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The Bigger Picture

Molecular locksmithing is the use

of precision chemical keys for

biological locks. Nicotinic

acetylcholine receptors (nAChR)

associated with acetylcholine

neurotransmission are linked to

public health issues, notably

tobacco addiction. Why is this

important? Smoking kills seven

million people annually and

imposes a huge burden in terms of

healthcare and lost productivity.

The ability to design a molecule to

achieve high receptor selectivity is
SUMMARY

Differentiating nicotinic acetylcholine receptors (nAChR) to target the high-

affinity nicotine a4b2 subtype is a major challenge in developing effective addic-

tion therapies. Although cytisine 1 and varenicline 2 (current smoking-cessation

agents) are partial agonists of a4b2, these drugs display full agonism at the a7

nAChR subtype. Site-specific modification of (�)-cytisine via Ir-catalyzed C‒H

activation provides access to C(10) variants 6–10, 13, 14, 17, 20, and 22, and

docking studies reveal that C(10) substitution targets the complementary

region of the receptor binding site, mediating subtype differentiation. C(10)-

modified cytisine ligands retain affinity for a4b2 nAChR and are partial agonists,

show enhanced selectivity for a4b2 versus both a3b4 and a7 subtypes, and

critically, display negligible activity at a7. Molecular dynamics simulations link

the C(10) moiety to receptor subtype differentiation; key residues beyond the

immediate binding site are identified, and molecular-level conformational

behavior responsible for these crucial differences is characterized.
paramount for the success of

smoking cessation: poor

selectivity is typically

accompanied by (adverse) side

effects. We have modified

cytisine, a known ‘‘nicotinic

activator,’’ in a very direct and

versatile manner to suppress a

particular characteristic:

activation of the a7 subtype of

nAChR. Computational molecular

simulation of the protein-ligand

complexes links these structural

changes to a ligand’s activity,

facilitating the design of precision

‘‘molecular keys’’ for better

discrimination of receptor

subtypes and offering the

potential of more targeted

therapies.
INTRODUCTION

Validated links exist between neuronal nicotinic acetylcholine receptors (nAChR)1–4

and a range of neurodegenerative5 and psychiatric diseases.6 Interest in these

conditions, together with the broader public health issue of tobacco consumption

and addiction,7,8 a global challenge highlighted by the landmark World Health

Organization Framework Convention on Tobacco Control,9 has driven the discovery

and evaluation of small molecule ligands for therapeutic intervention, notably for

smoking cessation.10,11 These molecules are often derived from natural product

leads, such as nicotine, but a continuing goal is to identify ligands with higher

selectivity for targeting nAChR subtypes such as a4b2 (the prime receptor for

smoked nicotine because of its high-affinity nicotine binding sites) coupled with

sufficient bioavailability to enable central nervous system penetration.12,13

Our activity in this area is focused on (�)-cytisine 1 (Figure 1).14 Currently marketed

for smoking cessation as Tabex, (�)-cytisine, which is isolated from Cytisus laburnum

(Golden Rain acacia), has been used in eastern Europe for well over 50 years.15,16

The partial agonist profile of 1 at a4b2 nAChR differentiates this natural product

from full agonists, such as acetylcholine. Two recent controlled clinical trials have re-

ported17,18 further support for the effectiveness of cytisine 1 for smoking cessation.

Cytisine, which is more effective than nicotine replacement therapy, offers the

potential of a readily available and efficacious, as well as cost-effective, smoking-

cessation protocol.19 A synthetic variant, varenicline 2 (launched in 2006 as Champix

and Chantix; Figure 1)20–23 offers a broadly comparable profile with that of 1 for a4b2
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Figure 1. Cytisine 1 and Varenicline 2, Nicotinic Partial Agonists at a4b2 nAChR, and Full

Agonists at a7 nAChR
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nAChR, and these commercial products have led to partial agonism being regarded

as a key feature for successful intervention to combat nicotine addiction.10 However,

both cytisine24 and varenicline25 are also full agonists (in vitro) at the a7 (where

varenicline 2 is more potent than cytisine 126) and a3b4 nAChR subtypes, albeit

with differing potencies, but nevertheless contributing to the potential of off-target

side effects. A contemporary goal, therefore, is to develop partial agonists for the

a4b2 nAChR with enhanced nAChR subtype selectivity.

The biological target, the two agonist binding sites of a4b2 nAChR, is located at the

interface of a and b subunits of this pentameric receptor.1,2 The a subunit contributes

the primary component comprising key aromatic amino acids and the highly conserved

C loop. This accommodates (protonated) N(3) of 1 via an interplay of cation-p and

hydrogen-bonding interactions27–29 and is an interaction that is highly sensitive to struc-

turalmodification in this regionof the ligand.30Thepyridonemoietyof1, however, binds

within the complementary region of the site provided by the adjacent b subunit (or the

opposite face of an a7 subunit in the homomeric a7 nAChR). This region influences sub-

type selectivity for agonists, and in the case of cytisine, higher selectivity for the a4b2

nAChRsubtypeovera3b4 is associatedwith substitutionatC(10).31–33For example, rela-

tive to cytisine 1 (which is 150-fold more selective at a4b2 than a3b4), the C(10) methyl

analog (racemic variant of 10 below) shows a 3,500-fold selectivity in binding affinity

for the a4b2 (relative to a3b4) nAChR subtype.32 This provides an impetus to explore

modification of the pyridone moiety of 1 as an attractive avenue for further enhancing

nAChR subtype selectivity. However, previous access to C(10) substituted cytisine li-

gands has required lengthy synthetic sequences (at least ten chemical steps) limiting

both the number and variety of C(10) options available. Moreover, only racemic ligands

have been reported to date;31–33 although the (+)-enantiomer ((+)-1) lacks a nicotinic

profile,34 the broader characteristics (e.g., toxicology) of (+)-1 remain unclear, high-

lighting the value of targeting enantiomerically pure variants. Accordingly, there is a sig-

nificant hurdle to overcome: given the inherent bias of the pyridone moiety for electro-

philic substitution at C(9) and C(11), how do we specifically target C(10) of (�)-cytisine 1

directly, efficiently, and with the ability to access a wide range of structural variation?

RESULTS

Synthesis of (�)-Cytisine C(10) Variants

Here we demonstrate how to manipulate directly (�)-cytisine 1 at C(10) in a highly

versatile manner. This chemistry leads efficiently and flexibly to cytisine variants

with (1) enhanced a4b2 selectivity (versus both a3b4 and a7) that retain the essential

partial agonist profile suited to smoking cessation, and (2) that also show a negligible

agonist profile for a7 nAChR. Functionalization of (�)-1 has been achieved by

highly efficient Ir-catalyzed borylation within the pyridone moiety35 of cytisine.

This C‒H activation process occurs exclusively at C(10) within the pyridone ring
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Scheme 1. Ir-Catalyzed C(10) Borylation of N-Boc cytisine 3

Reagents and reactions conditions were as follows: (a) Boc2O, Na2CO3, THF, H2O (93%);

(b) [Ir(COD)(OMe)]2 (1 mol %), dtbpy (2 mol %), B2pin2 (0.70 equiv), THF (0.7 M with respect to 3),

reflux (100% conversion by 1H NMR); (c) CuBr2 (3 equiv), MeOH, H2O, air (83%). Abbreviations: Boc,

CO2t-Bu; B2pin2, bis(pinacolato)diboron; dtbpy, 4,4
0-di-tert-butyl-2,20-dipyridyl; Me4phen, 3,4,7,8-

tetramethyl-1,10-phenanthroline; THF, tetrahydrofuran.
(Scheme 1) and the functionality introduced (i.e., the C(10) boronate ester 4 or

derived bromide 5) provides essentially unfettered means of varying the C(10)

substituent. A significant consequence of this chemistry is that all resulting C(10)

ligands produced are single enantiomers.

Ir-catalyzed C‒H activation and C(10) site-specific borylation can be conducted with

(�)-cytisine 1 itself but in our hands this required an excess (1.5–3.0 equiv) of B2pin2
and the instability of the resulting 10-(Bpin)cytisine proved to be a limitation. N-Boc

cytisine 3 (available in high yield from (�)-cytisine 1) provides, however, an optimal

substrate, offering excellent chemical efficiency and conversion (only 0.70 equiv of

B2pin2 needed), very good product stability, and easy scale-up: borylation of 3 to

give 4 has been done on a 5-g scale (with 0.6 mol % of [Ir(COD)(OMe)]2). No purifi-

cation was required and crude 4was used directly as illustrated by conversion to bro-

mide 5 (in 77% overall yield over three steps) from (�)-1 (Scheme 1). Further and

importantly, this chemistry offers significant flexibility in terms of the scope of down-

stream processing options and the range of C(10) cytisine variants that are available.

Intermediates 4 and 5 offer highly complementary synthetic options for exploring a

comprehensive structure-activity profile for the a4b2 nAChR by using enantiomeri-

cally pure cytisine-based ligands that are easily isolated and purified. Here, we

present a representative selection of these C(10) ligands together with preliminary

biological data: binding affinity and functional potency (agonist potency and effi-

cacy) profiles that demonstrate nAChR subtype selectivity. These data, combined

with molecular modeling and simulation, allow us to propose a rationale for the

subtype selectivity profiles we have observed.

Exploiting the reactivity profiles of both 4 and 5 is illustrated in Scheme 2. Use of the

crude 10-borylated adduct 4 via direct oxidation or copper-catalyzed Chan-Lam

coupling led to the 10-hydroxy and 10-methoxycytisine derivatives 6 and 7, respec-

tively, after N-Boc cleavage (4) or inverse sense (via 5), provided the 10-arylated

adducts 8 and 9. Chemistry using 4 has also been exploited to introduce other

heteroatom-based substituents at C(10) as well as a wide range of other 10-aryl

and heteroaryl variants, and full details of this will be reported in due course.

The 10-bromo derivative 5 also enables a variety of C‒C bond-forming processes to be

exploited.AlthoughStille-typecouplingusingMe4Snprovided the10-methylderivative

10 in essentially quantitative yield, toxic alkyltinsareavoidable, and10wasalsoavailable

in (an unoptimized) 64% yield from boronate ester 4 via Pd-catalyzed methylation
1712 Chem 4, 1710–1725, July 12, 2018
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Scheme 2. Transformations Based on 4 and 5 to Provide C(10)-Substituted Cytisine Ligands

Yields shown below are for transformations other than (b), i.e., N-Boc cleavage. This step was

common to all examples except for 7, 8, and 14 (where trifluoroacetic acid [TFA] and

dichloromethane [DCM] were used), and overall isolated yields (i.e., including b, where

appropriate) are shown under the product structure. Final products were isolated as HCl salts

except for 7, 8, and 14, which were isolated as free bases. Reagents and reactions conditions were

as follows: (a) 30% aqueous H2O2, NaOH, room temperature (RT) (79%); (b) HCl in MeOH, RT; (c) (1)

CuSO4, MeOH, KOH, MS 4Å, O2 (balloon), 65
�C; (2) TFA, DCM, RT (69% overall); (d) (1) 4-BrC6H4Me,

Pd(PPh3)4, K2CO3, DME/H2O, 80�C; (2) TFA, DCM, RT (41% overall); (e) BrC6F5, PdCl2(PPh3)2,

Cs2CO3, THF, reflux (99%); (f) Me4Sn, PdCl2(PPh3)2, PhMe, 100�C (99%); ligand 10 is also available

from 4 via Pd-catalyzed methylation (see main text and Supplemental Information); (g) Pd(OAc)2,

dppp, Et3N, DMF, MeOH, CO, 80�C (86%); (h) LiAlH4, THF, �78�C (62%); (i) (1) 4MeC6H4B(OH)2,

Pd(PPh3)4, K2CO3, DME/H2O, 80�C; (2) TFA, DCM, RT (53% overall); (j) TFA, DCM, RT (93%).

Abbreviations: DCM, dichloromethane; DME, dimethoxyethane; dppp, bis(diphenylphosphino)

propane; TFA, trifluoroacetic acid.
involving MeI. Pd-catalyzed carbonylation of 5 gave ester 11, reduction of which gave

12, and subsequent Boc deprotection generated 10-(hydroxymethyl)cytisine 13; both

10 and 13 have previously been prepared by Kozikowski and co-workers31,32 but only
Chem 4, 1710–1725, July 12, 2018 1713



N

NBoc
O

Br

N

NR
O

Y

N

NR
O

Y

21 Y=CMe3; R=Boc

22 Y=CMe3; R=H·HCl (43% from 5)

15 Y=CH=CH2; R=Boc

16 Y=CH2Me; R=Boc
(a)

(c)

17 Y=CH2Me; R=H·HCl (79% from 5)

(b)

(c)

5

N

NR
O

Y

18 Y=C(Me)=CH2; R=Boc

19 Y=CHMe2; R=Boc

20 Y=CHMe2; R=H·HCl (87% from 5)

(e)

(c)

(f)

(d)

Scheme 3. C(10)-Alkyl Variation of Cytisine

Yields shown below are for transformations other than (c), i.e., N-Boc cleavage. This step was

common to all examples, and overall isolated yields (i.e., including c) are shown under the product

structure. Final products were isolated as HCl salts. Reagents and reactions conditions were as

follows: (a) (CH2=CHBO)3$py, K2CO3, PdCl2(PPh3)2, dioxane, water, 90
�C (86%); (b) Pd/C, H2, MeOH

(95%); (c) HCl in MeOH, RT; (d) CH2=C(Me)Bpin, NaHCO3, Pd(PPh3)4, water, dioxane, 60
�C (94%);

(e) TolSO2NHNH2, K2CO3, MeCN, reflux (95%); (f) Me3CMgCl, CuI, THF, �40�C (42%).
as racemates andwith lengthy sequences (at least ten steps). Bromide 5 is also effective

in Suzuki-Miyaura cross-coupling in that it offers an alternative entry to 8. Finally, 10-halo

variants were of interest, and for that reason, 10-bromocytisine 14 was prepared. The

developmentofmore focusedstructural libraries, guidedby thebiological profiles asso-

ciatedwithC(10) substituted cytisine leads, is alsonow fully enabledby readyavailability

on scale of both 4 and 5. This, in turn, underscores the value of being able to achieve the

direct, 100% regioselective, and highly efficient C‒H functionalization of N-Boc cytisine

3 (shown in Scheme 1).

Probing Subtype Selectivity as a Function of C(10) Alkyl Variation

The level of subtype differentiation (compared with cytisine 1) observed for

10-methylcytisine 10 (see below) prompted us, by way of exemplification, to

explore one focused library by varying the C(10) alkyl residue. This largely limits

changes to bulk and lipophilicity, and with the flexibility associated with the reac-

tivity of bromide 5, the C(10) ethyl, iso-propyl, and tert-butyl variants 17, 20, and

22 were synthesized (Scheme 3). A Suzuki-Miyaura cross-coupling approach

enabled access to the 10-ethenyl adduct 15, and alkene reduction of this followed

by Boc cleavage of 16 gave the 10-ethyl cytisine variant 17. An analogous cross-

coupling provided the isopropenyl adduct 18, which was reduced to give 19

and deprotected to provide 20. Direct introduction of a tert-butyl moiety is achiev-

able with a copper catalyst under the Kumada-Corriu-Tamao reaction developed

by Hintermann et al.36 This chemistry, which was developed with haloazines and

diazines, had not been applied previously to 2-pyridones but is effective in

providing adduct 21. Deprotection then afforded 22, completing a homologous

series of ligands from cytisine 1 (H at C(10)) to 22 (tert-Bu at C(10)).

In Vitro Biological Evaluation

Binding Affinities

Two sets of biological data establish the superior selectivity of the ligands shown in

Schemes 2 and 3 for human a4b2 nAChR, supporting their potential as candidates

for smoking cessation. Binding-affinity profiles across three human nAChR subtypes
1714 Chem 4, 1710–1725, July 12, 2018



Table 1. Affinity (Ki in nM) of C(10) Ligands for a4b2, a3b4, and a7 nAChR Subtypes

Ligand a4b2a a3b4a a7a a3b4/a4b2 a7/a4b2

Ki Ki Ki

(�)-Cytisine 1 1.27 G 0.1 103 G 16.4 691 G 16.4 81.1 544

1.5b 220b – 147b –

6 14.7 G 3.4 8,951 G 2,434 15,000 G 2,526 609 1,017

7 41 G 6.7 8,452 G 2,220 21,300 G 7,976 206 520

8 14.1 G 4.1 2,280 G 760 5,630 G 1,747 162 399

9 19.1 G 5.7 154 G 33 10,980 G 4,485 8.1 575

10 2.60 G 0.5 2,273 G 868 5,027 G 1,978 864 1,911

1.9b 6,700b – 3,526b –

13 36.8 G 9.4 2,685 G 910 116,000 G 48,750 73 3,152

11b 10,000b – 909b –

14 1.77 G 0.4 537 G 131 323 G 127 303 182

17 3.01 G 0.4 5,723 G 1,660 6,928 G 2,326 1901 2301

20 12.5 G 3.0 20,390 G 5,150 96,500 G 34,050 1,622 7,677

22 26.4 G 4.8 70,620 G 15,050 134,600 G 60,275 2,675 5,098

aHeterologously expressed human receptors were used. a4b2 and a3b4 nAChR subtypes were expressed in HEK293 cells; human a7 nAChR was expressed in

SH-SY5Y human neuroblastoma cells. Binding was assessed with [3H]epibatidine for a4b2 and a3b4 nAChR subtypes and [125I]a-bungarotoxin for a7 subtype. Ki

values (in nM) were derived from the average value of three independent competition binding experiments for each compound on each subtype.
bBinding data (Ki nM) based on a4b2 and a3b4 rat subtypes reported32 for (�)-cytisine 1 and racemic ligands (G)-10 and (G)-13; corresponding data for a7 nAChR

subtype were not reported.
(a4b2, a3b4, and a7) for a series of C(10) ligands, all as single enantiomers, are pre-

sented in Table 1 together with values for (�)-cytisine 1 for comparison. Kozikowski

and Kellar32 have previously reported binding affinities for racemic 10-methyl and

10-(hydroxymethyl)cytisines ((G)-10 and (G)-13, respectively), and their data using

rat nAChR subtypes are included for comparison in Table 1. The modest differences

in Ki values between the present study and that reported earlier can be accounted

for by species (rat versus human) differences and/or their use of racemic ligands.

The data documented in Table 1 confirm that C(10)-substituted cytisine ligands have

preferential binding affinity for a4b2 nAChR versus a3b4 or a7 nAChR. All C(10)

ligands bind to a3b4 and a7 nAChR with a lower affinity than cytisine 1, except

10-(perfluorophenyl)cytisine 9, which has a similar affinity at a3b4 as 1, and bromide

14, which has a (modestly) higher affinity for a7 than does cytisine 1. Moreover, bind-

ing affinities in the high nanomolar range are retained for the a4b2 nAChR subtype,

such that bromide 14 and the 10-methyl and 10-ethyl derivatives 10 and 17 have

affinities comparable with that of cytisine 1.

Increasing the size of the C(10) alkyl substituent (using the ligand series outlined in

Scheme3) shows thatalthoughasmall lossofpotencyat thea4b2nAChRsubtype isasso-

ciatedwith the 10-isopropyl and 10-tert-butyl analogs 20and 22, these two ligands show

markedly increased levels of selectivity (5,000- to 7,000-fold) against the a7 subtype.

Functional Assays

In the second set of biological experiments, we evaluated the series of C(10)-

substituted ligands (6–10, 13, 14, 17, 20, and 22) over the concentration range

1 nM to 100 mM for their functional potency and efficacy as agonists by determining

their ability to activate currents in Xenopus oocytes heterologously expressing hu-

man a4b2, a3b4, or a7 nAChR subtypes (Figures 2A and 2B; Table S1). Acetylcholine
Chem 4, 1710–1725, July 12, 2018 1715



Figure 2. Functional Effects of C(10)-Substituted Cytisine Ligands on (a4)2(b2)3, (a4)3(b2)2, a3b4,

and a7 nAChR Subtypes

For a Figure360 author presentation of Figure 2, see http//dx.doi:10.1016/j.chempr.2018.05.

007#mmc4.

(A) Representative traces of the current responses of (a4)2(b2)3, (a4)3(b2)2, a3b4, and a7 nAChR

subtypes elicited by C(10)-substituted cytisine (Cy) ligands with the highest binding affinities for

a4b2 nAChRs (6, 8, 9, 10, and 17) tested at 100 mM. Current responses were measured by two-

electrode voltage-clamp recordings from Xenopus oocytes heterologously expressing (a4)2(b2)3
and (a4)3(b2)2 (the high and low acetylcholine [ACh] affinity stoichiometries, respectively), a3b4, or

a7 nAChR subtypes, as detailed in the Supplemental Information. Current responses to 100 mM

C(10) compounds were maximal responses for (a4)2(b2)3, (a4)3(b2)2, and a3b4 nAChR. Maximal

current responses were elicited by 1 mM ACh, 100 mM nicotine (Nic), 100 mM Cy 1, and 100 mM

varenicline 2 (Var) for comparison. a7 nAChR responses to C(10) ligands were submaximal when

tested at 100 mM and less than 1% of the maximal ACh response (Table S1). Maximal current

responses were elicited by 1 mM ACh, Nic, Cy 1, and Var 2. Arrowheads indicate compound

application onto Xenopus oocytes expressing (a4)2(b2)3 (black), (a4)3(b2)2 (blue), a3b4 (gray), and

a7 (red) nAChR.

(B) Relative efficacies of C(10)-substituted Cy ligands for activating (a4)2(b2)3, (a4)3(b2)2, a3b4, and

a7 nAChR subtypes; comparison with ACh, Nic, Cy 1, and Var 2. Relative efficacy was determined

with the following equation: (maximal response to test compound)/(maximal response to ACh)

(1 mM). The C(10)-substituted ligands shown were tested over a concentration range of 1 nM to

100 mM, and maximal responses were achieved at 100 mM C(10)-substituted ligand for (a4)2(b2)3,

(a4)3(b2)2, and a3b4 nAChR. At 100 mM, the compounds elicited submaximal current responses

when applied to a7 nAChRs. Values are the mean G SEM of six or seven independent experiments

carried out on oocytes from five or six different Xenopus donors. Functional potencies (EC50) were

estimated for ligands with agonist efficacy greater than 0.1 by non-linear regression with GraphPad

software and are shown in Table S1.
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was assayed in parallel as a fully efficacious, non-selective agonist. Nicotine, cytisine

1, and varenicline 2 were also included for comparative purposes. We examined the

two stoichiometries of the a4b2 nAChR by separately expressing the human recep-

tors (a4)2(b2)3 (high sensitivity for acetylcholine and nicotine) and (a4)3(b2)2 (low

sensitivity for acetylcholine and nicotine).37

The C(10) ligands behaved as partial agonists at (a4)2(b2)3 and (a4)3(b2)2 receptors

and produced responses that were much smaller than those of acetylcholine but

of similar magnitude to those currents produced by cytisine 1 (Figure 2A). Maximal

responses were achieved by concentrations of 30–100 mM, indicating potency com-

parable with that of the parent cytisine 1. Our ligands also activated a3b4 nAChRs

but with markedly lower efficacy than observed for cytisine 1. Consistent with their

low binding affinities at a7 nAChR (Table 1), C(10) cytisine ligands applied over

the same concentration range (1 nM–100 mM) showed negligible activity at a7

nAChR; at the highest concentration (100 mM), they either failed to induce any

measurable current responses (6) or activated currents that were less than 1% of

the maximal acetylcholine response (ligands 7–10, 13, 14, and 17 in Figure 2B; func-

tional data relating to the alkyl series, including ligands 20 and 22, are shown in

Figure S3).

When tested at higher concentrations (up to 3 mM), with the exception of ligand 6,

which displayed no agonist activity at a7 nAChR, the C(10) ligands activated current

responses with increased amplitudes (Table S1). For ligands 7, 9, 13, 20, and 22, the

amplitudes of the responses were too low for constructing meaningful concentra-

tion-response curves. However, for compounds 8, 10, 14, and 17, it was possible

to generate full concentration-response curves: the estimated efficacies for these

ligands were 20%–40% of that of acetylcholine. Their potencies at a7 nAChR were

in the mM range: 8, 1.55 G 0.35 mM; 10, 1.60 G 0.20 mM; 14, 1.58 G 0.15 mM;

17, 1.70 G 0.18 mM (Figure S2; Table S1). This is in marked contrast to the more

than two orders of magnitude greater potency and full agonism of cytisine 1 and

varenicline 2 at human (Figure 2), chick,24 and rat25 a7 nAChR.

Although the data shown in Figure 2 clearly demonstrate the partial agonist profiles

of the C(10)-substituted cytisine variants at a4b2 nAChR, the limited agonist efficacy

observed confounds accurate determination of their potency when the maximal cur-

rent is less than 10% of that achieved by a full agonist like acetylcholine. As a result,

we undertook further characterization of these C(10)-ligands at a4b2 nAChR to

explore their partial agonism and obtain quantitative determinations of functional

potency. We achieved this by assessing the ability of these ligands to act as

competitive antagonists. This strategy is based on the rationale that a partial

agonist fully occupies the agonist binding site while having low efficacy in activating

the receptor: in occupying the binding site, a ligand will prevent other agonists from

binding and activating the receptor; thus, in this circumstance, the partial agonist

also acts as a partial competitive antagonist.38 Indeed, this is the premise for the

efficacy of varenicline as a smoking-cessation agent.10 Where agonist efficacy is

very low, as for the C(10)-substituted cytisines described here at nAChR subtypes,

evaluation of the propensity of these ligands to act as competitive antagonists

over a range of concentrations offers a more robust means of assessing their

functional potency.39 This is illustrated in Figure S1 for inhibition by cytisine 1 of

acetylcholine-evoked responses of (a4)2(b2)3 and (a4)3(b2)2 nAChR. Note that the

inhibition curve falls short of 100% inhibition, consistent with the partial agonist

action of cytisine (magnified in the central panels of Figure S1). The inhibition curve

allows determination of the concentration of cytisine 1, producing 50% inhibition
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Figure 3. Competitive Antagonist Activity of C(10)-Substituted Cytisine Derivatives 10 and 17 on

(a4)2(b2)3, (a4)3(b2)2, and a7 nAChR Subtypes

The ability of ligands 10 and 17 to inhibit current responses elicited by ACh in Xenopus oocytes

expressing (a4)2(b2)3 (A), (a4)3(b2)2 (B), and a7 (C) nAChR subtypes was determined by

two-electrode voltage-clamp recording as described in the Supplemental Information. Oocytes

were stimulated with ACh at a concentration that produced 80% of its maximum response

(EC80 concentration): 30 mM for (a4)2(b2)3 (A) and 300 mM for (a4)3(b2)2 (B) and a7 (C) nAChR in the

presence or absence of 10 or 17, which were tested over a broad range of concentrations. Current

responses in the presence of test ligand were compared with the control response to ACh alone

(taken as 1.0) for construction of dose-response curves. Data points are the mean G SEM from six

independent determinations.
(half maximal inhibitory concentration [IC50] 0.61 mM and 7.30 mM for (a4)2(b2)3 and

(a4)3(b2)2 nAChR, respectively, Table S2). The latter value accords well with the

directly estimated EC50 of 5.3 mM for activation of (a4)3(b2)2 nAChR by cytisine 1

(Table S1), which validates this approach for assessing potency. The lower agonist

efficacy of the (a4)2(b2)3 nAChR subtypes precluded derivation of EC50

directly. Similarly, C(10)-substituted cytisine ligands inhibited acetylcholine-evoked

responses of (a4)2(b2)3 and (a4)3(b2)2 nAChR expressed in Xenopus oocytes with

residual activation that correlates with the directly determined agonist efficacy (Fig-

ures 3A and 3B; Table S2). In all cases, ligands were more potent inhibitors of the
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(a4)2(b2)3 stoichiometry. Consistent with the binding data (Table 1), the most potent

inhibitors of a4b2 nAChR were the 10-methyl and 10-ethyl cytisine derivatives 10

and 17, which gave IC50 values (0.88 and 0.95 mM, respectively) comparable with

that of cytisine 1 (IC50 0.61 mM; Table S2).

We used the same approach to examine the ability of C(10)-substituted cytisine ligands

10 and 17 to inhibit acetylcholine-evoked responses from a7 nAChR (Figure 3C). This

experiment clearly demonstrated that neither of these ligands has any antagonist activ-

ity at concentrations below 1 mM. This confirms that these ligands lack the ability to

interact productively with a7 nAChR at sub-millimolar concentrations. This is consistent

with the low-affinity binding constants shown in Table 1 and is in marked contrast to cy-

tisine 1. Given the series of alkyl derivatives associated with Scheme 3, this correlation

between affinity (Table 1) and a7 function appears to extend to more sterically

demanding substituents, such as those present in 20 and 22 (Figure S3). However, it

would be premature to attribute (or indeed limit) this selectivity effect to substituent

volume.

In summary, the C(10)-substituted cytisine ligands described in this paper retain the

potent partial agonism of cytisine 1 at a4b2 nAChR, regarded as a fundamental prop-

erty for successful smoking-cessation agents.10 These ligands display a preference for

the (a4)2(b2)3 receptor stoichiometry, and that discrimination can be attenuated by vari-

ation, for example, of the size of a C(10) alkyl substituent. In contrast to cytisine 1, they

lack the ability to activate (or inhibit) a7 nAChR at therapeuticallymeaningful concentra-

tions, eliminating an interaction considered to be off-target for smoking cessation.22,23

Furthermore, although these C(10) ligands are also weak partial agonists at a3b4

nAChRs, observed efficacies at this subtype are consistently lower than those of cytisine

1 and varenicline 2 at a3b4 nAChR.25Moreover, the binding affinities of a3b4 nAChR for

the C(10) compounds (with the exception of 9) are markedly lower than that for cytisine

1. As a consequence, these C(10)-substituted cytisine variants (exemplified by the

C(10)-alkyl series 10, 17, 20, and 22) combine potent partial agonism with exceptional

selectivity for a4b2 nAChR, making them excellent lead candidates for further structural

and pharmacological development.

Computational Docking Studies and Molecular Dynamics Simulations

Recognition of the opportunities associated with achieving a specific modification of

cytisine at C(10) was guided by computational modeling of themode of binding (and

differences associated with that mode of binding) of a series of prototype ligands,

namely cytisine 1 and the C(10) hydroxyl and C(10) methyl cytisine analogs 6 and

10, respectively. We carried out this study by using appropriate crystallographic

data40,41 to derive human homology models in order to dock ligands into the

binding sites of the three key nAChR subtypes: a4b2, a3b4, and a7. These models

suggest three factors in the immediate environment of the agonist binding site to

rationalize the enhanced a4b2 receptor selectivity compared with that of a3b4

and a7 nAChR for 1, 6, and 10 in terms of binding affinities. Although this study

ultimately guided the selection of C(10) as the preferred site for modification,

it also provides a framework for interpreting the selectivity for C(10)-substituted

cytisine ligands presented in Table 1.

Ligands were docked into these three receptor subtypes in poses corresponding

to those observed in the crystal structures of the acetylcholine binding protein

(Ac-AChBP) (from Aplysia californica) with cytisine 1 and with varenicline 2

(PDB: 4BQT and PDB: 4AFT, respectively),40 and the resulting complexes were

relaxed by energy minimization. The Supplemental Information provides full
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Figure 4. Binding-Site Orientations of Nicotine and Cytisine 1 in a4b2, a3b4, and a7 nAChR Subtypes

For clarity, all residue numbering refers to the analogous positions in the PDB: 5KXI crystal structure of the (a4)2(b2)3 nAChRwith nicotine bound.41W57 is analogous

to the TrpD referred to by Tavares et al.,29 and W156 is analogous to TrpB. The solid sphere corresponds to the C(10) position within cytisine 1.

(A) The position of nicotine in the crystal structure of a4b2 PDB: 5KXI41 (a subunit in cyan, b subunit in magenta, and nicotine in green).

(B) Cytisine 1 docked into the binding pocket of a4b2 (a subunit in cyan, b subunit in magenta, and cytisine 1 in purple); Video S1.

(C) Cytisine 1 docked into the model of human a3b4 (a subunit in blue, b subunit in mauve, and cytisine 1 in purple). Note the residues immediately lining

the binding pocket: F119 (a4b2) is substituted by L119 (a3b4), and V111 (a4b2) is replaced by the bulkier I111 (a3b4). This modifies the hydrophobicity,

shape, and space of the binding pocket. Also note the reversal of the positions of the (a4b2) S108 and T157 positions to T108 and S157 (a3b4), which may

affect the hydrogen-bonding network around the cytisine carbonyl.

(D) Cytisine 1 docked into the model of the human a7 (one a subunit in yellow, neighboring a subunit in orange, and cytisine 1 in purple). This model

illustrates that the substitutions include the same serine-threonine switch seen in a3b4; hydrophobic F119 is replaced by a more polar Q119, and V111 of

a4b2 is also replaced with a bulkier leucine.
details together with an animation (Video S1) showing a view around the ligand

binding site with cytisine docked into the a4b2 nAChR complex; key residues

are labeled according to the recently reported human a4b2 nAChR crystal

structure PDB: 5KXI and depict the desensitized, non-conducting conformation.41

As expected, the modeled complexes of cytisine 1 and the corresponding C(10)

variants share the core interactions observed in the Ac-AChBP-cytisine complex

(PDB: 4BQT) and as described by Dougherty.27,28 The protonated secondary

amine N(3) binds with a combination of a cation-p interaction and hydrogen

bonding within the a subunit.29 Hydrogen bonds to the side chain of TyrA

(Y100) and the amide carbonyl of TrpB (W156) are also present. (Where applicable,

we adhere to the amino acid nomenclature and numbering scheme used by
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Dougherty and co-workers.27 For residues [subtype based] outside this scheme,

numbering is according to positions within the crystal structure of the human

a4b2 receptor [PDB: 5KXI].41) The pyridone carbonyl oxygen of cytisine 1 (and

related C(10)-derivatives) is orientated toward the amide nitrogen and carbonyl

of L121 within the protein backbone with space for bridging water molecules (as

present in the crystal structure of varenicline with Ct-AChBP42), providing a

hydrogen-bonding network with the side-chain hydroxyl of S108 (a4b2) or T108

(a3b4 and a7). The crystal structure of nicotine bound in the human a4b2 nAChR

protein is shown in Figure 4A, and models of cytisine 1 bound to the three

receptor subtypes (a4b2, a3b4, and a7) are shown in Figures 4B–4D, illustrating

similar modes of ligand binding in each case. The C(10) position of cytisine 1 is

highlighted by the solid purple sphere showing that a C(10) substituent will project

into the aperture of the active site pocket enabling interactions with residues in

the C loop or the neighboring subunit. For comparison, analogous models of

varenicline 2 in all three receptor subtypes are shown in Figure S4, including a

superposition of varenicline 2 and 10-methylcytisine 10 in the binding site of

human a4b2 subtype.

In addition to performing docking studies, we carried out molecular dynamics (MD)

simulations of the extracellular region of the a4b2, a3b4, and a7 nAChR subtype

complexes with nicotine, cytisine 1, and 10-methylcytisine 10 to better understand

the molecular determinants that modulate ligand binding in these receptors. The

ligands were placed into two of the nAChR binding pockets located at the subunit

interfaces. The resulting complexes were relaxed by energy minimization and equil-

ibrated, andMD simulations were performed for 100 ns without any restraints on the

systems; see the Supplemental Information for full details and graphical outputs. A

simple measure of the overall stability of the protein during the MD simulations can

be obtained by plotting the root-mean-square deviation of the protein atoms with

respect to their initial positions as a function of time. As can be observed in

Figures S5–S8, there was little conformational drift in the overall protein structure

during the simulation time in the nine simulations performed.

In all the nicotine and cytisine 1-bound complexes, the ligand exhibited similar dynamic

behavior such that it remained generally in the same binding orientation (within both

binding pockets 1 and 2) throughout the simulation (Figures S9, S10, and S12). Further-

more, the two canonical interactions between nicotine and TrpB27–29 were always

present (Figures S13 and S14). In contrast, ligand dynamics were more diverse in the

10-methylcytisine 10 complexes (Figures S11 and S12); they showed higher mobility

in the a7 subtype (mainly in binding pocket 2). This increased conformational variability

could be associated with the lower a7 binding affinity (Table 1) and functional potency

(Table S1) observed for 10-methylcytisine 10.

In the a7 subtype, the ligand dynamics were modulated by the behavior of R81.

During the simulation, the flexible side chain of R81 reoriented toward the binding

pocket and moved close to the C(10) methyl of 10 (Video S2). This side-chain move-

ment induced a change in the ligand binding mode, which resulted in the loss of

interactions with TrpB (Figures S13 and S14).

DISCUSSION

This study exploited chemistry to generate a series of potent cytisine derivatives with

enhanced selectivity for a4b2 nAChRs that facilitate an exploration of their molecular

interactions with the nAChR agonist binding sites to provide a rational explanation

of their selectivity profiles.
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The first observation from the binding data in Table 1 is that 10-methylcytisine 10

binds with higher affinity than 10-hydroxycytisine 6 to each of the receptor subtypes

and in line with the avidity ranking a4b2 > a3b4 > a7. This is consistent with our

modeling, which suggests that binding of the less hydrophilic 10-methyl moiety

(i.e., ligand 10) is favored, as outlined next. The C(10) substituent on the cytisine scaf-

fold is positioned within a hydrophobic region of the binding site in the b subunit.

The hydrophobicity in this region is provided partly by the disulfide linkage in the

a-chain C loop and a conserved leucine residue (b-chain L121) across these three

nAChR subtypes. Furthermore, after comparing the homology models, residue

119 was also identified as potentially playing a key role in subtype discrimination.

In the a4b2 subtype this residue is phenylalanine (F119), whereas the equivalent po-

sitions in the a3b4 and a7 are occupied by leucine and glutamine, respectively. This

decrease in hydrophobicity43,44 in the binding pocket of the a7 subtype could

correlate with the lower binding affinity observed for 10. Other key binding site

residues with the potential to interact with a C(10) substituent are the hydroxyl of

TyrC2 (Y204) and the amide carbonyl oxygen of T157. These residues could,

in the case of 10-hydroxycytisine 6, provide compensatory hydrogen-bonding inter-

actions in an otherwise hydrophobic environment.

Secondly, modeling indicates that the a4b2, a3b4, and a7 nAChR subtypes differ

in terms of the hydrophobic residue located at position 111 situated proximal to

C(9) and C(10) of cytisine 1: residue 111 is valine (in a4b2), isoleucine (in a3b4),

and leucine (in a7). From this, we infer that bulkier residues (I111 and L111) in

this region of the binding site serve to modulate the agonist binding cavity and

are less accommodating of a more sterically demanding C(10)-substituted cytisine

variant.

Our third observation is associated with the differences between receptor subtypes

of the S108-T157 hydrogen-bond network in a4b2. Notably, the position of these

residues is reversed in both a3b4 and a7, i.e., T108 and S157. This inversion might

change not only the shape of the binding pocket but also the hydrogen bonds

formed with the ligand.

Modeling of the three key nAChR subtype complexes allowed us to explore the

wider binding region beyond the primary interactions already established for cyti-

sine 1. This work suggests several interactions specific to cytisine 1 in addition to

those already characterized, some of which would be amenable to further investiga-

tion. These interactions (or some combination of them) might not only help to

explain how cytisine 1 is differentiated from other nicotinic ligands but also suggest

how a C(10) substituent could be exploited to modulate these differences and pro-

vide enhanced selectivity for a4b2 over both a3b4 and a7 nAChRs.

The relationship between cytisine 1, varenicline 2, and the C(10)-variants (e.g., 10)

reported here has been discussed (Figure S4) but raises the options associated

with functionalization of varenicline 2. Within the b subunit, this would involve target-

ing the quinoxaline moiety of 2. This area of varenicline is amenable to C–H activa-

tion45–49 (and other chemistry,50 as are other parts of the scaffold51), and although

quinoxaline-substituted derivatives have been reported, no corresponding biolog-

ical details are available. One of the issues that does arise here and that has signif-

icant implications for any pharmacological assessment is that varenicline 2 is ameso

compound. Monosubstitution within the quinoxaline unit breaks that symmetry, and

although further substitution can resolve that issue, this complicates analysis of any

resulting structure-activity relationship.
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In conclusion, we have validated C(10) substitution of cytisine 1 as a viable mechanism

for (1) eliciting increased selectivity for a4b2 versus a3b4 and, in particular, a7 nAChR

subtypes; (2) retaining profound partial agonism at a4b2 nAChR; and (3) suppressing

a7 agonism. We have solved the critical challenge of accessing this class of cytisine

ligand by site-specific C‒H functionalization of (�)-cytisine by using Ir-catalyzed boryla-

tion. This makes C(10)-substituted cytisine ligands available directly from the parent

compound (i.e., 1) in enantiomerically pure form, and the tractability associated with

this chemistry opens up the range of structural variation that is accessible. We can

now explore the structural determinants required for both binding and function to

further refine nAChR subtype selectivity. In addition, given the relatively low lipophilicity

of cytisine 1 compared with both nicotine and varenicline 2,22 the flexibility enabled by

C–Hactivation chemistry provides an opportunity to identify new cytisine-based ligands

for, e.g., smoking cessation, with improved penetration across the blood-brain barrier

to achieve a more effective therapeutic benefit.

EXPERIMENTAL PROCEDURES

Full details of synthetic chemistry, receptor binding and functional studies, docking,

and MD are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 24 fig-

ures, 2 tables, and 2 videos and can be found with this article online at https://doi.

org/10.1016/j.chempr.2018.05.007.

ACKNOWLEDGMENTS

We thank Achieve Life Sciences and Allychem Co. Ltd. for generous of gifts of

(�)-cytisine and bis(pinacolato)diboron, respectively, and the University of Bristol

and Engineering and Physical Sciences Research Council (EP/N024117/1) for finan-

cial support. This work was carried out at the computational facilities of the

Advanced Computing Research Centre of the University of Bristol (http://www.

bris.ac.uk/acrc).

AUTHOR CONTRIBUTIONS

Conceptualization, H.R.C., R.B.S., A.J.M., S.W., and T.G.; Methodology, H.R.C.

and A.H. (chemical synthesis), C.G., S.G.D.V., T.M.V., I.B., and S.W. (binding affin-

ity and receptor function assays and interpretation), K.E.R., A.J.M., and R.B.S.

(initial computational studies, parameters, and models), D.K.S. (subtype-specific

homology models and insights into receptor differentiation), A.S.F.O., A.J.M.,

and R.B.S. (MD simulations and analysis); Writing – Original Draft, all authors;

Writing – Review & Editing, H.R.C., R.B.S., A.J.M., D.K.S., A.S.F.O., I.B., S.W.,

and T.G.; Funding Acquisition, R.B.S., A.J.M., and T.G.; Supervision, R.B.S.,

A.J.M., I.B., and T.G.

DECLARATION OF INTERESTS

H.R.C. and T.G. are named inventors on a patent held by the University of Bristol.

The patent has been licensed by the University of Bristol to Achieve Life Sciences.

The University of Bristol and H.R.C. and T.G. are financial beneficiaries.

Received: October 16, 2017

Revised: March 11, 2018

Accepted: May 11, 2018

Published: June 7, 2018
Chem 4, 1710–1725, July 12, 2018 1723

https://doi.org/10.1016/j.chempr.2018.05.007
https://doi.org/10.1016/j.chempr.2018.05.007
http://www.bris.ac.uk/acrc
http://www.bris.ac.uk/acrc


REFERENCES AND NOTES
1. Gotti, C., Zoli, M., and Clementi, F. (2006). Brain
nicotinic acetylcholine receptors: native
subtypes and their relevance. Trends
Pharmacol. Sci. 27, 482–491.

2. Albuquerque, E.X., Pereira, E.F.R., Alkondon,
M., and Rogers, S.W. (2009). Mammalian
nicotinic acetylcholine receptors: from
structure to function. Physiol. Rev. 89,
73–120.

3. Taly, A., Corringer, P.J., Guedin, D., Lestage,
P., and Changeux, J.P. (2009). Nicotinic
receptors: allosteric transitions and therapeutic
targets in the nervous system. Nat. Rev. Drug
Discov. 8, 733–750.

4. Miwa, J.M., Freedman, R., and Lester, H.A.
(2011). Neural systems governed by nicotinic
acetylcholine receptors: emerging hypotheses.
Neuron 70, 20–33.

5. Posadas, I., Lopez-Hernandez, B., and Cena, V.
(2013). Nicotinic receptors in
neurodegeneration. Curr. Neuropharmacol.
11, 298–314.

6. Lewis, A.S., Mineur, Y.S., Smith, P.H., Cahuzac,
E.L.M., and Picciotto, M.R. (2015). Modulation
of aggressive behavior in mice by nicotinic
receptor subtypes. Biochem. Pharmacol. 97,
488–497.

7. Mathers, C.D., and Loncar, D. (2006).
Projections of global mortality and burden of
disease from 2002 to 2030. PLoS Med. 3, e442.

8. Jha, P. (2015). Deaths and taxes: stronger
global tobacco control by 2025. Lancet 385,
918–920.

9. Conference of the Parties to the WHO
FCTC. (2003). WHO Framework Convention
on Tobacco Control (World Health
Organization).

10. Rollema, H., Coe, J.W., Chambers, L.K., Hurst,
R.S., Stahl, S.M., and Williams, K.E. (2007).
Rationale, pharmacology and clinical efficacy
of partial agonists of alpha(4)beta(2) nACh
receptors for smoking cessation. Trends
Pharmacol. Sci. 28, 316–325.

11. Syed, B.A., and Chaudhari, K. (2013). Smoking
cessation drugs market. Nat. Rev. Drug Discov.
12, 97–98.

12. Lloyd, G.K., and Williams, M. (2000).
Neuronal nicotinic acetylcholine receptors as
novel drug targets. J. Pharmacol. Exp. Ther.
292, 461–467.

13. Jensen, A.A., Frolund, B., Lijefors, T., and
Krogsgaard-Larsen, P. (2005). Neuronal
nicotinic acetylcholine receptors: structural
revelations, target identifications, and
therapeutic inspirations. J. Med. Chem. 48,
4705–4745.

14. Rouden, J., Lasne, M.C., Blanchet, J., and
Baudoux, J. (2014). (-)-Cytisine and derivatives:
synthesis, reactivity, and applications. Chem.
Rev. 114, 712–778.

15. Etter, J.F. (2006). Cytisine for smoking cessation
- a literature review and a meta-analysis. Arch.
Intern. Med. 166, 1553–1559.

16. Etter, J.F., Lukas, R.J., Benowitz, N.L., West, R.,
and Dresler, C.M. (2008). Cytisine for smoking
1724 Chem 4, 1710–1725, July 12, 2018
cessation: a research agenda. Drug Alcohol
Depend. 92, 3–8.

17. Walker, N., Howe, C., Glover, M., McRobbie,
H., Barnes, J., Nosa, V., Parag, V., Bassett, B.,
and Bullen, C. (2014). Cytisine versus nicotine
for smoking cessation. N. Engl. J. Med. 371,
2353–2362.

18. West, R., Zatonski, W., Cedzynska, M.,
Lewandowska, D., Pazik, J., Aveyard, P., and
Stapleton, J. (2011). Placebo-controlled trial of
cytisine for smoking cessation. N. Engl. J. Med.
365, 1193–1200.

19. Cahill, K., Lindson-Hawley, N., Thomas, K.H.,
Fanshawe, T.R., and Lancaster, T. (2016).
Nicotine receptor partial agonists for smoking
cessation. Cochrane Database Syst. Rev.
https://doi.org/10.1002/14651858.CD006103.
pub7.

20. Coe, J.W., Brooks, P.R., Vetelino, M.G., Wirtz,
M.C., Arnold, E.P., Huang, J.H., Sands, S.B.,
Davis, T.I., Lebel, L.A., Fox, C.B., et al. (2005).
Varenicline: an alpha 4 beta 2 nicotinic receptor
partial agonist for smoking cessation. J. Med.
Chem. 48, 3474–3477.

21. Coe, J.W., Rollema, H., and O’Neill, B.T.
(2009). Case history: Chantix (TM)/Champix
(TM) (varenicline tartrate), a nicotinic
acetylcholine receptor partial agonist as a
smoking cessation aid. Annu. Rep. Med.
Chem. 44, 71–101.

22. Rollema, H., Chambers, L.K., Coe, J.W.,
Glowa, J., Hurst, R.S., Lebel, L.A., Lu, Y.,
Mansbach, R.S., Mather, R.J., Rovetti, C.C.,
et al. (2007). Pharmacological profile of the
alpha(4)beta(2) nicotinic acetylcholine
receptor partial agonist varenicline, an
effective smoking cessation aid.
Neuropharmacology 52, 985–994.

23. Rollema, H., Shrikhande, A., Ward, K.M., Coe,
J.W., Tseng, E., Wang, E.Q., De Vries, M.,
Cremers, T., Bertrand, S., and Bertrand, D.
(2009). Preclinical properties of the alpha 4 beta
2 nAChR partial agonists varenicline, cytisine
and dianicline translate to clinical efficacy for
nicotine dependence. Biochem. Pharmacol.
78, 918–919.

24. Amar, M., Thomas, P., Johnson, C., Lunt, G.G.,
and Wonnacott, S. (1993). Agonist
pharmacology of the neuronal alpha-7 nicotinic
receptor expressed in Xenopus-oocytes. FEBS
Lett. 327, 284–288.

25. Mihalak, K.B., Carroll, F.I., and Luetje, C.W.
(2006). Varenicline is a partial agonist at alpha 4
beta 2 and a full agonist at alpha 7 neuronal
nicotinic receptors. Mol. Pharmacol. 70,
801–805.

26. Peng, C., Stokes, C., Mineur, Y.S., Picciotto,
M.R., Tian, C.J., Eibl, C., Tomassoli, I.,
Guendisch, D., and Papke, R.L. (2013).
Differential modulation of brain nicotinic
acetylcholine receptor function by cytisine,
varenicline, and two novel bispidine
compounds: emergent properties of a hybrid
molecule. J. Pharmacol. Exp. Ther. 347,
424–437.

27. Van Arnam, E.B., and Dougherty, D.A.
(2014). Functional probes of drug receptor
interactions implicated by structural
studies: cys-loop receptors provide a fertile
testing ground. J. Med. Chem. 57, 6289–
6300.

28. Dougherty, D.A. (2008). Cys-loop
neuroreceptors: structure to the rescue? Chem.
Rev. 108, 1642–1653.

29. Tavares, X.D.S., Blum, A.P., Nakamura, D.T.,
Puskar, N.L., Shanata, J.A.P., Lester, H.A., and
Dougherty, D.A. (2012). Variations in binding
among several agonists at two stoichiometries
of the neuronal, alpha 4 beta 2 nicotinic
receptor. J. Am. Chem. Soc. 134, 11474–11480.

30. Yohannes, D., Procko, K., Lebel, L.A., Fox, C.B.,
and O’Neill, B.T. (2008). Deconstructing
cytisine: the syntheses of (+/-)-cyfusine and
(+/-)-cyclopropylcyfusine, fused ring analogs of
cytisine. Bioorg. Med. Chem. Lett. 18, 2316–
2319.

31. Chellappan, S.K., Xiao, Y.X., Tueckmantel, W.,
Kellar, K.J., and Kozikowski, A.P. (2006).
Synthesis and pharmacological evaluation of
novel 9- and 10-substituted cytisine derivatives.
Nicotinic ligands of enhanced subtype
selectivity. J. Med. Chem. 49, 2673–2676.

32. Kozikowski, A.P., Chellappan, S.K., Xiao, Y.X.,
Bajjuri, K.M., Yuan, H.B., Kellar, K.J., and
Petukhov, P.A. (2007). Chemical medicine:
novel 10-substituted cytisine derivatives with
increased selectivity for alpha 4 beta 2 nicotinic
acetylcholine receptors. ChemMedChem. 2,
1157–1161.

33. Durkin, P., Magrone, P., Matthews, S.,
Dallanoce, C., and Gallagher, T. (2010). Lactam
enolate-pyridone addition: synthesis of
4-halocytisines. Synlett, 2789–2791.

34. Gray, D., and Gallagher, T. (2006). A flexible
strategy for tri- and tetracyclic lupin alkaloids.
synthesis of (+)-cytisine, (G)-anagyrine and
(G)-thermopsine. Angew. Chem. Int. Ed. 45,
2419–2423.

35. Miura, W., Hirano, K., and Miura, M. (2017).
Iridium-catalyzed site-selective C-H borylation
of 2-pyridones. Synthesis 49, 4745–4752.

36. Hintermann, L., Xiao, L., and Labonne, A.
(2008). A general and selective copper-
catalyzed cross-coupling of tertiary Grignard
reagents with azacyclic electrophiles. Angew.
Chem. Int. Ed. 47, 8246–8250.

37. Moroni, M., Zwart, R., Sher, E., Cassels, B.K.,
and Bermudez, I. (2006). Alpha 4 beta 2
nicotinic receptors with high and low
acetylcholine sensitivity: pharmacology,
stoichiometry, and sensitivity to long-term
exposure to nicotine. Mol. Pharmacol. 70,
755–768.

38. Papke, R.L., and Heinemann, S.F. (1994).
Partial agonist properties of cytisine on
neuronal nicotinic receptors containing the
beta 2 subunit. Mol. Pharmacol. 45, 142–149.

39. Sharples, C.G.V., Kaiser, S., Soliakov, L., Marks,
M.J., Collins, A.C., Washburn, M., Wright, E.,
Spencer, J.A., Gallagher, T., Whiteaker, P., and
Wonnacott, S. (2000). UB-165: a novel nicotinic
agonist with subtype selectivity implicates the
alpha 4 beta 2* subtype in the modulation of
dopamine release from rat striatal
synaptosomes. J. Neurosci. 20, 2783–2791.

http://refhub.elsevier.com/S2451-9294(18)30216-X/sref1
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref1
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref1
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref1
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref2
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref2
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref2
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref2
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref2
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref3
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref3
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref3
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref3
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref3
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref4
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref4
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref4
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref4
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref5
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref5
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref5
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref5
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref6
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref6
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref6
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref6
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref6
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref7
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref7
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref7
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref8
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref8
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref8
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref9
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref9
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref9
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref9
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref10
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref11
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref11
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref11
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref12
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref12
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref12
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref12
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref13
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref14
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref14
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref14
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref14
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref15
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref15
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref15
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref16
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref16
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref16
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref16
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref17
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref17
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref17
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref17
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref17
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref18
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref18
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref18
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref18
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref18
https://doi.org/10.1002/14651858.CD006103.pub7
https://doi.org/10.1002/14651858.CD006103.pub7
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref20
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref21
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref22
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref23
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref24
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref24
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref24
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref24
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref24
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref25
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref25
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref25
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref25
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref25
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref26
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref27
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref28
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref28
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref28
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref29
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref30
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref31
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref32
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref33
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref33
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref33
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref33
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref34
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref35
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref35
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref35
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref36
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref36
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref36
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref36
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref36
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref37
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref38
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref38
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref38
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref38
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref39


40. Rucktooa, P., Haseler, C.A., van Elk, R.,
Smit, A.B., Gallagher, T., and Sixma, T.K.
(2012). Structural characterization of binding
mode of smoking cessation drugs to
nicotinic acetylcholine receptors through
study of ligand complexes with
acetylcholine-binding protein. J. Biol. Chem.
287, 23283–23293.

41. Morales-Perez, C.L., Noviello, C.M., and
Hibbs, R.E. (2016). X-ray structure of the
human alpha 4 beta 2 nicotinic receptor.
Nature 538, 411–415.

42. Billen, B., Spurny, R., Brams, M., van Elk, R.,
Valera-Kummer, S., Yakel, J.L., Voets, T.,
Bertrand, D., Smit, A.B., and Ulens, C. (2012).
Molecular actions of smoking cessation drugs
at alpha 4 beta 2 nicotinic receptors defined in
crystal structures of a homologous binding
protein. Proc. Natl. Acad. Sci. USA 109, 9173–
9178.

43. Kyte, J., and Doolittle, R.F. (1982). A simple
method for displaying the hydropathic
character of a protein. J. Mol. Biol. 157,
105–132.

44. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee,
R.H., and Zehfus, M.H. (1985). Hydrophobicity
of amino-acid residues in globular proteins.
Science 229, 834–838.

45. Ji, Y.N., Brueckl, T., Baxter, R.D., Fujiwara, Y.,
Seiple, I.B., Su, S., Blackmond, D.G., and Baran,
P.S. (2011). Innate C-H trifluoromethylation of
heterocycles. Proc. Natl. Acad. Sci. USA 108,
14411–14415.

46. Zhou, Q.H., Gui, J.H., Pan, C.M., Albone,
E., Cheng, X., Suh, E.M., Grasso, L.,
Ishihara, Y., and Baran, P.S. (2013).
Bioconjugation by native chemical tagging
of C-H bonds. J. Am. Chem. Soc. 135,
12994–12997.

47. Fujiwara, Y., Dixon, J.A., Rodriguez, R.A.,
Baxter, R.D., Dixon, D.D., Collins, M.R.,
Blackmond, D.G., and Baran, P.S. (2012). A new
reagent for direct difluoromethylation. J. Am.
Chem. Soc. 134, 1494–1497.
48. Huff, C.A., Cohen, R.D., Dykstra, K.D.,
Streckfuss, E., DiRocco, D.A., and Krska, S.W.
(2016). Photoredox-catalyzed
hydroxymethylation of heteroaromatic bases.
J. Org. Chem. 81, 6980–6987.

49. Nuhant, P., Oderinde, M.S., Genovino, J.,
Juneau, A., Gagne, Y., Allais, C., Chinigo,
G.M., Choi, C., Sach, N.W., Bernier, L., et al.
(2017). Visible-light-initiated manganese
catalysis for C-H alkylation of heteroarenes:
applications and mechanistic studies. Angew.
Chem. Int. Ed. 56, 15309–15313.

50. Markovic, T., Rocke, B.N., Blakemore, D.C.,
Mascitti, V., and Willis, M.C. (2017). Pyridine
sulfinates as general nucleophilic coupling
partners in palladium-catalyzed cross-coupling
reactions with aryl halides. Chem. Sci. 8, 4437–
4442.

51. Topczewski, J.J., Cabrera, P.J., Saper, N.I., and
Sanford, M.S. (2016). Palladium-catalysed
transannular C-H functionalization of alicyclic
amines. Nature 531, 220–224.
Chem 4, 1710–1725, July 12, 2018 1725

http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref40
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref41
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref41
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref41
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref41
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref42
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref43
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref43
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref43
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref43
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref44
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref44
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref44
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref44
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref45
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref45
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref45
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref45
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref45
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref46
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref47
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref47
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref47
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref47
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref47
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref48
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref48
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref48
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref48
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref48
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref49
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref50
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref51
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref51
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref51
http://refhub.elsevier.com/S2451-9294(18)30216-X/sref51

	Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (−)-Cytisine
	Introduction
	Results
	Synthesis of (−)-Cytisine C(10) Variants
	Probing Subtype Selectivity as a Function of C(10) Alkyl Variation
	In Vitro Biological Evaluation
	Binding Affinities
	Functional Assays

	Computational Docking Studies and Molecular Dynamics Simulations

	Discussion
	Experimental Procedures
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References and Notes


