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Abstract 

This paper presents artificial neural networks (ANN) and wavelet analysis as methods that can 

assist high resolution of multiple defects in close proximity in components. Without careful 

attention to analysis, multiple defects can be mis-interpreted as single defects and with the 

possibility of significantly underestimated sizes. The analysis in this work focussed on A-scan 

type ultrasonic signal. Amplitudes corresponding to the sizes of two defects as well as the 

phase shift parameter representing the distance between them were determined. The results 

obtained demonstrates very good correlation for sizes and distances respectively even in cases 

involving noisy signal data. 

Keywords multi defects, ultrasonic, artificial neural networks, wavelets, non destructive 

evaluation. 
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1. Introduction 
 
Ultrasonic methods are used routinely for the detection of flaws during non-destructive 

evaluation (NDE) of components. In this process, the ultrasonic wave transmitted to the 

component travels and reflects back at defects and discontinuities such as voids, cracks and 

inclusions. In the pulse echo method, the size and distance of defects are determined by the 

amplitude of the reflected wave and the time of flight (TOF) i.e. the time it takes for the 

incident wave to travel to the defect and for the reflected wave to return to the probe. Data 

logging allows the time of flight to be determined and calibration methods are used to 

determine the size of the defect from the amplitude of the reflected wave. Interpretation of 

logged data is carried out using various linear and nonlinear signal processing methods. These 

include the use of cross-correlation, convolution, blind sources separation, split spectral 

processing and wavelet methods. In these processes, the determination of required parameters 

such as location, size and shape of defects is adversely affected by the noise in the signal and 

sometimes by interfering features such as defects in close proximity, boundaries in thin 

layered components e.g. microelectronic circuit boards, and multiple thin layers in composite 

materials. Although artificial neural network and wavelet methods have been used to explore 

signal processing for NDE in general, there have been little or no attempt to consider its use 

for the intricate cases highlighted in this paper. 

 

A lot of effort has been applied in the literature to the development of methods for the 

analysis of thin and multilayered composites, see for example reference [1]. This paper 

focuses on the use of artificial neural network methods for the resolution of closely spaced 

defects as very little has been reported in the literature on how to deal with this 

characterisation problem. Without careful attention to data processing multiple defects can be 

mis-interpreted as single defects and the size can be significantly underestimated. This 
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problem arises because of the complex  form of the signal that is produced when the reflected 

waves from close defects overlap. The effects of various factors such as the relative sizes of 

defects, the order in which they occur in the component, the closeness of the interfering 

defects and signal digitisation and sampling methods on the accuracy of predictions are 

analysed. The results obtained generally demonstrate very good ability of ANN and wavelets 

to characterise multiple defects in components.    

 

2.  Theory  

The theory presented in this section aims to highlight the various principles and relationships 

underlining the ultrasonic A-scan, ANN and wavelet analyses carried out in the paper. The 

interest in this work is to present artificial neural network and wavelets as a method that can 

be used to characterise the presence of defects a and b, Fig 1, in terms of location and size. 

These parameters can be determined by using a pulse echo ultrasonic non destructive 

evaluation method. The location is determined from the relationship between time, distance 

and the speed of sound in the material and the size depends on the magnitude of the amplitude 

of the reflected wave from the defects.  The analysis considered in this work concerns the case 

of reflection of pressure waves. In general wave propagation in a continuum is subject to 

complicating factors such as the effects of mixture of modes of motion, multi-axiality of 

internal microstructural grains, and grain and component boundaries. These factors lead to 

internal damping and together with component shape lead to wave dispersion. These problems 

are usually resolved by using appropriate hardware and calibration methods for known defect 

characteristics. The resolution and characterisation considered in this work are based on the 

availability of both hardware and the type of analysis carried out in this work validated by 

experiment.  
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2.1 Overlapping ultrasonic pulse reflections 

Figure 1 shows an illustration of the superposition of waves that are reflected from two close 

defects a and b having different sizes and separated by a small distance e. The reflections will 

overlap if the distance e is less than half the length of the pulse emitted by the transducer i.e. 

if e  < n w / 2. In this, n is the number of wavelengths and w is the wavelength of the signal 

that is emitted by the ultrasonic probe. The value of n used is 3.4 which is an estimate from 

the plot of a real signal shown in reference [2]. For a material such as steel, the distance e is in 

the range 3 mm to 100 mm for ultrasonic probes with central frequencies ranging  between 

100 kHz to 5 MHz. Equations (1), (2) and (3) give a description of the reflected superposed 

wave.  
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where ur(t) is the displacement at a particular location in a component at a time t and subscript 

i = a or b relate to the reflections from defects a and b; a = nw /2, b =  + nw /2, Sa = nw 

and Sb =  + nw. A and B are the amplitudes that correspond to the sizes of the defects and 

the phase shift  corresponds to the distance between them. The value of   was taken to be 

3.5 to produce similar signal as in reference [2]. The first and second parts of the right hand 

side of the equation (1) represent the reflected signal from the first and second defects 

encountered. The Heaviside step function H ( ) (which is equal to 0 when the arguement in the 

bracket is  0 but is otherwise  = 1 when the argument is > 0). The function delimits the 

intervals over which the two reflected signals occur in the time frame. There are other 

descriptions of single burst of signal functions, an example can be seen in [3].   
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A particular close defect problem will be one out of many infinitely possible combinations of 

the central amplitudes A and B and the phase shift . These parameters characterise the size of 

the two defects and distance e between them. When an ultrasonic probe sends pulses into the 

component, the reflections from the defect inherently contain information that can be used for 

the determination of the parameters even in the intricate cases of interfering defects involving 

discontinuities in the signal. Rule based algorithms will be cumbersome if not impractical for 

the interpretation of these types of signals. Also cross-correlation methods involving the 

convolution of original and reflected signals will be inadequate for the determination of all the 

characterising parameters required because the original and reflected signals are of two 

different forms at least in the overlapping section. Artificial neural network and wavelets are 

useful methods for the solution of these types of problems. They have both pattern 

recognition and non-linear function approximation capabilities. ANN methods are known to 

be useful for interpretation of data even when there is noise in the input data [4]. It should be 

hoighlighted that only defects that are orthogonal to the beam or nearly so can be identified by 

an A-scan method.  

 

3.  Artificial neural network and wavelet approach 

The implementation of the artificial neural network analysis in this work used three layers of 

neurons which is generally accepted as sufficient to represent any non-linear relationship [5]. 

The data input represents the combined overlapping reflected pulse. The details of the number 

of input neurons are given section 3.2 where the different combinations of ANN and wavelets 

used are presented. The number of neurons in the output layer was three representing the 

amplitudes A and B and the phase shift . Although the number of neurons in the internal 

layer has commonly been determined by trial and error, it is now empirically accepted to be 

equal to the average of the number of neurons in the output and the input layers [6].  
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Each internal and output neuron i receives a weighted sum xi of input values xj from the 

preceding neurons j according to equation (4). The output from the neuron yi = f(xi) were 

sigmoidal and linear functions as given in equations (5) and (6) for the internal and output 

neurons respectively; 
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wij is the weight connecting neuron j to neuron i; θi is the bias at neuron i.  An error 

backpropagation method was used for the training process which updated the weights wij. 

Various backpropagation algorithms have been devised for the training of networks. The 

primary  method used in this analysis was based on a variation of the +Rprop algorithm which 

is known to have excellent convergence characteristics [7]. For research flexibility purposes, 

the implementation was carried out using a set of in house routines developed in a MATLAB 

[8] environment. The parameters required for the optimal convergence of the training have 

been identified for most problems and are not dependent on trial and error. A heuristic 

guideline was used to set the number of cases required for the neural network training to be 

about ten times the total sum of all the neurons in the network [6]. 

 

3.1  Wavelet analysis 

Fast discrete wavelet analysis was carried out with the aims for feature extraction and for 

denoising purposes. The objective was to take advantage of the possible benefits of coupling 

this to the neural network method for the defect characterisation analysis. Features were 

extracted by using wavelet decomposition on the signal ur(t) as expressed in equation (7) to 
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obtain the approximation a(L,k) and detail d(j,k) wavelet coefficients given in equations (8) 

and (9) respectively [9-12]. 
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The mother and scaling wavelet  and  respectively are quadrature mirror filters which 

satisfy orthogonality and multi-resolution requirements [13,14]. L is the maximum level of 

resolution specified and k is the index for localisation of the wavelet during translation on the 

time scale. The Daubechies DAUB4 wavelet transform scheme [13] was used to obtain the 

approximation and detail wavelet coefficients for the reflected ultrasonic signal. The details of 

the feature extraction used for the of the ANN are given in section 3.2.  

 

3.2 Combination of ANN and wavelet analysis 

ANN and wavelet analysis were applied singly or in combination in two ways denoted as 

methods M1 and M2. Feature extractions considered the options presented in references [15-

19]. Method M1 used all the maximum 128 ur(t) data points available as feature for the ANN 

training [16]. In method M2, the best fitting wavelet decomposition coefficients were used as 

the feature for training the ANN [16]. This was obtained as the approximation coefficients for 

the first level decomposition given by equation (8). The number of coefficients in this case 

was 67.  

The number of patterns used for the ANN training was 2000 and convergence occurred at 

about 2000 epochs of iteration. For all training processes, 80% of the pattern data cases was 

used for the training, 10% was used for validation and the last 10% was used for the 
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assessment of the network. In all cases the known amplitude A and B and phase shift  were 

used as the expected output for the network training.  

 

4. Background experimental testing 

In practical testing, the amplitudes A and B in equation (1) registered by an ultrasonic probe 

are affected by several factors such as the contact surface roughness of the material, distance 

of defects to probe and orientation of defect to beam, material grain structure and size, and 

component geometry. These factors generally result in signal scattering, diffraction, mode 

conversion and damping. Attenuation which is primarily due to damping, scattering, beam 

spreading, and signal frequency is generally accounted for in practical applications by the use 

of distance amplitude correction (DAC) curves. In the background study for this work [20] 

DAC curves were generated for a 200 x 100 x 10 mm  mild steel samples and a 5 MHz central 

frequency Socomate NDT transducer used for the experiment [21]. Three hole defect diameter 

sizes d = 1, 2 and 3 mm at 13 depth locations in steps of 5 mm in the range 70 to 140 mm 

were sampled for the construction of attaenuation curves, Figure 2. An approximate 

attenuation relationship A = Ao.d.exp-x  was developed using least square fit method which 

gave Ao = 248 %/mm and  = 0.023/ mm, d is the size of defect and x is the distance from the 

probe. This relationship was used in equation (1) to account for attenuation in the signals used 

in the study.  

 

5.  Results  

The wavelet and artificial neural networks described in the foregoing was tested using three 

main case studies. The first case concentrated on the ability of the methods M1 and M2 to 

determine the central amplitudes A and B and the phase shift parameter  from the response 

composed by the reflections from two close defects as highlighted in equations (1) – (3). This 
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aspect aimed to reveal the effect of the complexity of the form of the compounded reflected 

waves from the close defects on the ability of the methods to make a prediction. The second 

case considered the effect of the limits on the central amplitudes A and B and the phase shift   

on predictions. The third case considers the effect of noise on the parameter estimation 

problems for defect sizes and location.  

5.1  Amplitude and phase shift determination using methods M1 and M2. 

In this case, the amplitudes A and B were varied from zero to a nominal value of 2 while  

varied from 0 to the limit n w / 2 which was about 11 radians in this study. Each of the 

parameters was randomly varied between the limits when the pattern cases for the training of 

the ANN were composed. The Latin Hypercube Sampling (LHS) [15] was used for the 

multivariate sampling to ensure more representative consideration of real variability.  

 

Figure 3 shows the comparison of predicted against actual values for the two methods M1 and 

M2. It can be seen that both methods generally show excellent correlation for the amplitude 

A. Very similar results were obtained for amplitude B and are therefore not shown. The 

parameter estimation from the wavelet method M2 appears as good as for case M1 even 

though the former used only about half the data input (67) as the latter (128).  The correlation 

for the phase shift   although generally acceptable is not as good as for the amplitudes A and 

B. It can be seen from the Figures 3(b) and (d) that there appear to be more deviation from 

target values especially at about  = / 2. A close examination also revealed that it was 

difficult to obtain good predictions for  where an amplitude in the response function ur(t) was 

vanishingly small. This closeness to homogeneity will be testing for any method of signal 

analysis. The values of A, B and  for one such case were 1.4025, 0.0005 and 9.8883 

respectively. It can be seen that second defect in this case has a very small amplitude 
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B=0.0005; three to four orders of magnitude smaller than A. It is very difficult in these cases 

to detect where the discontinuity due to the phase shift starts or ends in the superposed signal. 

Although the corresponding amplitudes were closely predicted, the phase shift prediction 

deviated significantly from the target value. Care therefore needs to be taken in the 

interpretation of phase shifts where a defect size is vanishingly small. 

 

5.2  Effect of the range of parameters A, B and   on accuracy of ANN training 

This case attempts to detect the sensitivity of accuracy of prediction on the range of the 

parameters used in training. This is an essential factor to be considered in a multivariate 

experimental design problem [22]. The lower and upper limits considered for each of the 

amplitudes A and B were nominally set as 1 and 2 respectively. The lower limit set for the 

phase shift   was 25% of the maximum limit of n w / 2 . The upper limit was set to the 

maximum value n w / 2.  In order to generate the sample data for the neural network training, 

each range was sampled using the LHS method as highlighted in section 4.1 above. The 

combination of limits considered in evaluating the methods M1, and M2 are shown in Table 1. 

The lower and upper limits are indicated by superscript symbols ‘-‘ and ‘+’ respectively. The 

results  of the studies were assessed by using the Pearson product-moment correlation 

coefficient, RX,Y, equation (10)  and the normalised root mean square deviation, En, equation 

(11)  
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where X and Y represent the predicted and actual values for A, B or   and ,  and E denote 

statistical mean, standard deviation and expectation respectively. Both RX,Y, and En were 

determined for A, B and   in Table 1 to demonstrate the extent of correlation and accuracy 

respectively. En presented in the Table 1 is the average value for the three parameters A, B and 

 .  

It can be seen from the table that for each of the methods M1 and  M2 predicted and actual 

values show high values of correlation for A, B and   for test cases 1 and 3 where the range of 

 is at the lower limit. It can also be seen that the normalised root mean square deviation for 

these test cases are lower than for the cases 2 and 4 where the range was set at the higher 

limit. As indicated the training of the neural network carried out with the upper limit on the 

range of  led to less accurate predictions. This shows high sensitivity to changes in . This 

observation is predictable when the form of the response ur(t) in equations (1), (2) and (3) is 

considered. The phase shift  is responsible for most of the complexities of the function. It is 

also responsible for the discontinuities represented by the Heaviside step function H( ).  

 

5.3  Effect of noise in data and sampling characteristics 

In order to assess the sensitivity of the procedure implemented in the study, different levels of 

experimental error were approximated by adding a white Gaussian noise to the original signal. 

The root mean square (rms) amplitude of the noise signal An for different signal to noise ratio 

SNR in dB was obtained in terms of the signal root mean square amplitude As by using the 

classical equation (12). The noise was added by applying the equation (13) at each data point. 
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where the second term in (13) denotes the product of An with a randomly seleted member of a 

standard normal distribution population with zero mean and variance = 1 having the same  

size as the signal ur;  ru (t) is the modified signal data which includes the added noise. Four 

signal to noise ratio levels SNR = 7, 14 21 and 30 representing very poor to excellent signals 

were considered. It was found helpful to apply a digital filter to the signals before using them 

to train the artificial neural network. A fourth order Butterworth low pass pass filter [8] with a 

cut-off frequency selected to minimise the root mean square difference between the raw and 

filtered signals was used. Figures 4(a) and (b) show two signals out of 2000 different 

combinations that were studied each with 7dB signal to noise ratio. Figures (c) and (d) show 

the corresponding original signals and the signal obtained by using the Butterworth filter on 

the noisy signals. The root means square deviation between the original and the filtered 

signals are very small at 0.006 and 0.004% for the cases (c) and (d) respectively. There is 

nevertheless mismatch between the two signals that affect overall accuracy.  

 

It can be seen from Table 2 and Figure 5 that the correlation between predicted and target 

values for the two methods is generally good although there is some scatter. The band lines 

included in the figure show that about 90% of predictions are within 10% deviation from the 

maximum value for the poorest signal case with SNR =7. In the case of SNR = 21 corresponding 

value is about  97% for τ and 99% for A. Table 2 gives the level of correlation  RX,Y and the 

normalised root mean square error when the signal included noise. Without filtering the 

deviation is worse especially for the very poor signal to noise ratio SNR = 7. Filtering the 

signal before using the wavelet method did not produce better results than direct application 

of ANN on the filtered data. 
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6.  Discussion 

This paper focuses attention on the need to characterise multiple defects as a means to 

achieving higher resolution non-destructive evaluation of components. The types of problems 

covered herein are those where pulse echo straight beam ultrasonic probes are used to produce 

longitudinal wave for the detection of flaws. The signal available for processing is assumed to 

be in the form of an A-scan data. This approach is used primarily for the detection of flaws 

that are perpendicular / orthogonal to the beam or only slightly inclined typically less than 3o 

deviation [23]. Angle beam testing is usually used for the detection of inclined flaws.     

 

The A scan signals are assumed to be used directly as features for the ANN training and 

assessment in the case of M1 and in the other case, M2, parameters based on wavelet 

decomposition approximation coefficients of the signals were used as features for the ANN. 

The application of wavelets was carried out to assess signal data downsampling possibilities 

and noise elimination benefits.  

 

In general the two approaches used for the analysis have produced excellent to very good 

correlation between predicted and target values. Amplitudes were more accurately predicted 

than the phase shift which represented the distance between the defects. This observation 

applies to both the pure signal data and the signal data with noise cases.   

 

It is helpful to highlight the limits of the analysis carried out in this paper. The paper has 

considered only two defects in close proximity. The focus has been on the use of ANN and 

wavelets methods to interprete the signal obtained from the flaws. Other problems such as 

effect of scattering, mode conversion and secondary signals are not covered. Some of these 

problems are focus of other studies [14].  In reality there could be more than two defects in 

close proximity in a component and this case will be considered in future work. The paper has 
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demonstrated numerically from simulated pulse echo data that ANN and wavelets methods 

can assist with the interpretation of signals arising from close defects. The data used 

especially in the cases with noise added to the signal are comparable to experimental data as 

highlighted in section 4.3.   

7.  Conclusions 

The paper demonstrates the potential of two ANN – wavelets methods to assist with the 

characterisation two close defects in terms of their sizes and the distance between them. The 

results from the methods show very good correlation between predicted and target values. 

Results for the amplitudes were generally better predicted than distance between the defects. 

Good correlation was also obtained in the cases with noisy signal data. As to be expected 

filtering to ameliorate the effect of noise in signals assisted good prediction. Filtering the 

signal before using the wavelet method did not produce better results than direct application 

of ANN on the filtered data. 
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Fig 5 

 

Test 
Case 

RX,Y - M1 En (%) 

A B  All 

1 (A+ B--) 0.9996 0.9993 0.9960 1.138 

2 (A- B-+) 0.9985 0.9984 0.9909 1.787 

3 (A- B+-) 0.9995 0.9993 0.9992 0.796 

4 (A+ B++) 0.9989 0.9981 0.9866 1.973 

Table 1 (a) 

Predicted 

a)  A    M1              target 

Predicted 

c)  A    M1              target 

Predicted 

b)  τ    M1              target 

Predicted 

d)  τ   M1              target 
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Test 
Case 

RX,Y - M2 En (%) 

A B  All 

1 (A+ B--) 0.9991 0.9988 0.9964 1.286 

2 (A- B-+) 0.9984 0.9970 0.9900 1.996 

3 (A- B+-) 0.9995 0.9996 0.9994 0.687 

4 (A+ B++) 0.9977 0.9974 0.9927 1.900 

 

Table 1 (b) 

 

Table 2 

 

 

List of Tables  

 

Table 1 Product-moment correlation coefficients between target and predicted values (RX,Y) and 

the normalised total root mean square error En for different combinations of the limits of the 

amplitudes A and B and the phase shift  using methods (a) M1 and (b) M2.  

 

Table 2 Product-moment correlation coefficients between target and predicted values (RX,Y) and 

the normalised total root mean square error En (100%) for A and B and the phase shift   using 

methods M1, and M2 and different signal to noise ratios. 

Method Signal to 
noise ratio 
SNR  (dB) 

RX,Y En (%) 

A B  All 

M1 7 0.9515 0,9089 0.9011 8.279 

M2 7 0.9231 0.9197 0.9219 8.568 

M1 14 0.9812 0.9593 0.9391 6.172 

M2 14 0.9579 0.9601 0.9518 7.735 

M1 21 0.9857 0.9729 0.9663 4.811 

M1 30 0.9956 0.9866 0.9885 2.953 
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List of figures 

 

Figure 1 Illustration of phase shifting of reflected waves due to different depths of defects  a) 

waves making contact with the first defect b) waves fully reflected from the second defect. 

Overlap of reflected waves occur if the distance e between the defects a and b satisfies  e < nw /2. 

 

Figure 2  Distance amplitude correction (DAC) test results for a 200 x 100 x 10 mm mild steel bar 

with three defect 1, 2 and 3 diameter holes at different depths. 

 

Figure 3 Plots of predicted and target values for amplitude A and phase shift  (rad) for  different 

methods M1 and M2. 

 

Figure 4 Two different signals a) and b) with 7dB signal to noise ratio and (c) and (d) the 

corresponding filtered signal and original signal .  

 

Figure 5 Plots of predicted and target values for amplitude A and phase shift  (rad) for  different 

signal to noise ratio a) and b) 7dB and c) and d) 21dB.  


