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Connectionist approaches to
language learning*

GERT WESTERMANN, NICOLAS RUH, AND KIM PLUNKETT

Abstract

In the past twenty years the connectionist approach to language develop-

ment and learning has emerged as an alternative to traditional linguistic

theories. This article introduces the connectionist paradigm by describing

basic operating principles of neural network models as well as di¤erent net-

work architectures. The application of neural network models to explana-

tions for linguistic problems is illustrated by reviewing a number of models

for di¤erent aspects of language development, from speech sound acquisi-

tion to the development of syntax. Two main benefits of the connectionist

approach are highlighted: implemented models o¤er a high degree of specif-

icity for a particular theory, and the explicit integration of a learning pro-

cess into theory building allows for detailed investigation of the e¤ect of the

linguistic environment on a child. Issues regarding learnability or the need

to assume innate and domain specific knowledge thus become an empirical

question that can be answered by evaluating a model’s performance.

1. Introduction

How is language learned? Connectionist models have in the past twenty

years begun to provide novel answers to this question. These models are

radically di¤erent from traditional linguistic theories in most aspects: they

do not contain explicit rules or symbol manipulation processes; they learn

from exposure to a language environment and are sensitive to the statisti-

cal structure of this environment on di¤erent levels; and they exist in the

form of implemented computational models, enforcing a very high level

of specificity in their underlying assumptions, processing mechanisms,
and generated outputs. In this paper we present an overview of the

connectionist approach and its application to problems in language

development.
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In the first part of the article we highlight a number of properties of

connectionist models that make them attractive for the study of language

development and that set them apart from traditional linguistic theories.

We then explain in detail the principles of how connectionist models work

and how they can be analyzed, using the most common architecture, feed-

forward networks as an example. This is followed by describing two ad-

ditional widely-used architectures, simple recurrent networks, and feature
maps, as well as ‘‘constructivist’’ models that change their architecture

during learning.

In the second part of the article we discuss the application of neural

networks to several aspects of language development. A range of models

are reviewed including models of speech sound development, speech seg-

mentation, lexical development, inflectional morphology and the develop-

ment of syntax. The theoretical stance behind the construction of these

models is elaborated. We conclude with a discussion of the connectionist
approach to language learning which highlights the conceptual di¤erences

to traditional symbolic approaches and provides guidelines to aid evalua-

tion of the strengths and weaknesses of a specific model.

2. What are connectionist models?

Artificial neural network models — also called connectionist models espe-
cially when used in psychology — are computer models whose function-

ality is loosely inspired by neurons in the brain. These network models

assume that the main function of biological neurons is to receive activa-

tion from other neurons and to become activated themselves if the

summed incoming activation is high enough. Neurons (also called ‘‘units’’

or ‘‘nodes’’) are interconnected so that activation flows through the entire

neural network. An important property of neural networks is that they

can learn from data. Learning happens by changing the strengths of the
interconnections (corresponding to synapses in biological systems) be-

tween neurons as the result of exposure to a stimulus or a set of stimuli.

From these basic principles follow several properties of connectionist

models that make them a useful tool for investigating language develop-

ment, and that set them apart from other linguistic theories.

2.1. Emergent complex behavior

Each unit in a neural network functions in a very simple way: it merely

adds up the activation arriving through its incoming connections and
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transforms this input, generally through a non-linear function, into an

activation value that is then passed on to other neurons through its out-

going connections. The complex behavior often observed in neural net-

work models emerges from the interactions of a large number of these

neurons (typically ten to several hundred). This is di¤erent to linguistic

theories in which explicit statements about the combination and transfor-

mation of symbolic structures are made. Because neural networks do not
contain explicit symbols or rules this type of processing is also called sub-

symbolic (Chalmers 1992).

2.2. Knowledge in the weights

Knowledge in a connectionist network is not stored in one specific loca-

tion but is encoded across the network in the strengths of the connec-

tions (‘‘weights’’) between the units. Weights vary continuously and are

adapted in response to a learning algorithm, such as Hebbian learning or

‘‘backpropagation’’ (see below). A change in the weight matrix corre-
sponds to a change in the network’s knowledge. In a neural network there

is therefore no physical separation between memory and process. The

weights that encode knowledge are the same weights through which acti-

vation flows when a stimulus is processed by the network.

2.3. Learning from the environment

Learning is driven by exposing the network to a training environment

that is representative of the problem of interest. In the linguistic domain

such a training environment might consist of sequences of words in syn-

tax learning tasks, or verb stems and their corresponding past tense forms
in inflection learning tasks (e.g., Elman 1990; Plunkett and Marchman

1993). Initially the weight values in a network are set to random values,

which results in unsystematic patterns of activity propagating through the

network. However, over successive exposures to training patterns, the

learning algorithm configures the weight matrix so that the network re-

sponds in a systematic fashion. The network thus learns exclusively from

exposure to a simulated environment by adjusting its connection weights,

and the nature and frequency of the stimuli will have an e¤ect on the de-
veloping weight matrix and the behavior of the model. This stands in con-

trast to linguistic theories which often postulate a weaker and less precise

link between learning and the environment.
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2.4. Generalization to new data

After a neural network has learned by adapting its connection weights, it

can be used to examine generalization to novel stimuli that do not form

part of the training environment. The way in which the network general-

izes will depend on the relationship between training and test stimuli. For

example, learning about one regular verb will help the network to inflect
other regular verbs. In other cases, the network will overgeneralize a

transformation to inappropriate patterns. For example in past tense

learning, if a network has learned that the past tense of swim is swam it

might generate the past tense of bring as brang (McClelland and Patter-

son 2002). Investigating the generalization pattern of a model can give

valuable insights into the role of previous knowledge on performance.

2.5. Developmental modeling

Neural networks learn from environmental data and therefore provide

an excellent tool to study the processes of learning and development in

children. Many domains of language development are characterized by

specific changes in proficiency and error patterns, and the aim of the

connectionist modeler is to replicate these changes in the model. In this

way, connectionist models can give insight into the mechanisms underly-
ing developmental change and explain how change arises from inter-

actions between the learning organism and a structured environment

(Elman 2005).

2.6. Linking brain and behavior

Artificial neural networks are inspired by the functioning of the brain
(McLeod et al. 1998). Although the model of a neuron in a connectionist

model is a gross abstraction of biological neurons leaving out specific

processing properties such as temporal spikes, complex processing of

incoming activation and modulation of activations through di¤erent

chemicals, and ignores other properties such as the exclusively excitatory

or inhibitory nature of a neuron and the specifics of synaptic adaptation,

the modeler assumes that the essential properties of neural processing

have been retained. In this way, connectionist models serve to link brain
and behavior: they can help answer the question of how a specific type

of processing can be achieved in a brain-like architecture (in the broad-

est sense). As such, connectionist models o¤er accounts of behavior that
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often cut across traditional levels of description in a manner that

highlights the importance of the implemented details of computational

processes.

2.7. Specificity

In common with all formal, implemented models of cognitive processing,

connectionist models provide highly specific, testable hypotheses. A con-

nectionist model, given a certain input, will generate a specific output,

and this level of specificity allows for a detailed examination of the valid-

ity of a model and its underlying theory of processing. The output of a

model can, for example, be compared to the production of a child learn-

ing language both in terms of specific outputs and the statistical proper-

ties of a range of outputs (such as percentage of errors in a set of utter-
ances), and it can be used to generate predictions of how a child would

generalize to novel circumstances (for example being asked to inflect

novel words such as wug). The level of specificity provided by computa-

tional models implies a caveat: implemented neural networks will some-

times generate predictions that are wrong, whereas vaguer theories might

not even address this level of specificity and therefore be less prone to crit-

icism of producing false predictions. It would be the wrong approach in

this case to abandon a fully specified model in favor of a more vague
and underspecified theory.

3. How connectionist models work

A specific neural network model is defined by its architecture, the way

in which this architecture is adapted in response to the processed stimuli

(learning), as well as the type and form of the stimuli processed by the
model (input/output). In the following sections we will elaborate on

these features on the basis of the most common network architecture, the

three-layer feed-forward error-backpropagation (‘‘backprop’’) network.

3.1. Feed-forward networks

The units in most connectionist networks are organized in di¤erent layers
of units. Figure 1 shows a standard 3-layer feed-forward network. This

architecture consists of an input layer that receives inputs from the envi-

ronment, an output layer that provides output to the environment, and a
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hidden layer located between the input and output layers that does not

directly interact with the environment. All input units are connected to
all hidden units which, in turn, are fully connected to the output units.

The flow of activation in such feed-forward networks is unidirectional, re-

sulting in each stimulus being processed in two steps: first, a numerical

representation of a stimulus is presented to the input layer and the activa-

tion of the input units is propagated forward through the weighted con-

nections into the hidden layer, where the hidden units calculate their

own activation state from this incoming activation. The transformation

from incoming to outgoing activations in a unit is generally achieved by
a non-linear function. In the second step, the activation state of the hid-

den layer is then sent through the weighted connections to the output

units, thus determining the pattern of activation in the output layer which

constitutes the network’s response to the input stimulus.

It is, of course, possible to conceive of di¤erent network architectures.

Recurrent networks, for example, have feedback connections from higher

layers to lower ones, or they allow for a unit to be connected to itself.

This leads to the recirculation of activation within the network and adds
a time component to the processing of an individual input exemplar be-

cause the production of a stable output pattern might take much more

than two steps. Also, units within specific layers might be connected to

one another, thus introducing an element of lateral competition. Other

networks have been developed that add and delete units and connections

during learning. Even the distinction between input, hidden, and output

units need not necessarily be strictly upheld, as a specific unit can act as

either, depending on the task or even the pattern processed. We will intro-
duce some of these more sophisticated models and their theoretical moti-

vation in later sections. For the purpose of explaining the basic principles,

however, we will stick to the classical architecture described above.

Figure 1. A three-layer feed-forward network. Activation flows from the input layer through

the hidden layer to the output layer.
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3.1.1. Learning in feed-forward networks. Prior to learning, the activa-

tion of the output units in a neural network will be unsystematic because

initially all connection weights are typically initialized to small random

values. To pick a specific example, if a network given the task of learning

the past tense of verbs is presented with the stem walk, activation is sent

through connections with random weight values, leading to a random

activation of the output units. In order to learn to produce the correct
output (a numerical representation of walked ), the model has to adjust

its connection weights appropriately. In the (most) standard case, this

learning process works as follows: first, the discrepancy (often called ‘‘er-

ror’’) between the output activation and the desired activation pattern

(the ‘‘target’’ pattern) is calculated, and then all weights in the network

are adjusted by a small amount so that the resulting error would be

smaller were the same stimulus to be processed again. Over successive ex-

posures to training patterns, the learning algorithm configures the weight
matrix so that the network responds in a systematic fashion and, eventu-

ally, produces the desired outputs for each of the stimuli — it has learned

the task.

The mathematical equation according to which the changes to the

weights are calculated is termed the ‘‘learning algorithm’’. Similar to and

often in conjunction with di¤erent network architectures, a large variety

of learning algorithms have been devised over the years. Feed-forward

models tend to use supervised learning algorithms, the most common of
which is called error backpropagation (Rumelhart et al. 1986). As de-

scribed above, these algorithms require a target signal that is used to cal-

culate and ultimately to minimize the observed error through incremental

weight adjustments. This fact has led to some controversy about the use

of these models in language tasks, because in natural language learning

there is often no explicit feedback available to the child. One possible jus-

tifications for a teaching signal comes from conceptualizing the output of

the network as corresponding to a prediction made by the child (e.g., that
the past tense form of eat is eated ), and subsequent exposure to the cor-

rect form (in this case, ate) would lead to detection of the discrepancy be-

tween self-generated and perceived forms.

Learning in a connectionist model is thus a general process that con-

sists exclusively in the gradual adaptation of connection weights in re-

sponse to exposure to environmental stimuli. The meaning of these

stimuli is irrelevant to the model’s adaptation; adaptation proceeds in

the same manner for speech-like sounds, words, word classes and so on.
Importantly however, the statistical distribution of stimuli has an e¤ect

on the developing weight matrix and the resulting behavior of the model.

This is because a frequently occurring stimulus will lead to more weight
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adaptation steps than a less frequent one. The order in which stimuli are

experienced also has an e¤ect on learning. This is because subsequent pat-

terns are processed through the connections that have already adapted to

previously experienced patterns, and the nature of this previous knowl-

edge will a¤ect the adaptation to the current stimulus. Returning to a

past tense example, a model that has already adapted to learn the past

tense forms of sing, ring and swim will need to adapt more to learn the
correct past tense form of bring than a model that has not seen any of

these forms. The sensitivity of neural network models to the order in

which stimuli are learned has been used to explain age of acquisition

e¤ects in adult language processing (Ellis and Lambon-Ralph 2000).

An important factor in a connectionist model’s ability to learn a given

task is controlled by its ‘‘learning rate’’, that is, the small amount by

which the weights are adjusted in response to a given training stimulus.

Because each of these adjustments is the equivalent of the network’s at-
tempt to become better at processing one specific exemplar, too large a

learning rate can be problematic: the same connections are used to pro-

cess all exemplars in a learning task, and adapting to one specific stimulus

often undermines the network’s ability to deal with other stimuli. Too

small a learning rate, on the other hand, will reduce the speed of conver-

gence to a correct solution and might even prevent the network from find-

ing an optimal weight setting at all, due to the learning process getting

stuck in a ‘‘local minimum’’: a network algorithm aims to reduce error
at every step, but sometimes accepting a slightly higher error temporarily

in order to then achieve a greater error reduction would be necessary. A

larger learning rate can help avoid these local minima. Many learning al-

gorithms include other mechanisms that reduce the risk of getting trapped

in local minima, for example a so-called ‘‘momentum term’’ in standard

backpropagation (Rumelhart et al. 1986).

The process of learning, then, can be seen as an e¤ort to find a single

configuration of weights that supports the mapping for all exemplars. Un-
less there are very few exemplars, a network will not be able to learn this

task by rote learning of all required mappings but instead will have to ex-

tract regularities that are implicit in the given mapping. This extraction of

an abstract regularity in the mapping from input to output also means

that the model becomes able to generate meaningful outputs for novel

exemplars, i.e., stimuli that the model has not seen during training. This

emergent generalization ability has proven useful in studying di¤erent

aspects of language learning.

3.1.2. Input and output coding. One of the first steps in either con-

structing or evaluating a specific connectionist model consists in deter-
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mining the type and form of the input and output patterns with which it is

trained. Similar to any other model or theory, the type of data will de-

pend on the process under investigation and will be mainly driven by

theory. For example, words might be suitable as the basic coding unit

for a model of sentence comprehension whereas phonemes, possibly com-

bined with stress patterns or explicit morphological markers, seem ade-

quate for a model of inflectional morphology. As computational models,
however, connectionist networks require the chosen content to be con-

verted into some kind of numerical representation, and this can be done

in several ways.

Consider a model whose input should consist of a phonemic represen-

tation of words. The simplest idea would be to employ a ‘‘localist’’ coding

scheme in which there is one dedicated input unit per phoneme. This

choice results in the need to have as many input units as there are possible

phonemes in the language under investigation. More importantly, how-
ever, it means that similarity relations between di¤erent phonemes are

not reflected: for example, if the phoneme /p/ activates one specific input

unit, and the phoneme /b/ a di¤erent input unit, and the phoneme /a/

yet a di¤erent unit, there is no overlap between the activation patterns

for all three phonemes, and to the model, /b/ will be as (dis)similar to

/a/ as it is to /p/. It seems clear that such a coding scheme is unsuitable

when modeling processes that are expected to depend on phonological

similarity, such as past tense formation. In this case it is desirable to
employ a scheme that preserves some of the similarities between di¤erent

inputs. A distributed, feature based coding scheme, for example, could

encode individual phonemes based on a combination of (binary) phono-

logical features such as ‘‘aspirated’’, ‘‘voiced’’, ‘‘labial’’, etc. In this case,

/b/ and /p/ would only di¤er in their value of the feature unit for

‘‘voiced’’ but would both activate input units e.g., for ‘‘plosive’’ and ‘‘bi-

labial’’. This makes it evident that the choice of coding scheme is a very

important step in developing a connectionist model. The specific set of
features will impose a similarity structure on the model, thus biasing a

system that is highly sensitive to such similarities in a very specific way.

In situations where the ‘‘true’’ similarity structure is uncertain it might

be preferable to use a localist coding scheme, because a feature based

coding might introduce an incorrect bias and thus present a possible con-

founding factor.

At this point a note on terminology might be warranted. Note that a

distributed encoding, e.g., of phonemes through phonetic features, is in
fact localist on the level of phonetic features where each feature is re-

presented by one distinct unit. It is therefore important to consider at

which level it is desirable for a representation to be distributed and reflect
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similarity relationships between stimuli, and at which level a localist

encoding is su‰cient.

3.1.3. Hidden layer representations. When activation flows through a

feed-forward network to generate an output pattern, it can be very in-

structive to observe the activation profile of the units in the hidden layer.

This is because we can understand the mapping from an input to an out-
put as a representation of this input, and the main role of the hidden layer

is to allow for complex such representations. As the same connections ad-

just to solve the input-output mapping task for all patterns, observing the

hidden layer representations for all input patterns allows us to investigate

how the model solves this mapping problem. In most cases each input to

the model will lead to activation of all hidden units to some degree and it

is unusual to find that a specific hidden unit comes to represent any mean-

ingful concept. Instead each unit acts together with all the other hidden
unit activations to enable the network to produce the correct responses.

These distributed patterns of activation do, however, possess an amount

of internal structure because the representations evoked by di¤erent stim-

uli overlap systematically with one another. In the model that produces

the corresponding past tense forms when presented with a verb, for exam-

ple, rhyming verb families such as drink, sink, stink, will form overlapping

representations because of their phonological similarity in both stem (in-

put) and past tense (output) form. An exception (regular) word like blink,
however, will show less overlap with its phonological family, but might

share more resources with other regularly inflected words that also re-

quire -ed su‰xation. Hidden layer representations thus reflect the tension

between similarity of inputs and similarity or dissimilarity of their corre-

sponding outputs.

A common way of visualizing the distributed representations that

emerge in a neural network during the process of learning is to conceptu-

alize the hidden activation pattern for each stimulus as a point in a multi-
dimensional space. By probing the network with di¤erent stimuli it is thus

possible to record several of these points and to analyze their relationship

with each other. Applying mathematical dimension reduction or cluster-

ing techniques (e.g., principle component analysis, multidimensional scal-

ing or cluster plots) gives a snapshot of the inner workings of the model

which allows the modeler to draw conclusions about the kind of regular-

ities the network has extracted at a given point in the learning process.

This is especially interesting with regard to generalization, i.e., the net-
work’s treatment of previously unseen exemplars. If, for example, the

above network has formed a tight cluster of representations for words

like drink, sink, stink, etc., how will it treat a rhyming nonword such as

422 G. Westermann et al.
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nink? The answer to this question is far from obvious. On the one hand,

phonological neighbors such as the above, but also more distant relatives

like ring or sing make it likely that the connection weights are configured

such that the novel stimulus nink will be close to the existing cluster in

representational space and thus produce the output nank. However, the

network could equally treat nink as similar to blink or think, especially if

these competitors are highly frequent and have had a larger impact on the
weight configuration as compared to less frequent stimuli. The network’s

response to this novel exemplar is the product of many di¤erent forces

such as the number of the exemplar’s phonological friends and enemies,

their respective degrees of similarity, their frequencies, and even how re-

cently they have left their trace in the weight configuration. How the

model generalizes thus becomes an empirical question which is decided

by the output that it produces. Various tests with many models have

shown, however, that connectionist models often perform comparably to
people in generalization tasks (Daugherty and Seidenberg 1992; Wester-

mann 1998).

3.2. Other network architectures

Having discussed the main principles of connectionist models on the

basis of feed forward networks, we turn now to other connectionist archi-
tectures that have been developed and used in models of language devel-

opment. Indeed we see a trend away from simple 3-layer error backpro-

pagation models and towards using more complex architectures and

approaches that are more constrained by neurobiological considerations

(Westermann et al. 2006). Two of these alternative architectures are sim-

ple recurrent networks and feature maps.

3.2.1. Simple Recurrent Networks. Feed-forward models cannot di-
rectly represent time and are therefore unable to process temporal se-

quences of stimuli. This limitation can be circumvented by converting a

temporal sequence into a spatial representation. For example, in a feed-

forward model of speech perception, the speech sounds of a word can be

presented to the model all at the same time. However, a relatively simple

modification to the network’s architecture can equip the model with an

ability to deal directly with sequential input. True sequence processing is

possible by extending a feed-forward model with recurrent connections,
the approach taken in simple recurrent networks (SRN; Elman 1990).

The architecture of an SRN is similar to a regular 3-layer feed-forward

network but for one important extension: the hidden units are connected
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to a context layer, and this context layer feeds back into the hidden layer

(Fig. 2). In e¤ect, an SRN retains a copy of the hidden activations from a

specific time step in its context layer, and adds this activation profile to

the input for the following time step. This provision equips the network

with a memory capacity so that previous activation states of the network

can influence subsequent activation states. The content of the context

layer at a certain point, however, consists of a similar superposition of

the previous input and the previous context layer activation, which ex-
plains why SRNs can also show sensitivity to information from even ear-

lier processing steps (this is decisive in mastering ‘‘long distance’’ depen-

dencies (e.g., number agreement) between words in the syntactic string,

see Elman 1993). The connections from the context to the hidden layer

are adjusted in the same way as other connections in the network. Be-

cause learning is driven by the pressures of the task, the context layer

will come to represent and maintain only those pieces of information

from past processing steps that are useful with regard to a future output.
SRNs are most commonly used to carry out prediction tasks: Given a

sequence of events, the network is trained to predict the next event in the

sequence. Training is achieved by presenting an event to the input units.

Activity propagates through the network to produce a pattern of activa-

tion across the output units which constitutes the network’s prediction of

the next event in the sequence. Insofar as this prediction is accurate, the

connections in the network remain unchanged. When the network’s pre-

diction does not correspond to the following event in the sequence, weight
adaptation is usually done with the same error backpropagation algo-

rithm that is also used for many feed-forward networks. As a conse-

quence, predictions become increasingly accurate with repeated presenta-

tions of the training stimuli. Note that the most accurate prediction

Figure 2. A simple recurrent network. The hidden layer activation is copied to the context

layer and fed back into the hidden layer at the next time step. Connections from the hidden

units to the context units are one-to-one copy connections. All other connections are adjustable.
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achievable by such a network corresponds to the conditional probability

of an event to occur next. If, for example, event A is always followed by

either event B1 or event B2, the successfully trained network will activate

both representations to an extent that reflects the relative frequency of the

respective transitions.

SRNs are useful for capturing the statistical distribution of events in a

structured sequence. For example, given a sequence of phonemes in a sin-
gle utterance, the SRN will learn to predict the order of the phonemes in

the utterance. Given a range of utterances, the SRN will learn to predict

which phoneme sequences are most likely to occur in running speech. In

particular, it will learn which phoneme sequences go together to make up

words, and which phoneme transitions are probable in a language, and by

implication, those which never occur or are highly improbable. As the

network is presented with more and more information about a word, its

prediction concerning the next phoneme becomes increasingly accurate
and constrained, demonstrating a ‘‘cohort e¤ect’’ (Marslen-Wilson and

Welsh 1978). However, when the network reaches the end of the word

it will be very poor at predicting the next sound since there are many pos-

sibilities for the following words. In essence, the network is learning to

segment speech into words by discovering the phonotactic regularities of

the language.

Network architectures like SRNs will automatically exploit the co-

occurrence relations in a sequence of events in order to achieve the goal
of accurate prediction. Co-occurrence relations may simply be the se-

quence of phonemes that combine to make a word, or the general likeli-

hood, within a whole corpus of utterances, of a phoneme following

another phoneme. However, SRNs can also calculate the correlations

between regularities across di¤erent levels of structure. For example,

both prosodic information and phonotactics can yield parallel and con-

verging cues to word boundaries. An SRN can exploit these converging

constraints to assist in the prediction task (Christiansen et al. 2005).

3.2.2. Feature maps. Feature maps are very di¤erent from feed-

forward architectures. They are inspired by the topographic mappings

found in many areas of the cortex such as visual, auditory, sensory and

motor cortices. These maps are characterized by their topographical or-

ganization where neighboring neurons respond to similar stimuli, e.g.,

spatially close visual inputs or tones of similar pitch. Feature maps do

not have a teaching signal but instead self-organize and cluster their in-
puts on a two-dimensional grid of neurons in a topographic manner.

This property makes them useful for projecting high-dimensional data

onto two dimensions while preserving similarity relations (albeit not the
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distances between di¤erent inputs). While several feature map models

were developed on the basis of neural information processing in the brain

(e.g., Willshaw and von der Malsburg 1976), the best known feature map

model is the Kohonen Self Organizing Feature Map (SOFM, Kohonen

1982). This map consists of an input layer which sends activation through

weighted connections to a map layer typically consisting of a square grid

of neurons (Fig. 3). A map unit is maximally activated when the input
vector corresponds to its incoming weight vector. Training a SOFM con-

sists in presenting an input, determining the maximally active (winning)

map unit, and adjusting the weights to this unit so that they become

more similar to the input vector. This will lead to the winning unit be-

coming even more active when the same input is presented subsequently.

A topographic mapping is achieved by not only adjusting the weights to

the winning unit but also to all units in a surrounding neighborhood, al-

beit by a smaller amount. Therefore these neighboring units will come to
respond to similar inputs as the winning unit. During training the radius

in which neighboring units are adjusted is gradually shrunk to zero, lead-

ing to a progressive fine-tuning of the map organization.

Feature maps are useful for studying how a neural system organizes

and represents sensory inputs, and how the statistical structure of these

inputs a¤ects map organization. In the domain of language, phonologi-

cal, orthographic or semantic maps can be modeled. On these maps,

words with similar orthography, phonology and meaning, respectively,
will cluster closely together. Such models have been used to account for

category-specific deficits in dyslexia and acquired aphasia (Miikkulainen

1997), development of a semantic space (Ritter and Kohonen 1989) as

well as lexical development (Li et al. 2007).

Figure 3. A self-organizing feature map. Four-dimensional inputs are projected on the two-

dimensional feature map.
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3.2.3. Constructivist models. In most connectionist models, the archi-

tecture of the network — the number of units and connection patterns

— are predetermined and static. However, while in feed-forward net-

works the number of input and output units is determined by the encod-

ing of the stimuli, it is often di‰cult to choose the ‘‘correct’’ number of

hidden units, although the size of the hidden layer can make a dramatic

di¤erence to the way in which a network learns. With too few hidden
units it is possible that a network will be unable to learn the required

task, but too many units might encourage rote-learning with a loss of

generalization ability. Likewise, in feature maps, the size of the map is

important to achieve an expected grainedness of clusters, and this might

change across development. Finally, research in developmental cognitive

neuroscience has shown that many areas of the cortex adapt to the envi-

ronment in an experience-dependent manner by rewiring themselves in re-

sponse to environmental input (Johnson 2005).
Constructivist models (Shultz 2003; Westermann et al. 2006) address

these issues by allowing the network architecture to develop during learn-

ing by adding and removing units and connections. In feed-forward mod-

els the learning process often works as follows: the model begins with a

minimal architecture, with no or few hidden units, and it attempts to

learn a task with this architecture. If this is not possible and the error re-

duces no further, a new unit is inserted into the network, and learning

proceeds in this new architecture until the error stagnates again. Then
another unit is inserted, and so on until the task has been learned. This

method of developing the network architecture ensures that only as

many hidden units as necessary are used, but it also allows for further

analysis of the learning process. For example, a question of interest is

which stimuli can be learned in a smaller architecture, and for which

other stimuli more units have to be inserted. Learning in constructivist

networks can thus lead to di¤erent learning trajectories from those in

static models and may provide insights into learning in a highly plastic
brain. Similar constructivist learning exists in feature maps where units

are added in various ways to take account of a need for more resources

(Fritzke 1994; Li et al. 2004).

4. Connectionist models in linguistic research

Connectionist models have become a useful tool for exploring a number
of aspects of linguistic theories. As models of statistical learners they have

contributed to our understanding of how much information can be use-

fully extracted from the environment (e.g., Sa¤ran et al. 1996), and in
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doing so they have challenged the poverty of the stimulus argument in

language learning (e.g., Pullum and Scholz 2002; MacWhinney 2004).

They have also raised the question of how much domain-specific knowl-

edge has to be assumed to be innate. Connectionist models learn aspects

of language on the basis of domain-general associative learning mecha-

nisms and therefore minimize the role of innate domain-specific knowl-

edge. A second important contribution of connectionist models to linguis-
tic research is to raise the question whether apparent rule-governed

behavior is based on mental symbolic rules or whether this behavior can

be explained on the basis of complex associative processes. In many in-

stances this perspective on linguistic processing has motivated experi-

ments that examine in great detail to what degree human performance

shows influences of frequency and similarity in apparently symbolic pro-

cesses (e.g., Seidenberg and Bruck 1990; Marchman 1997; Ullman 1999;

Abbot-Smith et al. 2004; Joanisse and Seidenberg 2005). Thirdly, connec-
tionist models can provide an integrated account of language learning,

adult processing and deficits in acquired or progressive disorders. This is

because a connectionist model moves through a learning process to reach

an adult-like state. Then, a neural network model can be artificially

lesioned by removing some of the processing units or connections or by

adding ‘‘noise’’ to the input data, and the patterns of breakdown can be

compared with those of brain-damaged patients (e.g., Plaut et al. 1996;

Joanisse and Seidenberg 1999; Penke and Westermann 2006).
A large number of connectionist models have been developed to ac-

count for a range of phenomena in language development. We now

describe a number of such models spanning linguistic levels from speech

sounds to syntax that have made a contribution to explaining how di¤er-

ent aspects of language can be learned in associative models.

4.1. Speech sound development

A number of connectionist models (Yoshikawa et al. 2003; Westermann

and Miranda 2004; Guenther et al. 2006) have shown how a repertoire of

speech sounds specific to the infant’s native language can emerge from

links between sensory and motor brain areas that emerge through bab-

bling. In broad terms, these models have in common a neural map on

which unit activation patterns encode articulatory commands (speech ges-

tures) and an auditory map representing speech sounds. These maps are
linked by adjustable weights. The models ‘‘babble’’ by articulating ran-

dom speech sounds which lead to activation patterns on both the articu-

latory and auditory maps. Connections between these maps are then
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tuned to reinforce the mapping from articulation to sound. Weight adap-

tation proceeds in variants of Hebbian learning (Hebb 1949), a biologi-

cally plausible method of weight adaptation in which connections be-

tween units on the di¤erent maps that are co-active are strengthened.

The mechanisms for adaptation to the native language di¤er between

these models: the model by Yoshikawa et al. (2003) is based on the as-

sumption that caregivers tend to imitate the sounds produced by infants,
thereby providing a native-language target to the babbling infant. The ad-

vantage of this approach is that it solves the problem of speaker normal-

ization when the same speech sounds are uttered by speakers with di¤er-

ent articulatory systems. The disadvantage is that learning relies heavily

on the assumption that caregivers reliably imitate infants. The model by

Westermann and Miranda (2004) assumes that babbling first creates a

broad mapping between articulation and perception and that the links

for native speech sounds are then selectively reinforced through exposure
to the ambient language. This mechanism bears close resemblance to the

‘‘articulatory filter hypothesis’’ (Vihman 1993, 2002) which suggests that

after the onset of canonical babbling an articulatory filter begins to high-

light those speech sounds in the environment that correspond to vocal

patterns produced by the infant herself and facilitates motoric recall of

these patterns. As a consequence these patterns become particularly sa-

lient to the infant and can serve as building blocks for first words.

Although these models involve links between perception and produc-
tion they are di¤erent from the motor theory of speech perception (Liber-

man et al. 1957; Liberman and Mattingly 1985). Whereas the motor

theory assumes an innate link between perception and production that

allows the direct perception of articulatory gestures, the connectionist

models show that these mappings can be learned and need not be pre-

specified. Given the principles of learning in connectionist systems the

models also predict that the precise nature of mappings is sensitive to the

statistical structure of the language environment.
In a di¤erent model that only involved the auditory domain, Guenther

and Gjaja (1996) used a variant of the self-organizing feature map to

explain the emergence of a perceptual magnet e¤ect (PME) in vowel

perception. The PME (Kuhl 1991) describes the organization of the per-

ceptual vowel space where the regions around prototypical vowels are

compressed so that two stimuli close to a prototype cannot be well discri-

minated, but speech sounds falling in two di¤erent classes can. Based on

their model, Guenther and Gjaja showed that a PME can occur without
explicit storage of category prototypes (Kuhl 1995), but solely on the ba-

sis of the statistical structure of the sounds experienced by the infant. Ac-

cording to this model the PME arises from a warping of the perceptual
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space which is a consequence of adapting the firing preferences of audi-

tory neurons. This explanation sees the perceptual magnet e¤ect as an

emergent consequence of the formation of cortical maps in the auditory

system. In this way, the PME was explained as a simple perceptual

phenomenon instead of a high-level linguistic phenomenon in which the

infant would make linguistic category decisions for each heard sound

(Lacerda 1995) or construct explicit prototypes for each phonetic cate-
gory (Kuhl 1995).

An evolutionary perspective on the categorical perception of speech

sounds was pursued in a model by Nakisa and Plunkett (1998). Through

a process akin to natural selection they applied the evolutionary approach

to modelling a fundamental ability in infant speech perception — the

ability to discriminate categorically between speech stimuli that vary

along a continuum, such as the syllables /ba/ and /pa/.

Nakisa and Plunkett (1998) used real speech input taken from a data-
base consisting of a phonetically tagged corpus of speech (Garofolo et al.

1990). A large population of networks was generated so that a wide range

of learning algorithms could combine with a wide range of architectures

in a random fashion. Each network in the population was presented with

the speech samples. Whilst the speech was presented, the learning algo-

rithms in a network responded to the activity patterns by updating their

connection weights. There was no error signal to indicate whether the

activity patterns were accurate. At the end of the training period, the
speech corpus was presented again, but this time without any learning

and the networks’ internal representations of each phoneme in the corpus

of speech were recorded. A network was deemed to have a good phonetic

code if its representations of di¤erent tokens of the same phoneme were

similar to each other and tokens of di¤erent phonemes were dissimilar to

each other. The networks with the best representations were allowed to

reproduce and the worst networks were removed from the population.

It is important to note that parent networks did not transfer any of their
‘‘lifetime’’ experiences to their o¤spring, i.e., no information about the

changes in the parents’ connections were inherited. The only information

that was inherited concerned the architecture of the parent networks

(with a little bit of mutation thrown in).

The process of selection and reproduction continued for 10,000 genera-

tions. At the end of this evolutionary period, the best networks were ex-

posed to just two minutes of speech, and then tested on various speech

continua (such as the /ba/–/pa/ continuum). The networks exhibited
categorical perception of these continua (though only for consonants and

not for vowels), mimicking the pattern observed in humans (Lisker and

Abramson 1971). The networks also confused phonemes when presented
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against a background of white noise in a manner which resembled human

performance (Miller and Nicely 1955). Furthermore, it was found that

training the evolved networks on a limited sample of speech produced

very similar results regardless of the language of training. Hence, a train-

ing sample of two minutes of speech produced the same outcome irrespec-

tive of whether the language was Cantonese, Swahili or Hungarian. How-

ever, training the network on white noise or low-pass filtered speech failed
to reproduce the categorical perception and confusability results.

These modeling results indicate that the evolutionary process had

selected a network architecture that was well-adapted to the categorical

perception of speech. Furthermore, the architecture did not seem to be

language-dependent. Any speech was equally good at generating the right

kind of internal connectivity in the network. However, the acoustic stim-

ulation needed to be speech — at least, white noise and low-pass filtered

speech did not work. This finding shows that the proper configuration of
the network was reliant on the structure inherent in the speech signal itself.

The Nakisa and Plunkett (1998) model is a good example of what Elman

et al. (1996: 27) refer to as architectural innateness. Inspection of the

network architectures revealed that the best networks all exploited some

version of Hebbian learning and used recurrent connections. It is known

that this type of learning algorithm and architecture is involved in many

other human brain processes. It is perhaps, then, not so surprising that the

heavily simplified evolutionary process described here came up with the
same results. What is less clear is whether the details of the architectures

evolved in the model are specific to the processing of speech. For exam-

ple, the network architectures may have been well-suited to the processing

of non-linguistic stimuli or even tactile or visual information. These ques-

tions, however, were not pursued here and are subject to future research.

4.2. Lexical segmentation and word learning

Many linguistic theories operate at the word level. They are concerned

with questions regarding the storage, manipulation or ordering of words.

From a learning perspective, however, another question needs to be ad-

dressed first: How do children acquire the ability to break down the con-

tinuous auditory stream into words (Jusczyk 1999)? Several connectionist

researchers claim that a child’s sensitivity to distributional features of the

speech input can explain not only how lexical segmentation is performed,
but also how it is acquired.

The sequential nature of the domain requires models that are capable

of processing sequences of inputs as temporal information. The SRN is
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useful for capturing the statistical distribution of events in a structured se-

quence and it is this feature that is exploited in several existing models of

speech segmentation (Elman 1990; Cairns et al. 1997; Christiansen and

Allen 1997; Christiansen et al. 1998). Importantly, this approach does

not rely on the assumption of inbuilt linguistic knowledge. Rather, it is

an SRN’s exploitation of co-occurrence relations in a sequence for the

purpose of performing the immediate task of generating accurate predic-
tions that gives rise to an emergent concept of word boundaries in terms

of the locations in the speech signal where the extracted regularities do

not hold. In the simplest case, an SRN performing a prediction task on

a continuous stream of phonemes will come to extract a notion of the

phonotactic regularities of a language (Elman 1990; Cairns et al. 1997).

Phonotactics, however, are clearly not the only type of information that

can be exploited for speech segmentation. There is a host of additional

sublexical cues as to what constitutes a word, such as prosodic patterns
(stress, pauses), utterance boundary information, co-occurrence with ref-

erential objects, etc. None of these cues is in itself a reliable predictor of

word boundaries, but in combination they lead to improved speech seg-

mentation performance of an SRN model when included in the input sig-

nal. Christiansen et al. (1998) provided a predictive SRN with additional

cues concerning utterance boundaries and metrical stress and found that

their model was able to detect 74% of word boundaries (see also the con-

tribution of Hockema and Smith, this volume).
From a mechanistic point of view, we can understand the advantage of

using multiple probabilistic cues in terms of their constraining e¤ect on

the weights. Any kind of additional information, even if unreliable, con-

strains the possible solutions in terms of viable weight configurations,

thus often facilitating learning and increasing the likelihood that the solu-

tion generalizes well (Christiansen et al. 2005). This insight into the utility

of multiple probabilistic cues is likely to apply to other domains of

language learning as well (Morgan and Demuth 1996), and implemented
models of this principle are redefining our understanding of what is

learnable.

Models such as the above imply that a system with an inbuilt sensitivity

to the distribution of multiple segmentation cues in a continuous speech

signal can give rise to an emergent notion of word boundaries. In the

models described so far, however, this notion of word boundaries is cap-

tured indirectly in terms of high prediction error. Furthermore, these

models experience problems in specific situations such as segmenting
words that also constitute onsets of longer words — for example the

word cap that can be embedded in the word captain. These situations

pose a serious challenge for a system without top-down influences from
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a lexical level, and empirical evidence suggests that such top-down influ-

ences do play a role in adult speech segmentation (Gow and Gordon

1995). Davies (2003) took this as motivation to augment a predictive

SRN model with an additional output layer that attempts to produce a

static representation of the words in a sentence from the ongoing stream

of phonemes. Observing which words are recognized (this is defined as

their output activation surpassing a specific threshold) gives a notion of
the model’s growing receptive vocabulary during the learning process

and includes an element of vocabulary acquisition in the model that

matches the developmental profile in children, e.g., it exhibits a vocabu-

lary spurt (Fenson and Pethick 1994). Furthermore, it is possible to ana-

lyze how many phonemes the network needs to have seen prior to recog-

nizing a specific word. Davies (2003) showed that his model provided a

good fit to eye-movement data in that (a) words were recognized increas-

ingly earlier with increased training on phoneme sequences despite the
growing vocabulary and (b) recognition points varied according to a

word’s lexical environment, i.e., the amount of other words with similar

onsets. These results concerning the lexical identification of words from

a stream of phonemes were found to be independent of whether the net-

work simultaneously tried to predict the next phoneme or not. Including

the predictive part, however, not only helped the model by providing in-

direct segmentation cues (prediction error) for words that were not yet as-

similated in the receptive vocabulary, but it also increased performance in
lexical identification. Again, additional cues — this time in the form of an

extra output layer and task — imposed further constraints on the weight

configuration, leading to faster vocabulary acquisition, earlier recognition

points and increased discriminability of phonemes.

The connectionist approach to speech segmentation demonstrates that

SRNs can integrate multiple and partially unreliable cues across di¤erent

levels and timescales, making the most of the information available. This,

of course, casts doubt on the concept of distinct linguistic levels that can
be investigated independently from one another.

4.3. Lexical development

Several models have addressed the question of how the mental lexicon de-

velops (Li 2003; Li et al. 2004; Li et al. 2007). The lexicon is here gener-

ally conceptualized as a link between phonological and semantic word
representations, and the questions of interest are how word space and se-

mantic space as well as the links between these spaces develop. One recent

model (Li et al., 2004) used two self-organizing maps together with links
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between these maps to account for several phenomena in the development

of lexical categories. The aim of this model was to provide a unified view

of developing cortical maps and the dynamics of the developing vocabu-

lary. The most recent version of this model (Li et al. 2007) was aug-

mented with a third self-organizing map with sequential characteristics

to allow for production of phoneme sequences. The model was trained

on 591 words extracted from the CDI (MacArthur-Bates Communicative
Development Inventories, Dale and Fenson 1996), including nouns,

verbs, adjectives and closed-class words. The model’s input phonology

map developed abstract topological representations of heard words on

the basis of distributed phonetic features. The semantic map developed

in response to distributed semantic representations of these words that

were obtained by calculating the co-occurrence statistics for the chosen

words from a large corpus of child-directed speech (CHILDES, Mac-

Whinney 2000). The sequence output map dealt with a sequential version
of the phonological input where one phoneme was presented at a time

and the map, in addition to mapping the phoneme onto its topological

structure, attempted to establish an activation gradient that encoded the

order in which the phonemes were activated.

In this model all three maps self-organize in an attempt to optimally

accommodate the structures inherent in their respective input data. At

the same time, however, the links between the maps are updated via sim-

ple Hebbian learning. Over time, these links come to perform a mapping
from one similarity space to another so that, for example, a perceived

word will activate its corresponding semantic representation (comprehen-

sion), and this activation of the semantic map, in turn, can drive the

activation of an ordered sequence of phonemes (production). The overall

system thus organizes as an outcome of multiple interacting constraints.

The dynamic interaction of the increasingly structured self-organizing

maps and the simultaneously developing links give rise to a number of

quantitative phenomena that have been observed in lexical development.
When analyzing average receptive and productive vocabulary size, for ex-

ample, the model showed a clear vocabulary spurt for comprehension,

which was mirrored by a subsequent similar spurt in production. This

nonlinear change in the rate at which new words are acquired is related

to the fact that consistent associations between maps can only be formed

when the self-organization process within the individual maps has

reached a somewhat stable state (cf. the ‘‘critical mass’’ hypothesis,

Marchman and Bates 1994). At this point the activation conveyed by the
links becomes meaningful and can be used as an additional cue by the re-

ceiving map, thus leading to more e‰cient self-organization and rapidly

increasing performance. While all networks showed non-linear changes
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in vocabulary growth, details such as the onset or slope of the spurt

varied considerably as a function of the random weight initialization and

the density of connections between maps. This variability of the networks

matched well with empirically observed patterns of individual di¤erences

in lexical development (Thal et al. 1997). Other more detailed phenomena

captured by this model include e¤ects of word length and frequency on

age of acquisition, the impact of phonological short-term memory on
word production, and patterns of recovery after early brain injury. The

latter point is of specific interest because it provides a good example of

how connectionist models can address typical and a-typical development

within one integrated account.

More specifically, with regard to lexical development it has been ob-

served that lesions acquired very early in life have less severe conse-

quences on the final outcome than lesions at a later stage. The model

showed a similar pattern when lesioned at di¤erent stages during the
learning process, where lesions were simulated by resetting a proportion

of the weights to random values. The explanation for this phenomenon

derives from yet another general principle of connectionist models, some-

times captured by the term ‘‘entrenchment’’ of weights (Altmann 2002;

Elman 2005). This term is used to describe the fact that the amount

of plasticity exhibited by neural networks tends to decrease with increas-

ing experience. Initial learning requires coarse changes to the networks

weights matrix, eventually resulting in a relatively stable configuration
that captures the general structure of the task. Further training will usu-

ally lead to more fine grained adjustments that may continue to improve

performance on a more detailed level. However, at this stage it becomes

increasingly di‰cult to radically reorganize the model’s weight configura-

tion. Events that require such a drastic reorganization thus are easier to

cope with during the initial stage of basic organization, before a stable

state has been reached. Note that this kind of explanation not only speaks

to the di¤erential e¤ect of otherwise comparable lesions, but it might also
o¤er a perspective on di¤erences between first and second language ac-

quisition (for an overview see Thomas and van Heuven 2003). Impor-

tantly, the changes in network plasticity are not driven by some matura-

tional schedule but rather result from the weights becoming increasingly

entrenched as a function of experience.

4.4. Morphological learning

Learning inflectional morphology has been a core aspect of connectionist

modeling in language acquisition since publication of the first such model
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on the acquisition of the English past tense (Rumelhart and McClelland

1986). Their conclusion ‘‘that a reasonable account of the acquisition of

past tense can be provided without recourse to the notion of a ‘‘rule’’ as

anything more than a description of the language’’ (p. 267) has provoked

an extended and still ongoing debate about the necessity to stipulate the

psychological reality of explicit rules as underlying human linguistic abili-

ties (Marcus et al. 1995; Pinker 1997; Marcus 1999; Seidenberg and
Elman 1999a, 1999b; Pinker 2001; McClelland and Patterson 2002; Pinker

and Ullman 2002; Seidenberg and Joanisse 2003). The English past tense

has been a particular focus, although other paradigms (noun plural, pro-

gressive) and other languages (German, Arabic) have also been addressed

(Marcus 1995; Plunkett and Nakisa 1997; Clahsen 1999).

Traditional accounts have postulated that the verbs of a language fall

into a number of inflectional classes with distinct rules governing the gen-

eration of the past tense form. Following this tradition, dual-mechanism
(or ‘‘words-and-rules’’) theories (Marslen-Wilson and Tyler 1998; Clah-

sen 1999; Pinker and Ullman 2002) postulate the existence of two qualita-

tively di¤erent mechanisms that govern the production of regular and

irregular forms and explain observed di¤erences through the two mecha-

nisms. More specifically, regular verbs are held to be inflected trough the

application of a simple explicit rule, such as (in English) ‘‘attach -ed ’’.

Irregular verbs, conversely, are stored individually along with their corre-

sponding past tense forms. A verb is treated as regular (default) unless a
past tense form is found as an entry in the lexicon, in which case applica-

tion of the default rule is blocked and the retrieved form is used instead.

One of the main challenges for any model of past tense learning is to

account for children’s overregularization errors and U-shaped learning

in which irregular forms that are initially produced correctly are over-

regularized before being produced correctly again. Dual mechanism

approaches posit that the period in which children are susceptible to over-

regularization errors coincides with their discovery of the default rule
which is applied too widely until the appropriate entries for exception

words have been acquired (Marcus et al. 1992).

Connectionist models of morphological learning, conversely, are based

on the assumption that a single process underlies the production of all

verb forms, be they regular or irregular. Di¤erences in the processing of

these verbs arise from distributional features such as frequency, neighbor-

hood of similar sounding verbs with the same or di¤erent past tense

forms, phonological complexity, age of acquisition, etc., all of which will
impact on the development of the weight matrix within the network and

act as soft constraints on the regularities emerging in the model. Many

connectionist models of past tense inflection have been simple three-layer
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feed-forward models (MacWhinney and Leinbach 1991; Plunkett and

Marchman 1991, 1993; Plunkett and Juola 1999) with a phonological

representation of the verb stem as input, and a phonological representa-

tion of the past tense form as output, and the task of the model to map

between stem and past tense. Sometimes outputs are encoded more ab-

stractly by inflection classes, so that all regular verbs activate one output

unit, all verbs sharing the same past tense such as sing, cling, ring another,
and so on (Westermann 1998; Hahn and Nakisa 2000).

U-shaped learning according to the connectionist approach arises from

the competition between regular and irregular inflection resulting from

the sharing of computational resources in the form of units and connec-

tions within the network. On this view, the initial phase of correct perfor-

mance derives from the fact that processing resources are ample in rela-

tion to the small vocabulary at this stage, and the model is thus able to

solve the mapping by rote learning. As the active vocabulary increases,
however, the model comes under increasing pressure to adjust its weight

matrix such that it captures general regularities, rather than treating each

exemplar on its own merits. Because of their lower (type) frequency,

irregular verbs are more likely to be the victims of the competition for

representational resources, and the network develops a transient tendency

to treat them like regular verbs. With increasing practice, however, the

weight matrix will eventually settle into a configuration that does justice

to all training patterns, resulting in good performance for both regular
and irregular verbs.

This account of U-shaped learning has been criticized because it cru-

cially requires the vocabulary size to be increased during the acquisition

process. While the original simulation by Rumelhart and McClelland

(1986) included a sudden step from the 10 most frequent words to the

full set of 420 monosyllabic verbs, subsequent models have employed an

incremental expansion of the training corpus (Plunkett and Marchman

1993; Plunkett and Juola 1999). Similar to Elman (1993), another possi-
bility entails capturing the gradual vocabulary expansion not in terms of

a change in the child’s language environment, but rather to conceptualize

the child itself as undergoing changes which impact on the way in which

the static environment is processed. This idea is exemplified by a con-

structivist neural network model (Westermann 1998): the model starts

out with predominantly direct connections from the input to the output

layer, and additional hidden layer units are inserted during the acqui-

sition process. Exception words, i.e., those verbs that are disfavored
by the distributional factors mentioned above, are more likely to rely

on the additional processing power provided by the (growing) hidden

layer. For this reason these ‘‘hard’’ verbs are also more a¤ected by the
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reorganization process in response to the expansion of the architecture

and therefore susceptible to being temporarily overgeneralized, even

though the training set is kept static. Through time, the model shows an

emergent functional dissociation in that harder verbs, many of which are

irregular, come to rely more on the route through the hidden layer,

whereas processing of easier verbs, most of which are regular, depends

mainly on the direct connections. This seems to fit in with brain imaging
studies that appear to reveal di¤erences in the localization of processes

relating to regular and irregular inflections (e.g., Jaeger et al. 1996;

Beretta et al. 2003) but that on closer inspection di¤erentiate between

easier and harder verbs (Seidenberg and Arnoldussen 2003; Joanisse and

Seidenberg 2005).

Connectionist approaches to morphological learning thus deny the

existence of an explicit default rule and, by the same token, deem the a

priori distinction into inflectional categories on grammatical grounds un-
necessary. Instead they attempt to demonstrate the emergence of implicit

categories within a neural network, where category membership is on a

continuous scale between poles that should rather be labeled ‘‘easy’’ and

‘‘hard’’, as opposed to regular/irregular, because they derive exclusively

from distributional factors (phonological similarity, frequency, etc.). The

networks employ a single associative mechanism for both discovering the

underlying regularities and performing the mappings onto the past tense

form, thus conceptualizing acquisition and performance (including gener-
alization) as intricately connected. Models following these general princi-

ples have been used to investigate di¤erent inflectional paradigms (e.g.,

noun plural, Plunkett and Nakisa 1997; Plunkett and Juola 1999), behav-

ioral breakdown due to neurological impairment (Joanisse and Seiden-

berg 1998; Joanisse 2004; Penke and Westermann 2006; Plunkett and

Bandelow 2006), and historical change in morphology (Hare and Elman

1995). A strong contribution of the connectionist approach to inflectional

morphology has also been to lead to a re-examination of empirical data
and to motivate experiments that strive to distinguish between single and

dual mechanism accounts.

4.5. Learning grammatical categories

Some connectionist approaches to grammar learning take pre-parsed sen-

tences as input, usually with the aim of investigating whether a specific
grammar can be learned from exposure to a set of syntactically annotated

example sentences. These models presuppose that the syntactic structure

of a sentence (i.e., the syntactic roles of its constituents) is already given
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and teach the model to apply a specific transformation, e.g., from passive

to active constructions (Chalmers 1990).

A more ambitious approach, exemplified by the influential work of

Elman (1990, 1991, 1993) explores the capabilities of a connectionist net-

work to extract syntactic structure from exposure to sequences of words,

without supplying any kind of additional information. Elman trained pre-

dictive SRNs on sequentially presented strings of words that made up
well-formed sentences. Training sentences were generated from a small

vocabulary using a simple context-free grammar, resulting, in the simplest

case, in a set of very basic SV(O) sentences that showed variations in verb

argument structure (transitive, intransitive and optionally transitive

verbs) and number agreement between subject and verb.

Similar to the models of speech segmentation described earlier, the

models extracted a notion of the permissible order of events from the se-

quential input signal. This was demonstrated by observing the network’s
predictions from a specific point in a sentence. For example, after the

network had encountered first a noun and then a verb, di¤erent scenarios

occurred: when the verb was transitive, the network predicted a noun as

the next word by activating all nouns on the output layer. When the verb

was intransitive, the network predicted the end of a sentence. For an op-

tionally transitive verb a mixture of noun and end-of-sentence activations

was observed. Similarly, the network expected a sentence initial singular

noun to be followed by a singular verb, but not by a plural verb, noun or
the end of a sentence.

Analyzing the distributed representations that developed in the fully

trained network provided another way of looking at the regularities ex-

tracted by the model. At a coarse level, this revealed two large clusters in

representational space, one for verbs and one for nouns. The network had

learned to distinguish between these two grammatical categories solely

on the basis of their co-occurrence relations. Furthermore, transitive and

intransitive verbs formed distinct groups within the verb cluster, with op-
tionally transitive verbs falling between these groups, indicating that the

relative position of their representations also carried information about

argument structure.

It might be argued that these results do not show more than the net-

work’s ability to deal with the very limited corpus it had been trained on

in terms of transition probabilities between individual words. However,

Elman provides two further arguments to support his claim that the net-

work had acquired an emergent representation of hierarchically struc-
tured grammatical categories, both based on the model’s generalization

abilities. In the first of these generalization tests (Elman 1990), the fully

trained model was tested on a number of sentences in which one of the
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nouns was replaced by a novel word that the network had not seen be-

fore. A subsequent cluster analysis showed that the novel word’s internal

representation was very proximate to the word it had replaced, indicating

that the network’s representations were based to a large extent on where

in a sentence a word appeared, rather than on the identity of the word it-

self. Secondly (Elman 1998), a network was trained on a corpus in which

a specific noun was excluded from ever occurring as the direct object of a
sentence, although it did occur in subject position. Following training, the

model nevertheless treated the excluded word as a possible successor for

transitive verbs, based on its experience that other subject nouns could

also appear in object position.

Subsequent research has carried this approach to syntax learning fur-

ther by introducing more sophisticated syntactic constructions in the

training set. The main thrust of several models was to challenge Chom-

sky’s (1957) claim that the existence of recursion in natural language
implies the reality of explicit recursive rules as part of human linguistic

competence, thus ruling out associative models of language processing.

Christiansen and Chater (1999) trained predictive SRNs on artificially

generated language samples that included recursive constructions such

as counting recursion, centre-embeddings, cross-dependencies, and right-

branching recursions. The models learned to perform correctly in all

cases, with the limitation that performance broke down gradually with in-

creasing depth of embedding. This, however, can be seen as supporting
the model’s validity because human participants show similar deteriora-

tions when asked to process deep embeddings (Marks 1968). The SRNs

employed in this and other studies furthermore captured the di¤erences

in relative di‰culty between types of recursive constructions and, also in

parallel to human data (Blaubergs and Braine 1974), could be shown to

profit from semantic bias (Weckerly and Elman 1992). This body of re-

search shows that connectionist networks are able to acquire limited re-

cursion to an extent that closely mirrors human performance. In the light
of these results, the necessity of postulating unbounded recursion as

underlying linguistic performance might be questioned, as could, in a

more radical step, the necessity to make a distinction between linguistic

competence and performance at all (Christiansen and Chater 1999).

5. Related approaches

Here we briefly compare and contrast connectionist approaches to devel-

opment with two related approaches: dynamical systems (e.g., Thelen and

Smith 1994, see also the papers by Hockema and Smith and Hohenberger
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and Pelzer-Karpf in this issue), and Bayesian inference (e.g., Oaksford

and Chater 2007).

Connectionism and dynamical systems share many aspects of their

approach to explaining development (Elman 2003; Thelen and Bates

2003). Both view development as an emergent process shaped by biologi-

cal and environmental constraints instead of the maturational triggering

of innate knowledge. In both approaches, behavior is seen as emerging
from interactions across multiple domains, explaining functional modu-

larity as an outcome of development rather than an innate structure.

Both approaches di¤er radically from symbol system theories in which

abstract symbolic representations stand for entities in the world and are

manipulated irrespective of their content (e.g., Fodor and Pylyshyn

1988). However, although the connectionist and the dynamical systems

approach can be partly mapped onto each other (e.g., Smolensky et al.

1996; Rodriguez et al. 1999), there are also important di¤erences between
them (Elman 2003; Thelen and Bates 2003). Perhaps the most significant

di¤erence between these approaches concerns the role of representations.

Whereas dynamical system theory has traditionally de-emphasized the

role of internal, unobservable representations (Thelen and Bates 2003),

in connectionist approaches representations take a central role and their

analysis aids the characterization of developmental processes (Elman

et al. 1996; Mareschal et al. 2007a). Second, dynamical systems tend to

stress the role of the body as a source of developmental and cognitive
constraints, but connectionist models have used their brain-inspired

functionality to highlight the role of the brain. More recently, however,

connectionist models have begun to consider the body as a constraining

factor in cognitive development more seriously (Mareschal et al. 2007a;

Mareschal et al. 2007b). Thirdly, where connectionist approaches aim to

provide precise mechanistic accounts of developmental change, dynami-

cal systems so far lack a formalized account of how experiences with an

environment change the processing system, that is, how the system learns.
Whether these di¤erences between connectionism and dynamical systems

are of a principled nature or merely reflect the research focus and model-

ing decisions made by researchers in these fields is subject to debate

(Smith and Samuelson 2003; Thelen and Bates 2003).

Another formal approach to cognitive development that has recently

begun to receive wider attention is Bayesian inference (Gopnik and Ten-

enbaum 2007). This approach uses Bayes’ equation of conditional proba-

bilities to explain the role of prior knowledge in learning and reasoning.
Like connectionist models the Bayesian approach is based on precise

mathematical formulations of cognitive processing, but unlike connec-

tionism these formalisms are expressed on a higher level of abstraction,
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without making reference to how they might emerge from brain process-

ing. An obstacle that has to be overcome for Bayesian models to account

for transitions in development is a mechanistic explanation of the origins

of prior knowledge and its change as an outcome of experience (Shultz

2007; Mareschal and Westermann, in press). Current Bayesian models

do not specify where initial prior knowledge comes from (Gopnik et al.

2004; Xu and Tenenbaum 2007), and there is no mechanism by which
this knowledge can change with experience. Without such mechanisms,

Bayesian models o¤er a snapshot of children’s behavior at certain points

in development, but they cannot account for developmental change

per se.

6. Discussion

Over the past twenty years, connectionism has presented the field with a

wide range of working models of language learning, some of which have

been discussed here. These models have o¤ered precise implementations

of specific language processes which in many cases have mimicked behav-

ioral characteristics of human language processing. The precision with

which these models implement predictions of behavioral patterns makes

them falsifiable. This fact represents a great strength of the modeling

approach, as ultimately every valid scientific theory needs to be falsifi-
able1 (Popper 1959). One advantage of implemented models therefore is

to enforce precision and concreteness in the theory to be implemented,

thus enabling the theory to be evaluated against the criterion of whether

it matches the available data. By the same token, a theory that is imple-

mented as a functional model may generate distinct predictions, which

then can be tested empirically. In some cases, connectionist models are

used exclusively in this sense: as a research tool with the purpose of im-

plementing and evaluating an existing theory and generating predictions
from it.

Many connectionists, however, would attribute additional import to

their use of this specific type of model, casting neural network models as

a move towards uncovering the general principles of information process-

ing that underpin not only language learning, but also acquisition and

performance in other cognitive domains. Properties such as associative

learning and self-organization in response to exposure to environmental

stimuli, and the inbuilt ability to generalize from these known stimuli to
novel exemplars, are held to reflect brain-style computation. For propo-

nents of this perspective, the associative stance behind connectionist

models forms an integral part of any theory that is instantiated within a
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specific neural network model. Connectionism thus is often advocated as

an alternative to the ‘‘symbols and rules’’ approach of traditional linguis-

tics and cognitive psychology.

The di¤erences between these two approaches are especially apparent

with the concepts of learning and development. Within the symbolic

framework, development is usually construed as maturation, where new

rules come online at certain stages of development. Learning, if addressed
at all, takes the form of explicit hypothesis testing, a process that can re-

fine existing rules or even generate novel ones. Both of these concepts are

forced to rely on considerable amounts of innate knowledge, be it in the

form of innate rules, the schedule according to which the rules are

activated or, more indirectly, the rules that govern the hypothesis testing

process.

The connectionist approach, conversely, casts both learning and devel-

opment as dynamic change within an associative system, driven by expo-
sure to stimuli in the environment. No domain-specific innate knowledge

is assumed. Instead, it is the interaction between the general associative

learning principles and domain specific stimuli that leads to the extraction

of domain specific knowledge in the form of regularities, stored in the

configuration of the model’s weights. The fact that neural networks must

acquire proficiency in a task by such a learning process makes them par-

ticularly well suited to investigate processes of learning and development.

From a connectionist perspective, actually, learning and develop-

ment are almost indistinguishable. A neural network learns by adjusting

its weights (and sometimes — in constructivist networks — even its archi-

tecture) in response to the stimuli it processes. The learning algorithm

that determines the exact nature of the adjustment operates on the basis

of individual stimuli; essentially it attempts to make the model better at

processing the currently available item. The incremental adjustments in

response to the processing of many exemplars, however, will eventually

lead to the development of a configuration that implements a compromise
between the di¤erent, often conflicting pressures induced by the individ-

ual stimuli. Through these incremental adjustments the resulting network

thus will have developed from an initial, unstructured state into a state/

configuration that is optimally adapted to the task at hand, including an

inbuilt ability to generalize to novel stimuli. Because both learning and

development in a neural network model are a direct result of the interplay

between the environment (stimuli), the network’s architecture (including

the current weights configuration which, in turn, is a consequence of
previous adjustments) and the learning algorithm, they are closely inter-

twined — and most connectionist researchers would claim this also to be

true with respect to cognition.
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Building a connectionist model involves many steps of abstraction, and

each of these abstractions may of course be critically evaluated. In the

following we point out some important aspects to consider when attempt-

ing to judge the strengths and weaknesses of a particular model.

Are the assumptions behind the composition of the training set justifiable?

This question concerns issues such as whether the level at which the input

and output data are encoded is appropriate, whether the specific coding
scheme used introduces an unwarranted bias, or whether it is reason-

able to assume the availability of the target signal. Implicit pre- or post-

processing steps at either end of the model might also be of concern.

Ultimately, of course, the aim should be for the training set to faithfully

reflect the structure of the human learner’s environment. In general, there

is a clear trend for neural network models to operate on increasingly

larger and more realistic data sets, thus giving an additional motivation

to collect large scale corpora. This is not to say that smaller simulations,
often trained on small subsets of actual linguistic data or artificial gram-

mars are without scientific value. On the contrary, due to their relative

simplicity they often enable a better understanding of the underlying prin-

ciples at work in the model. However, the question whether such simple

models can be made to scale up to more naturalistic input scenarios is one

of the major challenges for the connectionist approach.

Is the way in which the weights are adjusted biologically plausible? In

general, this can be confirmed in the case of Hebbian learning which is
ubiquitous in the brain (Kandel et al. 2000). Note, however, that some

architectures introduce additional mechanisms that are less easily justi-

fied, for example the shrinking neighborhood radius in classic SOMs.

Learning algorithms that are based on error correction (e.g., the widely

used backpropagation algorithm), on the other hand, often lack detailed

biological plausibility because it is unclear how the error information cal-

culated in subsequent layers could reach neurons in earlier layers. This

problem can be circumvented by adding backwards connectivity and
employing alternative, Hebbian style algorithms (O’Reilly 1996) that

are functionally equivalent to backpropagation, though conceptually and

mathematically less transparent. The use of simple backpropagation

could thus be justified by the existence of such functionally equivalent

but biologically more plausible solutions.

The above considerations might give reasons to reject individual imple-

mentations, even if they capture the available data. Rather than invalid-

ating the general approach such criticisms are often an incentive to
develop enhanced implementations with a wider data base and better

contact to neurobiological constraints. Note, however, that with regard

to modeling, more is not always better. If we had, for example, a full
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scale model of the brain, incorporating all the biological facts and dealing

with entirely naturalistic data, not much would have been gained, because

such a model is bound to be as complex as the original brain, thus not

furthering our understanding. A certain trade-o¤ between detail and

parsimony is inherent in any modeling endeavor and it is because of this

that the evaluation of the ‘‘right’’ abstractions is extremely important, but

also very di‰cult.
In this paper we have discussed the connectionist approach to language

learning and development. Our aim has been to explain the essential as-

pects of the functioning of connectionist models and the design consider-

ations involved, and to describe and evaluate a range of specific models

addressing di¤erent aspects of language learning. We have argued that

connectionist models with their ability to learn from data, their sensitivity

to the statistical structure of the environment, and the link they make

between brain and cognitive processing, imply that the connectionist
approach with its associative stance provides a viable alternative to

the symbol and rules approach of traditional linguistics and cognitive

psychology.

We see three important developments in the future of connectionist ap-

proaches to language development. First, connectionist models are ideally

suited to integrate our understanding of development with adult process-

ing and impaired processing after brain damage. While in empirical work

these three aspects of language processing are not normally connected, a
connectionist model can give an account of how development as an out-

come of multiple interacting constraints leads to an adult processing state.

Damaging the same model can then lead to insights into the deficits aris-

ing from brain damage in human patients. A model that can, in the same

system, account for all three aspects of language processing would present

powerful evidence for the implemented hypothesis. However, as yet con-

nectionist modelers have generally not taken this integrated approach but

have focused on simulating only one or two of these aspects.
Second, we see a trend of moving from simple, three-layer backpropa-

gation models towards a) more complex architectures such as multi-

component models in which the unfolding interactions between com-

ponents provide additional information about a learning process, b)

constructivist systems in which experience-dependent brain development

is entered as an important aspect of cognitive development, and c) more

biologically realistic architectures such as feature maps which can make

more direct predictions about language processing in the brain (Wester-
mann et al. 2006; Mareschal et al. 2007a).

Third, the role of the body for di¤erent aspects of language evolution,

development and processing has recently become a focus of research (e.g.,
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Davis and MacNeilage 2000; Zuidema and Westermann 2003; Gibbs

2006). Unlike dynamical systems, connectionist approaches so far have

often not taken embodiment into account (though see Mareschal et al.

2007 and Mareschal et al. 2007b for examples of models that do). Insofar

as embodied views as well as situated models o¤er additional insights into

language development connectionist models will have to take these addi-

tional constraints into account.
Connectionist modeling of language development has been an active

field of research for just over 20 years, leading to novel explanations for

many aspects of language and cognitive development and to a plethora of

new experimental data. With an increasing understanding of the brain

mechanisms underlying language learning and processing and ever more

data to constrain explanatory hypotheses we see an active and fruitful fu-

ture for this approach.
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theory to be correct.

References

Abbott-Smith, Kirsten, Elena Lieven & Michael Tomasello. 2004. Training 2;6-year-olds to

produce the transitive construction: the role of frequency, semantic similarity and shared

syntactic distribution. Developmental Science 7. 48–55.

Altmann, Gerry T. M. 2002. Learning and development in neural networks — the impor-

tance of prior experience. Cognition 85. B43–B50.

Beretta, Alan, Carrie Campbell, Thomas H. Carr, Jie Huang, Lothar M. Schmitt, Kiel

Christianson & Yue Cao. 2003. An ER-fMRI investigation of morphological inflection

in German reveals that the brain makes a distinction between regular and irregular forms.

Brain and Language 85. 67–92.

Blaubergs, Maija S. & Martin D. S. Braine. 1974. Short-term memory limitations on decod-

ing self-embedded sentences. Journal of Experimental Psychology 102. 745–48.

446 G. Westermann et al.

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Cairns, Paul, Richard Shillcock, Nick Chater & Joe Levy. 1997. Bootstrapping word

boundaries: A bottom-up corpus-based approach to speech segmentation. Cognitive Psy-

chology 33. 111–153.

Chalmers, David J. 1990. Syntactic transformations on distributed representations. Connec-

tion Science 2. 53–62.

Chalmers, David J. 1992. Subsymbolic computation and the Chinese room. In John Dins-

more (eds.), The Symbolic and Connectionist Paradigms: Closing the Gap, 25–48. Hills-

dale, NJ: Lawrence Erlbaum Associates.

Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.

Christiansen, Morten H. & Joseph Allen. 1997. Coping with variation in speech segmenta-

tion. In Antonella Sorace, Caroline Heycock & Richard Shillcock (eds.), Language

acquisition: Knowledge representation and processing, 327–332. Edinburgh: University of

Edinburgh Press.

Christiansen, Morten H., Joseph Allen & Mark S. Seidenberg. 1998. Learning to segment

speech using multiple cues: A connectionist model. Language and Cognitive Processes 13.

221–268.

Christiansen, Morten H. & Nick Chater. 1999. Toward a connectionist model of recursion

in human linguistic performance. Cognitive Science 23. 157–205.

Christiansen, Morten H., Christopher M. Conway & Suzanne Curtin. 2005. Multiple-cue in-

tegration in language acquisition: A connectionist model of speech segmentation and rule-

like behavior. In James W. Minett & William S.-Y. Wang (eds.), Language acquisition,

change and emergence: Essay in evolutionary linguistics, 205–249. Hong Kong: City Uni-

versity of Hong Kong Press.

Clahsen, Harald. 1999. Lexical Entries and rules of language: A multidisciplinary study of

German inflection. Behavioral and Brain Sciences 22. 991–1013.

Dale, Philip S. & Larry Fenson. 1996. Lexical development norms for young children.

Behavior Research Methods, Instruments & Computers 28. 125–27.

Daugherty, Kim & Mark S. Seidenberg. 1992. Rules or connections? The past tense revis-

ited. In David P. Corina (ed.), Proceedings of the 14th annual conference of the cognitive

science society, 259–264. Hillsdale, NJ: Lawrence Erlbaum.

Davies, Matt H. 2003. Connectionist modelling of lexical segmentation and vocabulary ac-

quisition. In Philip Quinlan (eds.), Connectionist models of development: Developmental

processes in real and artificial neural networks, 151–187. Hove: Psychology Press.

Davis, Barbara L. & Peter F. MacNeilage. 2000. An embodiment perspective on the acqui-

sition of speech perception. Phonetica 57. 229–241.

Ellis, Andrew W. & Matthew A. Lambon-Ralph. 2000. Age of acquisition e¤ects in adult

lexical processing reflect loss of plasticity in maturing systems: Insights from connectionist

networks. Journal of Experimental Psychology-Learning Memory and Cognition 26. 1103–

1123.

Elman, Je¤rey L. 1990. Finding structure in time. Cognitive Science 14. 179–211.

Elman, Je¤rey L. 1991. Distributed representations, simple recurrent networks, and gram-

matical structure. Machine Learning 7. 195–225.

Elman, Je¤rey L. 1993. Learning and development in neural networks: the importance of

starting small. Cognition 48. 71–99.

Elman, Je¤ L. 1998. Generalization, simple recurrent networks, and the emergence of struc-

ture. In Morton Ann Gernsbacher & Sharon J. Derry (eds.), Twentieth Annual Conference

of the Cognitive Science Society, 6–12. Mahwah, NJ: Lawrence Erlbaum.

Elman, Je¤ L. 2003. Development: It’s about time. Developmental Science 6. 430–433.

Elman, Je¤rey L. 2005. Connectionist models of cognitive development: where next? Trends

in Cognitive Sciences 9. 111–117.

Connectionist approaches to language learning 447

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Elman, Je¤rey L., Elizabeth A. Bates, Mark H. Johnson, Annette Karmilo¤-Smith, Dome-

nico Parisi & Kim Plunkett. 1996. Rethinking innateness. A connectionist perspective on

development. Cambridge, MA: MIT Press.

Fenson, Larry & Stephen J. Pethick. 1994. Variability in early communicative development

(Monographs of the Society for Research in Child Development 59). Oxford: Blackwell.

Fodor, Jerry F. & Zenon W. Pylyshyn. 1988. Connectionism and cognitive architecture:

A critical analysis. Cognition 28. 73–193.

Fritzke, Bernd. 1994. Growing cell structures — A self-organizing network for unsupervised

and supervised learning. Neural Networks 7. 1441–1460.

Garofolo, John S., Lori F. Lamel, William M. Fisher, Jonathon G. Fiscus, David S. Pallett

& Nancy L. Dahlgren. 1990. DARPA TIMIT Acoustic-Phonetic Continuous Speech

Corpus CD-ROM. Tech. Rep. No. NISTIR 4930. Gaithersburg, MD: National Institute

of Standards and Technology.

Gibbs, Raymond W. 2006. Embodiment and cognitive science. Cambridge: Cambridge Uni-

versity Press.

Gopnik, Alison, Clark Glymour, David M. Sobel, Laura E. Schulz, Tamar Kushnir &

David Danks. 2004. A theory of causal learning in children: Causal maps and Bayes

nets. Psychological Review 111. 3–32.

Gopnik, Alison & Joshua B. Tenenbaum. 2007. Bayesian networks, Bayesian learning and

cognitive development. Developmental Science 10. 281–287.

Gow, David W. & Peter C. Gordon. 1995. Lexical and prelexical influences on word seg-

mentation: Evidence from priming. Journal of Experimental Psychology: Human Percep-

tion and Performance 21. 344–359.

Guenther, Frank H. & Marin N. Gjaja. 1996. The perceptual magnet e¤ect as an emergent

property of neural map formation. Journal of the Acoustic Society of America 100. 1111–

1121.

Guenther, Frank H., Satrajit S. Ghosh & Jason A. Tourville. 2006. Neural modeling and

imaging of the cortical interactions underlying syllable production. Brain and Language

96. 280–301.

Hahn, Ulrike & Ramin C. Nakisa. 2000. German inflection: Single route or dual route?

Cognitive Psychology 41. 313–60.

Hare, Mary & Je¤rey L. Elman. 1995. Learning and morphological change. Cognition 56.

61–98.

Hebb, Donald O. 1949. The organization of behavior: A neuropsychological theory. New

York: Wiley.

Jaeger, Jeri J., Alan H. Lockwood, David L. Kemmerer, Robert D. Van Valin, Brian W.

Murphy & Hanif G. Khalak. 1996. Positron emission tomographic study of regular and

irregular verb morphology in English. Language 72. 451–497.

Joanisse, Marc F. & Mark S. Seidenberg. 1998. Specific language impairment: a deficit in

grammar or processing? Trends in Cognitive Sciences 2. 240–47.

Joanisse, Marc F. & Mark S. Seidenberg. 1999. Impairments in verb morphology after brain

injury: A connectionist model. Proceedings of the National Academy of Sciences of the

United States of America 96. 7592–7597.

Joanisse, Marc F. 2004. Specific language impairments in children — Phonology, seman-

tics, and the English past tense. Current Directions in Psychological Science 13. 156–

160.

Joanisse, Marc F. & Mark S. Seidenberg. 2005. Imaging the past: Neural activation in fron-

tal and temporal regions during regular and irregular past-tense processing. Cognitive Af-

fective & Behavioral Neuroscience 5. 282–296.

Johnson, Mark H. 2005. Developmental cognitive neuroscience. Oxford: Blackwell.

448 G. Westermann et al.

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Jusczyk, Peter W. 1999. How infants begin to extract words from speech. Trends in Cogni-

tive Science 3. 323–328.

Kandel, Eric R., James H. Schwartz & Thomas M. Jessel. 2000. Principles of Neural

Science. McGraw-Hill New York: Elsevier.

Kohonen, Teuvo. 1982. Self-organized formation of topologically correct feature maps. Bio-

logical Cybernetics 43. 59–69.

Kuhl, Patricia K. 1991. Human adults and human infants show a ‘‘perceptual magnet

e¤ect’’ for the prototypes of speech categories, monkeys do not. Perception and Psycho-

physics 50. 93–107.

Kuhl, Patricia K. 1995. Mechanisms of developmental change in speech and language. In

Kjell Elenius & Peter Branderud (eds.), Proceedings of the XIIIth International Congress

of Phonetic Sciences, 131–139. Stockholm: KTH and Stockholm University.

Lacerda, Francisco. 1995. The perceptual-magnet e¤ect: An emergent consequence of

exemplar-based phonetic memory. In Kjell Elenius & Peter Branderud (eds.), Proceedings

of the XIIIth International Congress of Phonetic Sciences, 140–147. Stockholm: KTH and

Stockholm University.

Li, Ping. 2003. Language acquisition in a self-organizing neural network model. In Philip

Quinlan (ed.), Connectionist models of development: Developmental processes in real and

artificial neural networks, 115–149. New York: Psychology Press.

Li, Ping, Igor Farkas & Brian MacWhinney. 2004. Early lexical development in a self-

organizing neural network. Neural Networks 17. 1345–1362.

Li, Ping, Xiaowei Zhao & Brian MacWhinney. 2007. Dynamic self-organization and early

lexical development in children. Cognitive Science 31. 581–612.

Liberman, Alvin M., Katherine S. Harris, Howard S. Ho¤man & Belver C. Gri‰th. 1957.

The discrimination of speech sounds within and across phoneme boundaries. Journal of

Experimental Psychology 54. 358–368.

Liberman, Alvin M. & Ignatius G. Mattingly. 1985. The motor theory of speech-perception

revised. Cognition 21. 1–36.

Lisker, Leigh & Arthur S. Abramson. 1971. Distinctive features and laryngeal control.

Language 47. 767–785.

MacWhinney, Brian. 2000. The CHILDES project: Tools for analyzing talk. Hillsdale, NJ:

Lawrence Erlbaum.

MacWhinney, Brian. 2004. A multiple process solution to the logical problem of language

acquisition. Journal of Child Language 31. 883–914.

MacWhinney, Brian & Jared Leinbach. 1991. Implementations are not conceptualizations:

Revising the verb learning model. Cognition 40. 121–157.

Marchman, Virginia A. 1997. Children’s productivity in the English past tense: The role of

frequency, phonology, and neighborhood structure. Cognitive Science: A Multidisciplinary

Journal 21. 283–304.

Marchman, Virginia A. & Elizabeth Bates. 1994. Continuity in lexical and morphological

development: A test of the critical mass hypothesis. Journal of Child Language 21. 339–366.

Marcus, Gary F. 1995. The acquisition of the English past tense in children and multilayered

connectionist networks. Cognition 56. 271–279.

Marcus, Gary F. 1999. Connectionism: With or without rules? Trends in Cognitive Sciences

3. 168–170.

Marcus, Gary, Ursula Brinkmann, Harald Clahsen, Richard Wiese & Steven Pinker. 1995.

German inflection: The exception that proves the rule. Cognitive Psychology 29. 189–256.

Marcus, Gary F., Steven Pinker, Michael Ullman, Michelle Hollander, T. John Rosen & Fei

Xu. 1992. Overregularization in language acquisition (Monographs of the Society for Re-

search in Child Development, Serial No. 228, Vol. 57 no. 4). Oxford: Blackwell.

Connectionist approaches to language learning 449

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Mareschal, Denis, Mark H. Johnson, Sylvain Sirois, Michael W. Spratling, Michael Thomas

& Gert Westermann. 2007a. Neuroconstructivism: How the brain constructs cognition.

Oxford: Oxford University Press.

Mareschal, Denis, Sylvain Sirois, Gert Westermann & Mark Johnson (eds.). 2007b. Neuro-

constructivism, vol II: Perspectives and prospects. Oxford: Oxford University Press.

Mareschal, Denis & Gert Westermann. In press. Mixing the old with the new and the new

with the old: Combining prior and current knowledge in conceptual change. In Scott P.

Johnson (ed.), Neoconstructivism: The new science of cognitive development. New York:

Oxford University Press.

Marks, Lawrence E. 1968. Scaling of grammaticalness of self-embedded English sentences.

Journal of Verbal Learning and Verbal Behavior 7. 965–967.

Marslen-Wilson, William & Lorraine K. Tyler. 1998. Rules, representations, and the English

past tense. Trends in Cognitive Sciences 2. 428–435.

Marslen-Wilson, William & Alan Welsh. 1978. Processing interactions and lexical access

during word recognition in continuous speech. Cognitive Psychology 10. 29–63.

McClelland, James L. & Karalyn Patterson. 2002. ‘Words or rules’ cannot exploit the

regularities in exceptions. Trends in Cognitive Sciences 6. 464–65.

McLeod, Peter, Kim Plunkett & Edmund T. Rolls. 1998. Introduction to connectionist

modelling of cognitive processes. Oxford: Oxford University Press.

Miikkulainen, Risto. 1997. Dyslexic and category-specific aphasic impairments in a self-

organizing feature map model of the lexicon. Brain and Language 59. 334–366.

Miller, George A. & Patricia E. Nicely. 1955. An analysis of perceptual confusions among

some English consonants. Journal of the Acoustical Society of America 27. 338–352.

Morgan, James L. & Katherine Demuth (eds.). 1996. From Signal to Syntax. Mahwah, NJ:

Lawrence Erlbaum.

Nakisa, Ramin C. & Kim Plunkett. 1998. Evolution of a rapidly learned representation for

speech. Language and Cognitive Processes 13. 105–127.

Oaksford, Mike & Nick Chater. 2007. Bayesian rationality: The probabilistic approach to

human reasoning. Oxford: Oxford University Press.

O’Reilly, Randall C. 1996. Biologically plausible error-driven learning using local activa-

tion di¤erences: The generalized recirculation algorithm. Neural Computation 8. 895–

938.

Penke, Martina & Gert Westermann. 2006. Broca’s area and inflectional morphology: Evi-

dence from Broca’s aphasia and computer modeling. Cortex 42. 563–576.

Pinker, Steven. 1997. Words and rules in the human brain. Nature 387. 547–548.

Pinker, Steven. 2001. Four decades of rules and associations, or whatever happened to the

past tense debate? In Emmanuel Dupoux (ed.), Language, brain, and cognitive develop-

ment: Essays in honor of Jacques Mehler, 157–179. Cambridge, MA: MIT Press.

Pinker, Steven & Michael T. Ullman. 2002. The past and future of the past tense. Trends in

Cognitive Sciences 6. 456–463.

Plaut, David C., James L. McClelland, Mark S. Seidenberg & Karalyn Patterson. 1996.

Understanding normal and impaired word reading: Computational principles in quasi-

regular domains. Psychological Review 103. 56–115.

Plunkett, Kim & Stephan Bandelow. 2006. Stochastic approaches to understanding dissoci-

ations in inflectional morphology. Brain and Language 98. 194–209.

Plunkett, Kim & Patrick Juola. 1999. A connectionist model of English past tense and plural

morphology. Cognitive Science 23. 463–490.

Plunkett, Kim & Virginia A. Marchman. 1991. U-Shaped learning and frequency-e¤ects in a

multilayered perceptron — Implications for child language-acquisition. Cognition 38. 43–

102.

450 G. Westermann et al.

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Plunkett, Kim & Virginia A. Marchman. 1993. From rote learning to system building —

acquiring verb morphology in children and connectionist nets. Cognition 48. 21–69.

Plunkett, Kim & Ramin C. Nakisa. 1997. A connectionist model of the Arabic plural

system. Language and Cognitive Processes 12. 807–836.

Popper, Karl. 1959. The logic of scientific discovery. London: Hutchinson.

Pullum, Geo¤rey K. & Barbara C. Scholz. 2002. Empirical assessment of poverty of stimu-

lus arguments. The Linguistic Review 19. 9–50.

Ritter, Helge J. & Teuvo Kohonen. 1989. Self-organizing semantic maps. Biological Cyber-

netics 61. 241–54.

Rodriguez, Paul, Janet Wiles & Je¤rey L. Elman. 1999. A recurrent neural network that

learns to count. Connection Science 11. 5–40.

Rumelhart, David E., Geo¤rey E. Hinton & Ronald J. Williams. 1986. Learning internal

representations by error propagation. In David E. Rumelhart & James L. McClelland

(eds.), Parallel distributed processing: Explorations in the microstructure of cognition,

volume 1: Foundations, 318–362. Cambridge, MA: MIT Press.

Rumelhart, David E. & James L. McClelland. 1986. On learning the past tense of English

verbs: implicit rules or parallel distributed processing? In James L. McClelland, Dave

Rumelhart & the PDP Research Group (eds.), Parallel Distributed Processing: Explora-

tions in the Microstructure of Cognition, 195–248. Cambridge, MA: MIT Press.

Sa¤ran, Jenny R., Richard N. Aslin & Elissa L. Newport. 1996. Statistical learning by

8-month-old infants. Science 274. 1926–1928.

Seidenberg, Mark. S. & Aimee Arnoldussen. 2003. The brain makes a distinction between

hard and easy stimuli: Comments on Beretta et al. Brain and Language 85. 527–530.

Seidenberg, Mark & M. Bruck. 1990. Consistency e¤ects in the generation of past tense mor-

phology. Paper presented at the 31st meeting of the Psychonomic Society, New Orleans, LA.

Seidenberg, Mark S. & Je¤rey L. Elman. 1999a. Do Infants Learn Grammar with Algebra

or Statistics? Science 284. 433.

Seidenberg, Mark S. & Je¤rey L. Elman. 1999b. Networks are not ‘hidden rules’. Trends in

Cognitive Sciences 3. 288–289.

Seidenberg, Mark S. & Marc F. Joanisse. 2003. Show us the model. Trends in Cognitive

Sciences 7. 106–107.

Shultz, Thomas R. 2003. Computational developmental psychology. Cambridge, MA: MIT

Press.

Shultz, Thomas R. 2007. The Bayesian revolution approaches psychological development.

Developmental Science 10. 357–364.

Smith, Linda B. & Larissa K. Samuelson. 2003. Di¤erent is good: connectionism and

dynamic systems theory are complementary emergentist approaches to development.

Developmental Science 6. 434–439.

Smolensky, Paul, Michael Mozer & David E. Rumelhart (eds.). 1996. Mathematical perspec-

tives on neural networks. Mahwah, NJ: Lawrence Erlbaum.

Thal, Donna, Elizabeth E. Bates, Judith Goodman & Jennifer Jahn-Samilo. 1997. Con-

tinuity of language abilities in late- and early-talking toddlers. Developmental Neuro-

psychology 13. 239–273.

Thelen, Esther & Elizabeth Bates. 2003. Connectionism and dynamic systems: are they

really di¤erent? Developmental Science 6. 378–391.

Thelen, Esther & Linda B. Smith. 1994. A dynamic systems approach to the development of

cognition and action (Bradford Books). Cambridge, MA: MIT Press.

Thomas, Michael S. C. & Walter J. B. van Heuven. 2003. Computational models of bilin-

gual comprehension. In Judith F. Kroll & Annette M. B. De Groot (eds.), Handbook of

bilingualism: Psycholinguistic approaches, 202–225. Oxford: University Press.

Connectionist approaches to language learning 451

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM



Ullman, Michael T. 1999. Acceptability ratings of regular and irregular past-tense forms:

Evidence for a dual-system model of language from word frequency and phonological

neighbourhood e¤ects. Language and Cognitive Processes 14. 47–67.

Vihman, Marilyn May. 1993. Variable paths to early word production. Journal of Phonetics

21. 61–82.

Vihman, Marilyn May. 2002. The role of mirror neurons in the ontogeny of speech. In

Maxim Stamenov & Victor Gallese (eds.), Mirror Neurons and the Evolution of Brain and

Language, 305–314. Amsterdam: John Benjamins.

Weckerly, Jill & Je¤rey L. Elman. 1992. A PDP approach to processing center-embedded

sentences. In John Kruschke (ed.), Proceedings of the Fourteenth Annual Conference of

the Cognitive Science Society, 414–419. Hillsdale, NJ: Lawrence Erlbaum.

Westermann, Gert. 1998. Emergent modularity and U-shaped learning in a constructivist

neural network learning the English past tense. Proceedings of the Twentieth Annual Con-

ference of the Cognitive Science Society, Morton Ann Gernsbacher & Sharon. J. Derry

(eds.), 1130–1135. Hillsdale, NJ: Lawrence Erlbaum.

Westermann, Gert & Eduardo Reck Miranda. 2004. A new model of sensorimotor coupling

in the development of speech. Brain and Language 89. 393–400.

Westermann, Gert, Sylvain Sirois, Thomas R. Shultz & Denis Mareschal. 2006. Modeling

developmental cognitive neuroscience. Trends in Cognitive Sciences 10. 227–233.

Willshaw, David J. & Christoph von der Malsburg. 1976. How patterned neural connections

can be set up by self-organization. Proceedings of the Royal Society of London B 194.

431–445.

Xu, Fei & Joshua B. Tenenbaum. 2007. Sensitivity to sampling in Bayesian word learning.

Developmental Science 10. 288–297.

Yoshikawa, Yuichiro, Minoru Asada, Koh Hosoda & Junpei Koga. 2003. A constructivist

approach to infants’ vowel acquisition through mother-infant interaction. Connection

Science 15. 245–258.

Zuidema, Willem & Gert Westermann. 2003. Evolution of an optimal lexicon under con-

straints from embodiment. Artificial Life 9. 387–402.

452 G. Westermann et al.

Brought to you by | Oxford Brookes University (Oxford Brookes University)
Authenticated | 172.16.1.226

Download Date | 1/26/12 12:09 PM


