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Abstract

We describe a method by which the reactions in a metabolic system
may be grouped hierarchically into sets of modules to form a metabolic
reaction tree. In contrast to previous approaches, the method de-
scribed here takes into account the fact that, in a viable network,
reactions must be capable of sustaining a steady-state flux.

In order to achieve this decomposition we introduce a new concept
- the reaction correlation coefficient, ¢, and show that this is a logical
extension of the concept of enzyme (or reaction) subsets. In addition
to their application to modular decomposition, reaction correlation
coefficients have a number of other interesting properties, including a
convenient means for identifying disconnected subnetworks in a system
and potential applications to metabolic engineering.

The method computes reaction correlation coefficients from an or-
thonormal basis of the null-space of the stoichiometry matrix. We
show that reaction correlation coefficients are uniquely defined, even
though the basis of the null-space is not.

Once a complete set of reaction correlation coefficients is calcu-
lated, a metabolic reaction tree can be determined through the appli-
cation of standard programming techniques. Computation of the re-
action correlation coefficients, and the subsequent construction of the
metabolic reaction tree is readily achievable for genome-scale models
using a commodity desk-top PC.

1 Introduction

The increasing online availability of annotated genomes makes routine the
task of automatically’ constructing genome-scale structural metabolic mod-
els (i.e. models in which only reaction stoichiometries are taken into consid-
eration) f. Two challenges remain: ensuring the correctness of models thus
generated (Poolman et al. 2006), and the subsequent analysis of such models.
The latter challenge results from the fact that while there is a comprehensive
set of theoretical and computational tools with which the analysis of small
models (<= 30 reactions and metabolites) may be undertaken (Schilling
et al. 1999; Schilling et al. 2000; Klamt et al. 2002; Schuster et al. 2002;
Lemke et al. 2004) none of these scale well when applied to large models
(>= 100 reactions and metabolites).

This poor scaling is not solely due to a lack of computational power,
but rather to the fact that current methods tend to either produce large
amounts of relatively unstructured data, describing network properties in
terms of sets of individual reactions and/or metabolites, or depend upon
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modelling assumptions that are not independently verifiable. Even when such
calculations can be computed in a reasonable time, they may yield little new
information about the overall structure of the network under consideration.

A potential solution to this problem would be the identification within a
larger model of ‘sub-models’ within which each reaction is uniquely located.
The concept of enzyme subsets (Pfeiffer et al. 1999) would appear to offer a
partial solution. These are defined as sets of reactions which, at steady-state,
are stoichiometrically constrained to carry flux in fixed ratio. The enzyme
subsets of a model may readily be calculated from its stoichiometry matrix,
as described in Pfeiffer et al. and below. It is arguable that the term reaction
subset rather than enzyme subset is preferable, as it is reactions, not enzymes
that carry flux. Unfortunately, the approach suffers from the problem that
when applied to large systems, large numbers of small subsets are generated
(Bonde 2006).

However, it is also clear that a method that separated the reactions in a
system into a small number of subsystems would be equally unsatisfactory.
Dividing a system of nine hundred reactions into three subsystems of three
hundred reactions each is hardly preferable to dividing it into three hundred
subsystems of three reactions each.

Furthermore the question as to the optimal number of reactions that a
subsystem should contain (or conversely, how many subsystems a system
should be divided into) is not one that can be answered a priori.

For these reasons a hierarchical approach is proposed whereby a metabolic
system is represented as a metabolic tree in which the root node represents the
complete system, leaf nodes represent individual reactions, and intermediate
nodes represent unique subsystems of reactions.

Each node in the metabolic tree can thus be thought of as representing a
metabolic module, capable of the net interconversion of metabolites common
to reactions inside and outside the module. The hierarchical nature of the
tree means that an investigator can select modules of a size convenient for a
given purpose.

2 Theory and Method

Arranging a set of entities into a hierarchical tree has two prerequisites: some
means by which the difference between a pair of entities can be measured, and
a method for using these differences to construct the tree. These differences
are conventionally represented as a square matrix of non-negative elements
in which a value of zero indicates no difference between corresponding rows
and columns, and increasing positive values denoting an increasing measure



of difference. We denote this the dissimilarity matrix, A. Once A has been
constructed, a number of generally applicable algorithms exist with which to
construct the tree. We first describe the construction of the A, then that of
the tree.

2.1 Construction of the dissimilarity matrix, A

In general, with the exceptions described below, ' all reactions in a system are
capable of maintaining a steady state flux, and all steady state flux vectors
must lie within the right null-space of the stoichiometry matrix, N, of the
system. See (Heinrich and Schuster 1996; Klamt et al. 2002; Papin et al.
2003) for recent work describing the application of linear algebra, and in
particular analysis of the null-space, to metabolic systems. The null-space is
spanned by the columns of the n x d null-space (or kernel) matrix K, where
n is the number of reactions and d the dimension of the null-space (equal to
the number of reactions minus the rank of N) f. Each reaction is therefore
associated with a d dimensional row vector. We may therefore construct the
symmetric matrix T A in terms of the angles between these vectors, such that
A;; denotes the angle between row vectors K; and K ;. In this paper we use
the notation 9;; to represent the angle between rows 7 and j in matrix A, so
given a system of n reactions

Ajj=0f:1<i<n1<j<n

Thus the minimal possible difference between reactions is A;; = 0 (reaction
vectors are parallel) and maximum absolute value A;; = 7/2 (reaction vectors
are orthogonal).

It is possible that a number of reactions in a system will be incapable of
carrying flux as a result of constraints imposed by the structure of the system.
Occasionally this will not be the result of an error in the construction of the
model but more often it is. Such ‘dead’ reactions (also called “strictly detailed
balanced” reactions (Schuster and Schuster 1991)) are often (but not always,
see discussion) associated with a zero row vector in K, in which case they
may be readily identified. Obviously, no angle can be meaningfully assigned
between a zero vector and any other, and so such dead reactions must be
removed before proceeding.

It is also desirable to remove isostoichiometric reactions from the model,
as they add no new information to a structural model and distort the results
obtained from most structural analyses, multiplying the number of elemen-
tary modes and fragmenting enzyme subsets. Of course, if the results from
a structural model are to be applied in the context of a kinetic model, or
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ez silico, then due consideration must be given to the enzymes that catalyse
the reactions, and it is in these contexts that the presence of isoenzymes
becomes relevant. It is this reason that leads us to prefer, in common with,
for example, Reed and Palsson (2004), T the term “reaction subset” rather
than “enzyme subset”,

The only apparent drawback to this approach is that K is, in most cases,
non-unique and depends upon both the algorithm used for its calculation and
the initial row and column order of N. However, it can be shown (appendix
A) that despite this, the angles between the row vectors of any K for a given
N are unique, provided K is orthogonal, that is: KK* = I, in which case
column vectors are orthonormal, and K represents an orthonormal basis of
the null-space of N. The use of an orthogonal basis matrix in this context is
in contrast to much previous work in this area, in which K is assumed to be

of the form: | 7
K= )

In the rest of this paper, K is assumed to be orthogonal, unless explicitly
stated otherwise.

It transpires that the elements of A, 91-‘;-( , have a simple, but useful, “real-
world” interpretation: cos(6;}) is Pearson’s (population) correlation coeffi-
cient, r;;, between the fluxes carried by the pair of reactions 7 and j for all
possible steady states of the system. We therefore denote the cosine of T this
angle the reaction correlation coefficient, and represent it with the symbol
¢ (ie. ¢y = cos(8))) and the corresponding (n x n) matrix of all ¢, ®.
The derivation of this relationship is given in appendix B. ® thus provides
a global, unique, and invariant set of characteristics of a metabolic system.

For a pair of reactions, ¢ and j, with corresponding rows in K, K;, K,
¢;; may be readily determined as: |

K,KT
(K.K])\/(KKT)

Gij =

= Cos(Hi;( )

From the fforegoing, it is clear that ¢ must fall within the range —1 < ¢ < 1
and that two special cases apply:

¢i; = £1: implies that row vectors K; and K ; are parallel, and that they thus
carry steady-state flux in a fixed ratio. From the original definition in
Pfeiffer et al. (1999) this is equivalent to stating that the reactions are
members of the same subset.

¢i; = 0: implies vectors K; and K ; are orthogonal, and reactions ¢ and j are
in stoichiometrically disconnected subsystems, because there can be no
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correlation between flux in 7 and j unless the system has at least one
elementary mode in which both ¢ and j have a non-zero coefficient. See
appendix C for a more complete explanation. '

Thus ¢ spans the continuum of possible correlations between any pair of
reaction fluxes, from being completely dependent to completely independent.
Therefore a reaction correlation coefficient can be regarded as a quantitative
generalisation of the qualitative concept of the reaction subset.

The sign of ¢ is dependent only upon the relative signs of non-zero ele-
ments of columns 7 and j in N, which in turn depend upon the initial reaction
specification. For example consider a reaction system containing reactions
i and j capable of carrying flux at steady-state: T

11 a <— b

j: b +— ¢
in which flux is defined as positive in the left — right direction, metabolites
a,b and ¢ are internal (i.e. non-boundary) metabolites, and b is involved in

no other reactions. The corresponding rows of K may be written: |
Ki = [xl...xd]
Kj = [xl xd]

i.e. the two rows are equal vectors, hence parallel, so 7 and j exist in a
reaction subset and carry equal flux and ¢;; = 1. If reaction j is now defined
in the opposite direction:

1 a <— b

jic «— b

the corresponding rows in K will now be: T

Ki = [ylyd]
Kj = [_yl--- — yd]
¢ and j remain in a reaction subset, but their corresponding row vectors in
K are now antiparallel and ¢;; = —1. Thus the sign of ¢ is determined, at
least in part, by the way in which the direction of reactions are defined, and
does not simply indicate competition (e.g. as would occur at a branch-point)
between reactions. |
T Consequently values of ¢ used in the remainder of this paper will be
taken as the absolute value.
A may be conveniently calculated by first calculating ®:

Aijzcosfl(@ij) 01 SZSTL,l S]ﬁn
A is needed for the construction of a hierarchical tree, but ® contains the

more readily interpretable description of relationships between reactions.
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2.2 Construction of the tree.

Having obtained A, the corresponding tree is generated using the WPGMA
algorithm (weighted pair group method using arithmetic averaging) (Lance
and Williams 1967; Morgan and Ray 1995) as described in appendix D.
A drawback to this algorithm is the potential for more than one pair of
reactions to appear as nearest neighbours. Although the method of resolving
ambiguities described in appendix D may appear to be rather arbitrary, to
date observed ambiguities are limited to two special cases: the presence of
isostoichiometric reactions or reactions that belong to a reaction subset with
more than two members. Both of these cases may be readily avoided by
appropriate pre-treatment of the model.

The former can be trivially solved, the latter by creating a ‘condensed’
model (Pfeiffer et al. 1999; Klamt and Stelling 2002) in which reactions
present in each subset are replaced with a single compound reaction with a
net stoichiometry corresponding to that of the subset. It is worth noting that
to ensure a completely condensed model, the process of removing isostoichio-
metric reactions and substituting subsets should be applied iteratively; the
presence of isostoichiometric reactions has the effect of breaking up reaction

subsets, but it is possible for a model to contain isostoichiometric subsets.
T

3 Application to Models

Three metabolic models were analysed using the approach described: a rel-
atively small model with a partially defined modular structure, and two
genome-scale models, one based on the model of Streptomyces coelicolor de-
scribed by Borodina et al. (2005), and the other based on the Escherichia
coli model of Reed et al. (2003).

3.1 A model of photosynthate metabolism.

In order to determine whether the algorithm described is indeed capable
of identifying modules in a metabolic system, a test model with a prede-
fined modular structure, approximating plant photosynthate biochemistry,
herafter referred to as ‘photo’, was constructed with the overall structure
as shown in Fig. 1. The ‘source’ module consists of two identical copies
of a model of the Calvin cycle described previously (Poolman et al. 2001;
Poolman et al. 2003). The difference between the version used here and
the previously described version is that the only C3 metabolite exported to
the cytosol in exchange for inorganic phosphate is phosphoglycerate (PGA).
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Dihydroxyacetone-phosphate and glyceraldehyde 3-phosphate are not ex-
changed. Exported PGA is transported to ‘sink’ tissue, also in exchange
for inorganic phosphate. The sink tissue is derived from a model describing
potato tuber carbohydrate metabolism (Assmus 2005). This is divided into
cytosolic and plastidic compartments and contains reactions commonly as-
signed to glycolysis, sucrose synthesis, and starch synthesis. Carbon entering
in the form of PGA has 3 ultimate destinations: pyruvate (assumed to be the
end product of glycolysis in this model), sucrose wvia sucrose synthesis, and
plastidic starch from starch synthesis. Overall the model has 75 reactions,
65 internal and 8 external metabolites, and is available in the supplementary
material.

3.2 The Streptomyces coelicolor model

A model of Streptomyces coelicolor, herafter referred to as ‘ sco’, was gen-
erated from the reaction set described by Borodina et al. (2005) and in
the spreadsheet available from http://www.genome.org/content/voll5/
issue6/images/data/820/DC1/Dataset_2[1] _List_of_reactions.xls. Re-
actions for macromolecule biosynthesis (with non integer stoichiometry) were
removed, other non integer stoichiometries were scaled appropriately and
protons were made external yielding an initial model with 954 reactions, 484
internal metabolites and 104 external metabolites. This was then subject to
the following process:

1. Isostoichiometric reactions were removed.
2. Reactions identified as dead from examination of K were removed.

3. The model was then condensed, i.e. reactions forming enzyme subsets
were replaced with a single reaction.

It is important that the steps are carried out in the order described,
as isostoichiometric reactions form cycles, resulting in the possible failure of
identification of dead reactions in step 2. Steps 1 and 3 must then be repeated
until no further reduction in model size can be achieved. This is necessary
as the possibility exists for the generation of isostoichiometric subsets in step
3. In practice the process appears to converge extremely rapidly, in this
instance just two iterations were needed; the initial condensation produced
only four isostoichiometric subsets.

This procedure resulted in a model of 363 reactions, 166 internal metabo-
lites and 97 external metabolites. Such condensation greatly reduces the
computational load of subsequent calculations and simplifies the interpreta-
tion of subsequent results. The photo model was not condensed as it is a
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Figure 1: Modular structure of the photo model. This can be split into
three entirely independent models (two chloroplast, and sink metabolism)
by making source PGA and phosphate external.
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much smaller model, and is known a prior: not to contain isostoichiometric
or dead reactions.

3.3 The Escherichia colt model

A model of Escherichia coli described by Reed et al. (2003), and hereafter
described as ‘eco’ was obtained from http://systemsbiology.ucsd.edu/
organisms/ecoli/ecoli_reactions.html. This generated an initial model
of 911 reactions with 1036 internal and 146 external metabolites. Processing
this in the same manner as the sco model described above resulted in a model
of 498 reactions, 202 internal and 129 external metabolites.

4 Results

4.1 Distributions of ¢

The distribution of ¢ in all models was extremely asymmetric, and a log — log
plot of these distributions ' (Fig. 2) is, at first sight, suggestive of a power
law distribution. However, plotting the normalised distribution (i.e the area
under the curve is unity) ' of log(#) ( i.e. calculating log(¢) first, and then
determining the distribution T), as shown in Figs. 3 and 4, reveals that the
sco and eco models have lognormal distributions. The distribution from the
photo model shown in Fig. 4 (green line) is rather noisy (presumably a result
of having originated from a much smaller dataset), rendering interpretation
correspondingly more difficult. Repeating the plot using a number of different
bin sizes appears to confirm that the distribution is bi-modal with peaks at
log(¢) ~ —2 and log(¢) ~ —0.5 with a corresponding trough at log(¢) =~
—1.6.

A possible explanation for this apparently bi-modal distribution is that
it is due to the highly modular nature of the network, with higher values
of ¢ corresponding to correlation between pairs of reactions in the same
module, and the lower valued peak resulting from correlation between pairs
of reactions in different modules. This hypothesis was tested by breaking
the connection between modules (by making the communicating metabolites
external) resulting in three entirely independent modules, and recalculating
®. The resulting histogram in Fig. 4 (red line) appears to support this
hypothesis: the peak at log(¢) &~ —0.5 is amplified and that at log(¢) ~ —2
is all but absent. Furthermore, the long negative tail is notably truncated in
the split model.
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independent modules.
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4.1.1 Metabolic trees

The reaction tree for the photo model is shown in Fig. 5. This quite clearly
recovers the known modular structure of the model, and also reveals the en-
zyme subsets (which in this model were not condensed into single reactions).
Another feature of interest is the close association between TPT_PGA and
the PGI/PGM subset, highlighted for just one of the chloroplast modules.
TPT_PGA represents the triosephosphate-phosphate translocator exporting
PGA to the cytosol in exchange for cytosolic phosphate and the PGI/PGM
(phosphoglucose isomerase/phosphoglucomutase) subset leads to starch. As
these represent the only exit points for carbon from the chloroplast sub-
systems, as represented by this model, it is perhaps not surprising that they
are highly correlated (¢ = 0.991 '), despite the fact that they are quite
distant from one another on a normal pathway diagram.

Figs. 6 and 7 show the reaction trees for the sco and eco models respec-
tively. For the sake of clarity, reaction names have been removed. Some,
but not all, of the clusters in these trees have been tentatively assigned to
particular biochemical roles by inspection. The clusters assigned to the TCA
cycle and glycolysis are predominantly comprised of reactions traditionally
associated with these classically defined pathways. The cluster most closely
corresponding to a standard pathway is the oxidative pentose phosphate
pathway (OPPP) shown in the eco reaction tree. Glycolysis is not seen as
a well defined cluster in the eco model, but is mainly contained within the
cluster identified as “misc. phospho-sugar”.

Preliminary analysis of all the trees shown here, suggests the presence
of more structure than has yet been characterised. However as the main
objective of this paper is to present the theory and algorithm, such analyses
are beyond its scope.

5 Discussion and Conclusions

5.1 General performance

The continuing improvement in computing performance means that it is now
commonplace T to be able to apply algorithms to genome scale models. The
only exception to this is the determination of elementary modes, which un-
dergoes a severe combinatorial explosion in both memory and processing
requirements (Klamt and Stelling 2002).

The algorithm described here depends only on the determination of the
null-space matrix and subsequent operations upon it. Calculation of K,
A and the tree itself take of the order of minutes on commodity desk-top

14
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PCs using the Linux operating system and ScrumPy - metabolic modelling
in Python - software (Poolman 2006). It seems unlikely that the overall
size of metabolic models is going to increase greatly in the future and so
computational overhead is not a problem for this form of analysis.

5.2 Comparison to related work

To the best of our knowledge, no other authors have described a null-space
based approach to deriving a general, quantitative, relationship between reac-
tions in a system, although three extreme relationships have been previously
described: the dead reactions (Schuster and Schuster 1991), enzyme subsets
(Pfeiffer et al. 1999) and disconnected subsystems (Schuster and Schuster
1992), and this provides a starting point for the work described here.

There have been a number of other efforts with conceptually similar goals
based either on linear programming or on graph theoretic approaches. Bur-
gard et al. (2004) generate a single level hierarchy, grouping reactions ac-
cording to whether minimum and maximum steady-state flux ratios between
pairs of reactions are zero, non-zero finite or infinite, based on a linear pro-
gramming approach. This provides for the identification for the three ex-
treme relationships described above; however the relationship between pairs
of reactions outside of these extreme cases as described by Burgard, and the
reaction correlation coefficient presented here is not certain at present. It
would appear that Burgard’s approach yields much more qualitative rela-
tionships between reactions than those proposed here.

Ravasz et al. (2002) used a graph theoretic approach to investigate modu-
larity of metabolic networks. In their work, a metabolic system is represented
as an (undirected) graph in which metabolites are nodes, which are connected
to one another if they share a common reaction. All edges in the graph con-
nect exactly two nodes and therefore more than one, apparently independent,
edge is needed to represent reactions with more than one substrate or prod-
uct. The relationship between such graph representations and metabolic
networks as described above is not particularly obvious, but it is clear that
the axiomatic necessity that edges connect exactly two nodes destroys much
of the inherent network structure (other than networks comprised solely of
isomerisations).

From such a graph-based perspective they then defined a “topological
overlap” metric based on the number of common metabolites to which a
pair of nodes are connected. This was then used to generate a similarity
matrix to which a hierarchical cluster analysis was applied. This yielded
clusters of chemically similar metabolites, but as the analysis was performed
in terms of metabolites it yielded no information about the organisation of

18



that which, from our point of view, is rather more important: the reactions
that interconvert them.

In an effort that at least partially ameliorates the problems of graph theo-
retic approaches, Gagneur et al. (2003) used a bipartite graph representation
of a metabolic network in which nodes represent metabolites or reactions and
edges connect exactly one metabolite to one reaction. Nodes in this graph
are then successively amalgamated to build a (non-binary) tree without the
need for an intermediate difference matrix. Nodes in the resulting tree con-
sist of mixtures of reactions and metabolites. Although a bipartite graph
representation of metabolic networks appears to be more solidly founded in
reality than a unigraph, the resulting tree is rather harder to interpret then
a simple binary tree. Also, when Gagneur’s method was applied to the photo
model described above, the known modular structure was not recovered.

Graph theoretic approaches are nonetheless potentially useful. As they
do not depend upon the steady-state assumption there is no requirement for
knowledge of external metabolites. They can therefore be usefully applied
in situations were this knowledge is absent or uncertain, or in systems with
no net mass conversion. Graph theoretic and null space based approaches
should therefore probably be regarded as complementary, rather than exclu-
sive, alternatives.

However, graph theoretic analyses must always proceed as a sequence of
local steps: a node is chosen, certain of its properties investigated, in terms
of its immediate neighbors, and then a neighbor is chosen upon which to
repeat the sequence. In contrast, linear algebra approaches in general, and
null-space approaches in particular, simultaneously relate every component
of the system to every other component, treating the system “as a whole”
rather than a collection of related components.

An approach that ' has some conceptual similarity to that presented
here has recently been described by Sariyara et al. (2006). These authors
subjected a structural model of E. coli metabolism to a set of randomised
input flux values and then used flux balance analysis with linear program-
ming to assign flux values to the remaining reactions. Amongst other things,
they used these values to calculate a flux correlation matrix (available as
supplementary material). The distribution of the log of the absolute value of
these correlation coefficients (not shown) was markedly different from those
presented here, being clearly bi-modal, with peaks at ~ 1 and =~ 0.1. A de-
tailed comparison of the two approaches would certainly be interesting, but
is beyond the scope of the this paper.

T

Another approach to understanding the modularity of metabolic net-
works, and, in common with the current work, also based on the steady-
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state assumption rather than a graph-theoretic basis, has been from within
the framework of metabolic control analysis (MCA) (e.g. Brown et al. 1990;
Schuster et al. 1993; Rohwer et al. 1996). The fundamental theoretical
difference is that these approaches all depend upon a knowledge (at least
qualitatively) of reaction elasticities (sensitivity of reaction rates to metabo-
lite concentrations). A major practical difference is that these efforts were
directed to using an assumed modular structure of a metabolic network to
investigate and describe its control properties, rather than to determine net-
work structure in its own right. Furthermore these approaches do not readily
lend themselves to the complete hierarchical decomposition of arbitrary net-
works that we have demonstrated here.

Nonetheless, understanding the control of flux is, of course, of great im-
portance and the development of structural analysis of metabolic networks
can, not unreasonably, be seen as a necessary step along the path to this
greater ultimate goal. Furthermore, from the definition of reaction correla-
tion coefficient given here, increasing the activity of a given reaction would be
expected to have a larger impact on the flux carried by those reactions with
higher flux correlation coefficients. Conceptually, this is extremely similar
to the flux controll coefficient of MCA, and although identifying the mathe-
matical relationship between the two appears potentially interesting, it must

remain a goal of future endeavour.
.l.

5.3 Applications of metabolic trees and reaction cor-
relation coefficients

5.3.1 Identification of independent subnetworks

Although it might be intuitively predicted that any realistic metabolic net-
work consists of a single connected system, it may well be the case that
large models, especially those generated automatically from databases do
not (e.g. Poolman et al. 2006). Regardless of the biological interpretation
or expectation of such subnetworks, their presence, or otherwise, represents
a fundamental property of a network. It has previously been proposed that
the presence of such disconnected subsystems can be identified by the block
diagonalisation of K (Schuster and Schuster 1992; Heinrich and Schuster
1996). Here, such a subnetwork can be readily identified in a metabolic tree:
if the distance from a subtree to its parent is equal to /2, it represents
an independent subnetwork. In other words reaction correlation coefficients
between a reaction internal to the subtree and any reaction external to the
subtree are zero.
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5.3.2 Identification of dead reactions

Dead reactions can be identified by a corresponding zero row vector in K
(Schuster and Schuster 1991); however this is potentially only a subset of
dead reactions as some reactions might be embedded in internal cycles (but
not capable of sustaining flux at steady-state), and hence have non-zero row
vectors in K. Sets of such reactions can be identified in a metabolic tree
if a node corresponding to an independent sub-network, as defined above,
contains no leaf nodes representing transport reactions (i.e. reactions inter-
converting internal and external species).

An alternative way to express this is to say that a reaction with a corre-
sponding non-zero vector in K is nonetheless dead if the reaction correlation
coefficient between it and all transport reactions is zero. Such a reaction
will occur in elementary modes, but all such modes will be internal cycles
and hence non-flux carrying. This is somewhat simpler than the method
proposed by Burgard et al. (2004).

5.3.3 Characterisation of network modularity

The logic of the algorithm proposed here, and the results obtained when
applying it to a model of known modular structure, demonstrate that it is
indeed capable of recovering hierarchically nested modules, where a module
is defined as a group of reactions whose steady state flux is more closely
correlated to other reactions in the model than to those outside it.

However, the results obtained when applying the algorithm to the sco
and eco models are somewhat equivocal. Fig. 6 shows only two easily dis-
tinguishable modules, and the eco metabolic tree, fig. 7, showed less obvious
structure, although both trees demonstrate a leaf ordering that tends to
place biochemically related reactions (and therefore metabolites), close to
one another.

Nonetheless, the question as to the extent to which (or indeed whether
or not) these two models are modular must be addressed. Consideration
of the distributions of log(¢) (Figs. 3 and 4) suggest that the most strongly
modular model was the split photo model, in effect comprised of three entirely
independent models. All non-zero values of ¢ in this model therefore reflect
intra-modular correlations and these had a median value of ¢ ~ 107 %5. The
(intact) photo model in which values of ¢ were a mixture of intra- and inter-
modular correlations showed a bi-modal distribution with peaks at ¢ ~ 1079
and ¢ ~ 10723, The conclusion to be drawn is that ¢ <~ 1072 is the
representative value in a non-modular system.

The distribution of log(¢) for the eco model shows a median value ¢ =
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10724 and for sco ¢ ~ 101, consistent with the conclusion suggested by
inspection of the trees that while neither network can be described as highly
modular, the sco model appears to be more modular than eco.

There would appear to be three possible, non-exclusive, explanations for
this lack of observable modularity. Firstly, it is noteworthy that both of the
genome scale models have a very high proportion of external metabolites,
and one would expect this to have the effect of reducing possible correlations
between reactions. There is evidence for this effect in the fact that the eco
model, which appears the less modular has a higher proportion of external
metabolites (61 % of total) than the sco model (37 %).

Secondly, there is the general problem in interpreting genome scale mod-
els in that the model contains all possible reactions that the organism is
capable of catalysing. It would seem most unlikely that this represents any
common biological reality, and when it becomes possible to construct models
based on accurate expression or proteomic data, it is reasonable to predict
that a more strongly modular pattern might be observed. This line of rea-
soning might, in the future be extended to a semi-quantitative position. The
structural methods described here do not take actual flux observations into
account. Were these available (derived independently from the techniques
used here), it may transpire that a number of reactions carry a relatively
insignificant flux and could therefore be discounted in the construction of
the metabolic tree. However, if this does prove to be the case, modular-
ity of a given metabolic system would then become dependent upon both
the environmental /nutritional conditions to which it is subject, and to the
physiological status of the organism. Under such circumstances, the utility of
(metabolic) modules as a concept becomes suspect, as ideally the modularity
of the system should be invariant.

The third possibility is that metabolic systems might genuinely be non
(or only very weakly) modular. Modularity is a human concept originating
in the engineering sciences that is an extremely powerful tool when it comes
to imposing, by design, structure on a manufactured system. However, there
is no law of nature which states that the structure of metabolic networks
must adhere to good human engineering principles. To suggest otherwise is
mere anthropomorphism.

In a well known and thought provoking paper, Lazebnik (2002) posed the
question “Can a biologist fix a radio ?”, and provided an entertaining and
justifiable critique of an overdependence on a reductionist approach to the
understanding of biological systems. Radios are, indisputably, the product of
the human mind, and using nothing more than a hammer and a pair of eyes
one can start to discern their modular construction. With the availability
of slightly more sophisticated tools, the answer to the question is therefore
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almost certainly ‘“Yes’. A more pertinent question might be “Can a radio
technician explain metabolism 7”.

5.3.4 Practical applications

Regardless of the degree of modularity of metabolic systems, the reaction
correlation coefficient, ¢, and metabolic trees derived from it, have a number
of potential practical uses.

Reaction correlation coefficients describe the likely correlation between
pairs of reactions, and metabolic trees have the effect of ordering all reac-
tions accordingly. Thus, if an objective is to maximise flux in a particular
reaction, reactions that are near neighbors in the reaction tree make rational
candidates for manipulation.

A slightly more subtle application is the preferential optimisation of de-
sirable pathways when alternative pathways exist for the generation of some
product. Suppose an organism is capable of producing a product by utilising
one of two substrates, but one of these is considered preferable to other. An
optimisation can be effected by searching for knockouts that maximise the
correlation of the product export step with the import step of the preferred
substrate.

An exhaustive search for a single step, or two steps in combination, to
be knocked out would be computationally feasible, but for greater numbers
of steps it would be probably be necessary to use some form of evolutionary
algorithm. If the objective function of such an algorithm was designed so
as to maximise ¢ between product transport and desirable substrate trans-
port, while simultaneously minimising the total number of reactions in the
system, the end result would be to identify optimal elementary modes for
the generation of product, without the need to first generate the entire set
of elementary modes, the majority of which will be irrelevant to any specific
task.

5.4 Conclusion

We have shown that, through analysis of the null-space of the stoichiometry
matrix of a system, it is possible to identify a more complete set of relation-
ships between steady-state reaction fluxes, in the form of reaction correlation
coefficients, than has been previously described. Consideration of these al-
lows the description of a number of system properties, and in particular
allows the construction of a metabolic reaction tree.

Analysis of the metabolic reaction tree of a model with known modu-
lar structure successfully recovered those modules, but when applied to two
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genome-scale models, the evidence for modularity was, at best, weak. It is
possible that this apparent lack of modularity is, to some extent, an artifact
of the models’ definition, and that the in vivo systems are more modular
than the models.

It may be that improved models, or refining the analysis described here to
take into account expression and/or flux observations, would reveal a more
strongly modular structure than observed here. However, it is also important
to realise that the concept of modularity is a human construct, and that the
definite of identification of modularity in a natural system is a prerequisite
of its characterisation.
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A Constancy of cosf in orthogonal kernels

Definition 1 If we denote by 9;% the angle between row vectors x and y in
matriz A, then:

AAT
(AzA7)/(AyA7)

cos(OQ) =

Thus for any pair of matrices of equal dimensions, A and B, if
T _ T
A;A, =B.B,

then
cos(hA

Iy) = cos(é)gl).

Let N be a stoichiometry matrix and let A and B T be matrices corresponding +2.20
to two orthonormal bases of the null space of N (the columns are the basis
elements).

Note : A and B are orthogonal matrices and therefore satisfy

ATA=B"B=1
Lemma 1 Let A and B be orthogonal matrices of equal dimensions, then
AA” = BBT (1)

Proof : Since A and B are both orthogonal matrices then ATA = BTB =1
(i.e. their columns are orthonormal vectors):

A:[a1a2...an]; B:[blebn]

We can express each column vector of B as a linear combination of the column
vectors of A:

b; = ag;a1 + agias + - - - + agia, for 1=1,2, ... n,
where ag; = (ag, b;) = alb;. Thus, we can write
B=Ao, a=ATB and B =AA'B

Similarly, we can express each column vector of A as a linear combination of
the column vectors of B:

ai:ﬂlibl—f—ﬁybg—f—"'—f—ﬁmbn fOI“ ’i:l, 2,...77,,
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where Bi; = (bk,a;) = bl a;. Thus, we can write that
A=BBS B=B"A and A= BB"A

Note that ag; = (ag, b;) = (b;, ax) = Bk, which implies that o = 7. Both A
and B satisfy

ATA = (BBTA)TA = (ATB)(BTA) =1, (2)
BB = (AATB)TB = (BTA)(ATB) =1 (3)
so that
(ATB)(BTA) = (BTA) (ATB) =1
and
A"B = (BTA)™.
Consequently,

AAT = BBTA(BBTA)" = B(B"A)(A"B)B” = BIB” = BB".
Theorem 1 Let A and B be orthogonal matrices with equal dimensions, then

cos(HﬁJ) = cos(@ﬁl)

for any x and y.

Proof: Since A and B are orthogonal matrices then by Lemma 1 AAT =
BB". Consequently, (AA"),, = (BB"),, for any = and y. However,
(AA"),y = A, A and therefore

A, AT = B,BT.

Thus
COS(G;;/) = cos(6,;)

for any x and y.
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B The Equivalence of r and ¢

Assume a system with a stoichiometry matrix N (m x n) having an orthonor-
mal kernel, K(n x d) and a matrix of random numbers, R(d X s), whose
elements are drawn from a distribution with mean p and variance o where:

m is the number of metabolites,

n is the number of reactions,

d is the dimension of the null space,

s is arbitrarily large,

and

0,5 is the angle between rows z and y of K.

Define a matrix V(n x s) such that
V =KR

V will satisfy
NV =0

i.e. any column of V, V;, is a valid steady-state rate vector, in the
following x and y are used exclusively to denote row indices and j is used
to denote a column index. The sample correlation coefficient, 7;,, between
reactions z and y is defined

Ao Z;:l (sz - V_w) (Vyj B V_y)
Vi Vey = V2[5, (Vi — V)2

Now, the j** sample of reaction z is

(4)

Vi = KR,
and thus the sample mean, of reaction z in V is
V. = M =K,j
S

where fi is a column vector of length d of mean values, i of the elements of
R. Substituting these equivalences into equation (4), we obtain

21 (KR — Ko) (K R; — K )"

Py =
Voo (KoR; — Kop) (KR, — Ko@)\ /75, (KR, — K, ) (K,R; — K@)
(5)
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Since
(K.R; — K.) (KR, — K,p)" = K. (R, — p)(R, — 1)K
equation 5 can be rewritten as

K.Y (R — )R —p)'K,

R — (R, — KT JUK (R — ) (R, — KT
(©)

If we now define the matrix A(n x n) as

=1
and substitute into equation (6) we obtain

K, AKT
fwy = — = — (7)
(K;AKT)\/(K,AKY)

Now, as s becomes large the leading diagonal of A approaches o2, and all
other elements approach 0

lim A = 02l
§—00
Therefore
K, KT
lim 7y =1y = - = cos(ﬁag) (8)
e (K.K7),/(KyK)

as required.
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C ¢ = 0 Implies a Stochiometrically Discon-
nected System

Consider a metabolic system comprised of r reactions and in which reactions ¢
and j both carry flux. Let the elementary modes of the system be represented
by the matrix E of dimension (r X s) where s is the number of elementary
modes. For convenience, assume that E is arranged such that the first two
rows correspond to ¢ and j respectively, so E can be written as

€i1 €2 €33

FE = {eﬂ €j2 €53 J

Any valid flux vector, v, can be written as:
v=FEw, 9)

where w is a column vector of dimension s. The values of elements of v are

thus
€1 W1 + €joWo + €;3W3 + . ..
V= €1W1 + €oW2 + €53W3 -+ ... . (10)

Lemma 2 If there is no elementary mode which utilises both reactions ¢ and
7, then the following statements are equivalent:

(a) There is no column, z, of the matriz E such that e;; # 0 and e;, # 0.
(b) The population correlation coefficient r;; = 0.

(¢) The reaction correlation coefficient ¢;; = 0.

Proof :

(a) = (b) = (c). If there is no elementary mode which utilises both reac-
tions 7 and j, then there is no column, z, in E such that e;; # 0 and e;, # 0.
Consequently, E has the following structure

€;1 0 0
E=|0 € e
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and likewise,
e;iwy + Owg 4+ Ows + . ..
v = Ow1 + €j2W2 + €j3W3 =+ ...

Thus, the summations that form the elements v; and v; contain no common
elements from w. If v are to be repeatedly sampled according to equation (9),
using different instances of w with elements of random value, then the sample
correlation coefficient between reactions ¢ and j, 7;;, will tend to zero as the
sample size increases, and the population correlation coefficient, r;;, will be
equal to zero. As has been shown in appendix B, the reaction correlation
coefficient, ¢;;, is equal to (Pearson’s) population correlation coefficient for
all possible instances of v in a given system, and therefore ¢;; = 0.

(¢) = (b) = (a) Assume to the contrary that the reaction correlation
coefficient ¢;; # 0 then the population correlation coefficient r;; # 0. Since
limg o 75 = 7 and 0 < 7; < 1 then the sample correlation coefficient
7ij 7 0 provided the sample size is sufficiently large. Consequently, in the
calculation of v in equation (10) the summations representing the values of
v; and v; contain common elements from w. Thus, there exists at least one
column, z, of the matrix E such that e;; # 0 and e;; # 0. Therefore, there
exists at least one elementary that utilises reactions ¢ and j contradicting our
assumption that there is no elementary mode which utilises both reactions ¢
and j.

Theorem 2 If ¢;; = 0 then reactions i and j are members of stoichiometri-
cally disconnected subsystems.

Proof : If ¢;; = 0 then, by Lemma 2, there is no elementary mode which
utilises both reactions 7 and j. Hence, E is block diagonalisable with ¢ and
5 in different blocks. Let K’ be a kernel of the stoichiometry matrix of the

form I
Kl - [K, } .

The columns of K are a subset of the columns of E, and every row in K’
corresponding to a reaction capable of carrying flux at steady-state must
contain at least one non-zero element. Since there is no column, x, of the
matrix E such that e;; # 0 and e;; # 0, K’ must be block diagonalisable
with ¢ and j in different blocks. The reactions ¢ and j are consequently
members of stoichiometrically disconnected subsystems.
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D The WPGMA Algorithm

The WPGMA algorithm repeatedly removes pairs of rows and columns cor-
responding to nearest neighbours from a difference matrix, replacing them
with a single new row and column corresponding to the subtree containing
the two neighbours. The tree is built by agglomeration. Given a difference
matrix containing a comparison of n items, the algorithm starts with n trees,
each containing a single leaf node, at each iteration two trees are merged,
when the algorithm terminates there is a single tree with n leaf nodes. In
the following description, A is assumed be a data-structure containing the
entries of the difference matrix, that can be indexed by arbitrary strings.
These string indices are used to represent trees.

1: while Dimension A #(1,1) do

2: i, j = NearestNeighbours(A)

4: Create label T, = (i : 6,7 : 6)’

5: Calculate a vector of difference values, 8, between 7" and other items

in A
6: Remove rows and columns 7 and j from A
7: Generate a row and column in A with label T and values 6

At each iteration two rows and columns are removed from A and one is
created, thus after n iterations the algorithm will terminate. The elements
of 4 in step 5 are calculated as

Where n is the current dimension of A. The dimension of 4 is thus n — 2,
and therefore in step 7 an extra element is created such that A7y = 0, where
T is the row/column label created in step 4. Hence at the end of step 7, the
dimension of A is (n — 1,n — 1).

The progress of the algorithm may be illustrated by considering an initial

difference matrix:
a b c d

a 0.0 04 0.6 0.7
A=5b 04 00 08 0.9
c 0.6 0.8 0.0 0.5
d 0.7 09 05 0.0

The nearest neighbours are a and b with 6 = 0.4, so in step 4:

T="%a:04,b:04)’
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denoting a tree with two leaf nodes whose distance to their common parent
is 0.4. The new difference vector, § in step 5, representing the distances
between the new tree and the items in A is

§=[0 Dot Aagtfg | _ [ 06108 07409 ] _ [ (.7 0.8 ]

Removing rows a and b and columns a and b (step 6) and generating a
new row and column with label ‘(a : 0.4,b: 0.4) and values [ 0 0.7 0.8 ]
(step 7) we obtain:

(a:0.4,b:0.4) 0.0 0.7 0.8
A= c 0.7 0.0 0.5
d 0.8 0.5 0.0

Column labels (which are identical to row labels) are omitted for clarity.
So at the beginning of the second iteration, the nearest neighbours are ¢
and d and at the end of the second iteration:

A (204b:04) 00 075
= (d:0.5,¢:0.5) 0.75 0.0

And at the end of the third and final iteration:
A= ((a:04,b:04):0.75,(d: 0.5,¢:0.5) : 0.75) 0.0
With the single row label corresponding to the tree:

0.75

0.5

A potential problem of the algorithm is that of ambiguity (or non-uniqueness
(Morgan and Ray 1995)). This occurs if, in step 2 there is more than one pair
of items that could be treated as nearest neighbours. In the implementation
used here, ambiguities are resolved by selecting the pair that generates a
new tree with the greatest number of child nodes. If this fails to resolve the
ambiguity, it is resolved by lexicographic comparison of the trees involved.
As long as row/column labels in A are unique, this ensures a unique tree is
generated.
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