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ORIGINAL ARTICLE
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ABSTRACT 
The crashworthiness behavior of horsetail-inspired sandwich tubes was analyzed in this study. 
Multilayer perceptron (MLP) algorithms with the Levenberg-Marquardt training algorithm (LMA) 
were used to predict force-displacement curve and optimize the geometrical parameters according 
to minimum peak crushing force and specific energy absorption. Based on the non-dominated 
sorting genetic algorithm II (NSGA-II) optimization results, the specimen with four core tubes and 
a thickness of 1 mm, and a height of 92 mm has the optimal crashworthiness performance. Finally, 
the optimal specimen is fabricated and the results of the numerical and MLP methods are vali-
dated versus experimental approach.
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1. Introduction

Due to their specific strength and SEA capabilities, thin- 
walled structures are being used more and more in the auto-
motive to reduce the fatal and serious injuries of vulnerable 
road users (VRU), transportation, and aerospace industries 
[1–5]. The results of previous analytical [2, 6, 7], experimental 
[8–10], and computational studies [3, 11, 12] have demon-
strated that Energy absorption and crashworthiness depend 
on many structural and materials parameters, including, metal 
type, fabric/matrix type, fabrication technology, structural 
geometry, dimension and loading conditions [13–15]. Due to 
their excellent mechanical characteristics, aluminum has been 
investigated by many authors over the previous years [16, 
17]. Today, aluminum is still used to fabricate energy absorb-
ers, despite the availability and application of composite and 
polymer materials for use in energy absorption applications. 
Based on their ductility features, aluminum tubes under axial 
loadings disperses kinetic energy through a variety of plastic 
deformation mechanisms by generating concertina and dia-
mond deformation patterns [18]. Additionally, in recent deca-
des, the effects of tube geometry (i.e. round, triangle, square, 
and rectangular) on the thin-walled energy-absorbing 
response have been extensively investigated.

Ruyang Yao et al. [19] provides a comprehensive review 
on thin-walled multi-cell structures and materials 
(TWMCSM) for energy absorption. By overviewing a lot of 
related researches, TWMCSM are found to provide out-
standing energy absorption performance compared with 

their conventional counterparts. At the end of this research, 
the authors concluded, combining both of the active and 
passive safety strategies to design adaptive TWMCSM 
should be a meaningful direction in the future researches.

According to the study by Nia and Hamedani [20], on 
the evaluation of energy absorption of singular tubes with 
various cross-sections, tubes with circular cross-sections per-
form the best. On the other hand, Palombini [21] reported 
that sections with complex and special shapes showed more 
crushing and energy absorption properties than conventional 
single tubes did. Researchers have been looking to optimize 
the design of aluminum crushing tubes to minimize the 
drawbacks of aluminum tubes, such as their high pick 
crushing force (PCF) and unstable deformation, (i.e. global 
buckling) [22]. Theoretical, computational, and experimental 
approaches have been developed to improve the efficiency of 
the designs [23–28]. The multi-cell thin-walled aluminum 
tube can improve crashworthiness parameters such as PCF, 
mean crushing force (MCF), total energy absorption (EA), 
and specific energy absorption (SEA) benefiting from the 
interactions among their components [29]. As a result, sev-
eral multi-cell structures have been studied recently. For 
instance, Vinayagar and Kumar [30] investigated the per-
formance of bi-tubular structures under quasi-static axial 
loading, including an external circular tube and an internal 
tube with various cross-sections. The findings of this study 
demonstrated that the hexagonal inner tube configuration 
has a more impressive capacity to absorb energy due to the 
higher number of corners. In another investigation by Liu 
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et al. [29], the impact response of a full aluminum sandwich 
structure with a star core was examined. The interaction 
between the structure’s components was shown to signifi-
cantly boost the crashworthiness characteristics of the sand-
wich structure. In addition, it was revealed that optimizing 
the geometry of the structure by Non-Dominated Sorting 
Genetic Algorithm- II (NSGA-II) based on maximizing the 
SEA and minimizing the PCF as the most important param-
eters in energy absorbing structures. According to the 
results, the value of SAE increased by 8% and the value of 
PCF decreased by 12%.

In addition to multi-cell sandwich structures, other geo-
metries, such as auxetic structures and foams have been 
used to improve the crashworthiness behavior of energy 
absorber structures [31, 32]. Oloumi et al. [33] by examining 
the hybrid structure of auxetic steel tubes with foam as the 
core and composite layers which was wrapped around the 
steel tubes, showed the failure mechanisms and crashworthi-
ness were enhanced and the value of SEA is increased by 
the hybridization of GFRC with auxetic cellular steel tubes 
than conventional ones.

Although the energy absorption performance of sandwich 
structures has significantly enhanced, it appears that opti-
mizing the geometrical characteristics of energy absorbing 
sandwich structures results into strengthening crashworthi-
ness characteristics, considerably. Such as many fields of 
researches, looking at nature can attribute to further 
improvement of energy absorption capacity of thin-walled 
sandwich structures [34]. Inspiration from biological organ-
isms is a promising way which benefits researchers from 
designing and optimizing the geometry of energy absorbing 
structures like horsetail [35], bamboo [36], spongy bone, 
and human vessel [3] (shown in Figure 1), have undergone 
years of evolution and have been tailored to be able to adapt 
to a variety of extreme environments. For instance, Xiao Y 
et al. [35] evaluated numerically the multicellular structure 
obtained from the horsetail structure under axial loading 
using the LS-DYNA finite element code. The outcomes 

demonstrate that the number of cells, internal wall diameter, 
and wall thickness of horsetail-bionic thin-walled structures 
(HBTS) have a significant impact on the failure rate of 
HBTS. Based on the obtained results, the HBTS with 16- 
cells, which was the most number of cells, has the best effi-
ciency in absorbing the energy among the six different types 
of specimens investigated.

Recently, among the bio-inspired multicellular structures, 
sandwich tube structures have been investigated intensively, 
due to their ease of manufacturing and promising perform-
ance. Liang et al. [25] characterized the crushing behavior of 
a hierarchical sandwich structure inspired from the outer layer 
of bones under a quasi-static compression loading. The pro-
posed hierarchical configuration was a hybrid CFRP/aluminum 
hollow tube. The results progressive folding which leads to a 
stable crushing behavior, increasing the SEA and EA. Also, the 
hybrid tube packing net CFRP tubes owns better crashworthi-
ness characteristics. But for this structure with the materials 
used, it is not possible to say clearly what the results will be by 
changing the geometrical parameters. Therefore, Optimization 
is very necessary. In our previous studies [9, 22], the energy 
absorbing capabilities of bio-inspired hybrid sandwich structure 
(Al/CFRP, Al/PP) were evaluated. Based on the parametric 
studies results, specimens containing aluminum components 
showed progressive crushing behavior, high SEA and crushing 
force efficiency (CFE), under the axial quasi-static and low vel-
ocity impact loading. Due to the existence of several of geo-
metrical variables, finding the optimal design numerically or 
experimentally by a trial and error process would be costly due 
to time and manufacturing costs [25].

To address this challenge, machine learning (ML) and artifi-
cial neural networks (ANN) algorithms such as multilayer pre-
ceptor (MLP) are promising ways to optimize the geometry of 
the bio-inspired sandwich tubes [37–44]. Moreover, it is note-
worthy that MA and ANN approaches are widely used in clas-
sification and regression problems and handle numerical and 
categorical responses well [45–48]. An ANN is composed of 
numerous nodes (or neurons) connected with one another [45, 
49, 50]. The activation function, which is represented by each 
node, is a particular output function. The network’s output is 
affected by the network structure, network connection modes, 
weight, and activation function. The functioning of biological 
neural networks served as inspiration for the design of neural 
networks [51–53]. ANN is excellent at processing noisy data 
sets and has great accuracy. As a result, ANN has been widely 
used in various fields, including material, automation, and con-
dition monitoring. Zhixiang Li et al. [51] using machine learn-
ing techniques, predicted and optimized the energy absorption 
performance of the corrugation-reinforced multi-cell square 
tube (CMST). Two numerical criteria, i.e. SEA and PCF, and a 
categorical criterion, i.e. deformation mode, were used to assess 
the energy absorption performance of the CMST under differ-
ent geometric parameters. According to this study the geomet-
ric parameters have a linear and non-linear effect on the PCF 
and SEA, respectively. Also, by removing unstable deformation 
modes based on the prediction of machine learning algorithms 
the optimum geometry has obtained.

In order to design a high-efficiency energy absorber, pre-
dicting an accurate force-displacement curve is the key 

Figure 1. Illustration of biological structures inspiriting bio-mimetic energy 
absorbers a) horsetail, b) bamboo, c) human vessel, and d) spongy bone [3].
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factor to optimize the crashworthiness parameters corre-
sponding to bio-inspired energy absorbing sandwich struc-
tures [54]. Based on previous investigation, the SEA and 
PCF are critical parameters to optimize [29, 51]. Moreover, 
considering different biological structures of the horsetail 
plant (see Figure 1), it can be seen that the different types of 
horsetail plant have different internal structures in terms of 
thickness, and the number of cells between internal and 
external shells.

In this paper, with a new perspective on horsetail struc-
ture (see Figure 2a), the crashworthiness response of the full 
aluminum sandwich tube under quasi-static axial loading is 
investigated. According to Figure 2a, the number of core 
tubes, the thickness of components is considered as a vari-
able geometrical parameter. Moreover, due to the direct 
effect of the height on the axial compression behavior, the 
height is selected as a variable as well as the number of 
core tubes. MLP algorithm with Levenberg-Marquardt’s 
training algorithm is adopted as a new approach to predict 
the force-displacement curve and optimize the structural 
characteristics of the bio-inspired sandwich tube. A multi- 
objective optimization method is applied with respect to the 
maximal SEA and minimal PCF on the second hierarchical 
sandwich tube. For this purpose, firstly, to ensure the accur-
acy of the simulation process, three single hollow tubes, 
including the core, inner, and outer tubes, and a bio- 
inspired sandwich tube were simulated, and the obtained 
results were compared with the corresponding experimental 
results. Then, a pre-defined number of sandwich tubes have 

been simulated using LS-DYNA (a commercial non-linear 
FE program) to generate the data for inputting into the 
MLP algorithm. The data is extracted from the force-dis-
placement curves obtained from the simulation. In order to 
demonstrate the effects of the geometrical parameters the 
Levenberg-Marquardt’s training algorithm (LMA) from the 
neural network fitting app of MATLAB (a matrix based 
mathematical solution software) is utilized to train the algo-
rithms. The SEA and PCF values are the predicted outputs 
of the neural network based on the inputs of tube thickness, 
height, and number of core tubes. The optimum structural 
characteristics are obtained by employing the Non- 
Dominated Sorting Genetic Algorithm-II (NSGA-II) corre-
sponding to the specimen which has higher SEA and lower 
PCF. Subsequently, the force-displacement curve is predicted 
by Levenberg-Marquardt’s algorithm corresponding to the 
optimized specimen. Based on the optimized geometrical 
features, the sandwich tube is prepared experimentally to 
characterize the quasi-static compression behavior. Finally, 
the force-displacement curves are derived through experi-
mental and numerical approaches related to the optimized 
specimen. Then, the derived force-displacement curves are 
compared to validate the results and demonstrate the opti-
mum geometrical characterizations.

2. Design approach

The goal of the design optimization of horsetail-inspired 
sandwich tube with hierarchical core attributes to enhance 

Figure 2. a) Horsetail plant structure with different number of internal cells and different wall thickness [3], b) Schematic of sandwich tubes with different number 
of core tubes and, c) variable geometrical parameters.
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the energy absorption performance while maximizing the 
SEA and minimizing the PCF [29]. The reason to adopt the 
SEA as a goal parameter comes from the fact that the opti-
mal design of the energy absorbers should have the highest 
possible energy absorption with the lowest weight, which 
leads to lowering the cost and consuming the energy and 
material. The PCF is known as a critical factor which has 
impacts on the safety of passengers. In other words, by 
reducing the peak crushing force, energy absorption struc-
tures can ensure compliance with these regulations and 
standards, thereby enhancing the marketability and accept-
ance of the product. Additionally, mimicking biological 
structures is a promising way to enhance the structural per-
formance, such as the internal structure of a horsetail plant. 
From Figure 2a, it can be observed that the number of inner 
cells and wall thicknesses of horsetail plant internal compo-
nents vary. These differences in various horsetail plant spe-
cies lead to the investigation of the effects of various wall 
thickness and number of core tubes on crashworthiness 
behavior of bio-inspired sandwich tubes. Besides, the height 
of the sandwich tubes influences the crushing response 
under the axial compression loading. Therefore, it can be 
claimed that these parameters have the potential to be con-
sidered as geometrical variables to improve crashworthiness 
behavior of horsetail-inspired sandwich tubes. As mentioned 
before, circular cross-section is considered for sandwich 
tube components, due to the better performance than other 
cross-sections such as square, rectangular, hexagonal and 
so on.

In this research, 96 samples with different geometrical 
parameters are simulated using the LS-DYNA finite element 
code. The models incorporated 4 different tube heights 
(H¼ 80, 90, 100, 110 mm). Then, for samples with the same 
height, the number of the core tubes was modified from 3 to 
8 tubes, in increments of 1 (N¼ 3, 4, 5, 6, 7, 8). Then, for 
each specimen with the specified height and number of core 
tubes, the thickness of the components are varied from 1, 1.5, 
2 and 2.5 mm for each specimen. Therefore, the total number 
of numerical models are 96 (4�6�4¼ 96). The geometry of 
the different models is shown in Figure 2b and c.

Using the MLP with Levenberg-Marquardt’s training algo-
rithm, the PCF and SEA values are predicted for different 
types of specimens with 80�H� 110 mm and 1� t� 2.5 mm 
and 3�N� 8. Then, the optimized specimen is designed 
using the multi-objective genetic algorithm based on highest 
SEA and lowest PCF. Finally, the force-displacement curve is 
predicted by LMA algorithm corresponding to the optimized 
specimen. The detail of the design approach is shown in 
Figure 3.

3. Machine learning techniques and model selection

3.1. Artificial neural network

An artificial intelligence-based technique known as an artificial 
neural network (ANN) can be used to recognize complicated 
phenomena and provide solutions to issues that are intractable 
by current techniques.

Figure 3. Flow chart of energy absorption prediction and optimization for the bio-inspired sandwich tube.
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In this research, the MLP is used to estimate PCF and 
the SEA values for different compressed sandwich tube 
structures and force-displacement curve of optimization spe-
cimen. The input data, for the MLP algorithms, is the num-
ber of core tubes, the tube height, and the tube wall 
thickness. The PCF and the SEA values obtained from the 
numerical models are used to training the MLP. Three neu-
ron layers are used in the MLP, with the first layer defined 
as the input layer, the second layer as the hidden layer, and 
the third layer as the output layer (see Figure 4). The 
Levenberg-Marquardt algorithm was utilized in the learning 
process. The Levenberg-Marquardt method, also known as 
damped least squares (DLS), is known for its quick calcula-
tion and minimum memory utilization [43]. One of the 
most critical parameters in ANN is determining the number 
of neurons or, in other words, layer size. This parameter has 

a significant effect on the accuracy of the results. In addition 
to its high speed the Levenberg-Marquardt algorithm has good 
accuracy in calculating the results using different numbers of 
neurons. In the results and discussions section, the effect of 
layer size on the accuracy of the results is discussed in detail.

3.2. Genetic algorithm (GA)

Choosing the optimal structure is one of the main goals of 
this research. A non-dominated sorting genetic algorithm II 
(NSGA-II) has been used to select the optimal dimensions. 
The genetic algorithm is one of the most potent optimiza-
tion algorithms that can be used to optimize several parame-
ters when there is one or more objective functions [29]. In 
the research [55] NSGA-II and MOP-SO algorithms for 
optimization of a system operation with two functions are 
compared. According to the presented results, it can be con-
cluded that according to the stop conditions, which is the 
same for the two algorithms, the NSGA-II is performed better 
than the MOPSO algorithm. Also, in a part of research [56] 
that is done about water network, the results of optimization 
show that the NSGAII algorithm were slightly better than the 
results of MODE and the results of the MOPSO were weaker 
than others. Therefore, in this research NSGA-II is considered 
to optimize the defined functions. Here the objective function 
is to minimize the PCF and maximize the SEA simultaneously. 
In order to use the genetic algorithm, separate data cannot be 
used; because this algorithm selects random values in the 
defined interval. Therefore, the functions taught in MLP are 
used as the objective function in the genetic algorithm. A sche-
matic of the used algorithm is shown in Figure 5.

4. Finite element simulation

The non-linear finite element simulation code LS-DYNA (uti-
lizing double-precision) was selected to simulate the loading 
of the specimens and extract the force displacement curves. 
The extracted data was input into the machine learning 

Figure 4. A schematic diagram of a Multilayer Perceptron (MLP) neural network 
with n neurons.

Figure 5. Flow chart of Genetic Algorithm with all steps involved.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



algorithms to optimize the geometry parameters and specify 
the optimum specimen based on genetic algorithms.

4.1. Geometry and boundary conditions

As shown in Figure 6, the Al tubes were simulated as shell 
elements with 4-node under Belytschko-Tsay formulation 
utilizing five integration points across the tubes thickness. 
The tubes were drawn based on the midline position of the 
tubes (mean value of the tube diameter) with thicknesses set 
of 1, 1.5, 2, and 2.5 mm around the midline position. A 
mesh study was performed on the loading of individual 
tubes, with convergence obtained for all tube sizes when uti-
lizing a mesh size of 1 mm. The final models incorporated 
the tubes in the pre-configured arrangements, Figure 6, with 
loading applied between upper and lower rigid plates. The 
lower plate was fully fixed with the upper plate given a 
BOUNDARY_PRESCRIBED_MOTION-RIGID in the longi-
tudinal direction of the tubes with a rate of 5 mm/min. 
These settings reflected the experimental load conditions.

4.2. Material model

The modified_piecewice_linear_plasticity (MAT 123) model in 
LS-DYNA is good for modeling aluminum alloys [22]. This 
model enables elastic-plastic behavior to be defined using stress 
strain curves at different strain rates. Based on previous studies, 
strain rate in the range of [10� 4-103] (1

s) has not effect on plas-
tic deformation in Al tubes [9]. It is worth mentioning that 
two approaches can be mentioned as methods of defining the 
failure strain in aluminum components: 1- using the RTCL 
yield criterion to define the effective failure strain. 2- Defining 
yield stress and using a stress-strain curve.

4.3. Contact definition

Two contact algorithms were defined in the numerical models 
to prevent the tubes going through themselves, CONTACT 

AUTOMATIC SINGLE SURFACE was applied to the tubular 
elements. To prevent the tubes going through each other or 
through the plates a CONTACT_AUTOMATIC_SURFACE_ 
TO_SURFACE was chosen to them. The static and dynamic 
coefficients between all surfaces was considered to 0.4 and 
0.35, respectively.

5. Experimental procedure

5.1. Material characterization

The purpose of this study is to examine the effects of an 
aluminum-based circular hybrid multi-cell on the crash-
worthiness characteristics of tubular sandwich energy 
absorbers. To this aim, it used tubes made of extruded alu-
minum alloy 6061-T6. The physic-mechanical properties of 
aluminum alloy are summarized in Table 1.

5.2. Test procedure

Quasi-static compression test was employed to examine the 
specimen’s crashworthiness behavior to consider variability 
in the force–displacement data, the compression tests were 
repeated three times. Crashworthiness characteristics includ-
ing PCF and SEA were extracted from the force–displace-
ment curves.

For this purpose, a Universal Test Machine (UTM) for 
quasi-static testing is performed with a load cell capacity of 
300 kN (shown in Figure 7). The specimens were positioned 
between the upper and lower platens (plates) and loaded at 
a rate of 5 mm/min. Care was taken to ensure the center 
axes of the samples were aligned with the center position of 
the upper and bottom platens.

Figure 6. Simulation of the full aluminum multi-cell sandwich tube.

Table 1. Mechanical properties of aluminum tubes [22].

Property
Young’s  

moduli (GPa)
yield stress  

(MPa)
Density  
(kg/m̂3)

Poisson’s  
ratio

Value 70 260 2700 0.33
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6. Result and discussion

6.1. Simulation of sandwich tubes

LS-DYNA software was used to simulate the crushing of vari-
ous sandwich tube configurations to generate the force-dis-
placement curves. From the curves, the maximum SEA and 
the minimum PCF were obtained and used as outputs in the 
ANN. As mentioned in Section 2, 96 models have been made 
to study the effects of the number of core tubes (N¼ 3, 4, 5, 
6, 7, 8), the tube thickness (t_1¼ 1, t_2¼ 1.5, t_3¼ 2, t_ 
4¼ 2.5 mm), and the tube height (H¼ 80, 90, 100, 110 mm).

According to previous research [9, 22], the kinetic energy 
that is applied to the bio-inspired aluminum sandwich tubes, 

is absorbed through various crushing mechanisms, including 
progressive folding, plastic deformation, local buckling, and 
the formation of plastic hinges. Moreover, the kinetic energy 
interactions between the components are absorbed through 
friction and interaction forces between the core, inner, and 
outer tubes.

As a preliminary study, it is necessary to evaluate the 
accuracy of the simulation process of this research by com-
paring the numerical versus experimental results. For this 
reason, the crushing behavior of a horsetail-inspired sand-
wich and three single hollow tubes (the core, inner, and 
outer tubes) are validated separately under quasi-static load-
ing, separately. The height and thickness of all tubes are 
considered 90 mm and 1.2 mm, respectively. It should be 
noted that each test is repeated three times.

To simulate the sandwich tube, firstly, single hollow tubes 
were simulated. Then, based on the validated models of sin-
gle hollow tubes, the components are integrated to generate 
the horsetail-inspired sandwich tube model.

As shown in Figure 8, the number of folds, shape of n- 
gons (from the top view), and deformation mechanisms 
related to single tubes and sandwich tubes have been cor-
rectly predicted. Additionally, the load-displacement curves 
resulting from the numerical study are greatly matched with 
the trend of the experimental curve (see Figure 9). From 
Figure 9, it can be seen that the finite element models pre-
dict the PCF and the SEA values very accurately, with an 
error lower than 5%.

After validating the numerical simulation, the 96 defined 
specimens were simulated. For instance, Figure 10 illustrates 
the failure behavior of the six bio-inspired sandwich tubes 
with different numbers of core tubes. By observing the 
crushed samples, it can be seen that number of core tubes 
has an important role in controlled the absorption of energy. 
With an increase of the number of cores, the interaction 
generated among the components of the sandwich tube Figure 7. Schematic of the quasi-static test setup (UTM) [22].

Figure 8. Status of Quasi-static compression of experiments and simulation of single hollow tubes a) Core, b) Inner, c) Outer, and d) Sandwich tube.
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has increased. This phenomenon causes the specific progressive 
folding of inner and outer tubes. This folding pattern can dem-
onstrate the energy absorbing behavior of sandwich tube.

The force-displacement curves obtained from the models 
are compared in Figure 11. Generally, it can be seen that 
changing the thickness of the tubes has a greater effect on the 
energy absorbing behavior than changing the height of 
the specimens. The loading capacity and elastic stiffness of 
the structures improve as the thickness of the sandwich 
tube components increases. According to Figure 11, the 

force-displacement curves related to the specimens with lower 
thickness drop sharply after the force touches PCF. However, 
the energy absorption behavior in specimens with a 2.5 mm 
thickness differs from specimens with other thicknesses. It 
can be seen after the force reaches to the initial peak, the 
load drops and then increase up to the PCF.

This phenomenon causes a significant different in the 
PCF values, which the PCF for the specimens with 2.5 mm 
thickness is much higher than those with lower thickness. 
Additionally, comparing the results for the specimens with 

Figure 9. Force-displacement and SEA-displacement curves of single hollow tubes a) Core, b) Inner, c) Outer, and d) Sandwich tube.

Figure 10. Comparison of axial crushing modes of bio-inspired sandwich tubes with different number of core tubes.
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same number of cores but different thickness shows that 
increasing the thickness leads to decrement of crush length. 
This circumstances is due to the limited space among the 
components within the sandwich tube. So, increasing the 
thickness causes a decrease of space between components. 
Thus, the force-displacement curve rises more quickly due 
to quicker interaction between the tubes. Considering the 
force-displacement diagrams, it can be observed that this 

phenomenon plays a more prominent role in samples with a 
shorter height and a larger number of core tubes. On the 
other hand, it is obvious that increasing the height of the 
sandwich tubes leads to increment of crush length.

When comparing the results corresponding to the speci-
mens with identical height and thickness, it can be seen that 
increasing the number of cores leads to an increased load 
capacity and therefore maximum PCF recorded.

Figure 11. Comparative numerical force–displacement curves of bio-inspired multi-cell tubes under axial quasi-static loading.
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To clarify the effects of geometrical parameters, the 
amount of PCF and SEA are presented in Figure 12. As 
mentioned before, for the components with the same num-
ber of core tubes, the effect of thickness is very significant.

For these samples, it can be seen that with increasing 
thickness, the peak crushing force and specific energy 
absorption increases almost linearly. Also, we can see that 
for components with the same number of cores and equal 
thickness, the effect of height is small. But this is not the 
case in the specific energy absorption parameter, because the 
length of the samples has a direct effect on the crash length, 
which causes a change on the SEA value.

6.2. Machine learning and MLP algorithm

In this study MLP algorithm was utilized to predict the PCF 
and SEA of the sandwich structures and force-displacement 
curve of optimization specimen under axial quasi-static 
loading. It should be noted that two separate MLP networks 
with the different numbers of input and output data were 
used, one for predicting the PCF and SEA and the other for 
predicting the force-displacement curve. The chosen 
machine learning algorithm is capable of handling both 
regression and classification problems [45]. In this case, as 
described in section 3.1, the Multilayer Perceptron (MLP) 
Neural Network with Levenberg-Marquardt training algo-
rithm utilizing one hidden layer was adopted from the 
neural network fitting tool in the MATLAB software. The 
number of neurons utilized in a neural network is one of 
the most important parameters in its design. The size of the 
layer has a significant effect on the accuracy of the neural 
network’s responses (including the prediction of the PCF 
and SEA values and the force-displacement curve).

In this case the hidden layer was set to have a different 
number of nodes ranging from 1 to 15. Generally, to meas-
ure the accuracy of the results obtained from the neural net-
work parameters like the Regression (R-value) is used. The 
R-value measures the correlation between the outputs and 
targets. Figure 13 depicts a graph of R-values in relation to 

layer size for training, validation, and target values. An R- 
value of 1 means a close relationship and 0 value means a 
random relationship.

As can be observed, 14 neurons (n¼ 14) or higher shows 
a better response compared to lower values.

Note that, although the R-value is used for multiple lin-
ear regression, coefficient of determination (R2) is a better 
term than R-value to Easier to understand [57]. For single 
and multiple linear regressions, R2 is used. The evaluation 
parameter is defined as:

R2 ¼ 1 �

PN
i¼1ðyi � yiÞ

2

PN
i¼1 ðyi � yÞ2

Eq.1 

Where N is the number of specimens, yi and yi are true 
and predicted values for the ith specimen, respectively, y is 
the mean of the true values of N specimens [51]. The higher 
the value of the R2 parameter, the higher the accuracy of the 
predicted model. The ideal value of this parameter is equal 
to 1.

The SEA and PCF values, which are derived from the 
force-displacement curve, are considered as multiple regres-
sions problems. So, the coefficient of determination (R2) is 
introduced to evaluate the performance of the prediction of 
the SEA and the PCF.

In this research, the R2 of the MLP models is evaluated 
both in the training and test data. As two output data, the R2 

value for the SEA and PCF values are shown in Figure 14. 
For the PCF and SEA prediction, this model have high R2 in 
the training and test set, which is higher than 0.99. In fact, 
the accuracy acquired from the training set is frequently 
incredibly high, hence the findings from the test set should 
receive greater attention. As can be seen, the value of R2 for 
the test data is greater than the training data. In addition, a 
total of 70% of the datasets are utilized for training, 15% for 
validation, and 15% for testing.

Finally, after ensuring the accuracy of the results, a func-
tion is required to predict the two parameters SAE and PCF 

Figure 12. Comparison of a) PCF and b) of sandwich tubes under axial quasi-static loading.
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for different values of T, H, and N, which is discussed in 
the following.

Figures 15 and 16 display the values of the PCF and the 
SEA generated by the Multilayer Perceptron (MLP) Neural 
Network corresponding to the different tube thicknesses 
(1 � t � 2:5), tube heights ð80 � H � 110Þ, and number of 
core tubes (3 � N � 8), respectively. These results were 
obtained by using the Levenberg-Marquardt algorithm, 
which was discussed in Section 3.1.

Based on the SEA and PCF diagrams with constant thick-
ness, changing the height of the specimens do not have much 
effect on SEA and PCF. But it is great to mention that changing 
the height for some specimens with t> 2 mm has an almost lin-
ear effect on PCF values (samples with N¼ 6, 7, 8). It also has 
had non-linear effect on this parameter for samples with N¼ 3, 
4. On the other hand, for samples with t< 2 mm, the value of 
this parameter is almost constant according to the height.

Also, by examining the SEA curves, it can be concluded 
that the trend of changes of this parameter according to the 
height for specimens with N¼ 3, 4, 5, and with the same 
thickness (t> 2 mm) is almost the same, so that the value of 
this parameter increases with the height of the specimens. 
At first, it was accompanied by an increase, then it 
decreased, and finally it increased. However, in samples with 
a thickness of t< 2 mm, the value of this parameter first 
increases and then decreases as the height increases. Also, It 
can be seen the SEA changes are almost the same for sam-
ples with N¼ 6, 7, t< 2 mm and samples with N¼ 7, 8 and 
t> 2 mm. in other words, the values of SEA has direct rela-
tion with the height of the samples with N¼ 6, 7 and 
t< 2 mm, so that the SEA first increases then decreases. On 
the other hand, the specimens with N¼ 7, 8 and t> 2, the 
SEA increases in the initial stage and in the following it 
decreases, and finally it increases. This behavior was 

Figure 14. PCF and SEA regression diagram for a) Training data, b) Validation data, and c) Test data.

Figure 13. R-value according to layer size in the MLP neural network.
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observed in the simulation results corresponding to the 96 
simulated specimens.

In the following, it will be discussed how to use a genetic 
algorithm to investigate the optimal specimen among all gen-
erated specimens.

6.3. Multi objective optimization

As an objective function, it is vital to maximize the SEA of 
the structure, corresponding to the crashworthiness opti-
mization problem. However, it is also crucial that the PCF 
of the structure stays within a predetermined acceptable 
range. Therefore, another objective function that is highly 
desired is to minimize the PCF. The optimization problem 
can be expressed using the following multi-objective opti-
mization formulations while taking into account these two 
distinct design requirements, see Equation 2.

The non-dominated sorting genetic algorithm II is used 
to conduct the multi-objective optimization design of a 

hierarchical sandwich tube after acquiring the values of PCF 
and SEA for the specimens defined by the ANN algorithm 
(NSGA-II). In this research, the optimization objectives are 
defined in a way where the PCF value is minimized and 
the SEA value is maximized. The problem is described as 
following:

min PCF, � SEAð Þ

XL � X � XU

X ¼ T, N, H
XL ¼ minðT, N, HÞ
XU ¼ maxðT, N, HÞ

8
<

:

8
>><

>>:

Eq.2. 

How closely a particular solution adheres to the ideal 
solution to the desired problem is determined by the fitness 
function, which is also known as the evaluation function. It 
can be shown that increasing the generation results in 
reducing the difference between the best fitness and mean 
fitness values (see Figure 17). Based on the results extracted 
from the genetic algorithm, the bio-inspired sandwich tube 

Figure 15. PCF value predicted by MLP neural network for samples with different H, T, and N values.
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with four core tubes, a height of 92 mm, and a thickness of 
1 mm is the optimal specimen among all the samples.

6.4. Experimental specimen and development of a 
MLP-based force-displacement prediction model

To validate the accuracy of the optimization process, a 
quasi-static compression test was conducted to compare the 
crashworthiness behavior of the optimized sandwich struc-
ture with the numerical simulation. It is worth mentioning 
that the experimental specimen has tested three times. To 
simulate of crashworthiness behavior of the experimental 
sandwich tube specimen, firstly, all single hollow tubes, 
including outer, inner, and cores tubes, are simulated. Then, 
as mentioned in section 4.3 by using the appropriate static 
friction coefficient, the simulation of horsetail-inspired sand-
wich tube is completed. The crushing history and folding 
mechanism of the optimized sandwich tube is shown in 
Figure 18. From Figure 18-a1, the initial local buckling is 

observed in the upper part of the external tube. Due to the 
interaction effects between the external and core tubes, 
the sandwich tube continues to fold from the location where 
the initial local buckling is observed. In the following 
(Figure 18-a3) the progressive folding occurs from the upper 
part of the initial folding pattern, due to the initiation of the 
progressive folding of the inner and core tubes. Because of 
increased density of material in upper part of the sandwich 
tube (creating a resistance to buckling), the folding pattern 
is progressed through lower parts of the sandwich tube. Due 
to the interaction between the components of the sandwich 
tube and increment of material density inside the specimen, 
the external tube experiences three folds with four corners 
(N¼ 4) where the sides of each fold has equal length (i.e. 
square shape). While, the folding pattern shape is triangular 
corresponding to the inner tubes

Considering the results shown in Figure 18 and comparing 
the obtained results in earlier research [9, 22], it can be con-
cluded that the interaction between components had very 
good effects on the folding process of the outer tube and 

Figure 16. SEA value predicted by MLP neural network for samples with different H, T, and N values.
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increasing the sides of its N side. On the other hand, this 
structure causes the deterioration of the fold of the inner 
tube compared to folding pattern of single hollow tube.

By comparing the FEM and experimental results, it can 
be seen that the FE model predicts the progressive folding 
pattern well. Figure 18-b1, presents the initial local 

Figure 17. The best fitness value vs. the number of generations in the GA.

Figure 18. Comparison of axial crushing modes of optimized sandwich tube from the a) experimental, and b) numerical results.
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buckling of the external tube. From the crushing snapshots 
(Figure 18-b2 to b5), it can be seen that the FE model is 
showing very similar results to that obtained experimentally 
in terms of folding and buckling.

As mentioned before, the ability to predict acceptable 
outputs in accordance with data training is one of the spe-
cific applications of neural networks. In order to predict the 
force-displacement curves corresponding to the optimized 
specimen, first, a MLP network with n¼ 14 (the number of 
neurons in the hidden layer) was made, like to the network 
that predicted the PCF and the SEA. Second, all internal 
points of force-displacement curves related to the 96 speci-
mens (each curve has 537 points) in the FE analysis were 
defined as input data’s in the MLP creating 51552 datasets. 
The force-displacement curves information used in the MLP 
was set to 40 mm total displacement (The lowest displace-
ment value among 96 numerical force-displacement curves). 
Figure 19a shows the results of the MLP derived force dis-
placement curve in comparison to the experimental and 
numerical results for the optimized sandwich configuration. 
As can be seen, the peak loads in all three methods have 
close values. Additionally, the force-displacement curves fol-
low the same general trend for all three results. However, 
the experimental result is a little different compared to the 
numerical and MLP results. The reason is believed to be due 
to the acquisition system. As the top edges of the sandwich 
tube components touch the upper platen, which is con-
nected to the load cell, the acquisition system only records a 
single data value. In other words, the data recorded by the 
load cell is an integral one which transfer to the load cell 
from the sandwich tube to the load cell as whole. In con-
trast, the data that is recorded during FE modeling or MLP 
algorithm is resulted from the multiple contacts between the 
sandwich tube components and the upper platen. Thus, 
there are many fluctuations in the force-displacement curves 
corresponding to the FEA and MLP results. For see the dif-
ferences in the SEA, PCF values for the three methods they 
are compared in Figure 19b. The comparison shows that the 
error between the experimental values and the predicted val-
ues (i.e. the numerical and MLP results) is very small. The 
error in the PCF values between the experimental and 

numerical simulation value and experimental and neural 
network prediction value is 0.1% and 0.1%, respectively. The 
error in the SAE values between the experimental and 
numerical simulation value and experimental and neural 
network prediction value is equal to 5.5% and 2.3%, respect-
ively. This shows the accuracy of the model and the utilized 
algorithms for the optimization process.

7. Conclusion

The aim of this research was to optimize the geometrical 
parameters (the tube thickness, tube height and number of 
core tubes) and predict the force-displacement curve of bio- 
inspired aluminum sandwich tubes under quasi-static com-
pression loading. In order to optimize the geometrical 
parameters, the PCF and SEA values, corresponding to the 
sandwich tube, were considered as the goal parameters.

According to the results obtained from the simulation of 
specimens, in general, it can be concluded that in samples 
with the same thickness and the same number of cores, the 
effects of height on the PCF and SAE values are insignificant 
(except for samples with 2.5 mm thick components). It also 
can be concluded that increasing the thickness has great 
effects on decreasing the PCF and increasing the SEA values. 
On the other hand, increasing the number of cores for sam-
ples with the same thickness and height increases the PCF, 
while this change has not created a predictable trend in the 
SAE parameter.

After analyzing the results obtained from the numerical 
simulation, the extracted force-displacement curves and the 
value of PCF and SEA corresponding to the simulated speci-
mens are defined as the input data for the MLP and 
Levenberg– Marquardt’s training algorithms to predict the 
force-displacement curve of the sandwich tube as energy 
absorption. By using this algorithm, the values of PCF and 
SAE parameters are predicted for a wide range of thick-
nesses, heights and different number of core tubes. By exam-
ining the PCF and SAE results obtained from the MLP, it 
can be concluded that the trend of changes of SEA and 
PCF, obtained from MLP algorithm, is identical to the trend 
which was observed in simulated samples.

Figure 19. a) Force-displacement curves and b) PCF and SEA value of the optimized specimen based on experimental, numerical, and MLP results.
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Subsequently, the Genetic algorithm was employed to 
optimize the geometrical parameters. In this research, the 
optimization objectives are defined in a way where the PCF 
value is minimized and the SEA value is maximized.

Based on the results, a sandwich tube with the four core 
tubes, a thickness of 1 mm and a height of 92 mm would 
give the best performance. Experimental and numerical 
results that were obtained for the optimized sandwich tube 
design showed progressive failure with folding and buckling 
occurring. The samples showed similar behavior in the outer 
tube where a regular and square shape was formed.

After determining the optimal specimen, its force-dis-
placement curve was predicted using MLP. Finally, the opti-
mized specimen was simulated and the force displacement 
results, corresponding to the three methods employed 
(experimental, numerical and MLP) were compared. The 
PCF and SEA values and the force displacement curves 
obtained from the three methods were very similar, apart 
from a bit of discrepancy in the force displacement curves 
between the numerical and MLP methods and the experi-
mental method, after the initial peak load. The maximum 
error between methods for the PCF value was 0.1% and for 
SAE value was 5.5%.
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