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Abstract

Background: Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin
remodeling complex have recently been shown to contribute to multiple syndromes characterised by
developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of
Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability.
Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual
disability, plantar fat pads and facial dysmorphism.

Methods/results: High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3,
which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative
real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B
knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell
number in the S1 phase. Based on the patient’s distinctive phenotype, we ascertained four additional patients and
identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them.

Conclusions: This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive
phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with
Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle
contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.

Keywords: Intellectual disability, Chromatin remodelling, Coffin-Siris syndrome, ARID1B mutation, Cell cycle,
Haploinsufficiency
Introduction
The control of gene expression is an intricately regulated
process that requires many multiprotein complexes. Chro-
main remodeling regulates gene expression by modulating
the access of transcription machinery proteins to the con-
densed genomic DNA via dynamic modification of the
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chromatin architecture. This modification is mediated by
either covalent histone modifications via specific enzymes
such as histone acetyltransferases or ATP-dependent alter-
ation of DNA-nucleosome topology [1]. The latter mode
of modification is mediated by a class of protein com-
plexes called ATP-dependent chromatin-remodeling com-
plexes, which are known to regulate gene expression in
specific cellular contexts or at defined time points [2]. Re-
cent studies have linked mutations in these complexes to
both developmental disorders and cancer [3]. Mutations
in ARID1B and several other genes encoding components
. This is an Open Access article distributed under the terms of the Creative
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of the Brahma-associated factor (BAF, also referred to as
switching defective and sucrose nonfermenting SWI/SNF-
α) chromatin remodeling complex, were recently shown
to cause Coffin-Siris syndrome (CSS) [4,5]. Subsequent
studies have demonstrated that mutations in ARID1B are
the main cause of CSS [6-8]. CSS is characterised by intel-
lectual disability, severe speech impairment, coarse facial
features, microcephaly, developmental delay and hypo-
plastic nails on the fifth digits (MIM 135900). However,
ARID1B mutations have also been identified in a broader
cohort of patients, including nonsyndromic intellectual
disability and deletions in individuals with intellectual dis-
ability, autism and agenesis of the corpus callosum [9-11].
It is unclear as to why patients with ARID1B mutations
present such a broad phenotypic spectrum.
ARID1B encodes a DNA-binding protein component

of the ubiquitous ATP-dependent chromatin remodel-
ling BAF complex, which is known to regulate gene ex-
pression, including genes involved in proliferation and
differentiation [12]. These complexes are made up of at
least ten core proteins and have fifteen known inter-
changeable components to give rise to an array of func-
tionally distinct and cell-type specific BAF complexes,
such as neuronal progenitor BAF complex [12,13]. Thus,
mutations in different BAF components are likely to per-
turb the function of BAF complexes to varied degrees in
different cell types. In agreement with this notion, a
striking feature of mutations in the BAF components is
the phenotypic variability presented by the patients [6,7].
To date, the biological processes affected in patients
with ARID1B mutations are largely unknown.
Here, we report ARID1B haploinsufficiency in five pa-

tients with moderate intellectual disability, absent speech
and dysmorphic features with narrow palpebral fissures,
long eyelashes, a thin upper lip and full lower lip. Alter-
ations in cell cycle were observed in fibroblasts derived
from a patient and ARID1B-knockdown control fibro-
blast cells. Our study broadens the phenotypic spectrum
of ARID1B-mediated disorders and provides the first evi-
dence that alterations in cell cycle contribute to the
underlying pathogenesis of syndromes associated with
ARID1B haploinsufficiency.

Methods
Patients
Informed consents were obtained from patients’ parents
for the publication of clinical, genetic and molecular
analyses. After receiving institutional Ethics Committee
(Royal Children’s Hospital, Melbourne, Australia) blood
and tissue samples were obtained. Genomic DNA was
extracted from whole blood using the BACC DNA
extraction kit (GE Healthcare Life Sciences) according
to the manufacturer’s instructions. Standard karyotype
analysis was performed using G-banding and high
density SNP array data (Affymetrix Human SNP array
6.0) was analysed for copy number variation using
Karyo-studio (Illumina).

Generation of ARID1B knockdown human fibroblast
Primary fibroblast cultures were established using stand-
ard procedures and maintained in BME supplemented
with 10% fetal bovine serum (FBS). MicroRNA-adapted
shRNA (shRNAmir)-mediated knockdown of ARID1B
was performed using lentivirus containing ARID1B-tar-
geting shRNAmir (V3THS_306691 or V3THS_306692,
Open Biosystems) or scrambled non-silencing cont-
rol (RHS4743, Open Biosystem). The lentiviral parti-
cles were generated by transfecting HEK293FT with
V3THS_306691, V3THS_306692 or RHS4743 plasmids,
and SPAX2 (Addgene) and pMD2.G (Addgene) lenti-
viral packaging plasmids using Lipofectamine 2000
(Invitrogen) according to manufacturers’ instructions.
The viral supernatants were harvested after 48 hours
and concentrated at 70, 000 g, 4°C for 2 hours. Wildtype
fibroblasts were transduced with both V3THS_306691
(MOI = 20) and V3THS_306692 (MOI = 20) or RHS4743
(MOI = 20) to generate ARID1B-knockdown and non-
silencing control fibroblast lines respectively. Transduced
cells were cultured in complete media containing 4 μg/ml
puromycin for 2 weeks and transduction of the fibroblast
lines was confirmed by expression of the co-expressed
marker protein turboRFP.

Quantitative real-time PCR analysis
Fibroblast cells were cultured in 60 cm dish and RNA was
extracted using SV Total RNA Isolation system (Promega)
according to manufacturer’s instructions. 100 ng RNA was
used to generate cDNA library for each sample using
Transcriptor cDNA First Strand Synthesis kit (Roche) ac-
cording to manufacturer’s instructions. Real-time PCR re-
actions were performed in triplicate with Light Cycler
480II instrument (Roche) using Taqman probes directed
against ARID1B (Applied Biosystems, hs00368175) and
the housekeeping control Human Large Ribosomal Pro-
tein (RPLO) (Applied Biosystems, 432631E-0904009) and
Fast Start Taqman Probe Master Mix (Roche) according
to manufacturer’s instructions. The relative ARID1B ex-
pression was analysed using Pfaffl method with respect to
RPLO expression [14]. Standard deviations were calcu-
lated using Gaussian error propagation. T-Test was used
to investigate the difference in relative ARID1B expression
between samples. Each experiment was independently
performed at least three times.

Serum starvation assay
Fibroblasts were cultured in 60 cm dishes and incubated
in serum free media for seven days to induce cell cycle
arrest. Subsequently, complete media (10% FBS) was
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added and cells were incubated for up to two days prior
to FACS analysis to quantify the number of cells under-
going S1 phase. Cells were detached, fixed with 80%
ethanol and incubated with propidium iodide/RNAse A
staining solution (50 μg propidium iodide/ml, 0.2 mg
RNAse A/ml, 0.05% Triton-X100 in PBS) for 2 hours
prior to Fluorescence-Activated Cell Sorting (FACS)
analysis. A minimum of 10,000 cells were counted for
each sample using BD LSR II Flow Cytometer (BD sci-
ence) with excitation laser set at 488 nm and emission
filter set at 695 nm/40 and analysed using ModFit LT
analysis software (Verity Software House). Each experi-
ment was independently performed at least three times.

Sanger sequencing of ARID1B and whole Exome
sequencing
Exons of ARID1B were amplified via PCR with primer
sets listed in Additional file 1: Table S1. The resulting
PCR products were purified and sequenced using BigDye
Terminator kit v3.1 (Applied Biosystem) and ABI 3730
DNA Analyzer (Applied Biosystems). Exome sequencing
of patient 5 was performed on an Illumina Hiseq 2000
platform with the NimbleGen VCRome 2.1 exome cap-
ture design for enrichment. The 125 bp paired-end reads
were mapped to UCSC genome Browser Hg 19 and vari-
ants and indels were called using HGSC Mercury ana-
lysis pipeline [15]. High quality variant calls were filtered
on nonsynonymous changes in the coding regions or
changes affecting the canonical splice sites. Variants that
were present with a frequency above 1% in dbSNP and
the Nijmegen in-house database containing data of over
1,300 exomes, or in 200 exomes analysed using the same
Illumina Hiseq 2000 platform were excluded.

Results
Identification of patient 1
Patient 1 presented with moderate intellectual disabi-
lity, absent speech and dysmorphic features with narrow
palpebral fissures, long eyelashes, a thin upper lip and
Figure 1 Clinical phenotype of patient 1. The facial photographs show
upper lip, full lower lip and low-set ears (A). The plantar fat pads anterome
show fetal finger pads and pillowing over the metacarpal heads (C).
full lower lip. Fetal finger and toe pads and plantar lip-
omas were present (Figure 1A-C). Karyotype analysis
showed an apparently balanced de novo reciprocal trans-
location involving chromosomes 4 and 6 (46,XY,t(4;6)
(q35;q25.3)) in all examined cells (n = 15). The chromo-
some 4 breakpoint was located within a 0.3 Mb region
that did not encode any genes, whereas the chromosome
6 breakpoint was mapped to a ~0.4 Mb region that
encoded several genes. Copy number analysis did not
identify any variations associated with the chromo-
some 4 breakpoint. However, a heterozygous deletion
of ~1.2 Mb was identified on 6q25.3 that resulted in sin-
gle allele loss of the genes encoding sorting nexin-9
(SNX9), zinc finger DHHC-type containing 14 (ZDHHC14),
transmembrane protein 242 (TMEM242) and AT rich inter-
active domain 1B (ARID1B) (Figure 2).
ARID1B haploinsufficiency in patient 1
Given the documented role of ARID1B in disorders with
a clinical presentation somewhat similar to our patient,
we tested the effect of the deletion on ARID1B expres-
sion in patient-derived primary fibroblasts. Western blot
analysis using multiple commercially available anti-
bodies directed against ARID1B failed to robustly iden-
tify the predicted ~240 kDa protein in patient or control
fibroblast cells (data not shown). However, real-time
PCR analysis revealed that the transcription level of
ARID1B in patient 1 was significantly reduced (35 ± 7%,
mean ± SD, n = 5, P < 0.001) in comparison to the control
fibroblasts (Figure 3A). In order to further characterise
the effect of ARID1B haploinsufficiency, we utilised a
knockdown approach. Wildtype fibroblasts co-transduced
with ARID1B-targetting shRNAmir (V3THS_306691 and
V3THS_306692) expressed ARID1B mRNA at approxi-
mately 60% of control levels (56 ± 12%, mean ± SD, n = 3,
P < 0.01). In contrast, no effect on ARID1B mRNA level
was observed when the non-silencing control was utilised
(Figure 3A).
dysmorphism including a broad face, narrow palpebral fissures, thin
dial to the heel and fetal toe pads are prominent (B) and the hands



Figure 2 Molecular characterisation of patient 1. High density SNP chip array and CNV analysis identified a heterozygous de novo 4;6
reciprocal translocation that resulted in the deletion of four genes encoding sorting nexin-9 (SNX9), zinc finger DHHC-type containing 14
(ZDHHC14), transmembrane protein 242 (TMEM242) and AT rich interactive domain 1B (ARID1B) at 6q25.3.
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Entry to S1 phase is delayed in patient 1
It was previously demonstrated that ARID1B deficiency
delayed cell cycle re-entry after cell cycle arrest induced
by serum starvation in mouse MC3T3 osteoblasts [16].
To investigate whether the molecular defect in patient 1
might lead to similar deficits, we analysed the kinetics of
cell cycle re-entry after serum starvation [17]. Control fi-
broblasts showed a peak in cells undergoing S1 phase
(21% ± 4.5, mean ± SD, n = 6) at 20 hours post serum re-
plenishment (Figure 3B). In contrast, the percentage of
cells undergoing S1 phase at 20 hours post serum re-
plenishment was significantly lower in both patient 1
(1.5% ± 0.35, mean ± SD, n = 3, P = 0.0002) and 90090-
KD (9.6% ± 1.7, mean ± SD, n = 3, P = 0.005) compared
to control. The maximum number of patient 1 cells in
S1 phase (5.4 ± 2.1%, mean ± SD, n = 3) was observed
30 hours post serum replenishment. Similarly, knock-
down of ARID1B in control fibroblasts resulted in a de-
layed entry to S1 phase, with the peak also occurring at
30 hours post serum replenishment. The number of cells
undergoing S1 phase in the knockdown fibroblasts at
30 hours post serum replenishment was greater than ob-
served in patient 1. This may be because there was a
trend to elevated ARID1B mRNA (and presumably pro-
tein) compared to patient 1, although it was not of stat-
istical significance (Figure 3A). Both patient 1 and the



Figure 3 ARID1B haploinsufficiency results in delayed S1 Phase entry. Real Time Quantitative PCR analysis of patient-derived (Patient 1) and
control (90087 and 90090) fibroblasts was performed using Taqman probes directed against ARID1B and the housekeeping control RPLO. Samples
were normalised to control 90090, which was assigned a value of 1 and analysed by the Pfaffl relative quantification method. The expression of
ARID1B was significantly reduced in both Patient 1 and the control 90090 after shRNAmir mediated knockdown of ARID1B (90090-KD), whereas
the non-silencing control did not alter ARID1B expression (90090-NS) (A). Cell cycle dynamics of serum-starved cells undergoing S1 phase after
serum replenishment was analysed using ModFit LT. The percentage of cells undergoing S1 phase at 20 hours post serum replenishment was
significantly lower in both patient 1 (P = 0.0002) and 90090-KD (P = 0.005) compared to control (B).
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knockdown cells demonstrated significantly reduced
mRNA levels compared to the control fibroblasts and
control fibroblasts transduced with the non-silencing
‘scramble’ control. While off-target effects were not spe-
cifically controlled for, the non-silencing control cells
did not display alterations in either the number or tim-
ing of cells undergoing S1 phase. Moreover, both patient
and ARID1B-knockdown cells displayed similar delayed
entry to S1 phase, suggesting the effects were due to re-
duced ARID1B rather than a non-specific off target ef-
fect of the ARID1B-targetting shRNAmir used. Although
we could not definitively demonstrate reduced endogen-
ous ARID1B levels by western blot (antibodies tested
were sc-32762 and NB100-57484), collectively these ob-
servations suggested that reduced ARID1B was associ-
ated with perturbed cell cycle regulation, which affected
both the number and timing of cells entering S1 phase
after serum starvation.

Identification of four additional patients with ARID1B
mutations
The distinctive clinical features observed in patient 1 en-
abled us to ascertain four additional patients with a strik-
ingly similar phenotype. All five patients, including patient
1 had intellectual disability, absent speech, plantar fat
pads, fetal finger pads, and facial dysmorphism, consisting
of narrow palpebral fissures, long eyelashes, a thin upper
lip and full lower lip (Table 1). Direct sequencing of gen-
omic DNA revealed that three additional patients encoded
de novo single allelic ARID1B mutations; NM_020732.3
(ARID1B):c.3208_3209delAA (p.(Lys1070Alafs*47) in pa-
tient 2, NM_020732.3(ARID1B):c.2306_2308delCCGinsT
CCGCAGCCACTCC (p.(Pro769Leufs*17)) in patient 3
and NM_020732.3(ARID1B):c.4273dupT (p.(Tyr1425Leu
fs*34)) in patient 4. Whole exome sequencing of patient 5
identified 325 unique variants. Further filtering against an
in-house database of genes previously implicated in intel-
lectual disability identified a single candidate variant,
which is predicted to be truncating. The de novo hetero-
zygous ARID1B mutation NM_020732.3(ARID1B):c.294
1C > T (p.(Gln981*)) was confirmed by Sanger sequen-
cing (Figure 4). Two of these patients (patient 3 and
patient 5) were previously published as having a pheno-
type consistent with Pierpont syndrome [18]. The molecu-
lar basis of Pierpont syndrome remains to be reported,
but plantar fat pads are a key feature. The facial features
in the five patients described here are distinct from those
originally reported in Pierpont syndrome in that their pal-
pebral fissures are not as narrow and their nasal tip not as
broad [18,19]. Therefore we now believe their diagnosis
should be of a BAF complex disorder due to ARID1B hap-
loinsufficiency. In addition, we carried out mutation ana-
lysis of ARID1B (but not other members of the BAF
complex) in four patients with classical features of Pierpont
syndrome including patient 1 of the original case report
[19] and did not identify any mutation (unpublished data).

Discussion
Recent reports have demonstrated that mutations in
ARID1B can cause both nonsyndromic intellectual dis-
ability and CSS. The phenotypes associated with ARID1B
haploinsufficiency are variable but common features of
the syndromic and nonsyndromic cases include intellec-
tual disability and speech impairment. While the facial
dysmorphism and intellectual disability present in our
cohort is similar to previously published patients with
ARID1B mutations [4-7], this study broadens the
spectrum of ARID1B-associated phenotypes because all



Table 1 Comparison of patient clinical features

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Previously
published

- -
Patient 5 in Wright
et al., 2011 [18]

-
Patient 6 in Wright
et al., 2011 [18]

Age at
assessment

8y 2y 6y 10m 5y 8y 2m

Height centile 50th 10-25th 25th 3rd 2nd

Weight centile 50-75th 25th 50-75th 25th 2nd

Head
circumference

50-98th 25th 50-98th 25th 50th

Heel Fat pads + + + + +

Fetal finger
and toe pads

+ + + NR +

Fifth nail
hypoplasia

- - - - -

Hirsutism - - - - +

ID Mod Mod Mild Mod Mod

Speech Absent Absent Delayed Absent Delayed

Seizures - + - + -

Drooling + + + - +

Feeding
difficulty

+ - Mild - -

Scoliosis - - - - +

Inguinal hernia - - - - -

Neuroimaging
Mega cisterna
magna on
brain MRI

Normal
brain MRI

Hypoplastic posterior
elements of corpus
callosum on MRI

Head CT in first
year of life, normal

Normal
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our patients presented with plantar fat pads and fetal fin-
ger/toe pads and none of our patients have the fifth nail
hypoplasia hallmark of CSS. As some of the previous co-
horts with ARID1B mutations were ascertained by a clin-
ical diagnosis of CSS, there is a selection bias in the
phenotypic features they will have. Although none of the
point mutations in ARID1B are common between CSS
and our cohort, three CSS-like patients with de novo sin-
gle allelic deletion at chromosome 6 similar to patient 1
were identified by Santen et al. in a large cohort of pa-
tients with intellectual disability [4]. The phenotypes of
these patients share some features but apparently repre-
sent distinct syndromic manifestations of ARID1B hap-
loinsufficiency. Thus, our cohort demonstrates that the
ARID1B phenotypic spectrum is broader than previously
defined and includes the novel clinical features of plantar
fat pads and fetal digit pads. The constant features across
cohorts appear to be the facial gestalt and the presence of
intellectual disability particularly affecting speech, in con-
trast to the marked variability in the presence and type of
manifestations in the hands and feet.
ARID1B is a DNA-binding component of BAF com-

plexes that are involved in regulating many biological
pathways [12]. However, the repertoire of pathways reg-
ulated by these BAF complexes and the impact of muta-
tions in BAF components on these pathways are still
poorly understood. Here, we present the first direct evi-
dence in patient-derived cells that alterations in cell
cycle may contribute to the pathogenesis of syndromes
associated with ARID1B haploinsufficiency. Given that
the BAF complex comprises over 25 core and inter-
changeable protein subunits that give rise to functionally
distinct and cell-type specific complexes [12], it is likely
that additional variation in these components contributes
to the observed phenotypic variability in ARID1B-mediated
disorders.



Figure 4 Analysis of ARID1B in the patient cohort. The protein domain organisation of ARID1B and the position of the four mutations
identified by sequencing are shown. The forward and reverse sequencing traces demonstrate the NM_020732.3(ARID1B):c.3208_3209delAA
(p.(Lys1070Alafs*47)) mutation in patient 2 (A), the NM_020732.3(ARID1B):c.2306_2308delCCGinsTCCGCAGCCACTCC (p.(Pro769Leufs*17)) mutation
in patient 3 (B), the NM_020732.3(ARID1B):c.4273dupT (p.(Tyr1425Leufs*34)) mutation in patient 4 (C) and the NM_020732.3(ARID1B):c.2941C > T
(p.(Gln981*)) mutation in patient 5 (D). Where available, the forward sequencing trace for the parents is also shown. Mutation co-ordinates are
derived from refseq NM_020732.3.
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It is possible that the developmental features observed
in patients with ARID1B haploinsufficiency are the result
of abnormal regulation of cell cycle re-entry of develop-
mentally arrested cells. This would impair developmental
processes by upsetting the initiation of progenitor cell pro-
liferation. In support of this notion, homozygous knockout
of arid1b in mouse is embryonic lethal but the ES cells
demonstrated a reduced proliferation rate and perturb-
ation of differentiation and cell cycle [20]. An analogous
observation is the presence of microcephaly in a minority
of patients with ARID1B mutations and more broadly in
Coffin-Siris syndrome [6,8]. Besides regulating cell cycle,
chromatin-remodeling events and BAF complexes have
been shown to be critically important during neural devel-
opment and dendrite formation [13,21,22]. Although a
specific role for ARID1B in early brain development re-
mains to be demonstrated, the gene is predominantly
expressed in neural tissues in the developing mouse em-
bryo, suggesting that it is important for development of
the brain when multipotent neuroepithelial cells are ac-
tively proliferating [9,23]. Future studies should investigate
if impaired neural development contributes to the intellec-
tual disability and speech impairment that are consistently
observed in patients with ARID1B haploinsufficiency.
Conclusion
Our study demonstrates that the ARID1B phenotypic
spectrum is broader than previously defined and includes
the novel clinical features of plantar fat pads and fetal digit
pads. These features can manifest in the absence of the
hypertrichosis or fifth nail hypoplasia associated with
Coffin-Siris syndrome. In addition, we present the first dir-
ect evidence in patient-derived cells that alterations in cell
cycle may contribute to the underlying pathogenesis of
syndromes associated with ARID1B haploinsufficiency.

Additional file

Additional file 1: Table S1. Details of primer sequences. Primers were
designed to amplify DNA encoding ARID1B (NM_020732.3) for direct
sequence analysis.
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