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Stable Lagrange points of large planets as possible regions where WIMPs could be sought

S. Ciulli† and C. Sebu‡

†Laboratoire de Physique Théorique et Astroparticules, Université de Montpellier II, 34095 Montpellier, France;

‡Department of Mathematical Sciences, Oxford Brookes University, Oxford OX33 1HX, United Kingdom.

Abstract: In this Letter we show that the physical properties of the Lagrange points of large planets could provide

an effective mechanism for trapping dark matter, if dark matter really exists in our Solar System. Certainly, the

familiar trapping mechanism of a potential well combined with some dissipative processes is not a good candidate

for particles like WIMPs which are supposed to be very slippery. However, in each of the Lagrange regions, L4

and L5, of large planets the potential has a maximum which together with the Coriolis force provides an effective

trapping mechanism without the need of any kind of friction. This is a purely inertial and gravitational mechanism

with no assumptions on other possible interactions. Hence if the density of dark matter is not negligible in this

part of the Universe, a direct experiment to be considered is the establishment of a satellite in orbit around one

of the stable Lagrange points, L4 or L5, of Jupiter.

1. Introduction

One of the most intriguing results of modern astronomy is that the mass of all visible matter
(that is atomic matter as stars, dust, and gas) is too small to explain the observed velocities in galaxies
and clusters of galaxies. Consequently, the total gravitational force required to balance the centrifugal
forces related to the observed velocities in galaxies is ascribed to the visible matter plus some kind of
’dark matter’ which has been a riddle in astronomy for seventy years. It appears now that there is at
least ten times as much dark matter as atomic matter and the formation of galaxies and galaxy clusters
is totally dominated by the gravity of dark matter [1]. The most striking information comes from
gravitational lensing effects. The light rays from distant galaxies are deflected where the space is curved
by gravitational influence of dark matter, making shapes of the background galaxies appear distorted.
Moreover, observations of very distant objects revealed that the expansion of the Universe is faster now
than it was in the past. This effect is ascribed to dark energy which accelerates the expansion. Opinions
whether weakly interacting massive particles (WIMPs) or dark matter exists also in our Solar System,
vary considerably from author to author. Our aim is not to discuss here the different points of view
but to investigate where dark matter, if it exists in our neighbourhood, could be found and hence, how
it might be detected by means of an experiment which takes into account only its inertio–gravitational
properties and not its yet unknown interactions.

Potential hills and Coriolis forces versus potential wells and dissipation

A familiar mechanism which leads particles to be trapped in certain regions of space or, more
generally, a system in a certain range of parameters, is a potential well combined with some dissipative
process. In the absence of dissipation an incident particle entering a potential well will leave it with the
same energy. However, if this particle is subject to collisions with other particles already existing there,
its energy will be dissipated in the far degrees of freedom of the system and so it might eventually be
trapped inside. But dissipative processes are obviously not good candidates for trapping particles like
WIMPs, which are expected to interact only weakly with the rest of the Universe. If a falling meteorite
remains on the surface of the Earth this is due to van der Waals forces depending on another coupling
constant, the electric one, while WIMPs will very likely penetrate the Earth crust as neutrinos do.

However, potential wells combined with dissipative processes are not the only trapping mecha-
nisms. For example, when the pivoting point of an inverted pendulum is subject to some specific vertical
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oscillations, there is a dynamic stability region near its top position , as predicted by the theory of the
Mathieu-Hill equations ; related phenomena are the phase-lock loops in electronics. Similar situations
appear in celestial mechanics in the restricted three-body problem [2–5], where particles gather around
the Lagrange points L4 and L5 of the large planets. The latter are potential hills, and in this case
the phenomenon responsible for trapping is not any more due to an energy loss as in the case of the
potential well, but to the Coriolis force, which hinders the descent of the particles making them to spin
around the hill. See the discussion at the end of Section 2, where we artificially altered the form of the
Coriolis term to better understand how the mechanism works.

The above trapping effect is in some way similar to the spiraling under the influence of a magnetic
field of a charged particle inside a Penning trap . Both Coriolis and Lorentz forces are proportional
and perpendicular to the velocity. Hence lowering the velocity by means of some additional dissipative
processes may have adverse effects.

Are there large regions in our Solar System without WIMPs ?

Before trying to see whether the Lagrange points could provide an effective mechanism for trapping
dark matter, let us first try to understand why this invisible but gravitationally active material, if it
exists, has not been detected earlier in our Solar System.∗ A possible answer is that most of the
interplanetary WIMPs might have been scattered away by sling effects in the last four and a half billion
years, following the fate of the dust and other small objects contained in a sphere of radius approximately
equal to that of Neptune’s orbit. To explain this idea, consider the extreme case in which a particle is
moving with a velocity v1 along a circular orbit e.g. in the opposite direction of Jupiter. Let us suppose
that this encounter is quite close, so that this particle will be scattered back along the second branch of
a narrow hyperbola. If the particle is moving on an orbit similar to that of Jupiter, its initial velocity
is v1 = |v1|, where v1 ≈ −vJ, the velocity of Jupiter, and it will be scattered back with a velocity
v1 + 2vJ . This corresponds to a centrifugal force approximately 9 times larger than that required to
remain on Jupiter’s orbit.

This example is certainly a limiting case and it is discussed here only for illustrative purposes, but
similar processes take place for a large class of orbits and incidence angles. For example, if the incident
particle moves on a great circle orthogonal to the ecliptic with a velocity v1 ≈ vJ , v1⊥vJ, before being

scattered along the forward direction of the planet with a velocity vJ +
√

v2
1

+ v2

J , the centrifugal force

acting on the scattered particle will be approximatively (1+
√

2)2 ≈ 5.82 times larger than that required
to remain on Jupiter’s orbit. Consequently, this particle will also be scattered on higher orbits. Even if
the particles are not scattered outside the Solar System their density will diminish considerably in the
region of large planets.

The Lagrange points of large planets as possible regions where WIMPs might exist

Subjects related to the Architecture of the Solar System have been studied in the past, e.g. in the
classical book of Öpick [7], or in the more recent papers [8–10]. Our statement is that, if WIMPs existed
in the past in our Solar System, we may find them nowadays only there where the dynamical laws allow
them to be. Such locations might be of course the interior of the large bodies of the Solar System, but
also around the Lagrange points L4 and L5 of the large planets, where otherwise much dust and many
asteroids have accumulated over time. Moreover, in contrast to the interior of the celestial bodies, they
have the advantage of being experimentally accessible. Thus a spacecraft might be sent towards the
Trojan asteroids region of Jupiter for example, to detect first how much visible matter is there. Then,
from this spacecraft, a second small one could be launched to an orbit perpendicular to Jupiter’s one,
around the Lagrange region. From the characteristics of its trajectory it can be found easily how much

∗It is probably worthwhile to mention here an astounding observation related to the unexpected slowing down of the
Pioneer 10 and Pioneer 11 spacecrafts [6], which are now traveling far beyond Neptune. Among the plausible explanations,
there is the possible pull back due to dark matter. It is interesting to notice that this seems to be in agreement with the
above discussion that the sky has been already cleaned in the region of the large planets.
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Figure 1: The restricted three-body problem

matter, visible and invisible, is present there. Since the parameters of a trajectory can be measured
very accurately, the benefit of this procedure is that the overall precision of the amount of the invisible
matter – if any – depends only on the precision with which the total mass of the visible matter there
can be determined. An obvious advantage of such an experiment is that it is based on purely inertial
and gravitational measurements, with no assumptions on other interactions, weak or otherwise, of this
hypothetical matter.

2. Some preliminary considerations: the restricted three-body problem and its osculating

quadratic approximation

The three-body problem is, in general, not analytically integrable. This problem, together with
the extension to more bodies, was the initial motivation for Poincaré in his general considerations
for dynamical systems. However in the last years there has been considerable breakthroughs, as the
remarkable paper of Chenciner and Montgomery [11] who were able to give an exact solution in the
special case of three equal masses.

The three-body problem has nine degrees of freedom and so gives rise to a system of differential
ordinary equations of order eighteen. By working in the center of mass system and making use of
the conservation of energy and conservation of angular momentum we can reduce the order to eight.
Furthermore, restricting our consideration to motions which are planar, the order can be reduced to
four. This is the best that can be done in general. Even after all these restrictions the system is not
integrable, i.e. it does not possess a complete set of global isolated conserved quantities. Therefore, the
problem is still extremely complicated and has kept mathematicians busy for several hundred years [2].

Although in this Letter we solve numerically the planar restricted three-body problem in its full
extent, let us first review briefly its quadratic approximation [2–5]. Two bodies M1 and M2 are moving
in circular orbits of radii a1 and a2 about their center of mass O. The restricted three-body problem

concerns the motion of a third small mass m (≪ M1, M2) in their gravitational field. Assuming that
the third body is moving in the plane of the first two (see Figure 1), the total force exerted on m will
be:

F = − GM1m

|r− a1|3
(r − a1) − GM2m

|r − a2|3
(r − a2) . (1)

Let us use a rotating frame of reference with origin at the centre of mass O, in which the two large
masses hold the fixed positions a1 = −a2 M2/M1. The angular velocity ω is determined by Kepler’s
law:

ω2a3 = G(M1 + M2) , a = a1 + a2 . (2)
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The effective force in this rotating frame is:

Fω = F − 2m(ω × ṙ) − mω × (ω × r). (3)

Choosing a set of cartesian coordinates with origin at O we can write:

ω = ωk , r(t) = x(t)i + y(t)j , a1 = −a1i , a2 = a2i .

The equations of motion for the third small body are:

ẍ − 2ωẏ = −∂V

∂x
,

ÿ + 2ωẋ = −∂V

∂y
.

(4)

where r1 =
√

(x + a1)2 + y2, r2 =
√

(x − a2)2 + y2, and V is the effective potential in the rotating
frame:

V = −1

2
ω2(x2 + y2) − GM1

r1

− GM2

r2

+ C . (5)

The constant C is chosen so that the maximum value Vmax is zero and is attained when r1 = r2 = a. For
the Sun-Jupiter system C ≃ 2.5541 × 107 daMKS. Further ω ≈ 2π/11.83 years−1, a ≈ 778.33 × 106km
and M1/M2 ≈ 1047.

By multiplying equations (4) by ẋ and ẏ, respectively, and adding, we find the following integral of
motion (Jacobi’s constant):

V +
1

2
(ẋ2 + ẏ2) = C = const , (6)

which is essentially the energy (the Hamiltonian). No other integral of motion for this system is known.
For a given value of C, we obtain

ẋ2 + ẏ2 = 2(C − V ) > 0 . (7)

This shows that the motion is restricted to the region bounded by the curve V = C, known as the Hill
curve [12, 13], which corresponds to zero velocity ẋ = ẏ = 0. Since according to our definition (5) of
C the effective potential V is never positive, the equipotential curves (the Hill curves) correspond to
negative values of C. See Figures 2, 3 and 4 for the Sun-Jupiter system, where, to have a closer insight
into the problem, we have labeled the effective potential curves in daMKS units (in deca m2/sec2), since
on Earth this corresponds to a difference of approximately one metre between level curves. For C = 0
the Hill curve degenerates into two isolated points, usually denoted by L4 and L5, which form the apices
of two equilateral triangles having their other vertices at the large masses:

L4 : (xL4
, yL4

) = (µ
a

2
,

√
3

2
a) L5 : (xL5

, yL5
) = (µ

a

2
,−

√
3

2
a) , (8)

where µ = (M1 − M2)/(M1 + M2).

In order to investigate stability around these Lagrange points, we can expand the effective potential (5)
in a Taylor series, for instance about its maximum at (xL4

, yL4
), and then solve the equations of motion

(4) for small departures x̃, ỹ from the equilibrium point

x = xL4
+ x̃ , y = yL4

+ ỹ , (9)

and retain only quadratic terms:
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Figure 2: Three-dimensional plot of the effective potential for the Sun-Jupiter system.

Figure 3: Equipotential curves (the Hill curves) for the Sun-Jupiter system.
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Figure 4: Equipotential curves around the Lagrange point L4 for the Sun-Jupiter system. The scale in the x
direction was enlarged by a factor of three to make the equipotential curves easily visible.
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These equations can be further simplified if we perform the change of variables t̃ = ωt (if we measure
the time in units corresponding to a radian , i.e. in 1.8875 years in the case of Jupiter). Redefining the
velocities accordingly, ṽx,y = vx,y/ω, we obtain

d

dt̃
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µ 0 2
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−2 0



















x̃
ỹ
ṽx

ṽy









. (11)

The motion around L4 will be stable according to Laplace’s stability criterion if the four eigenvalues

λ = ±i1

2

√

2 ±
√

27µ2 − 23 of the evolution matrix are pure imaginary and this will be true if
√

27µ2 − 23 ≤ 2 and µ2 ≡ ((M1 − M2)/(M1 + M2))
2 > 23/27 . (12)

The first condition is always satisfied since µ is smaller than one, while the second requires

M1/M2 > (25 +
√

621)/2 ≈ 24.9599 . (13)

The stability condition (13) is satisfied for all the planets of our Solar System; for instance in the case of
Sun and Jupiter M1/M2 ≈ 1047. The regions around these points are occupied by the Trojan asteroids
whose orbital periods are the same as Jupiter’s, 11.86 years. The periods of small oscillations about
these equilibrium points are given by:

Ω2 = −ω2λ2 =
1

2
ω2

(

1 ±
√

1 − 27M1M2

(M1 + M2)2

)

, (14)
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which yields 11.90 years and 147.4 years, respectively. More detailed studies of the motion and the
stability of the motion around the Lagrange points L4 and L5, in general, or for the Sun-Jupiter
system, in particular, can be found in [14–18].

To have an intuitive picture, the particles gather around the maxima L4 and L5 as clouds gather
around high mountains since the Coriolis force acts perpendicularly to their descent movement and
makes them spin. The role of the Coriolis force can be investigated directly by artificially weakening it
by a factor ξ < 1. The eigenvalues of this artificial evolution matrix become

λξ = ±ω

2

√

6 − 8ξ2 ±
√

64ξ4 − 96ξ2 + 9 + 27µ2 . (15)

One can check that independently of the value of µ the eigenvalues (15) lose their property of being
pure imaginary if the Coriolis force is weakened by a factor ξ <

√
3/2, which of course is quite different

from its true value ξ ≡ 1.

3. An academic example: a sole potential hill.

Many of the features of the restricted three-body problem are missing in its osculating quadratic
approximation, where the potential is not bounded below and moreover does not follow the curvature
of the trajectory of the planet. In this section we present a ’Gedankenbeispiel’ half way toward reality
which shows how particles can be trapped around potential maxima due to the Coriolis force. This
example is only illustrative and has a role similar to that of the potential box in Quantum Mechanics.

We are especially interested in the metastable states, i.e. non-equilibrium states which persists for
some period of time, since we would like to understand how WIMPs might accumulate in these regions.
Hence, let us consider the effective potential given in equation (5) but artificially truncated below in
order to obtain potential hills of finite height such as the example shown in Figure 5(a). The system
of differential equations (4) corresponding to this potential is then solved using a Runge-Kutta method
subject to initial conditions yet to be determined.

First, since we are merely interested in metastable trajectories and not in trajectories confined to
some given region of the space, we choose the initial positions and velocities so that the constant C in
equation (6) should be small but positive. This is because, according to the discussion which follows
equation (7), positive values of C correspond to complex valued Hill curves.

Secondly, to ensure that the trajectory passes near a Lagrange point we chose the initial positions
in the neighbourhood of L4, for example, while the direction of the initial velocity is taken close to
the direction of the velocity component of the eigenvectors of the evolution matrix from equation (11).
Then the differential equations are solved forward and backward in time.

We preferred to work with neighbourhoods of the eigenvalues instead with their exact values in
order to have a relevant phase space of non-vanishing measure. Many metastable trajectories were found
in this way and one of them is depicted in Figure 5(b). In Figure 5(c) the trajectory and the potential
are represented on the same graph in order to better visualize the state of havoc of the trajectory as well
as the energy variations along it. The undulating shapes of the trajectory in the ingoing and outgoing
regions are direct consequence of the Coriolis force.

4. Metastable trajectories for the exact potential

In this Section the system of differential equations (4) is solved for the exact effective potential (5)
using again a Runge-Kutta method. The initial conditions were chosen as explained previously. Two
types of metastable trajectories were found: some which are concentrated around a Lagrange point
similar to that presented in Figures 5(b) and 5(c), and others which pass from the Lagrange point L4

to L5 similar to the trajectory of the Earth’s second natural satellite, Cruithne, (see Figure 6).
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Figure 5: An academic example: the movement of a particle around a potential hill emerging in a limited region

around a Lagrange point L4.

The trajectories in the region of the Lagrange points are usually described as being chaotic.
We prefer the term ’almost chaotic’ † ), since in spite of the cramped trajectories in these regions,
the solutions x(t) and y(t), of the system of differential equations (4) are reproducible curves of class
C2. Moreover, unlike what happens in the case of chaos, the trajectories are not recurrent since they
eventually leave the entanglement region and continue far away.

The characteristics of these entangled trajectories can be analyzed by examining the Poincaré
Sections, i.e. the intersections of the curves from the phase portrait with a suitably chosen transversal
manifold [2,4]. We find here several stable (elliptical) critical points alternating with hyperbolic (unsta-
ble) ones. The hyperbolic critical points are the loci of intricate entanglements where the system may
spend much time.

These ’pandemonia’ are welcome in our case, since they lead to the increase of the bulk density of

†L. A. Smith [19] would probably call such a region a pandemonium.
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Figure 6: A metastable trajectory for the Sun-Jupiter system encompassing the Lagrange points L4 and L5.

Since we are in a rotating frame, free particles, both incident and outgoing, move along spirals.

particles there. The Arnol’d diffusion zones [20], which can appear for small nonzero incidence angles
around the planar movement can have the same effect. ‡

Our main aim in this paper was not to investigate the characteristics of all possible metastable
trajectories, but to show that the physical features of the Lagrange points of large planets provide
an effective mechanism for trapping dark matter, without the intervention of any dissipative process.
The depletion/accretion of usual matter in the Trojan satellite region is treated strictly as a three body
problem and does not take into account the frictions or any other many body interactions. Consequently,
the accumulation of the invisible, but gravitationally active matter, should be similar as can be seen
from direct calculations.

It is interesting to note that according to Monte Carlo simulations [10,21] the time necessary for
the accretion of ordinary dust and matter in the Trojan region is of the order of a hundred thousands
years, i.e. much shorter than one would expect for phenomena on the astronomical scale.

5. Conclusion

While meteorites and other space debris can be found in Antarctica or in some stony deserts,
since WIMPs, if they exist, will penetrate Earth’s crust like neutrinos do, they might be found in the
interior of Earth which is not easily accessible to experiments but also in the nonlinear dynamical nodes
of our Solar System, such as in the Lagrange points L4 and L5 of the large planets. As discussed
in the Introduction, the precision with which a small space probe can determine the amount of the
invisible matter present in these regions is essentially given by the accuracy of determining the amount
of the visible matter existent there. Hence, it might be worthwhile to land on one of the large Trojan
asteroids of Jupiter, Agamemnon, Achilles or Hektor, to have a better determination of their density
and, consequently, of the total visible mass. Moreover, since each of these Lagrange regions is quite
narrow — see Figures 4 and 5(b) — we expect that it should not be too difficult to establish a satellite
in orbit around it, to determine the total amount of mass, visible and invisible, present there.

‡The Arnol’d diffusion zones are meaningful in problems with three or more degrees of freedom while the planar three
body problem has only two degrees of freedom. However, even small nonzero angles of incidence of particles make the
problem three dimensional and in this case the Arnol’d zones are bounded by semi-permeable surfaces similar to Cantori-
like sets. These may significantly obstruct the diffusion of the trajectories and thus enhance the time spent there by the
system. This might lead to an increase of the bulk density of particles near the plane z = 0, thus emphasizing the practical
importance of the planar three body problem.
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