

the algorithm to solve this problem can be expressed:

FORi= 1TON

x1 = (b - L x)/L

Forward substitution can be programed in Fortran in six lines. It is a task so trivial

that it is easier to write the program than to look up the appropriate routine in a

standard package. To the parallel programmer it presents an immediate difficulty.

The calculations that form the algorithm need to be split into parts that can be

calculated independently on different processors. Yet the algorithm as stated shows

that x 1 depends upon all the xi 's such that 1^j<i. In other words x 1 cannot be

calculated before x 1 , x2 ... x 1 have been calculated. At first glance, forward

substitution appears to be an inherently sequential algorithm. However it may be

rewntten:

FOR i = 1 , N

x =

FOR j = i+1 TO N

b =b _Lx

Written in this form the parallelism is clear. Each iteration of the inside ioop can be

calculated independently and in parallel once x has been calculated. Once the
parallelism has been identified it is necessary to write the algorithm as a set of

communicating processes which minimise the necessity of inter-process

communications. Each process needs to store some data, in this case elements of the

matrix L, and perform some calculations. Examination of the algorithm shows that

the data required to calculate x1 is the i'th row of the matrix L, b and all the previous

x: 1^j<i. A reasonable distribution of the data and calculations required for forward

substitution would place row i of the matrix L and the vector b on process i, Q. This

algorithm requires N processes, Q1 1^i^N, which can be written:
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(Process Q)

FOR j = 1 TO i—i
RECEIVE(x)

b =b _Lx

x 1 = b /L1

FOR j = i-i-i TO N
SEND(x) TO Q

Each process is aware of its unique process identification number, i. The description

has introduced two functions, SEND and RECEIVE to implement transmission of

information from one process to another. Each data transmission is point to point in

that messages are passed from a single source process to a single destination process.

Every process that has data sent to it must have a corresponding RECEIVE or the

algorithm will fail. This design splits the calculation and data between N processes

which must be able to communicate with every other process. Its Occam model

representation would be a completely connected set of N processes. Process i would

perform 2i-1 floating point operations and N—i communications.

An application written to this design could give different results on each

execution. As the processes are asynchronous there is no guarantee that the xi's

received by a process will arrive in the correct order. On Transputer networks delays

are often introduced by communications with the host which also needs to handle

interrupts from its own system. Small differences in the clock rates of different

Transputers can lead to variation in the order that events occur through the network.

This problem can be solved by transmitting the data pair (j,x) and performing the

suitable calculation in the receiving processes. This complication will be ignored in
the following development.

The design as it stands has two other drawbacks. The processes do very
different amounts of work; Q 1 performs one flop and QN performs 2N—1 flops. If
process Q is allocated to a processor P1 then the system would be very badly load
balanced as P 1 would spend most of its time doing nothing. In addition, the

communications/computation ratio is high and the communications are diverse

requiring a communication channel connecting every pair of processors. As designed

it could only be configured to run on a single transputer as to put a processes on

another transputer would require N—i hardware links. These problems could be

alleviated by merging processes so that a single new process would perform the
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calculations presently performed by several processes. This reduces the total number

of communications required but would still require a completely connected network to

implement. To adapt this algorithm to run on a network of transputers,

communications processes would need to be introduced. These processes would

route the communications through intermediate processors, where communication

between unconnected processes was required, so allowing the method to be used on
any connected network.

Consider a solution involving P^N processes placed on P processors. If the

processes are numbered Q 1 , Q2 up to Q where Q1 performs the calculations of the
old processes Q + p: 1^i+jP^N; then forward substitution can be implemented as:

(Process Q1)
NextRow = i

FOR j = 1 to N

IF ( NextRow .EQ. j ) THEN

NextRow = NextRow + P

x(j)=b(j)/L1

FOR k=1 TO P (k^i)

SENDx(j) TOQk

ELSE

RECEIVE x(j)
END IF

FOR k = NextRow TO N STEP P

b(k) =b(k)—LkJ x(j)

This distribution of the rows of the matrix L, similar to the way cards are dealt to the
participants of a card game, is known as round robin. It ensures that the
computational load is balanced between all the processes. At each stage of the
calculation, ie for each j, no process does three floating point operations more than

any other. The only calculations that occur sequentially are the final divisions by the

diagonal elements and the adjustment of NextRow. As is typical with parallel

implementations this method is much more complex and design intensive than the

sequential program to perform the same calculation. Distributing the work between
processors inevitably introduces the overhead of "book keeping" calculations, such as

those involving NextRow, that were not necessary in the sequential implementation.

The degrading effect of the imperfect load balancing and the unavoidable sequential

part of the algorithm becomes less important as the size of the problem, N, increases.

Process Q only requires knowledge of rows i+jP of the matrix L. In this
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case it is unnecessary and generally undesirable to store the other rows of L. Large

data structures, such as L, may be distributed around the network of processors. In

this problem it was assumed that the data was already in place within each process

when forward substitution was performed. This is a reasonable assumption as lower
triangular matrices are usually generated by the factorization of other matrices. This

factorization algorithm may have an optimal data distribution that is different from the

one deduced for forward substitution. As factonzation typically requires of the order

0(N3 ) operations and forward substitution required 0(N 2 ) operations, it is

reasonable to optimize the load balancing of the factorization stage and devise a

forward substitution strategy that operates as well as it can with that data distribution.

Load balancing, data distribution and communications overhead are three strongly

inter-connected issues when designing parallel algorithms.

5.7.7 Algorithm Design for EIT

When writing an EIT reconstruction program it is expedient to begin by

choosing a network topology. This should be a topology which will approximately

minimise the delays introduced by communications in the algorithms which will be

executed upon it. It should also be a topology which is possible to generalise to

much greater numbers of processors.

Algorithm design and data distribution are strongly coupled on parallel

computers. Much of the data generated by the reconstruction program is used in

many of the stages of the reconstruction process. The data structures chosen for

these data, such as the potentials generated by the forward modelling stage of

reconstruction, determine the algorithms used. Thus the creation of a large program,

such as an EIT reconstruction program, must be treated holistically with regard to the

largest data structures and those with the largest scope.

5.8 Topologies and Communication Systems

A host of different network topologies are in use. Among the the most

common are pipelines, trees, rings, meshes and hypercubes, see figure 5.8. Each

topology is suited to different algorithms with different communications
requirements. For an algorithm to operate at a high efficiency both the algorithm and
the topology need to be matched to the problem
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pnp

a) Pipeline b) Tree

c) Ring
	

d) Four Dimensional Hypercube

e) Grid

Figure 5.8 Some popular topologies for networks of concurrent processors.

5.8.1 Types of Communications

Several classes of communications are commonly used in parallel algorithms.

The most basic communication is the point-to-point communication that is the basis of
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the Transputers hardware links. Other communications patterns can always be

considered as sets of point-to-point communications. Two of the most commonly
encountered are known as scatter and gather corresponding to one-to-many and
many-to-one communications respectively. The lines of pseudo-code in the final

example of Section 5.7.6 are an example of a scatter:

IF (NextRow .EQ. j) THEN

FOR k=1 TO P (k^i)

SENDx(j) TOQk

ELSE

RECEIVE x(j)

ENDIF

A gather would be the same but the functions RECEIVE and SEND would be inter-

changed. Finally a complete exchange of information held on all processes is

accomplished by a multi-node-scatter-gather during which all processes
communicate, directly or indirectly, with all other processes. The optimal topology

for a given algorithm is defined by the mix of these communications protocols.

5.8.2 Message Passing Strategies

Commonly when a parallel application is mapped to a network of computing

elements more communications channels are required between processes on different

processors than there are hardware links. This problem is commonly solved by the

implementation of communications processes which multiplex all the communications

required by the processes on the same processor through the available links. The use

of these processes has many advantages over direct inter-processes communication.

They allow communications between processors not directly connected by routing

messages through intermediate processors. This makes applications designed with

the Occam model portable between different topologies and allows the design of

applications to be independent of the hardware constraints. Finally, separating the

calculation and communication into different processes allows the masking of
communications. The SENDing process can continue to execute useful calculations

before the message has reached its destination process, thus masking the delay that

would be introduced by double blocking for direct communication.

The routing of messages through a network is often a complex operation.

Routing messages along the shortest path commonly leads to "hot spots" where

communications bottle-necks delay messages converging along several paths.

Random routing, where a message is directed via a random intermediate processor to
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its destination, is often used to alleviate this problem. More complex message
passing strategies, such as worm-hole routing, may be required. This method first

allocates all the communication processes along the route connecting source and

destination processors to execute the communication. Messages are transferred in
small segments chain gang style. This method parallelises the otherwise sequential

task of message passing and so messages are transferred faster. The communications

processes can be very complex and so commonly one set is available for all

applications to use. A trade off exists between routing complexity and speed of

transmission as once communications processes become too complex the routing

calculations cause more delay than simple message routing.

5.8.3 Communications on Ring Topologies

For this project it was decided to use a very simple ring topology and routing

strategy. A ring can be made of any number of transputers and so can be

incrementally upgraded at any rate. For comparison a hypercube topology needs the

number of processors to double to maintain its symmetry. Although the ring has a

large diameter, P/2 compared to log2(P) for a hypercube, it can perform a scatter,

gather or a multinode-scatter-gather simply and at an optimum rate. A rotation can
be defined as each processor passing information to the next processor clockwise

around the ring and receiving information from the anti-clockwise adjacent processor.

One unit of time can be defined as time required to perform a single rotation . A
scatter, gather or a multinode-scatter-gather can be performed by P—i rotations taking

P—i units of time. On any topology these communication protocols require each

processor to receive at least P—i messages. Thus the minimum time possible to

complete any of these operations is P—i units of time. The ring topology can perform

these common communications as fast as an'j othtt ret'ork. Rmg .opoiogxt at

slow for communications between processors placed nearly diagonally on the ring.

However if point-to-point communications are only required between near processors

they can compete with the more complex topologies. Matrix manipulations with

round-robin data disthbution, such as the forward substitution described in Section
5.7.6, are rich in nearest neighbour communications, and scatter-gathers. These

operations can be performed as fast on a ring as on more complex topologies. The

routing strategy is to pass a message around the ring until it reaches the destination
processor and then to pass it to the destination process. This simple routing strategy

requires minimal calculation and so imposes a relatively small delay between
reception and re-transmission of a message.
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5.9 Conclusions

In this Chapter the issues in the choices of parallel hardware and software

have been investigated. After considering the types of communications that would be

expected in the most computationally intense part of a reconstruction algorithm,

Transputer networks in the shape of rings have been selected. If communications are

between near neighbours or are of the form of scatter-gathers then a ring topology is

both simple and rapid. Matrix operations are rich in this form of communications.

For small networks of processors the ring topology allows for smooth scalability as
more processors are added.

The Occam model of a parallel program has been introduced. A detailed

example of the design of a parallel algorithm in terms of inter-communicating

processes was given. This example addressed the issues of load balancing and

implementation given the constraints of Transputer networks. A number of parallel

programming languages were discussed and Parallel Fortran was selected for the
implementation of a reconstruction program.
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Chapter 6

Parallel Algorithms for EIT

6.1 Introduction

As described in Section 1.4, an iteration of a multi-iteration, Newton type,
reconstruction algorithm proceeds in two stages. During the first stage, a numerical
model is used to predict the voltage measurements that would be made on a region

with a conductivity distribution which is the best estimate, so far, of the conductivity

distribution of the region to be imaged. In the reconstruction algorithms described in

this thesis the Finite Element method is used for the forward modelling. In the

second stage, this best estimate conductivity distribution is adjusted so that the

numerical model would better predict the behaviour of the region to be imaged. To

achieve this a derivative matrix is calculated. The elements of this matrix are the

derivatives of the experimental measurements with respect to the conductivity

parameterisation. Using this matrix, a least squares system is solved for the

conductivity update.

In this Chapter these two stages of reconstruction are investigated in detail.

Different algorithms are compared and parallel implementations are developed. In

Sections 6.2 to 6.7 the Finite Element method is investigated. Section 6.3 deals with

the construction of the Finite Element system while Sections 6.4 to 6.7 look at a

range of algorithms for the solution of this system. In a similar way, Sections 6.9 to

6.10 look at the construction and solution of the least squares, Newton system.

Section 6.11 looks at the structure and implementation of a complete parallel,

reconstruction program.

6.2 The Finite Element Method in Parallel

In the course of multi-iteration reconstruction algorithms it is necessary to

predict the voltages that would be measured on the present best estimate of the

conductivity distribution. For the system developed at Oxford this is accomplished

with a finite element model. Each iteration of the reconstruction algorithm must

construct and solve the fmite element model for a different conductivity distribution.

The two major stages in the forward modelling segment of a reconstruction

algorithm are the calculation of the system stiffness matrix and then the solution of the

finite element system, possibly with many right hand sides, to yield the predicted
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voltages. The two stages need to be considered together as both involve the system

stiffness matrix, K(i,j) which can be very large. For modelling a two dimensional,

disk shaped, region, driven by thirty two electrodes, K is typically of the order

l000x 1000. A three dimensional, cylindrical region driven by four rings of sixteen

electrodes requires a system stiffness matrix of the order l0000x 10000. Fortunately

not all the matrix needs to be stored. The system stiffness matrices are symmetrical

and so only the upper triangular part needs to be calculated and stored. Also most of

the elements in the matrix are zero. Element (i,j) in the stiffness matrix will be non-

zero only if nodes i and j in the finite element mesh are part of the same element. The

matrix system is generally solved by factorizing the system stiffness matrix into the

product of two triangular matrices. This process introduces new non-zero elements

in each column between the most distant non-zero and the leading diagonal. The

half-bandwidth of a matrix, HBW, is defined so that 2HBW-1 = MAX(i—j):

K(i,j)^0. During factorization non-zeros can only occur in the HBW diagonals

closest to the leading diagonal. The NAG Finite Element Library includes routines

which construct and solve system stiffness matrices storing only this band of the

matrix. Even storing the matrix in this form requires large amounts of storage. A

three dimensional finite element model of 10,000 nodes with a half bandwidth of

1000 would require 80 Mbytes of storage for the system stiffness matrix. Such a

large data structure needs to be distributed around the network of processors. This is

not only because a single processor is unlikely to have this much memory but also to

balance the amount of calculation performed by each processor.

To determine what data distribution yields the best performance it is necessary

to consider the amount of work required by each stage of the model. Building an

element stiffness matrix requires 0(n3) floating point operations for each n noded

element. For a mesh consisting of elements of only one shape the number of

elements is proportional to the number of nodes so the amount of calculation involved

in building a system matrix is 0(N) where N is the number of nodes. The

factorization of a matrix is an 0(N3) operation while forward and backward

substitution is an order 0(N2) operation. Given this information, it is reasonable to

distribute the matrix so as to optimize the dominating factorization stage.

6.3 Building the System Stiffness Matrix

The system stiffness matrix is constructed by summing the contributions from

element stiffness matrices calculated for each element in the fmite element mesh. The

element stiffness matrices are symmetrical and are calculated by summing the
contributions stored in the S(ij,k,element_shape) array with weights calculated from
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the conductivity distribution, see Equation 4.3. The calculation of each element

stiffness matrix can be performed independently and concurrently in any process that

has the mesh data. If the elements are allocated evenly to the processors the element

stiffness matrices may be calculated in parallel, with no inter-process communication

and very good load balancing.

Some consideration needs to be given to the construction of the system

stiffness matrix from the element stiffness matrices. The coefficients in each of the

element stiffness matrices need to be added to the correct positions in the system

stiffness matrix. As the columns of the system matrix are distributed among the

processors to facilitate factorization, this stage requires communications between all

the processors. The coefficients of the element matrices need to be transmitted to the

processors that store corresponding columns of the system matrix. If this is done as

each element stiffness matrix is calculated, the near random communications that are

required are difficult to load balance and require complex synchronisation between

processors. A simpler and faster approach is to allow each processor to construct its

own local system matrix from all the element matrices calculated on that processor.

Each processor may sequentially calculate its own element stiffness matrices and sum

the contributions to the local system matrix. These calculations may be performed

locally with no inter-process communication. The distributed system matrix may then

be calculated by synchronised rotations and addition of the columns of the local
system matrices. This method concentrates the inter-processor communications into a

single, highly regular, period and so results in simpler, readily maintainable programs

that execute more quickly. Two data structures are needed to implement this scheme.

A system stiffness matrix local to each processor is required with all the columns

represented. After the local stiffness matrices have been added together and

distributed among the processors a global system stiffness matrix is required with a

subset of columns on each processor. The global system stiffness matrix data

structure needs to be large to allow for fill-in during factorization. If its columns are

distributed round robin fashion this free space allows the two data structured to co-

exist in the same physical memory. As the local stiffness matrices are added together

they overwrite the local matrix to form the global system stiffness matrix.

6.4 Solution Of The Finite Element System

The finite element system is a set of linear equations which can be expressed

in matrix form as K=F, where K is the system stiffness matrix, is the vectors of
unknown potentials and F is the forcing vector which in our case describes the

current crossing the boundary of the region. The matrix K is symmetric, positive
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defmite and most of its elements are zero. The following sections investigate a range
of algorithms, both serial and parallel, which can be used to solve this system.

Section 6.5 explores direct methods, in particular Cholesky factorization. Indirect

methods are investigated in Section 6.6 and semi-direct methods in Section 6.7.

6.5 Direct Methods

6.5.1 Cholesky Factorization

The Finite Element matrices and the least squares matrix generated during an

electrical impedance reconstruction are both symmetric and positive definite. The

finite element matrices have the added feature that they are irregularly sparse. The

classical method of solving the system Ax=b where A is a symmetric, positive

definite matrix is to factorize it into a product of a lower triangular matrix and its
transpose by Cholesky factorization and then calculate x via forward and backwards
substitution:

A = LLT	Cholesky factorization.
Ly=b	 Forward substitution.
LTx=y	 Backwards substitution.

The Cholesky factorization algorithm for calculating the lower triangular
matrix L is given by Golub and Van Loan, [33]:

FOR k=l TON

A= ( AI(k— A)112

FOR i=k+l TO N

Aj(Ajk_ AipAkp)/A

This algorithm requires N3/6 floating point operations for a dense matrix, AE RN,

and over-writes the elements A1 with the lower triangular matrix L. . The elements of

the finite element system stiffness matrix are mostly zero. Algorithms exist which

can factorize these so-called, sparse matrices with fewer operations, by not

performing operations which combine zeros to produce a zero element during
factorization.
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6.5.2 Sparse Matrices

The definition of sparse matrices is rather imprecise but they can be thought of

as matrices which have a relatively small number of non-zero elements. Many

numerical operations involving sparse matrices are greatly accelerated by using

algorithms which allow for the sparseness and do not perform calculations that have

no effect on the result. For example, in calculating the dot product of two sparse

vectors, A.B = the term A1B 1 will be zero if either A1 or B 1 are zero. If the

sparse structure of A or B is sufficiently regular or sufficiently sparse then the dot

product may be calculated more quickly by only considering the terms where both A

and B 1 are both non-zero. There is always a trade off in algorithms designed to use

sparse matrices between the time saved by not performing redundant calculations and

the overhead of deciding which calculations need to be performed.

6.5.3 Sparse Matrices and The Finite Element Method

Various algorithms exist for sparse matrices whose non-zero elements are

clustered in some way. In these cases the matrix may be decomposed into blocks

containing only zero elements and blocks that may be treated as dense matrices. The

band storage described in Section 6.2, which stores each column as a dense vector of

the same length as the half band width of the matrix, fits this description. The system

stiffness matrix produced by a finite element model of a cylindrical mesh of tetrahedra

will typically have ten to twenty non-zero elements in each column, corresponding to

the number of nodes in elements containing a particular node. For the system

stiffness matrix K3DPE R°933)dO933 described later in this Section, the non-zeros

constitute 0.1% to 0.2% of the total matrix. Factorization introduces new non-zeros

in the matrix in a process known as fill in. Typically, after factorization the number

of non-zeros will increase to between 1% and 2% of the matrix. These non-zeros

will be irregularly scattered throughout the matrix. Algorithms that impose an

artificial structure on the irregularly sparse matrix are not as effective as those that

recognise the irregular distribution of information throughout the matrix. Algorithms

for irregularly sparse matrices store only the non-zeros of the matrix and so are more

efficient in terms of data storage and the amount of computation performed, if the

matrix is sufficiently sparse.

6.5.4 Data Structures For Sparse Matrices

The most convenient way to specify a sparse matrix is as a set of triplets

(K,i,j). A matrix stored in this fashion requires a real array and two integer arrays.

However, factorization of a matrix requires a sequence of row or column operations
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and so storage schemes that emphasize rows or columns yield more efficient

algorithms. One alternative is to store each column of the matrix as a packed vector.

Each column, j, is stored as doublets (Ki) in a real array and an integer array. A
further array is necessary to store the number of non-zeros in each colunm. There is

some benefit in storing the elements in each column in row order but this introduces

an overhead in re-ordering the column after the introduction of a new non-zero. This

may be alleviated by storing each column as a row ordered linked list. Duff, [23],

reviews the characteristics of different sparse matrix storage schemes and their

efficiencies in different operations. The choice of storage scheme is dependent upon

the sparsity, sparsity pattern, and the computer used. For some computers, vector

operations that operate on arrays of data perform as much as an order of magnitude

faster than scalar operations on a single pair of operands. Increased performance can

be obtained by arranging data so that the computation is vector-rich even if this

introduces a large number of redundant operations. For a particular class of matrices

and a particular computer, experimentation is necessary to determine the best
algorithm and data storage to use.

6.5.5 Cholesky Factorization of Sparse, Finite Element Matrices

It has been recognised that sparse algorithms can increase the performance of

large matrix operations. NAG and the SERC have produced a version of their Finite

Element Library, called PARFEL, with parallel extensions for sparse matrix
manipulation, [35]. The library called SPARSPAK, [17] contains software to solve

sparse least-squares problems. Factorization of a matrix requires 0(N3) operations
for a dense matrix and is often the most computationally intensive matrix
manipulation in an application. Both NAGFEL and SPARSPAK devote much of

their effort to the efficient factonzation of sparse matrices. Cholesky factorization is

commonly used to solve the fmite element systems encountered in Eff

Table 6.5 compares the run time on a Sun 386i of a sparse Cholesky

factorization using two sparse algorithms. The first algorithm, used by NAGFEL,

stores the HBW diagonals closest to the leading diagonal as dense vectors. The

second algorithms recognises the irregular sparsity of finite element matrices and

stores only the non-zeros as packed, ordered columns. Three system stiffness

matrices were considered. Matrix K2DE R 761 ' 761 is the finite element system

stiffness matrix for a two dimensional disk shaped mesh of triangles. Matrices
K3 E R2405X2405 and K3DPE R 933X10933 are for cylindrical meshes of tetrahedra.
The matrix K3Dp is suitable for modelling the potential on a cylinder driven by four
nngs of sixteen electrodes K3DC is a system stiffness matrix calculated using the
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2405 noded mesh which is generally used to parameterise the conductivity when

imaging a three dimensional cylinder. It is included only as an illustration of Finite

Element matrices of its size.

The numbering of nodes in a finite element model is arbitrary. Re-numbering

the nodes yields matrices that are similar with respect to symmetric permutation of the

rows and columns. Thus the numbering can be adapted to suit the particular solution

algorithm used. Two different node numberings are used for each mathx. For the

banded storage scheme a numbering is chosen which approximately minimizes the

half band width of the matrix. The irregular sparse algorithm is more efficient on

matrices that introduce the minimum number of new non-zeros during factorization.

A minimum fill-in node numbering is calculated using the Markowitz ordering

algorithm described by Tinney and Walker, [82]. Duff [23] gives a review of optimal

ordering algorithms. The irregularly sparse algorithm took approximately three times

as long to factorize a band optimised matrix compared to the minimum fill-in matrix.

Banded Sparse	 Irregularly Sparse

Matrix K2D
	 82.12 (2.86)
	

3.60 (0.21)

Matrix K3	 3465 (34.86)
	

455 (8.26)

Matrix K3	 Not Available
	

6488 (70.0)

Table 6.5 Run time in seconds for Choleskyfactorization

and forward and backward substitution (in brackets)

on a Sun 386i.

6.5.6 Parallel, Cholesky Factorization of Dense Matrices.

By inspection of the Cholesky factorization algorithm, see Section 6.5.1, it is

clear that most of the computation occurs in the calculation of the dot products of the
k-i

partial rows;	 To effectively parallelise the Cholesky algonthm this work
p=l

needs to distributed between the processors. It is relatively straight forward to

parallelise the algorithm by distributing the columns of the matrix A in round robin
fashion as in Section 5.7.6. Table 6.5a compares the execution time of the Cholesky

factorization of a 208x208 dense, symmethc matrix, implemented on rings of P

transputers, [67]. The execution time in the case of P=1 was for an algorithm
optimised for a single processor.
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P	 Execution Time (s) Speed up 	 Efficiency

1
	

11.1
	

1.0
	

100%

2
	

5.9
	

1.9
	

94%

3
	

4.2
	

2.7
	

92%

4
	

3.1
	

3.6
	

90%

Table 6.5a A comparison of the execution times, in seconds, of

dense Choleskyfactorization on a ring of P transputers.

6.5.7 Parallel, Cholesky Factorization of Sparse Matrices

Cholesky factorization of sparse matrices is more difficult to implement

efficiently on a parallel computer. The data flow through the algorithm is more

complex and the irregular amount of calculation at each stage makes load balancing

difficult. Heath, [41], gives an excellent review of the data dependencies involved in

sparse Cholesky factorization and suggests algorithms for a range of different

hardware taxonomies including distributed memory, MIMD machines. If the

sparsity pattern of the matrix is known beforehand, or many matrices of the same

sparsity are to be factorized, there is benefit in analysing the sparsity to reduce the

work of factorization. Heath and Duff, [23], consider permutations Q: QAQT=LLT

such that the factorization introduces fewer non-zeros and exhibits higher degrees of

parallelism.

The Cholesky algorithm may be written:

FOR k=1 TON

S(i)=O	 i=k,N

FOR c=1 TO k—i

S(i)=S(i)+AkcAjc	 i=k,N

A = (A - S(i))/A	 i=k,N

This column form of the Cholesky algorithm calculates the columns of the Cholesky

factor sequentially. It emphasises operations that can be performed within columns.

The partial dot products required to calculate each column of the Cholesky factor

occur in the inner loop in the variable c (for column). If the columns of the lower

triangular part of the matrix A are distributed among P processors then each can
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concurrently calculate its own S vector, S 1 1^i^P. This parallelises the major

computational stage of the algorithm. The S i vectors need to be summed and

transmitted to the processor that stores the k th column of A where they can be used in

the calculation of the kth column of the L matrix. If the columns of A are shared

around a ring of processors with a round robin distribution then the work involved in

forming the vectors S 1 is nearly equally distributed and reasonable load balancing

results. This form of Cholesky factorization also has the advantage that it lends itself

well to computations with sparse matrices. The vector operation SI(j)=S(j)+AkCAJC

j=k to N, need only be performed if Akc is non-zero.

Once the matrix has been decomposed into its Cholesky factors the solution

may be calculated via forward and backward substitution. The forward substitution

can be achieved using the algorithm developed in Section 5.7.6 which uses the same

data disthbution as the Cholesky factorization developed in this Section. The

backward substitution performed on this column-wise data distribution is inherently

clumsy, even for dense matrices, and this affects the over all efficiency of the
substitution stage. However, as backward substitution plays such a small part in the

complete calculation, this is a penalty worth paying.

Table 6.5b compares the execution time of the parallel, sparse Cholesky

factorization and substitution algorithms developed in this Section for two of the

optimal fill-in, finite element system stiffness matrices described in Section 6.5.5. A

system with 32 right hand sides was solved. The matrix K3D P could not be factored

on our system due to memory limitations. The parallel programs were tested on a

ring of four Transputers.

Matrix K	 Matrix K3

CHOFACS	 2	 106

CHOSUBS	 0.1	 37

Table 6.5b A comparison of the execution times, in seconds, of

sparse Cholesky factorization (CHOFACS) and forward

and backwards substitution (CHOSUBS) on a ring of

four Transputers.

Table 6.5c compares the execution time of the parallel, sparse Cholesky

factorization of the finite element system stiffness matrix K 3 y on rings of up to four
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Transputers. The efficiency of the sparse algorithm drops much faster with

increasing number of processors than the dense algorithm due to the more irregular

data. Variations in the number of non-zeros in each column of the matrix and the
number of columns effecting the calculation at each stage introduces load imbalances

between the processors. These imbalances are less severe for rings with a small

number of processors as each processor deals with larger, and hence more consistent,

amounts of data. Irregularly sparse algorithms tend to be less efficient due to the

irregularity of the distribution of work. The rapidly eroding efficiency of this

algorithm limits the optimum number of processors that can effectively be used on the

calculation.

p	 Execution Time (s) Speed up 	 Efficiency

1	 342	 1.0	 100%

2	 178	 1.9	 96%

3	 126	 2.7	 90%

4	 106	 3.2	 81%

Table 6.5c A comparison of the execution times, in seconds, of

sparse Cholesky facrorization of the Finite Element

matrix K3DC, on a ring of P Transpurers.

6.6 Indirect Methods

Many of the classical iterative algorithms for the solution of linear systems of

the form Ax=b, such as Jacobi, Gauss-Seidel, Over Relaxation methods,
Richardson's method and the method of Kaczmarz may be written as:

X111 =CX +D

where C is a constant matrix, D is a vector and X are a sequence of vectors that

converge to the solution x. In some cases these methods are faster than direct

methods and they generally require less memory. Their simple data dependencies

make them highly vectorisable. Matrix-vector multiplications are straight-forward to

distribute on a parallel computer with relative little communication and good load

balancing if C is dense. If the rows of C and D are distributed between processors

then at each iteration the corresponding rows of X 11..1 may be calculated
independently on the different processors. Each iteration would involve a multi-
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node-scatter-gather to construct the complete X11 vector on each processor. An

iteration of these algorithms requires 0(N2) operations so they must converge to the

desired accuracy within 0(N) iterations if they are to compete with direct methods.

For sparse matrices the amount of calculation performed at each iteration is

proportional to the number of non-zeros in the matrix, typically 0(N), and so

indirect methods become much more attractive.

The convergence of all these algorithms depends upon the distribution of the

eigenvalues of the matrix C. For Jacobi iteration to converge, the spectral radius of C

must be less than one. Strict diagonal dominance of A is a sufficient condition for

this to hold, [33]. Convergence becomes increasingly more difficult for larger

matrices due to accumulation of errors during calculations. In practice these methods

converge only for very special, yet still important, problems.

6.7 Semi-Direct Methods

6.7.1 The Preconditioned Conjugate Gradient Method

In recent years interest has grown in methods with guaranteed convergence,

such as the Conjugate Gradient, CG, method. At each iteration this method chooses

an a which minimizes the residual, b—A(X+ctS 11 ), along some search direction

S n and the nth iterate is updated by the correction: X 41 = X-i-aS. The search

directions, S, are chosen to be an orthogonal set. For exact arithmetic the CG

method is guaranteed to converge within N iterations. However, for ill-conditioned

problems and fixed precision arithmetic, the convergence may be slow or it may not
converge at all. Golub, [33] has shown that:

[ (1_K'12)/(1-f-K'a) 2n

where K is the condition number of the matrix A, defined as the ratio of the largest to

smallest eigenvalue, and E is the error at the nth iteration. The convergence can be

accelerated by solving a better conditioned system, with condition number closer to

one, produced using a symmetric preconclitioner C: (CAC)(C 1 x) = (Cb). Efficient

algorithms exist for performing precondition conjugate gradient iterations without

performing matrix-matrix multiplications or calculating C 1 explicitly.
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6.7.2 Preconditioning by Incomplete Choleski Factorization

Many methods have been suggested for the calculation of preconditioning

matrices for the solution of finite element systems. The least sophisticated

preconditioning matrices are the iteration matrices for standard indirect methods such

as Jacobi and Gauss-S eidel. Clearly there is a trade-off in the effort used to calculate

the preconditioner and the rate of convergence we expect from it. This is particularly

the case where the matrix A is distributed on a multi-processor system. The optimum

preconditioner is C A-1 which converges in a single iteration. Thus the best
preconditioners approximate the inverse of A. Where A has a regular structure an

approximate inverse may be calculated assuming a similar sparsity pattern in C as in
A. Lipitakis, [53] and [54], for example, considers several algorithms based on this

idea and their implementation on parallel computers. However, for irregularly sparse
matrices, the similar sparsity pattern assumption does not hold. Methods based on

preconditioners calculated by solving the fmite element problem on coarse grids were

investigated by Wait, [84]. These methods have been shown to be effective yet the

calculations involving two finite element meshes are more relevant to SIIMD or shared

memory machines due to the complexity and irregularity of data flow.

A particularly promising preconditioner is described by Meijerink and van der

Vorst, [58]. During preconditioned conjugate gradient iterations a vector y needs to

be calculated where: y=Cd. Meijerink suggests setting C to be the LU factorization

of a matrix close to A: C=LU=A+Ra, where is a matrix whose element are

small. Their scheme for calculating L and U neglects terms in the LU factorization of

A that are small or do not match some predetermined sparsity pattern. The procedixe
is known as an incomplete LU factorizarion. When the technicp.ie is applied to a
symmetric matrix, such as in a finite element system, the symmetric preconditioner is

calculated by an incomplete Cholesky factorization. In calculating a conjugate

gradient iteration the systems of the form y=Cd < LL Ty=d can be quickly solved by
forward and backward substitution. Once again there is a trade-off between the effort

exerted in calculating an LLT factorization close to A and the rapidity of convergence.

Table 6.7a compares the times required to solve the finite element system

K3DC x=b, as described in Section 6.5.5, using Incomplete Cholesky Factorization
Preconditioned Conjugate Gradient, ICFPCG. As K3DC is irregularly sparse a
threshold was used when calculating the incomplete factorization. The coefficients in

the matrix Ra=ALLT are restricted in absolute value to be less than the threshold c.

As a is decreased the time to perform the incomplete factorization approaches that to
calculate the full Cholesky factorization and the number of iterations required for
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convergence decreases. Figure 6.7a displays a constant rate of convergence for a

range of a's showing a stable and reliable algorithm. As a is decreased the

factorization produces a less sparse L matrix which requires longer to perform a

forward and backward substitution. The convergence gained in each iteration is
approximately proportional to the time required for substitution. This test used a first
estimate vector, x0, equal to the zero vector. In practice, a good first guess can be

constructed from the potentials calculated during the previous iteration of the

reconstruction algorithm. As the reconstruction algorithm converges the conductivity

changes between iterations become smaller and a first estimate generated using this

method becomes better.

TIME IN SECONDS

Figure 6.7a A comparison of the convergence of Incomplete Choleski Factorization
Preconditioned Conjugate Gradient Iteration, ICFPCG, used to solve the Finite
Element system K3Dx=b,. Six preconditioners were calculated using different cut-
off values. From left to right on the graph they were 1.0, 0.005, 0.001, 0.0005,

0.0001 and 0.00005. The measure of convergence is the log base 10 of the residual

power; log(RTR) where R=K3DCX—b.
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A threshold needs to be set to decide when the ICFPCG method has

converged to sufficient accuracy. The forward modelling part of the reconstruction

algorithm needs to be able to model boundary voltages to at least the precision that

electrical measurements can be performed on the region to be imaged, i.e. =0.1%.

The boundary currents are electronically defined to approximately the same precision.

The ICFPCG method calculates the residual power, RTR where R=K3DCX—b. The
residual vector is the error in the currents associated with the present best estimate

potential in the finite element mesh. To calculate the relationship between residual

power and the error in the potential it is necessary to calculate the smallest eigenvalue
of the matrix K3Dc. To perform this exactly is an infeasibly intensive calculation
although Dongarra, [22], gives a quick method to calculate a numerical

approximation. Generally the relative error in the boundary currents is larger than
that in the potentials, as the boundary potential is a much smoother function than the

potential, so it is reasonable to iterate until the residual power is of the same order as

the relative error in the current vector. For the matrix considered this corresponds to

a log residual error of log 10 (RTR) = —7. The optimal choice of a=0.005 achieves
this in 300 seconds compared with 455 seconds for a full factorization.

The ICFPCG method has the potential to increase the speed of the forward

modelling stage of three dimensional reconstruction. More importantly, the method

uses a fraction of the memory needed for complete factorization. As yet the method

has not been successful when applied to the matrix K3DP due to accumulation of
errors during the calculation of the incomplete factorization. This is a promising area

of further work.

6.8 Conclusions I

The forward modelling stage of a reconstruction algorithm occurs in two

distinct stages; calculating the system stiffness matrix and solving the finite element

system. For models with large numbers of nodes the solution of the finite element
system dominates the time required for forward modelling.

The sparsity of the system stiffness matrix can be exploited by some solution

algorithms to produce a result after less computational effort. Sparse direct methods

were significantly faster than dense algorithms, both on serial and parallel computers.

Sparse, semi-direct methods are potentially faster but, as yet, not reliable enough to

be incorporated into robust reconstruction algorithms. They were found to be more

complex than direct methods and so more difficult to implement in parallel.
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6.9 Building the Derivative Matrix

Calculating and solving the Newton system bears many similarities to

calculating and solving the finite element system. As with the finite element

calculations, a matrix needs to be constructed using the S(ij,k,element_shape) data

and then the matrix system needs to be solved.

Each row of the derivative matrix, J = E JIaSk E R N, corresponds to the
derivative of a different experimental measurement, as defined in Section 2.2.3, with

respect to the conductivity parameterisation. Each row is calculated in two stages.

First the derivative with respect to the conductivities parameterised in the potential
mesh basis functions is calculated using Equation 2.5b. Then each row is used to

calculate the derivative with respect to the conductivities defined on the coarser
conductivity mesh. The data required for this calculation are the potentials throughout

the region calculated by the forward modelling stage of the reconstruction algorithm,

the S(ij,k,element_shape) array, and the mesh correspondence array, MCA. The

MCA contains the coefficients necessary to express the coarse, conductivity mesh

basis functions as a linear combination of the finer, potential mesh basis functions.

Any function approximated in the potential mesh can be approximated in the

conductivity mesh by premultiplying by the MCA: f = MCA f. Thus the

derivative calculated using the S(ij,k) data may be mapped onto the coarser mesh
using the MCA.

Each row of the derivative matrix may be calculated independently as no row

depends upon any other row. Consequently each row may be calculated in parallel

on a different processor assuming that each processor has access to the required data.

In practice the number of processors is less than the number of experimental

measurements used for reconstruction and so each processor calculates several rows.

This distribution of effort results in good load balancing and very little inter-process

communication. The drawback is the large amount of data that is needed by each

processor. The potential data is available on all processors after the forward

modelling stage of the algorithm but the MCA array can be large, even when stored as

a sparse matrix. Storing a copy of the MCA on each processor requires a large
mount of memory.

6.10 Solving the Newton System

In Section 2.6 two methods for solving the regularised, least squares
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system, Equation 2.3c,d, were considered; one based on Cholesky factorization and

the other on QR factorization. The method based on Cholesky factorization involves

explicitly calculating the matrix (JTJ+I)=LT. The conductivity update can then by

calculated from LLTA( m=JTAV by forward and backward substitution. The matrix
jTj may be calculated by summing the outer products of the rows:

jTj =
	 (6.lOa)

where i,j index the experimental measurements used for reconstruction. The

contribution from each row to the product matrix may be calculated in parallel. The

way this matrix is distributed is determined by the requirements of the Cholesky
factorization algorithm. The algorithm developed in Section 6.5.6 requires the data to
be distributed by column, round robin fashion. If, after each processor has calculated

a row of the derivative matrix, this data is spread around the processors using a

multi-node-scatter-gather, each processor can use Equation 6. lOa to calculate the

necessary columns of jTj• The Tikhonov factor, .tI, can easily be applied before

factorization and substitution.

The second method considered was based on QR factorization. Although this
method requires more operations, and hence takes longer to execute on a sequential
machine, it could possibly be faster in on a parallel computer and has the potential to

yield more accurate results. Two QR factorization algorithms were implemented on

the Transputer network. The first used Given's rotations to zero the strictly lower

triangular part of the matrix while the second used Householder transformations,

[33]. Both algorithms require the same number of operations and the same amount of

data is transmitted between processors during the calculations. Table 6. lOb compares
the performance of these two algorithms on a ring of Transputers, [67]. On a single

Transputer the Householder method is faster due to the simpler organisation of the

calculations into vector operations which allows extensive use of optimised GAXPY

subroutines. The Householder method retains its advantages on multi-Transputer

networks by transmitting vectors of data rather than the single rotation angles passed

using the Given's method. QR factorization using Householder transformations has

comparable efficiency to Cholesky factorization while requiring significantly more

operations. Thus the Cholesky factorization method is significantly faster, even on a

parallel machine. The reduced accuracy is not important as we are performing a linear

step in a non-linear inverse problem. The error introduced by calculating the linear

step to sub-optimum accuracy is small compared to the difference in behaviour

between the linear approximation and the true non-linear function.
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QR Factorization by Given's Rotations.

p
	

Execution Time (s) Speed up
	 Efficiency

1
	

104
	

1.0
	

100%

2
	

65
	

1.6
	

80%

3
	

47
	

2.2
	

73%

4
	

38
	

2.7
	

68%

QR Factorization by Householder Transformations.

P	 Execution Time (s) Speed up	 Efficiency

1
	

81
	

1.0
	

100%

2
	

43
	

1.8
	

94%

3
	

29
	

2.8
	

93%

4
	

22
	

3.7
	

92%

Table 6.lOb A comparison of the execution times, in seconds, of

two QR factorization algorithms. The test matrix was of

size300x2O8.

Where the derivative matrix is under-determined, M<N, it is necessary to solve the

regularised system (JJT+i1)Y=AV. The (k,1)th element of the matrix T is the dot

product of rows k and 1 of the derivative matrix. The matrix (JJT± j.tI) is small,

symmetric, positive definite and dense so Cholesky factorization is the standard

solution algorithm. A round robin distribution of the columns of (JJT+ t I) is

required. This can be accomplished by saving the rows of the derivative matrix as

they are calculated on each processor. When all the rows have been calculated the

columns of jjT can be calculated by rotating the calculated rows around the

processors.

6.11 A Parallel Reconstruction Program.

All the stages in the reconstruction of an impedance image have been

investigated in this Chapter. For each stage the most efficient serial method has been
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sought and in each case this has lead to highly efficient parallel algorithms. These

parallel algorithms have been chosen to use consistent data structures so that data is

not re-distributed between stages of the reconstruction. The building blocks

developed in this Chapter can be brought together to implement a range of
reconstruction strategies.

Figure 6.11 Over all design of the parallel reconstruction application.

The tasks that make up the parallel reconstruction program RECON and their
configuration on a network of four Transputers are shown in Figure 6.11. The four

Transputers are indicated by the large boxes. On each Transputer there is a
reconstruction process, RECON, and a communications process, TXBUS. In

addition the root Transputer has a process called DRIVER which controls all

interaction with the host computer. A concurrently executing part of DRIVER called

SCRMS intercepts error messages on the communication system and passes them to

the host computer. The task AFSERVER, executing on the host computer, controls
interactions with the Transputer network.
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RECON is a parallel reconstruction program designed to execute on a uni-

directional ring of any number of Transputers. It is integrated into the network wide

communications system known as TXBUS and error reporting facility. An identical

copy of the program RECON executes on each Transputer. The main module of
RECON looks very similar to a serial implementation of the reconstruction algorithm.

The subroutines called by RECON, for example those that construct the Finite

Element system stiffness matrix or the matrix factorization routines, are implemented

to perform their tasks in parallel. Global parameters tell each copy of the program,

running on its own Transputer, about the configuration of the network, the number of

Transputers etc. When the reconstruction program is initiated each copy of RECON

is sent a Transputer Identification Number, IDTX, by the process DRIVER which
identifies its place in the network.

The communications system, TXBUS, is comprised of an identical process

executing on each Transputer. The TXBUS executing on each Transputer can

communicate with the TXBUS's on the adjacent Transputers around the ring and to

each concurrently executing process on its own Transputer. Messages are passed

from TXBUS to TXBUS around the ring until they reach the destination Transputer.

The message is then passed to the appropriate process on that processor. In this way

messages can be passed from any process on any Transputer to any other process on

any Transputer. A TXBUS process can hold a queue of messages waiting to be

received by other processes executing on the same Transputer. Messages that are

being routed around the ring are not delayed by the stalled messages waiting in this

queue. This has been achieved by writing TXBUS as two concurrently executing

processes, known as threads. A series of messages communicated between two

processes will still always arrive in the order that they were sent.

A process known as DRIVER controls all communications between processes
on the Transputer network and the host computer. The DRIVER is connected to a

server, AFSERVER, executing concurrently on the host computer. Only a single

process executing on the Transputer connected to the host computer, known as the

root Transputer, can be connected to AFSERVER. Through AFSERVER the

DRIVER can request the reconstruction data from the host file system. This data is

then sent to the RECON processes executing throughout the network via the TXBUS
communications system. DRIVER initai.ises all the declared processes by sending
them their IDTX to identify their position in the network.

An error reporting subroutine can be called by any process on any Transputer.

This subroutine constructs an error message which includes the name of the calling

subroutine, the name of the calling process and the Transputer Identification Number.
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The error message is passed around the ring until it reaches the root Transputer.

SCRNMS, a thread of the process DRIVER, receives the error message and requests

AFSERVER to print the error message on the screen of the host computer. This error

reporting scheme has been quite successful but fails if there is a problem with a

processor on the ring between the source of the error message and the root

Transputer.

6.12 Conclusions II

In this Chapter the stages involved in performing a single iteration of a

Newton based reconstruction algorithm have been investigated. The most

computationally expensive stages in a reconstruction have been identified as the

solution of the matrix equations during the forward modelling stage and the

calculation of the conductivity update. Both the matrices in these systems of

equations are symmetric and positive definite. The finite element matrix is irregularly

sparse while the matrix used to calculate the conductivity update is dense. Of the

methods investigated, Cholesky factorization was found to be the best solution

method for both stages of reconstruction on serial and parallel computers. An

irregularly sparse Choleski factorization algorithm was developed to solve the finite

element system.

The reconstruction algorithm RECON has been implemented on a ring of

Transputers using the best algorithms developed in this Chapter. The performance of
this program is described in detail in Chapter 7.

99



Chapter 7

Performance of The Oxford EIT System

7.1 The OXPACT II System

The Oxford Polytechnic Applied Current Tomograph (OXPACT II) is a

complete system for the imaging of conductivity distributions. It is comprised of four

major components; a phantom, the Data Acquisition System (DAS), an Interactive

Tomograph Controller (ITC) and a suite of reconstruction software. The DAS drives

electric currents through a set of electrodes attached to the region to be imaged.

Voltage measurements can be made on another set of electrodes interleaved with the

current driving electrodes. For the OXPACT H system the electrodes are attached to

a purpose built test object in which a range of controlled conductivity distributions

can be set. The operation of the Tomograph is controlled by the ITC. It directs the

operation of the DAS by specifying the currents to be set and the voltages to be

measured. The data collected by the ITC is passed to an image reconstruction

program which calculates an image. This image is displayed by the 1TC.

7.2 The OXPACT II Phantom

7.2.1 The Design of the Phantom

The phantom is the experimental object upon which electrical measurements

are made. The OXPACT II phantom and the rationale of its design are described in
detail in Paulson et al, [71]. It is a perspex pipe of internal diameter 300 mm and a

height of 50 mm with a flat lid and base also made from perspex. Set into the curved

surface are 32, rectangular, current driving electrodes measuring 8.8 mm wide by 30

mm high. These electrodes are equally spaced around the curved surface with their

edges parallel. This configuration is invariant in the vertical (z) direction and so,

except for edge and corner effects at the top and bottom of the electrodes, yields
electrical fields which are independent of z. The 32, small, needle shaped, voltage

measurement electrodes are placed mid way between the current driving electrodes

and half-way from the base to the lid. All the electrodes are gold plated to prevent

them from corroding and in an attempt to provide constant and uniform contact
impedance.

A design choice was made to use needle shaped point electrodes instead of
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narrow, strip electrodes parallel to the current driving electrodes. The point

electrodes were chosen so as to be relatively insensitive to the distortions introduced

by the top and bottom of the phantom. The point electrodes have little effect on the

electric fields in the phantom. Thus their existence can be neglected when modelling
the phantom.

The configuration of the current driving and voltage measuring electrodes was

chosen so that the phantom could be easily modelled using the fmite element method.

As the electric fields induced in the phantom are invariant in the z direction they can

be simulated with a two dimensional model. It was found by experiment that current
driving electrodes covering 30% of the boundary gave the best agreement between the

Boundary Fourier method and the Finite Element method for small numbers of

nodes, see Section 4.10. The configuration of electrodes described represents a

compromise between the size of the signal we can expect to measure and the accuracy

with which we can model the behaviour of the phantom (see Section 3.7). Voltage

measurements made on large, current carrying electrodes would produce larger

signals but would be very sensitive to variations in contact impedance and electrode

placing while being difficult to model accurately using the Finite Element method.

The conductivity of the phantom can be set by filling it with saline solution of

the appropriate concentration. Regions of near infinite conductivity contrast can be

introduced by immersing blocks of metal or wood in the saline solution. Finite

conductivity contrasts can be constructed from blocks of agar jelly doped with salt.

The OXPACT II phantom allows real electrical measurements to be made on a region
similar in size to the human chest with near arbitrary conductivity distribution.

7.2.2 Testing the Phantom

Considerable effort was put into determining the geometry of the phantom.

The circularity of the cross-section of the phantom and the placement of the electrodes
was set to within 0.2 nmi, corresponding to an error of 0.07% in the diameter of the

phantom. The largest error in the complete OXPACT II system is in the placement of
the voltage measuring electrodes mid-way between adjacent current driving

electrodes. The distance between the edges of adjacent current drive electrodes is
20.65±0.28 mm., a variation of 1.4%. When the accuracy of the placement of the

voltage measuring electrode is taken into account, this can lead to an error of 3% in

the measured voltage when current is driven between adjacent electrodes. This will
lead to large voltage measurement errors for current patterns with high spatial

frequencies.
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c)
C

As described in Section 3.6.1, a trigonometric current density, J(e), applied

to the boundary of a homogeneous disk of radius R and conductivity c induces a

boundary voltage V(9):

J(0) = sin(ke)

or	 J() = cos(k8)	 V(8) =_ J(8)

The characteristic resistance, r, of a uniform disk can be defined as k times the

amplitude of the boundary voltage divided by the amplitude of the boundary current
density.

==i
C ka .:y

4	 6

Current Drive Spatial Frequency.

Figure 7.2 A comparison of the characteristic resistance of the OXPACT II phantom

and that predicted by the Boundary Fourier method for the same configuration of

electrodes as afunction of the spatial frequency of the current drive patterns.

For a homogeneous disk driven by trigonometric current patterns the characteristic

resistance is constant, independent of the driving spatial frequency. Cheng et a!, [1],
have shown that for the complete model of Section 3.5.3 the characteristic resistance
is constant to ±10% for the range of applicable current drive spatial frequencies.

Figure 7.2 compares the characteristic resistance of the phantom with that calculated

using the Boundary Fourier model for the hybrid configuration of electrodes. Its near
linear decline to zero with increasing spatial frequency of the driving currents is a
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feature of voltage measurement mid-way between Imite current driving electrodes, as

described in Section 3.7. The deviation between experimental measurement and

theoretical prediction is consistent with a systematic electrode placement error within

the placement precision. This result shows agreement between model and experiment

to within experimental error for a basis of current patterns. Consequently, we can be
confident that the numerical model will accurately mimic the behaviour of the
phantom for all applied current patterns.

7.3 The OXPACT II Data Acquisition System

Electrical experiments are performed on the phantom by the Data Acquisition

System (DAS) driven by an Interactive Tomograph Controller, ITC, resident on a PC

clone. The DAS is capable of setting an arbitrary set of currents on the phantom

current driving electrodes. It can also measure the voltage between arbitrary pairs of

voltage measuring electrodes or between electrodes and earth. A detailed description
of the design and function of the DAS can be found in the Ph.D. thesis of Zhu, [90].

7.4 The OXPACT II Interactive Tomograph Controller

The Interactive Tomograph Controller, ITC, tells the DAS what current

patterns to set on the phantom and what voltage measurements to make. It allows the

user to choose a range of pre-defined current patterns and voltage measurement
patterns or arbitrary current patterns can be set up by the user, one electrode at a time.

The current or voltage on any electrode can be displayed on the screen as an RMS

measurement or graphed as a function of time. The ITC can also display graphs of

electrode voltages and currents as a function of electrode number. This provides a

useful diagnostic when acquiring data for reconstruction. It has many checks built

into it to test for fault conditions on the DAS. Typical faults would be electrode

voltages out of the range of the measurement electronics or poor connection between

an electrode and the phantom. The ITC also displays the images produced by the

reconstruction software. These are displayed on the screen of the PC as colour coded

contour plots with interactive user set parameters.

A novel method of current setting by voltage driving is used, see [89]. The
ITC uses the DAS to measure the transfer impedance matrix of the phantom. The

voltage pattern that would be induced by the desired current pattern is then calculated

using the transfer impedance matrix. Electronic voltage drivers apply this voltage

pattern to the current driving electrodes so inducing the desired current pattern.

Matched voltage sources are much simpler devices to build than matched current

sources and so their use has lead to a considerable simplification of the DAS. If the
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induced current pattern is not sufficiently close to the desired pattern, an iterative

refinement strategy can be used. With refinement this system is capable of setting

current patterns with a difference norm of 0.2% of the desired current pattern. As

current patterns that are close to optimal current patterns will also be close to optimal

this is more than adequate for the purposes of EIT. The degradation of the data

through setting currents close to optimal is not significant.

To generate data for impedance imaging the ITC sets a basis of trigonometric

current patterns and measures the voltages on all the voltage measuring electrodes

relative to earth. Two data files are written to disk; one containing the current patterns

actually set and the other containing the voltage measurements. The voltage

measurements can either be the raw electrode voltages or weighted sums of electrode

voltages using the specified measurement patterns. Alternatively, the voltage

difference between pairs of electrodes can be measured directly by the DAS. These

data files are used by the suite of reconstruction software to calculate impedance

images.

The data from the OXPACT system can be input into three different

reconstruction software packages. Two of these packages, using different

algorithms, are resident on a Sun 386i work-station and a third runs on a ring of four
transputers in a Zenith XT.

The present system is not capable of performing fully adaptive reconstruction.

This requires two way communication between the reconstruction package and the

ITC, which are resident on different computers. Reconstructions performed by the

present system are based on a single set of current and voltage measurements while

adaptive reconstruction will use a different set for each iteration of the reconstruction

algorithm. Adaptive reconstruction will be under the control of the ITC. It will

calculate the optimal current and measurement patterns using the transfer impedance

matrices of the phantom and the model used by the reconstruction software. These

current patterns will be applied and the electrical measurement data files written to

disk. The ITC will request a new best estimate conductivity and transfer impedance

matrix to be generated by the reconstruction software using the latest set of

experimental data. In a third file the ITC specifies the parameters of each

reconstruction step, such as the number of iterations, number of current and voltage

patterns to use, and the Tikhonov regularisation factor. This system, which is in a

late stage of development, will allow interactive reconstruction of images based on the
display of the present best solution.

104



7.5 Sequential Two Dimensional Reconstruction

Three sequential reconstruction algorithms have been implemented, two for

two dimensional reconstruction and one for three dimensional. All three

reconstruction programs accept the current pattern and voltage measurement files

produced by the ITC as input data. A third file controls the parameters of the

reconstruction. Two reconstruction strategies have been used, known as RECON

and POMPUS. Two dimensional reconstruction has been implemented using both

sategies while only POMPUS was implemented for three dimensional imaging.

7.5.1 RECON

RECON performs two dimensional reconstruction using pre-defined

measurement patterns. The full RECON algorithm can be expressed in pseudo-code

as:

WFIILE II R( m) R( e)II > DO
• measure R(m) and calculate the first jmax optimal currents, Jj

• make the measurements E 1 :i=1,2,3.....imax; j=1,2,3,. . .,jmax

• Solve the regularised, Least Squares equation using:

{JTJ+jj)4JTE

•	 + z\(

END WHILE.

where J is the Jacobian matrix. Experimental measurements, 	 were defined in
Section 2.2.3.

The measurement patterns used by RECON are either trigonometric or bi-

polar. Bi-polar measurement patterns are equivalent to measuring the voltage

difference between two electrodes, often adjacent pairs. Either set of measurement
patterns form a basis for the space of voltage measurements. Although thirty one

measurements are required for a basis, as we have the constraint (Ve^1_ye)=O,

thirty two measurements are made to maintain symmetry. These are of the form:

M " =e k +l_ ek	 1^k^31

LA	 '-1	 '32

where M' is the kth measurement pattern and e is the th standard basis vector.
Thirty one trigonometric measurement patterns are used;
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M k = cos(2{i--)) :	 k=1,15

and	 M'	 = sin(2(i-i--))	 k1,16

where MI' is the weighting for the voltage measurement on the th electrode for the kth

measurement pattern.

Up to thirty trigonometric current patterns can be used for reconstruction:

sin(2i)	 and	 = cos(2t2 )	 l^k^15

The sine pattern with k=16 applies no current and the cosine pattern with k=16 gives

zero voltage readings on conductivity distributions that are homogeneous near the

boundary.

An over-determined Jacobian matrix is constructed with a row for each

experimental measurement. This configuration yields 30x31=930 theoretically

independent measurements. As these measurements may be numerically dependent

due to noise, typically less than 500 conductivity parameters are calculated. The

associated regularised, Least Squares problem, Equation 2.3c, is solved using

Cholesky factorization as described in Section 2.6.1.

7.5.2 POMPUS

POMPUS also performs two dimensional reconstruction. The full

POMPUS algorithm can be expressed as:

WHILE E 11 > eDO

• measure R(am) and calculate optimal M 1 and J

• make the measurements E: E 11> e

• solve the regularised, Least Squares equation using:

= JT(JJT+d}-lE

•	 +

END WHILE.

For each iteration of the WHILE loop the experimental measurements E 1 are used

which are greater than some noise level within the measurement process. OXPACT
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II applies predetermined, trigonometric current patterns and so POMPUS has only
partially been implemented. For each applied current pattern a single, optimal voltage
measurement is made using the half optimal measurement pattern:

Mk = vr-v	 where	 VmVe I =J (vp-v
IvmveI

where Mj' is the jth component of the kth measurement pattern and vm and ye are
vectors of electrode voltages measured on the model and on the region respectively.

This would be the full, optimal measurement pattern, as described in Section 2.2.5, if

the applied current patterns were optimal. The regularised, Least-Squares problem

solved by POMPUS is much smaller than that solved in RECON. POMPUS uses

only one equation for each Current pattern used in reconstruction compared with

thirty-one for RECON. In both POMPUS and RECON the calculation of the

conductivity update requires the factorization of a dense, symmetric matrix. The size

of the matrix factorized by POMPUS is of the order of the number of experimental

measurements used in the reconstruction, while in RECON it is of the order of the

number of parameters in the conductivity mesh. As factorization is an 0(n3)

process, POMPUS runs significantly faster than RECON.

POMPUS uses far fewer constraints when calculating the conductivity

update. If n current patterns are applied, the conductivity update used at each iteration

of POMPUS is the minimum norm

T
YmEii.	 1^i^n

where there is one equation for each current pattern used for reconstruction. The

other n(n-1) constraints:

(i)T0.m =0	 1^i,j^n; i^j	 (7.5a)

are not used when calculating zm. Paulson et al, [72], have shown that when am

and cYe are both rotationally symmetric distributions on disks the constraints in

Equation 7.5a are satisfied automatically by the conductivity update calculated using

the method of Equations 2.3d. As the error in the experimental measurements,

is decreased by this algorithm, it is guaranteed to converge in the same sense

as RECON. A convergence proof for POMPUS is given in the next three sections.
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a) Target conductivity distribution.

b) RECON	 c) POMPUS

Figure 7.5a The reconstructed image of a uniform, two dimensional, disk of radius

15cm containing three anomalies of radius 4cm and conductivity contrasts of 05,

2.0 and 4.0. Image a) shows the target conductivity distribution. Image b) was

produced by five iterations of RECON while image c) required seven iterations of

POMP US.
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7.5.3 Convergence of Reconstruction Algorithms

A reconstruction algorithm may be said to be converging if the norm of the

difference in the transfer impedance operators, IID(o-1)II where D(m)R(m)_R(e),
is decreased at each iteration. An algorithm may converge to a local minimum of the
function IID(m)II or to the global minimum HD (om) II = 0 where no experimental

measurements can distinguish the model and experimental conductivity distributions.

Typically there will be some noise level, e, within the measurement process.

Conductivity updates calculated using experimental measurements smaller than C are

determined by the noise rather than the signal. Thus, reconstruction algorithms

generally terminate when JID(m)II<C.

When D(a) is expressed in the optimal bases, defined by the matrices

U(m) and V(m), it is a diagonal matrix, D=Diag(E 11 ,E22 .....	 When current

and measurement patterns are expressed in these bases the optimal patterns are the

standard basis vectors, e 1 . Using these bases to define D allows the experimental

measurements to be written E=e1TDe. Thus as long as D is expressed in the local

coordinate system defined by U(m) and (m)' the Frobenius norm of D is

determined by its leading diagonal:

p
IID(Ym)II	 Ei(m)

i= 1

The steepest descent direction of a function F at the point x is -VF(x). A

vector in a direction within 900 of the steepest descent direction is known as a descent

direction. Iterative algorithms for minimising a function, F, by repeatedly adding

corrections along descent directions have been studied by Fletcher, [26]. These
algorithms are shown to converge given very mild conditions on the smoothness of F

and the size of the updates. The gradient of F, VF, must be uniformly continuous on

the level set (x:F(x)<F(x0) } and the size of the update must satisfy the Wolfe-Powell

conditions. The smoothness condition is satisfied by the function:

= IID(m)II.

Once a descent direction has been determined an update can be found which satisfies

the Wolfe-Powell conditions in a finite number of steps. Thus, to show that the

reconstruction algorithm converges it is sufficient to show that the conductivity

update is along a descent direction and to allow the appropriate amount of the update
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(VSEj)k = _- =
Sk	 Sk

(7.5b)

to be added at each iteration. In the remainder of this section it is shown that the

POMPUS update is along a descent direction.

7.5.4 The Steepest Descent Direction.

The direction of steepest descent of the Frobenius norm of D is:

ZVsIID(Ym)II2

where V is the gradient operator with respect to the conductivity parametrisation.

When differentiating	 with respect to changes in the model conductivity

distribution, changes in the optimal patterns used to define must be taken into
account. The matrix D is diagonal when the currents and voltages are expressed in
the singular bases. The diagonal elements of D are its singular values which are equal

to the experimental measurements, and the singular functions are the

standard basis vectors, e 1 . The derivative of the singular values of D with respect to

changes in its elements allows for the variation in the singular vectors of D. Thus the

k'th component of the vector VE jj can be written:

An expression for the derivative of a singular value with respect to variations in a

matrix can be obtained by a natural extension of the result of Horn and Johnson, [43]:

= VTDU+uTDTV = Re(vTD'U)= Em)
uTu+vTv	 i=1

where u and v are the left and right singular vectors associated with the singular value

X. Thus, the derivative in Equation 7.5b may be written:

-	 - Re(v11\u\.
Sk	 Sk	 Sk/ )

Breckon, [9], has shown that, to a linear approximation, the change in the voltage

measurement vjj =<Mj R( cYm)Jj>. zv j due to a conductivity change A=EsB=SB
is:
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Av 

= -f ( 
skBk)V i. V i = - skj BkVj.Vj

where and are the potential fields induced in the conductivity distribution 0m by

boundary current densities M and Jj respectively. As the voltage measurement, v,

differs from the experimental measurement E 1 by a constant additive factor, Equation

7.5b may be written:

(vE1k 
= -j 

BkVi.Vj

The Steepest Descent direction, Z, is thus Z = 2JTE where:

(Ji,k=!= -1 BV.Vp
ask	

JJc2

E Tand	 E=(E11 E22 E33 ...

7.5.5 The POMPUS Direction

The POMPUS direction is defined by the Least Squares system:

As = JT(JJT+2J)-lE

The angle, a, between the unregularised POMPUS update and the steepest descent

direction satisfies:

cos(a)= As.Z
	

(7.5c)
IIAsIIIIZII

The denominator of this expression is positive as it is the product of the norms of two

vectors. When the Tikhonov regularisation factor is zero, i=O, the numerator can be

shown to be positive:

AsZ = AsTZ = (JT(JJT^2I)lE)T(2JTE)

= 2ET((JJTY. l)TJJTE

=2ETE

=2HE 112 ^ o
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The condition that cos(a)^O implies that the angle between the POMPUS update

direction and the Steepest Descent direction Iai^90°. Thus the POMPUS update must

decrease the Frobenius norm of D if the size of the update is sufficiently small. In

practice the conductivity update is AsB unless this results in an increase in the norm

of D in which case a smaller step can be made or the Tikhonov factor can be

increased.

The denominator of Equation 7.5c can be simplified:

IIAslI 2 I!Z11 2 = 4ET(JJT)IEET(JJT)E

^ 4IIEii"K(JJ)

where K(A) is the condition number of the matrix A. Equation '7.5c may be written:

211E112	 >	 1cos (a) =	 ______

2IIEII2 fK(JJT)l - K(J)

Thus the POMPUS direction diverges from the Steepest Descent direction as the

Jacobian matrix becomes more ill conditioned. As the Tikhonov factor is increased

the POMPUS direction converges to the Steepest Descent direction. As ji—oo

JT(JJT+ 2I)-l E = 1 JTE +
jt4J

Thus, the POMPUS update is always in a descent direction and so will

converge to a minimum of the function IID(am)II.

7.5.6 Comparing RECON and POMPUS

The two, two dimensional algorithms were compared by performing

reconstruction on synthetically generated data. The finite element method was used to

predict the voltages that would be measured on the phantom if the conductivity

distribution were uniform with three disjoint areas of different conductivity. These

areas had conductivities of 0.5, 2.0 and 4.0 (cm) compared to a background

conductivity of 1.0 (c2cm) 1 , see figure 7.5a. To avoid inverse crimes, which lead to

spuriously good reconstructions, the synthetic data was generated using a much finer

mesh than that used by the reconstruction software. Both programs used the K2D

finite element mesh described in Section 6.5.5 for the forward modelling part of the

reconstruction. The resulting images are comparable in resolution.
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a) no noise, RECON	 b) no noise, POMPUS

c) 10% noise, RECON	 d) 10% noise, POMPUS

e) 100% noise, RECON
	

f) 100% noise, POMPUS

Figure 7.5b The reconstructed image of a unzform, two dimensional, disk of radius

/5cm and conductivity a=1 (Qcm) 1 containing an anomaly of radius 15cm and a

center 3cm from the edge with a conductivity 0=10 (Qcm). Images a,c and e were

produced by RECON and b, d and e were produced by POMPUS.
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A second test was performed to determine the effect of noise on the two

reconstruction algorithms. Synthetic data was generated for a two dimensional, disk

shaped area containing an anomaly near one edge. White Gaussian noise was added

to this data to yield noise to signal ratios (noise power divided by signal power) of
0%, 10% and 100%. Images reconstructed using RECON and POMPUS are

compared in Figure 7.5b. Once again, RECON and POMPUS produce very similar

results with POMPUS reconstructions degrading slightly faster with increasing noise.

Comparisons under identical conditions are difficult as the two algorithms require

different regularisations.

RECON
	

POMPUS

Forward Modelling.

Building FEM matrix
	 1.25
	

1.25

Solving FEM system
	 14.2
	

11.3

Calculate Update

Cl ME S H

Build Least-Squares system
	 212
	

6.72

Solve Least-Squares system
	

3.18
	

0.04

C2 ME S H

Build Least-Squares system
	

565
	

9.02

Solve Least-Squares system
	

203
	

0.04

Figure 7.5c Comparison of the rime (seconds) required for a single iteration of tile
reconstruction algorithms on a Sun 386i.

To quantify the relative speeds of reconstruction the time required to perform

various stages of reconstruction using RECON and POMPUS are compared in Table

7.5c. For comparison, the conductivity image was calculated on two

parameterisation meshes; C1MESH has 93 nodes and C2MESH has 381 nodes. The

resulting images are virtually the same using these two conductivity meshes indicating

that the resolution was limited by the noise rather than the number of conductivity

parameters. Sixteen current patterns were used in each case.

The forward modelling part of the algorithms differ only in the number of

right-hand-sides in the finite element system. These times are included for

comparison with later stages in the reconstruction. The time required for POMPIJS

to construct the Newton system is much smaller than RECON due to the fewer
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experimental measurements used for reconstruction. The Jacobian matrix built by

RECON has thirty one times as many rows as that built by POMPUS. The Least
Squares matrix factorized by RECON, using C1MESH, has 93 rows and columns

compared to 16 for POMPUS. Modelling the conductivity on the much finer

C2MESH, the matrix factorized by RECON has 381 rows and columns compared to

16 for POMPUS. These results show clearly the advantages of using POMPUS,

especially where there is a large number of conductivities to calculate. This is always

the case in three dimensional imaging where RECON would require the factorization

of a matrix many thousands of elements square. This is not practical with the

hardware presently available to us and so only POMPUS was implemented in three

dimensions.

7.6 Sequential, Three Dimensional Reconstruction

A version of the POMPUS algorithm has been written especially for solving

three dimensional problems. POMPUS3D solves the three dimensional forward

problem and reconstructs the conductivity field in three dimensions. A numerical

phantom has been constructed to simulate the behaviour of a saline tank. The model

simulates a conducting cylinder of diameter 30 cm and height 24 cm, approximately
the size of a human chest. Four layers of sixteen equally placed electrodes are
modelled. They lie at the vertical levels z=-9.0, z=-3.0, z=3.0 and z=9.0 cm,

assuming the cylinder is centred on the origin with the axis of the cylinder lying along

the z axis.

Three dimensional trigonometric current patterns are used. These are the

product of two trigonometric functions, one in the angular coordinate around the

cylinder arid the other in the vertical coordinate. If electrode (i,j) is the 1th electrode

on the th level the applied current patterns are:

Ij = HORZ2itk) x VERT(22tm-)
	

1^i^16, 1^j^4

where

HORZ = sin for 1 ^k^7
	 or
	 HORZ = cos for 0^k^8

VERT = sin for m=1
	 or
	 VERT = cos for 0^m^2

These 64 current patterns form an orthonormal basis of the space of electrode

currents. Only 63 current patterns are used as the pattern I = cos(0)cos(0) fails the

constraint that the net current crossing the boundary must be zero.
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z=O

z=-7

z=-12

- z = 12

- z = 7

Figure 7.6b Five horizontal slices through the image produced by POMP US3D of a

uniform cylinder, height 24cm and radius 15cm, with a spherical anomaly centred at

(7,O,-7), radius 4cm. The resulting image has a conductivity contrast of 2.5:1

compared to a target contrast of 10:1
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Table 7.6a displays the run times for POMPUS3D. The potential was

modelled on the K3DP mesh of 10933 nodes and 52416 tetrahedral elements while the

conductivity was parametrised on the K3DC mesh of 2405 nodes. Thirty two

experimental measurements were used for reconstruction. The data was synthesized

using a third mesh with the same number of nodes as K3DP but the nodes were in

different places.

POMPUS3D

Forward Modelling.

Building FEM matrix	 72

Solving FEM system	 6908

Calculate Update

Build Least-Squares system	 872

Solve Least-Squares system 	 4.5

Table 7.6a The time (seconds) required for a single iteration of POMP US3D on a

Sun 386i.

The performance of POMPUS3D has been tested on synthetic data. The

phantom was modelled using the finite element method for a uniform conductivity

distribution =1 (12cm) with a homogeneous, spherical anomaly, centred at

(7,0,-7) with a radius of 4cm and a conductivity of 10 (Qcm)'. After three iterations

of POMPUS3D the image in Figure 7.6b was produced. Five horizontal slices

through the three dimensional image are shown at levels z=-12, z=-7, z=0, z=7 and

z=12 cm. The image has a conductivity contrast of 2.5:1.

7.7 Parallel Reconstruction

An implementation of RECON for two dimensional reconstruction has been

written for rings of Transputers. Parallel versions of the algorithms used in the serial

RECON are used in the Transputer implementation. The images produced by the two

programs are identical to machine precision. Table 7.7a compares the times required

for the various stages of a reconstruction iteration on two, three and four Transputers

connected into a ring. The reconstruction program is too large to fit on a single
Transputer.
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Number of Transputers

Forward Modelling.
Building FEM matrix
Solving FEM system

Calculate Update
C1MESH
Build Least-Squares system
Solve Least-Squares system
C2MESH
Build Least-Squares system

Solve Least-Squares system

Three	 four
Two

<1	 <1
	 <1

9	 8
	

8

50	 33
	

26

1	 <1
	

<1

166	 108	 83

40	 26	 20

Table 7.7a Comparison of the time (seconds) required for a single iteration of

RECON on a ring of two, three and four Transputers.

The forward modelling part of the reconstruction algorithm shows almost no

improvement as more Transputers are devoted to the calculation. This is due to the

poor efficiencies in the forward and backward substitution stage. We would expect

to see better performance with larger or denser Finite Element systems. The second

stage of the reconstruction algorithm, calculating the conductivity update, exhibits

near linear speed-up as the number of processors is increased. This implies that

significant speed-ups could be achieved with greater numbers of processors. The

ultimate performance of the reconstruction algorithm as a whole with increasing

numbers of processors is limited by the least parallelisable portion of the program.

As the number of processors is increased it is expected that the time required for

forward modelling would slowly increase. If the time required to calculate the

conductivity update continued its hyperbolic decline to zero with increasing numbers

of processors, the optimum speed of reconstruction would be approximately 8

seconds. As the execution time of POMPUS is dominated by the forward modelling

stage it is expected that a parallel implementation would run at the same optimal rate

as RECON.

7.8 Performance of The OXPACT II System

The performance of the OXPACT II system can be measured by its ability to

image conductivity distributions. The system needs to be able to resolve disjoint
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areas of the same conductivity and to resolve areas of different conductivity. Both the

spatial and conductivity resolution are limited by the errors in the data used for

reconstruction. These errors include errors in the measurement of current and

voltage, errors in our knowledge of the shape of the boundary, the boundary

conditions and the position of the electrodes and errors in the model used by the

reconstruction programs.

The DAS can measure the current passing through any of the current driving

electrodes to an accuracy of 0.2%. Voltage measurement accuracy depends upon the

impedance of the imaged region. The system is designed to cope with point-to-point

impedances in the range l002 to 3000^ and can measure voltages in the range ±5

Volts. If full scale voltages are induced on the electrodes they can be measured to an

accuracy of 0.003%. Smaller voltage measurement are made to less precision down

to approximately 1% for very small voltage readings.

Figure 7.8a The image produced by RECON from data collected from the OXPACT

II phantom filled with isotonic saline. A stainless steel cylinder of radius 1cm was

immersed in the saline half-way from the edge of the phantom to the center.

The quality of the images produced by the OXPACT system has been limited

by the characteristics of the phantom upon which data was acquired. Knowledge of

the boundary shape is essential if the forward modelling is going to be accurate. It is
also of utmost importance to know the electrode positions and to be confident of their

electrical attachment to the region to be imaged. The error in the gap between

electrodes of 2.3% swamps any errors in the DAS electronics. More seriously, this

is a consistent error which cannot be averaged away. Variation of the contact

impedance between electrodes and the saline in the phantom introduces another large
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error. It was found through experience that the phantom needed to be thoroughly

cleaned with alcohol to remove any grease from the current drive electrodes or the

current fields within the saline would be sufficiently disturbed to change electrode
voltage measurements. Slow deterioration of the phantom over its lifetime has been

evident. The gold plating on the electrodes has gradually flaked off due to corrosion

underneath the gold and physical wear due to constant cleaning. Corrosion of the

needle electrodes has also caused problems.

The spatial resolution of the OXPACT II system is demonstrated by the image

of Figure 7.8a. A near infmite conductivity contrast was introduced into the phantom

by immersing a stainless steel cylinder into the saline solution. The cylinder has a

radius of 1cm and it was situated 75 mm from the edge of the phantom. Figure 7.8a

shows an object with a conductivity contrast of 3.0:1 situated 72 mm from the edge

of the image. The resolution of the system will decline as the target is moved towards

the centre of the phantom.

The conductivity resolution of the system was tested by imaging three

different anomalies introduced into the tank. Three agar blocks of radius 2.5 cm were

produced. They were doped with salt until they had conductivity contrasts with the

saline of 2:1, 1.5:1 and 1.25:1. Three sets of measurements were taken with the

three different agar blocks immersed in the saline half-way between the edge and the

middle of the phantom. Figure 7.8b compares these images. The peak conductivity

contrasts in the images were 1.43:1, 1.24:1 and 1.21:1. Clearly some spatial

resolution has been lost as the conductivity contrast approaches 1:1. Regularisation

smooths the images and spreads the areas of high conductivity into the centre of the

image where we have the least information on the conductivity distributions.

Figure 7.8c shows the image produced from data collected from the phantom

when three different anomalies have been introduced. Three agar cylinders of radius

2.5 cm and with conductivity contrasts of 2:1, 1.25:1 and 0.5 :1 have been immersed

in the saline at half radius positions and equally spaced around the phantom. The

image, produced by POMPUS, clearly shows these three areas.
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A)	 Image of a region with conductivity contrast 2:1.

B)	 Image of a region with conductivity contrast 1.5:1.

C)	 Image of a region with conductivity contrast 1.25:1.

Figure 7.8b Three images produced by RECON from data collected from the

phantom filled with isotonic saline. For each image an agar cylinder of radius 2.5cm

was immersed in the saline with i centre half-way from the edge to the centre of the

phantom. These cylinders were doped with salt to have conductivity contrasts of

2:1,15:1 and 1.25:1 compared with the background saline.
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Figure 7.8c An image produced by POMP US from data collected from the phantom

filled with isotonic saline. Three agar cylinders of radius 25cm were immersed in

the saline with their centers half-way from the edge to the centre of the phantom.

These cylinders were doped with salt to have conductivity contrasts of 2:1, 1.25:1

and 05:1 compared with the background saline.

7.9 The Future of Parallel Computing

This investigation has produced a parallel program for the reconstruction of

conductivity images. The program is designed to run on a ring of any number of

Transputers. When the program is configured the number of processors needs to be

specified. The performance achieved on our small system of four Transputers has

been of a similar order to that provided by a work-station. The efficiency of the

algorithms used has been high and so it is expected that performance would improve

if larger networks of processors was used. However, it is expected that a few tens of

processors would deliver optimal speed-up. The best performance we can expect

from a network of Transputers would be an order of magnitude better than our

present workstation.

The effort required to achieve this modest speed-up has been enormous. This

is due partially to historical reasons. The project began when small networks of

transputers were just appearing for general use and long before any development

tools beyond compilers were available. If the project were started today the job

would be considerably easier. However, the redesign work that was necessary to
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port the sequential program to a parallel computer would be the same.

The parallel implementation is, by necessity, considerably more complex, and

thus less maintainable or adaptable. It is also far less modular. As the data
disthbution often drives the choice of algorithm within the reconstruction, the

dependencies have larger scope. For example, the potential field within the model

conductivity region is calculated by the forward modelling stage of the algorithm and

used to calculate the Jacobian matrix as a stage in the calculation of the conductivity

update. The distribution of the data structure used to store the potentials is affected

by the data structure used to store the system stiffness matrix and the algorithm used

to solve the finite element system. It also affects the choice of data structure used to

store the Jacobian matrix as well as the algorithm used to calculate it. A change in

this data structure would require a large part of the program to be rewritten. For these

reasons the parallel implementation of the reconstruction algorithm can be viewed as

an unwieldy dinosaur. As a development tool it is useless, as any modification has

drastic ramifications throughout the program and debugging is such an awesomely
difficult task. Better algorithms often have a greater potential for speed increases than

better hardware. This will become increasingly true in the future. The difficulty of

using Transputers has reduced the number of alternative algorithms investigated and

held up the progress of the group. I would recommend that after the completion of

this project the parallel program is quickly disposed of.

Until the design of parallel programs becomes much more like the design of

sequential programs they will not be worth the investment of human resource. The

investment of time and effort into writing obscure and complex software to utilize

state of the art computing devices has always been wasted unless the short term

advantage has been the primary goal. It is expected that the speed of sequential (or
apparently sequential) computers will continue to increase for the foreseeable future.
A portable piece of software will eventually out-perform a program specialized to

execute on leading edge but dead-end technology, simply by waiting for sequential

machines to increase in speed. The latest PC purchased by the group already out

performs our network of transputers. It executes a single iteration of RECON in 22

seconds compared to 35 seconds required by the Transputers. Similarly the

workstations available today out perform the Sun 386i used in this project by a factor

of 400 or more.

This is not to say that Transputers and parallel computing are doomed.

Parallel computing is here to stay but considerably more maturity and experience is

required in its use. This experience is required in both hardware and software. The

development of large, completely connected networks will go some way towards this
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goal. Independence of topology and the fast movement of data through the system

will liberate the programmer from data distribution driven design. This will also

allow data to be re-positioned dynamically during the execution of a program so that

the optimal algorithm can be used at each stage. Once this has been achieved then

libraries of parallel programs become practical and parallel programming becomes

identical to sequential programming. Another route to this objective is via automatic

parallelisation. Some progress has been made in this endeavour through graph

analysis of program dependencies.

The next generation of OXPACT may perform the reconstructions on a

parallel computer. If real time imaging is a goal then images will need to be produced

at a rate of one every 40 ms. A succession of images displayed on a screen at this

rate appear to be a smoothly moving image to the human eye. Computation at this

rate is beyond the range of any available, individual processor. However, if an image

can be produced in one second on a single processor, then twenty five processors,

working independently, can produce twenty five images in one second; a nominal rate

of one every 40 ms. Thus, a real time tomograph can be built from 25 processors,

displaying smoothly moving images, if a delay of one second between data
acquisition and display is acceptable.

7.10 The Future of OXPACT

7.10.1 Three Dimensional Imaging

There are several directions in which the OXPACT system can develop. The

Eli research group has recently been awarded a grant from the Polytechnic Central
Funding Committee to construct a three dimensional tomograph. This will require a

three dimensional phantom and faster computing equipment than is used in the

present generation of OXPACT. It is expected that the new phantom will be a

cylinder with electrodes photographically plated onto the inside surface to achieve the

desired electrode placement accuracy. The group expects to purchase a sequential

work-station capable of sustaining 10-20 Mflops for use in the three dimensional
tomograph. We hope to investigate the use of POMPUS on the reconstruction of real

data as well as variations of the NOSER algorithm, [14], possibly using derivative

matrices calculated using semi-analytic solutions to the first estimate forward model.
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7.10.2 Clinical Imaging

Another grant has been awarded to the group, from the Welicome Trust, to

apply the group's experience to an investigation of the medical applications of a two

dimensional tomograph. This investigation will be performed in two phases. In the

first phase a fully adaptive, real time, medical system will be built. It is proposed that

this system will be able to make 25 sets of measurements a second and will be able to

display the data soon after acquisition. To achieve this, the system will require a

considerably faster Data Acquisition System and reconstruction computer. The

reconstruction computer may contain a number of processors working on different

reconstructions simultaneously. In the second phase the system will be used to image

living subjects in an attempt to measure physiological parameters. A formidable

obstacle to this aim is the attachment of electrodes to the subject with sufficient

accuracy. The group has commissioned the manufacture of electrode belts from the

Northern Ireland Bioengineering Unit at the University of Ulster. These are sheets of

strong plastic photographically imprinted with electrodes and cables. In addition the

electrodes are covered with a hydro gel which improves electrical connection with the

skin. These belts can be wrapped around the subject to ensure the electrodes are

equally placed around the surface. Further measurement will be required to determine

the surface shape. Initial aims of the medical study include determination of lung
water and gastric emptying rates.

7.10.3 Multi-Frequency Imaging

A possible further direction of research is multi-frequency impedance

imaging. At present the imaged region is assumed to be purely resistive. However a

phase lag between the electrode currents and potentials of approximately 20 implies a
significant capacitive component in the measured impedances. If electrical currents

with frequencies higher than the 10 KHz used in the present OXPACT system were

applied to tissue then structures on the scale of cells effect the conductivity. At low

frequencies, current flows around cells in the extracellular liquid while at higher
frequencies the current passes through cells, [85]. Measurements at a range of
frequencies would allow full impedance images to be produced showing the

conductivity and the permittivity inside the region. By comparing images at two

frequencies it may be possible to calculate the ratio of intra and extracellular liquid.

Griffiths [36] has produced difference images of conductivity and permittivity from

synthetic data and later in [37] in data from a resistor-capacitor network. A full
description of the design and development of a complex impedance tomograph can be
found in [46].
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7.10.4 Forward Modelling

Further acceleration of the reconstruction algorithms is likely to come from
improvement in the forward modelling stage. This is particularly the case in three

dimensional reconstruction where this stage dominates the execution time of the

programs. Much of the a priori knowledge about the smoothness and form of the

potential fields is not used by the Finite Element method. Some benefit could be

gained by looking for potentials in spaces spanned by bases of smooth functions
defined over the whole of the imaged region. On a circular, two dimensional region
these basis functions, in polar coordinates, could be of the form:

B mn(r, B) = Pm(r) trig(2tnO)

where Pm(r) is a polynomial in r and trig is either sin or cos. The Galerkin method

can be used to calculate the coefficients necessary to express the solution potentials as

linear combinations of these basis functions. If a suitable set of basis functions are

chosen the linear system to be solved will be dense but much smaller than that

produced by the Finite Element method.

7.11 Conclusions

The aim of this PhD project has been to investigate EIT reconstruction
algorithms to improve the images that can be produced in both two and three

dimensions and to find those algorithms that can execute quickly on both serial and

parallel computers. In Chapter 2 a general framework for Newton type, iterative

reconstruction algorithms was developed. A novel definition for an experimental

measurement in EIT was introduced which leads directly to the concepts of optimal

current and measurement patterns. In Chapter 5 a new reconstruction algorithm
called POMPUS was described which uses optimal experimental measurements.

POMPUS was compared to a standard, Newton type algorithm called RECON and

was found to produce images of similar quality with a fraction of the computational

effort.

The forward modelling of electric fields through known conductivity
distributions was investigated in Chapter 3. Numerical and semi-analytic solutions of

the conduction equation, 2.2a, were developed, for boundary conditions consistent

with the application of current and voltage measurement through electrodes with

contact impedance. An electrode configuration has been developed which is easy to

model accurately using the Finite Element method and which yields measurements
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which are relatively insensitive to variations in contact impedance. This finite element

model has been incorporated into all the reconstruction algorithms investigated in this

thesis.

Chapter 4 explored the implementation of reconstruction algorithms on

networks of concurrently executing Transputers. A range of factorization and

iterative methods for the solution of the matrix equation, Axz b, were investigated.

Those algorithms found to be most relevant to Eff reconstruction were implemented

efficiently on the Transputer network. They were incorporated into an parallel

implementation of the two dimensional reconstruction algorithm, RECON. Although

this implementation was found to have good scalability, the concurrency introduced

sufficient complexity for the implementation to be unmaintainable, unmodifiable and

unportable.

An impedance tomograph known as OXPACT II has been constructed and

has produced absolute images of conductivity distributions from measurements made

on a phantom. This system is currently being upgraded to use fully adaptive current

patterns to further improve the images the system can produce.

This PhD project started with a sequential reconstruction program, based on

the RECON algorithm. It never produced an image from real electrical measurements

due to the inaccuracy of the crude, Finite Element forward model, with only 113

nodes, used for reconstruction. This program took fifteen minutes to perform a

single iteration of the reconstruction on a Sun 3861 workstation. During the course of

this project many improvements have been made to the overall reconstruction

algorithm and the numerical methods it uses. A much more complex finite element

model, which adequately models the behaviour of the OXPACT II phantom, has

become standard in our two dimensional reconstruction programs. This model uses
761 nodes and hence a much larger Finite Element system need to be solved, but it

allows real electrical measurements to be reconstructed. All the reconstruction

algorithms reported in this thesis have benefitted greatly from the use of algorithms

which exploit sparse matrices and the introduction of the S(ij,k,element_shape) data

structure. The use of optimal experiments and the POMPUS algorithm has massively

increased the speed of reconstruction and made three dimensional reconstruction

practical. The most recent version of POMPUS can perform an iteration of two

dimensional reconstruction in under 3 seconds.
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pARALLz::S1 IN ELECTRICAL .1PEDCE C!OGRAPY.

.Ll:iam R. 5recccn,	 S. auijon,
:ichael K. Pidcocic

:epartment of Computjn and Matnexnaticai Sciences,
:xford Polytechnic, Oxf:rd 0X3 )3P,

INTRODUCTION

!ieccrina.. :mpedance :mography (El:) 	 pctential.y a fast
and c.eap med:al imaaina :echne.	 he ::cqraph cnsizts
an array cf eec;rodes whicn are attacted t: :e patient, a.
electn.: instrument which is capable f applying a variety cf
current patterns and measuring the resulting voltages, and a
computer capable of calcu.atinq the impedance distribution fr:
the measurements. he measuremer.t apparatus requires no O7ng
parts r.cr expensive magnets and can be giade for a few znousand
dollars The cost of bui.dina cur own 32-channel prototype
system XPACT (see Murphy, :988 and Murpny cc al :989) as
around $4000 ZS).	 ata coilecti:n rates of Z4 frames per zec:nd
(where a frame consists 	 reasurements)	 been reocrza
by Brown and Seagar (1997).

:t 3S been shown that :ne reconscruo:::n cr:ben
s essentai: non-linear 3rec:: and 	 c(:3)). ::
a.so r.own that even the :ineared prcbiem 	 no: euivaient
the inversion of any generalized Radon transform. This dictates
that an accurate solution cf the :Lnearised inverse problem
requires the repeated solution cf a dense system 	 :inear
equations. :n addition, a. rec:nstruct.:n a :rtthrs requre
the solution of tne forward proc.em. An terat?e aigorthn
requires this to be done repeatedly. Since currents cannot be
constrained t a single plane, the forward croblem so.ver must
account or the three dimensiona nature of ::e body. These
factors make accurate recons:ruc:on of inpecance tmages
computationally expensive.

Recent advances in single-chip microcozncuters have crcuant
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ar supercer.puter perrnance	 ze pr..ce o a typical esc
p computer. These ci;s .on as the :.mos ransputer can cc
:nected together in varous ::polcgi.es to taie power ul corn-
uci.ng eng2.nes for solving numet.oal problems. winding para-
alisrn .n IT reconstruction algorithms fac.itates dramatic

speed increases from using multi-processor machines. This
brings the possibility of a low cost, accurate, real t.me ET
.!ystem within the bounds of possibility in the near f.ture.

:•ATHEMATIcAL FORMULATICN

Details of the mathematical formulation of the EIT recon-
struction problem can be found in Breckon and Pidcocic (1988).
:n this section we briefly sumaarise only those features relev-
ant to this paper. The forward problem consistS of solving the
arti.al differential equation

V s iaV)	 - 0	 .n tne cody
-n .av	 =	 at the electrodes

wnere 0's the conductivity distribution,	 is the potential
is tme current density. This gives the voltages which we

:ud oeasure on the electrodes wmen tne current pattern j s
applied f the conductivity were a. This problem can be solvea
numerically using the finite element method. The Inverse
orobiem conssts of findina a cmductivicv distribution
::msistent with a cciiecticn of :itae measurements for various
apoiied current patterns.	 f we coect ai. the voltage
measurements from a1 applied current patterns into one vector

.,7y() -

then we can think of V as the forward mapping. Let a. denote

:ur it:ial guess for the nauct.vizy ann a5 the actual con-

uctivi:y. The discrepancy we measure between the actual
measurement and our prediction from the finite element solver 3
then v V(ao)_VWa). f A denotes tne matrix of partial deriv-

atives of V with respect to toda :onduct±vities (A-dV(a,)/da)

then a first order correction s to a 3 can be obtained by solvimg

As - V.

The matrx A can readily be calcuated from the tnterior

potentials	 (Breckon ama Plioocki.988)).
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:his :.ear.a2;.:n prccedu:e :an c':erc:e :a cn-iinearity

e prooiem.	 a rune but fast aae s :euire, 	 can

e used. :f .ore accuracy is required the pr:cesa can ne icer-
iced, a new matrix A - dVW1)/da having been calculated at

The difficulty remains that the linearised problem is

ill-posed and any attempt to solve this system directly will
fail. This can be overcome by using regulari.sation.

.EGULARISATION

Ther• are numerous standard techniques for regularisation.
:t is convenient to divide these into two categories: iterative
and direct. :n iterative techniques the regularisation is
aenieved by stopping a standard iterative macr:x solver when
has converged to within the accuracy of the measurements
(Morozov's stopping criterion (1966)). In direct techniques a
modified, well conditioned, version of the matrix is inverted.
The monification depends on a parameter called the
:egularisaticn parameter whereas in iterative techniques the
nuxnber of iterations acts as the regularisation parameter.

The most widely known direct technique :s :ikhonov regular-
:3ac:on where the system

(ATA + pX)s - b

:s solved. ere b - ATV and LL is a suitacly nosen regularisa-
::on parameter. This new system of equations :3 wei. :noition-
ad and can be solved by standard techniques.

Other direct techniques can be derived frm the s:ngular value
decomposition

A_VAUT

where U and V are the matrices of left and r:ght singular
vectors. f the matrix were well conditioned we could solve
As-v using the expression

S - UA-Vv.

However the essence of the iliposedness is that tne singular
7a.Lues decrease to zero. A regularised inverse can be cbtained

by replacing A 1 by Aj(' which has the first k diagonal elem-
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ets :e same as A ana the remaLnder reae by zeros. :
:s case k acts as a regularisation parameter.

Calculating the singular value decomposi:ion is an
expensive process. However if the crude image formed by the
first linear step is adequate, a singular value decomposition of
V'(a0) can be stored in advance. This would result in an
extremely fast reconstruction technique.

Three well known iterative techniques with interesting
regularisation properties are successi.ve approximation, steepest
descent and conjugate gradient. In each of these methods, a
sequence 51 of successive approximations ;	 e generalised
soluz:n .s calculated.	 efine the err:r

- AAsj - v.

The i:era:ion scheme for successive approxiatcn s then

- s - tr

were t	 a fIxed re!axazi:n parameter.	 the

3:eepes: :escent a.gorithn .s qiven cy

-	 -

but In ths case t is given by

- fIrII2fffAr4I 2.

The conjugate gradient method i slightly cre complicated,
being given by

- 5: -

where

- r - -Av, o.. - r.. +

ii-: - <r11p>/!'Ap1 z , 	 -

The regularisation properties of these .:aratlon sthemes
can be understood in terms of singular values iTalanti .1986)).
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?L::AT:::; :

A ':ar...ety	 :ese	 .:--z nave	 ;p_ied to
:econstrt::.on c::clem. The ne:xiod or :. et a... :983 i.s
.m..lar :: steepest cascent. The metnocs o Srecxon and
idcock(l988) and of Yorkey (l986 use Tlkhonov regularisation
followed by a matrix solver sucn as CholesKi actor1sation.

	

Murai and aaawa (985) used a :runcarec	 value
ecompoa.:.on.

For execution eDeed we ad',ocate a fi.tered singular value
decomposition for the first step. Since the singular value de-
:ompositi:n can be stored In aavance for an initial guess of the
conductivity, the time taken to calculate this is irrelevant.
It also has the advantage that a variety of regularisation
schemes can be nplemented fr:s this data.

Fcr 2cseqen: :eraticns the forward prrc.em must also be
soive again. This also ir.vc.;es the solution of a system of
:thear equations. lnce a very good fIrst guess for the potent-

.a. D is a:ai.able, iterat.ve :ecnniques provide an extremely
fast nethoc. owever since s:7ng the .Lnearised problem

zol'zes :acat.ng only t:e ::nnucti.:y	 ate a rather than
one aosolite concucoivity, we nave no good a priori approxi-
macion for a other than zero. :n this case direct technicues
ave a c:rputa:ional advantage We have et to determine which

of :ecnnices	 is .na bo	 aes cut we snai_
e .ater ton: c::: erac.:e a	 irecc	 cooes ran be

efficiently irplemented on para.lel machines.

::cURENT ALCRITNS

he cassica	 n :ear nacnir.e, toe roel on which
3equencia romputers are cased. :cnsists f a pocessinq unit
together with a 2.1st of stru::icr.s and a aza o:ore. :t ran
n.y execute ccc s:rctnor. a: a rime ann :oe:e:re its speed

is limited by the rate at which instructions can be executed.
f additional processors are added, possibly each with their cwn
:L of InstructIons, separate nstructi:n streams can cc exec-
o:ed cnnccrren:l.'. As addit::cai processors are added the speen

limatea, uitimateiy, only	 the rate a: wnoh data can be
delivered to the processors. Th.s fna! bounn to execution
speed can be transcended by givnng each processor its own ded-
bated data store and bus. Flynn (.966) :lassfies these
machines as Multiple InstructIon Multiple ata I MI).

or.current a2.:rrnthma for	 machines oan be concecual
oen th the frameworx of the ocoam model.	 :nis model lode-
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penderit, asyr.chronous processes coxmnunicate cnly via bi-direct-
ional cnannels. Eacn process can, in :rn, ce composed of
nter-communicating sunprocesses. To implement a job on a MIND

machine we must express it in terms of processes according the
occam model. This places different constraints on the algorithm
design to the Von Neumann model. The latest sequential algor-
ithm is unlikely to be optima]. when implemented on a MIND
machine.

If a processor is dedicated to each of N processes then the
job could be expected to execute N times faster. This is an
ideal which can only be approached. A measure of merit known as
efficiency is defined as

Efficiency - T (1) / (N T (N))

where T(i) is the time taken on i processors. ependencies be-
tween concurrently executing units always ex3.st so time must be
spent passing nessages between processors. This introduces a
delay, not nlF during the transmission of a message but, more
s.gnificar.tly, f3r the period that a processors is idle waiting
f3r synchronisat.cn. Both these considerations, minimising the
amount of data exchanged between processors and balancing the
work load t reduce idle periods, are of ixmnense importance when
esigni.ng concurrent algorithms.

HE :NMOS P.ANSPUTER

The :nmos Transputer s a hardware realisation of the occam
nodel. t z a s.ngie cnip computer which includes 4KBytes of
fast RAM and an .nterface to 4 GBytes of external memory. The
T800 transputer has a floating point unit capable of 2.5
megaf].ops. To nplemenc the occam model the transputer has four
bidirectional :inks which can be connected directly to other
transputers. These are serial links cormnunicating at 20 MBaud.
Concurrently executin g sub-processes on the same transputer is
mimicked by a hardware scheduler.

Transputers are readily available on extension boards to
fit in commonly available micro-computers and work-stations.
The host computer provides the support for peripherals and
provides an interface with the user. The transputers can be
configured (in hardware or software) into arbitrary connection
topologies given the limitation of four links per processor.
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SOFTWARE ::Ls

The transpucer was nesignea to run programs written in
3ccam, tne first concurrent language. Since ts design, other
languages such as Pascal, C and Fortran have been .mplemented
with parallel extensions to facilitate concurrence. These
stand-alone software tools have been integrated into conmion
operating systems on host computers. More recently parallel
operating systems have been developed. Due to tne inmiaturity of
the area, many basic tools such as concurrent debuggers, do not
exist. Those tools which are available are in early stages of
development and suffer from many teething problems.

In our own work we have used a Quintek Fast Four which is a
standard AT compatible expansion card fitted with four T800
transputers each with 1 MByte of RAM. As a host we use a Sun
80386 based work-station. For reasons of software nercia we
chose a parallel Fortran compiler supplied by 3L Ltd.

CCNcURRENT EIT RECONSTRUCTION

Some understanding cf the complexity of designing recon-
struct.cn algorithms to run on :ncurrent machines can be gained
by cons34er.ng the matrix solution technique of forward sub-
stitut.on. :inear systems of the form Lx-b, there L is a tn-
anqular natrx, are generated by factorisation techniques such
as QR ann :holesi decompos.t.:n. :r	 .s a .ower t:3.anaular
matrix, 1.4-0, ' i,j: i<j, the system may be solved ny tne
forward ecstittion formula:

i-I

- ibi -	 £ L4.jx4)/li-	 -	 -J J	 --

;he recursive nature of this algorithm, eacn Xl aependinq
upon all the Xi'S preceding it, would seem to preclude its di-
vision into independent work units. However, cnce Xi has been
oalculated, its :ontribution to all the suoseauent Xi'S, i.e.

^ n, may be caiculated indepennencly. f the
matrix I and the vectors x and b are distributed by row among
the available processors then each will be ao].e to calculate a
subset of the L44x factors concurrently. o be able to do this
each processor would need to receive a message containing the
value of the latest xj calculated. The data transmitted is
small :ompared with the amount of computation no if the affected
rows are distributed evenly among all the processors a proport-
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.a... eea p can re expecten.	 ere are	 y ways of distrib-
.	 :e a:a, eacn	 :wn daza i.:w aracteristics and

:era.	 .ency. The	 piest istributi;n, sending conti.g-
ous r:ws o each processor, results in the nnmum of message

pass.ng and yet the maximum idle time, and an efficiency of only
50%. The optimum distribution is accomplished by "dealing s the
rows out to the processors in the same fashion that a card
niaver distr±butes cards among the players. 	 r each row, the
subsequent rows are aLstruted as even..y as possible among the
processors. The processors are idle for, at most, a single
floating point operation before synchronisation. This demon-
strates the conmion trade off between the complexity of data
storage and the efficiency of concurrent programs. Consider-
ations that are irrelevant in the optimisation of sequential
programs become paramount in a parallel environment.

crward and backward sunstitution are ampertant steps in
the so.ur:on of systems of :inear equations after factorisation.
;ce nave implemented a variety of matrix sciition techniques on a

fur transputers, including QR factorsation and the it-
erat:e, ::nugate gradient echod. CR factorisation is an
ozample of a method that uses highly parael but out-of-date
ao:.thms rather than the more rerial.:/ fio.ent algorithms in
:rren: use. n seauentjal machines CR factcrisation using
ven's rtatons has been largely superceded by the computa-

tionaly more effIcient Housenoider :ransfcrmatons. However, a
:oncurrer.t machine can exe:u:e :ndenendent 31':en's rotations n

an this metncd becomes referaoe once more. These
two tecnr.ues are qu.ce different i.n cata distribution and the
flow	 ressages during executon but both have been implemented
with accetao].e eff±c.ency Isee Table 1). The optimum algorithm
:epencs por the characteri.s;os cf the mazrces oeing solved.
Lither of :ese zechnaues :u.d be used for 	 reconstruction.

-.thet :f	 QR factorisation	 Conjugate Gradient
processors	 Speed-up Efficiency	 Speed-up Efficiency

	

1.3	 :0%	 :.	 100%

	

1.6	 .3	 94%

	

Z.Z	 :.T	 91%
4	 .7	 3%	 .!.	 90%

table .. R factorisation raus ccnugate radient Method.
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CLUS :ONs

Matrix soluc.on alcor.thms are an ncerai part of Eli
.mage reccnscrucc.on. The single stage metnod reconstructs an
.mage from a set of measurements by the application of a single
linear transformation. This transformation may be factorised
into a diagonal matrix of filtered singular values and two
orthonormal macrices. The solution cf such a system is easily
and efficentiy parallelisable with a minimum of ccnunuriication
and good load balancing. Under these conditions we can expect
almost linear increases in the speed of reconstruction as the
number of processors is increased. Real time reconstruction, of
the order of 25 frames per second, is certainly possible with
images of resolution currently being used. Two or three lemon
1800 transpucers would be sufficient for the inversa.on of 100
measurements, in real t±me. With more higher resolution images
c:uld be formed. With sufficiently :arge networks, nonlinear,
Iterative, reconstruction techniques could be usen to produce
accurate, high resolution Images at acceptable rates.

CRNOWLGME'ITS

We would like to thank the SERC,T1 Tr3nsuter :iitiatve
for the ::an of the equipment used in this woric.

FEFEREZ3

3reckon WR, ldcock MK (1988). :ll-psedness and ncn-iinearl:y
Ln E.ectrcal :mpedance Tomography. :n an raaf C ann
Viergever MA (eds): "nfortnation Pr:cessir.g in Medical
:maging" New York: Plenum, pp z35-:44.

Brown SM, Seagar AD (1987) The SheffIeld data collection
system. Clin Phys Physiol Meas.8 Suppl.A:-'.

Flynn M (1966). Very hIgh speed c:putng rystems. proc.
:EEE. 54:1901-1909

im Y, Webster JG, Tompkins WJ (1983). Electrical Impedance
:rnagir.g of the Thorax. J. Microwave Power vol 18:245-257.

Morozov VA (1966). On the solution cf functional equations by
the zsethcd of regularisation. Soviet Math. CokI. 7:414

Murai,T K.and Kagawa, Y., (1985) ElectrIcal :mpedance Computed
Tomography based on a finite element model. EEE Trans.
Biomed. Eng., vol BME-32,177-184

Murphy D (1988). Research report, eoartment of Computing and
Mathematical Sciences, Oxford Pol,technic, xford 0X3 OBP.



196/Brsckonstal.

Murphy D, Lidgey J, :avey-Winter 3E, Breckori WR, McLeod.0
(1989). A multiple programable current source impedance
:omograph. ø be published in proceedings of the. 2nd IFMBE
Pan-Pacific Symposium, Melbourne.

Talenti G (1987). (ed) Inverse Problems. :ecture notes in
Mathematics, vol 1225, Springer, Berlin.

Yorkey TJ (1986) comparing Reconstruction Methods for
Electrical Impedance Tomography PhD Thesis, University of
Wisconsin, Madison,



Solving Symmetric Matrix Problems on Rings of Transputers.
Kevin Paulson.

/12/89.

Intro	 ion.

The matrix equation. A.x = b. often reauires transformation
o yeid a unique solution vector x. If A is the coefficient matrix
of an over-determined, but not necessarily consistent, set of
simultaneous ecuations then

x =(AT.A)*AT.b
yields the least squares solution.	 An under-determined set of
equations has an infinite number of solutions but the equation:

x = AT.(A.AT)'1.b
finds the solution with the minimum L 2 norm. Both these two

special cases of the use of the Moore-Penrose inverse of the
matrix A require the solution of a symmetric, and often dense,
set of simultaneous equations. This paper will assume the
former case yet the results are equally applicable to the latter.

Many techniques exist to solve such a system and they can
be classified into direct or iterative methods. Direct methods
produce a result in a finite number of steps while iterative
methods produce an infinite series of vectors which approach the
exact solution to arbitrary precision.	 Generally, direct methods
require 0(N 3) operations while iterative methods require 0(N2)
operations per iteration. Clearly an iterative method must
converge before some fraction of N iterations for it to be
competitive. The optimum method to use on a sequential, single
processor machine, is determined by the ill-posedness of the
problem, the accuracy required in the result and the sparseness of
the matrix. In general direct methods require fewer operations to
solve dense matrices while iterative methods can produce results
faster with ordered, sparse matrices.

On a multi-processor, distributed memory, machine the
situation is more complex. The execution speed of an algorithm
is less strongly determined by the number of algebraic operations
required than by the communication overhead moving data
between units of the distributed memory. Much has been written
on optimal algorithms for hypothetical machines with unlimited
numbers of processors and shared memory, or small
communications overhead; see {1&2]. These results have little
relevance to the small networks of transputers becoming



available.	 Transputer boards, typically with less than twenty
processors, and relatively slow communications force quite
different constraints on the user. Designing optimal algorithms
on these networks s considerably more complex than me similar
task on a single processor, or a massively carailel. machine.
This is compounded by the present lack of standard library
software and experience of parallel algorithms.

Iransputer Based Systems.

Transputer based systems are developing :everal
cirections demanding software design with aifferent constraints.
The high profile end of the spectrum is large and expanding arrays
such as the Edinburgh hypercube with hundreds or thousands of
processors. On large networks, communication costs are of
paramount importance and complex topologies and routing
algorithms need to be used. Such a machine will be used on very
large problems, with long run times, justifying the
redistribution of data and code in between algorithm stages.
These are the design considerations leading to the NAG parallel
ibrary.	 At the other end of the spectrum is the parallel work
station which may have only a handful of transputers. The
success of these machines hinge on the development of automatic
parallelising compilers and hardware routing of communications.
Lying between these two extremes are instrumentation and
embedded industrial control equipment.	 These systems use
transputers for their speed and the ability to handle large
amounts of data in the distributed memory. Such systems,
generally with tens of transputers, will never aim to be general
ourpose computers and will often run a single program during
most of their lifetime. The small diameter of such networks and
the specific communications demands of the algorithms that run
on them may simplify the communications problem considerably.

Linear algebra algorithms, in particular, can usually be
distributed	 so that a large proportion of the communications
occurs between directly connected neighbours. 	 In this situation
the simple, unidirectional ring configuration is not handicapped
by the relatively large diameter of this topology. It also avoids a
lot of the overhead inherent in more complex routtng schemes.
Not only is there minimal routing logic but intermediary
processors are not interrupted to route messages not intended for
them. The unidirectionality of the ring removes many of the dead
lock problems caused by races between messages to the same
destination processor. Messages are received in the same order
as they are sent and so synchronisation is simplified and message



header length is minimised. Further more a ring is easily mapped
onto other topologies so increasing the portability of algorithms
designed for rings. 	 It retains the advantages of topologies with
high symmetry, such as binary trees and cubes, 	 without the
restriction on the number of processors.

It is relatively simQle to implement a ring communication
system consisting of a task running on each transputer connected
oy channels linking the transputers. Message headers include the
destination transputer identifier and messages are passed around
the ring until the correct transputer is reached. This system
allows communications for more complex than nearest-neighbour
while adding the minimum demand on transputer resources.
Direct communication between numerical calculation tasks is
undesirable as it forces synchronisation invariably causing a
descheduling of one process while the other catches up. If
further useful work can be accomplished after data transmission
then the buffer communication process allows calculations to
continue.

Solution Techniques.

The solution technique employed on the system:
(AT . A) . x = b

is determined, in part, by the starting point. 	 The matrix
multiplication, A T .A, is computationally expensive and so should
not be performed as a step in the solution, but in some
circumstances only this product is available. The classical
method of solution of symmetric, positive definite, matrices is
via Choleski factorisation into the form L.L T where L is a lower
triangular matrix. The system can then be solved via forward and
backward substitution in the two steps:

L.y =b
LT.x = y.

If, however, the matrix A is the starting point it may be
factorised into an ortho-normal matrix 0 and an upper triangular
matrix R. The system can then be expressed as the product of two
triangular matrices as before and solved the same way.

AT . A = (Q.R) T.Q.R = RT . QT . Q . R = RT.R.
These are the best, direct, algorithms for dense matrices, in
terms of operation count, and so will also be optimal on a parallel
system if they can be implemented efficiently.



Iterative methods can be classified into stationary and non-
stationary processes. Stationary processes, such as Jacobi,
Gauss-Seidel and SOR [2], can be expressed by the iterative
formula:

xn+1 = C.x n + 0

where C and D are a constant matrix and vector dependent upon
the coefficient matrix. Each method has its own convergence
criteria based on the singular values of the coefficient matrix.
Jacobi, Gauss-Seidel and SOR all require the absolute value of the
singular values to be bounded by a known constant. For a general
matrix this is an impractical test to perform and so convergence
is not guaranteed. Some non-stationary methods, such as the
method of Kaczmarz [5] and steepest descent, are guaranteed to
converge for consistent systems. The rate of convergence is
determined by the condition number of the coefficient matrix,
defined as the ratio of the largest and smallest singular values.
The convergence of highly ill-posed systems is slow and bounded
by the sensitivity to errors in numerical calculations.

The method of conjugate gradients is classified as an
iterative method although, for calculations without error on full
rank, positive definite matrices, it converges within N iterations.
The solution of highly ill-posed problems meets the same bound
as other numerical procedures and satisfactory convergence may
require many more iterations. The situation can be improved by
pre-conditioning ie equation with the pre-multiplication of each
side by an approximate inverse matrix, so decreasing the
effective condition number.	 Algorithms exist for calculating the
conjugate	 gradient	 iterations,	 without	 performing	 the
operationally expensive matrix multiplication. The guaranteed
and relatively swift convergence of this method has made it the
standard for many applications.

Implem ent at ion.

The steps in all these methods are basic linear algebra
operations (BLA's) such as matrix-vector mu)tip)catons and
scalar products. Methods of automated parallelisation, such as
the farmer-worker model, pass data packets to processors to
perform BLA's and return a result to a driver process. Despite the
attractiveness of these methods they are inappropriate to
Transputers due to the small computation to data ratio for these
BLA's.	 It is faster to perform the operations on a single
Transputer than to pass the data out to the network and receive a
result back.	 Fortunately, for higher level BLAs many matrix-



vector multiplications are performed with the same matrix so
these data need to be distributed only once. A matrix-vector
multiplication can be oerformed by distributing rows of the
matrix among the processors along with a copy of the complete
vector. Each processor has the data avaiiable to calculate row
elements of the result vector which may then need to be
collected. If further matrix multiplications are to be performed
on the result vector then a copy needs to be maae on each
processor. In a nng configuration, a rotation of the data involves
each processor passing a message containing vector row elements
to the processor to its left, and receiving similar information
from the processor to its right. The complete result vector can
be built by each processor after n-i rotations, where n is the
number of processors in the ring. If data cannot be transmitted
and received concurrently by a processor then a ring configuration
can achieve this complete exchange of data in the same time as a
completely connected system. In parallel Fortran it is difficult
to implement concurrent data transmission and for short
messages the overhead of initiating a concurrent thread would
erode any advantage gained.

The conjugate gradient method, OR and Choleski
factorisation have been implemented using the ring buffer system
described above. The number of processors in the ring can be
incorporated as a global parameter and so only a single
declaration needs to be changed to produce source for a ring of
arbitrary size. The program running on each transputer is
identical although it includes branching dependent upon the
transputer's position in the ring and the data stored on it. Only
one program is written and copies are placed on each transputer.
Standard matrix-matrix and matrix-vector routines can then be
used within the program to act upon the subset of data stored on
each transputer. Subroutines need to be written for rotations of
scalar and vector data to perform sumations after dot products or
to rebuild	 result vectors	 after distributed	 matrix-vector
products. The conjugate gradient algorithm, consisting only of
two simple linear algebra operations and data rotations, can be
written elegantly in terms of these subroutines.

OR factorisation is more complex. The upper triangifiar
matrix R is constructed from the coefficient matrix A by zeroing
elements below the leading diagonal. The ortho-normal matrix, Q,
does not need to be constructed as it is eliminated from the
equations. Two OR factorisation algorithms are in common use;
Given's rotations zero single elements by performing rotations



between rows of the matrix and Householder transformations that
zero entire columns below the leading diagonal by operations
between columns. The floating point operation count and the
amount of data that needs to be transmitted for common data
distributions, is similar for these two algorithms yet
Householder transformations prove superior due to the economies
of passing fewer but longer messages. Both QR and Choleski
factorisation require operations between the column being
considered and all columns to the right of it. To distribute the
calculations evenly and to minimise data transmission, the
coefficient matrix needs to be distributed by column wrapping. If
a matrix of N columns is to be distributed among p processors,
numbered 0 to p-i, then column m is stored on processor
MOD(m,p). This ensures that the work involved with each stage is
spread as evenly as possible among all the processors. Romine
and Ortega (4] describe implementations of forward and backward
substitution on column wrapped data.

The test.

The following tests were conducted on a Quintek Fast Four
Transputer board mounted in a Sun 386i work station. The board
has four lnmos T800 transputers each with a megabyte of
memory. 3L parallel Fortran using double precision arithmetic
was used for all the software. A test matrix of size 300*208
was constructed with a condition number of 112 along with a
consistent right hand side.	 The singular values fall off
exponentially from I to 0.0089.	 The matrix is quite ill-
conditioned and hence sensitive to numerical errors during
calculations.	 Similar singular value distributions are often
encountered in ill-posed inverse problems. 	 The symmetric
system, AT.A.x = b, was solved using QR factorisation, Choleski
factorisation and the conjugate gradient method. The QR
factorisation works directly on the matrix A while the conjugate
gradient method and Choleski factorisation start with the matrix
AT.A. The times given below are only for the actual calculation
and not the initial data loading as this time is highly host system
dependent and, where these routines are part of a more complex
algorithm, irrelevant.



QR Factprisation

no of processors
1
2

3
4

execution time (s)
81
43
29
22

speed up
1 .0
1.8
2.8
3.7

efficiency
100%

94%
93%
92%

no of processors
1
2
3
4

Cholesk Factorisation

execution time (s) speed up
11.1	 1.0
5.9	 1.9
4.2	 2.7
3.1	 3.6

efficiency
100%

94%
92%
90%

Conjugate Gradient Iteration.

no of
processors

1
2
3
4

no of
iterations
1000
1000
1000
1000

execution
time (s)
700
372
256
193

speed up

1 .0
1.9
2.7
3.6

efficiency

I ULfr /0

94%
91%
90%

In these tests the execution time on a single processor is
for an optimised, serial version of the same algorithm
mptemented in a single task. As soon as more than one
transputer is used extra tasks controlling the communications
between processors need to be added. It is the overhead
associated with these added tasks that is responsible for most of
the drop in efficiency between using one and two processors. The
similarity of the efficiencies of these quite different algorithms
s striking and due to the preponderance of nearest-neighbour
communications in their implementations.

With this test matrix OR and Choleski factorisation yield
results of similar precision. Using the identity as a
Peconditioner the conjugate gradient method required 440



iterations and 90 seconds to gain the same precision. An
approximate preconditioner was constructed with singular values
increasing linearly from 1 to 112 as an approximation to the true
inverse with singular values increasing exponentially over the
same range.	 Only 60 iterations were required to reach the
desired precision using this preconditioner. Clearly the
availability and effectiveness of a preconditioner is a vital
consideration if the conjugate gradient method is to be
considered on oroblems of this sort.

Conclusions.

Many linear algebra algorithms can be distributed in such a
fashion that most communications are between nearest-
neighbours. In this situation a ring configuration has the
advantages of fast execution, due to low routing overhead, and
rapid implementation due to the simplicity of communications
preventing dead-locks and races. The greatest disadvantage of a
ring topology, its diameter,	 is irrelevant as very few
communications span the network. Finding optimal algorithms
for a ring topology is simplified by the knowledge that diverse
algorithms can be implemented with similar efficiencies so
optimal serial algorithms are also optimal parallel algorithms.
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