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Abstract  
 
The aim of this work was to develop a methodology whereby inertial measurement 

units (IMUs) could be used to obtain accurate and objective gait parameters within 

typical developed adults (TDA) and Parkinson’s disease (PD). The thesis comprised 

four studies, the first establishing the validity of the IMU method when measuring the 

vertical centre of mass (CoM) acceleration, velocity and position versus an optical 

motion capture system (OMCS) in TDA. The second study addressed the validity of 

the IMU and inverted pendulum model measurements within PD and also explored 

the inter-rater reliability of the measurement. In the third study the optimisation of the 

inverted pendulum model driven by IMU data was explored when comparing to 

standardised clinical tests within TDA and PD, and the fourth explored a novel phase 

plot analysis applied to CoM movement to explore gait in more detail.  

The validity study showed no significant difference for vertical acceleration and 

position between IMU and OMCS measurements within TDA. Vertical velocity 

however did show a significant difference, but the error was still less than  

2.5%. ICCs for all three parameters ranged from 0.782 to 0.952, indicating an 

adequate test-retest reliability.  

Within PD there was no significant difference found for vertical CoM acceleration, 

velocity and position. ICCs for all three parameters ranged from 0.77 to 0.982.  In 

addition, the reliability calculations found no difference for step time, stride length and 

walking speed for people with PD. Inter-rater reliability was found not to be different 

for the same parameters.  

The optimisation of the correction factor when using the inverted pendulum model 

showed no significant difference between TDA and PD. Furthermore the correction 

factor was found not to be related to walking speed.  

The fourth and final study found that phase plot analysis of variability could be 

performed on CoM vertical excursion. TDA and PD were shown to have, on average, 

different characteristics.    

This thesis demonstrated that CoM motion can be objectively measured within a 

clinical setting in people with PD by utilizing IMUs. Furthermore, in depth gait 

variability analysis can be performed by utilizing a phase plot method. 
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Chapter 1: Introduction 
 

 

This chapter is primarily an overview of current gait measurement techniques, body 

reference points, gait models and the current use of gait measurements in clinical 

environments. The aim of this chapter was to explore the need for the development 

of a novel methodology whereby inertial measurement units (IMUs) could be used to 

obtain accurate and objective gait parameters within typical developed adults (TDA) 

and Parkinson’s disease (PD). 

 

Movement analysis has a long history. Aristotle (384-322 BC) studied animal 

movements and wrote his observations in the book ‘De Motu Animalium’1. 2000 

years later, Leonardo da Vinci (1452-1519) looked into the anatomical map of the 

human being. He studied the mechanical movement of the joints and limbs. Galileo 

Galilei (1564-1643) developed theories for the equilibrium in the joints even before 

Newton (1642-1727) published the laws of motion. Other key figures, like Bernoulli 

(1700-1782) and Euler (1707-1783) can be seen as founders of both the mechanical 

and biomechanical understanding of the world known today2-4 

 

Many different disciplines use motion analysis to capture movement and posture of 

the human body. Increasingly researchers endeavour to obtain better understanding 

of the relationship between the human motor control systems and gait dynamics. 

Within sport science, movement analysis is used to increase efficiency and therefore 

performance. Within clinical gait analysis, medical professionals apply an evolving 

knowledge base in the interpretation of the walking patterns of impaired individuals 

for the planning of treatment protocols, e.g. orthotic prescriptions and surgical 

intervention, and to determine the extent to which an individual’s gait pattern has 

been affected by an already diagnosed disorder.   

 

The first analyses were done by eye, but with the development of photography the 

eye could be replaced by storing movements as pictures. Photographs were stacked 

on top of each other in order to make an animation of a movement. Muybridge, 

inventor of the zoopraxiscope and photographer, developed a technique of 

synchronising multiple cameras to capture a wide variety of movements. By spinning 

the zoopraxiscope he could create the first ‘movement animations’ of his time2. 

Etienne-Jules Marey improved this technique several times in cooperation with 
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Muybridge. The system was used by Marey in 1883 who correlated ground reaction 

forces with movement5. 

 

With the vast amount of motion analysis in the modern era, there are two main 

categories; kinesiological and biomechanical measurements. Kinesiology in motion 

analysis is mainly associated with anatomical, mechanical and the physiological 

basis of human movement based on qualitative measures such as surveys and 

questionnaires6,7. Several attempts have been made to develop a gait assessment 

scale to quantify the quality of gait in disabled people11-13. These scales mainly look 

into angular change while walking. Dickens et al reported low validity and 

repeatability of the Physicians Rating Scale (PRS) assessing gait in children with 

hemiplegic cerebral palsy (HCP)8. They concluded that the Visual Gait Assessment 

Scale (VGAS) did not show reliability for assessing sagittal plane hip motion in 

children with HCP, however useful data could be obtained for sagittal plane motion of 

the knee, ankle and foot8. Lord et al9 however, developed a VGAS called the 

Rivermead Visual Gait Assessment (RVGA) which was intended for use with patients 

with neurological disease who present with impaired walking. They found that it was 

a valid and reliable way of assessing gait in patients with stroke (both uni- and bi-

lateral) and Multiple Sclerosis (MS). Wolfson et al10 showed a correlation between a 

VGAS and the risk of falling in elderly. Scales in the previous mentioned research 

were shown to be reliable and accurate10. However, visual analysis is subjective and 

the recording sensitivity is reliant on an individual assessor’s opinion of the 

abnormality and its severity.    

 

Biomechanical motion analysis can be divided in two subgroups; kinetics and 

kinematics6. Kinetic measurements provide information about how the movement is 

produced or maintained6. These analyses are hard to perform visually as they are 

related to forces that cause the motion which cannot be seen whereas only the 

effects can be seen. For kinetic measurements force plates are commonly used to 

measure the Ground Reaction Forces (GRF), Centre of Pressure (CoP) and 

calculated Centre of Mass (CoM) displacement11. As force plates are also limited in 

measurement volume and are relatively expensive, moveable force plates are often 

used to provide a cheaper and more flexible solution in terms of infrastructure and 

placement. Studies have shown a high intra class correlation coefficient indicating 

validity comparing fixed with moveable force plates, so moveable force plates can be 

used in a large number of measurements in different conditions12.  
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Kinematics is mainly concerned with motion characteristics without taking the forces 

into account that cause the movement4. Biomechanical studies which use the 

kinematic approach are often carried out by using optical motion camera systems 

(OMCS) to determine the position of an object in a 3 dimensional calibrated space13-

15. Within these systems there are two main groups widely used; passive and active 

marker systems. Systems such as VICON (Oxford, UK) are passive systems using 

infrared reflecting markers attached to the object to obtain kinematic data14. On the 

other hand active systems, such as the CODA (Codamotion, UK) system use light 

emitting LED diodes which are applied to the object to obtain similar kinematic data. 

Measurements of an OMCS are seen as being the gold standard16. Measurements 

are restricted to a calibrated area and therefore not always applicable in human 

locomotion, since only a few strides can be collected17.  Outdoor experiments are 

also problematic with some systems as most optical camera systems use infrared 

reflective light. Recently however, the first optical motion capture system that has the 

abilities to measure in bright sunlight has been revealed by MotionAnalysis, 

(California, United States). It has been suggested that treadmills are often used to 

provide a solution for volume studies. Studies have been done looking at energy 

costs while walking on a treadmill in healthy humans18 and in impaired patients19 20 

can to differ compared to overground walking. 

Recently accelerometers have been used in movement analyses21-23. Billing et al 

reported an unobtrusive on-athlete instrumentation to measure GRF using insole 

accelerometers24. Recent developments utilizing Newton’s second and third law 

provide GRF calculated from CoM acceleration measurements24. Light et al25 used 

accelerometers to measure the skeletal transients on heel strike. Whenever a 

sensing axis deviates from the horizontal plane, a piezoresistant accelerometer will 

measure gravity as well as dynamic acceleration. An accelerometer positioned over 

the lower part of the back may be tilted due to curvature of the back. Postural 

alignment of the walking subject and inaccuracy in positioning of the instrument must 

be corrected for static gravity in order to assess true dynamic acceleration in gait23 26 

27. This causes problems for the analyses as only the acceleration aligned to the axis 

in the accelerometers can be measured17 23.  

 

Research combining accelerometers with separate sensors like gyroscopes attached 

to the object show better results regarding analyses of a moving object2 28. This is 

due to the fact that the vectors of the object system can be transposed onto the axis 

of the global system. Luinge29 measured body segment orientation with gyroscopes 
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and accelerometers. These measurements led to the development a sensor fusion 

between gyroscopes and accelerometers.  

 

New techniques allow sensors to be smaller and more accurate. These sensors can 

be relatively cheap. A sensor fusion like this is also known as an Inertial 

Measurement Unit (IMU)29-32. IMUs are more often used in industrial purposes, 

mainly to measure vibrations in a wide spectrum of applications. Pfau et al17 33 has 

used IMUs on analyses of horses. More recently these IMUs have also been used in 

human movement analyses. Kavanagh et al34 have used IMUs to measure upper 

body accelerations during walking by attaching an IMU with elastic bands to the 

head. Yack et al35 measured the dynamic stability of elderly in walking. However, to 

obtain good reliable measurements methodological issues such as sampling rate and 

filters choices are critical and need to be adressed27. 

 

As shown above, there are many different ways to assess gait. However a survey of 

physiotherapists, reported that in clinical practice only 23.1% of respondents had 

actually had a patient assessed in a gait laboratory. Five main reasons for not using 

a gait assessment tool were lack of time (41.8%), budget constraints (38.8%), lack of 

space (28.4%), and a lack of awareness of and availability of any tool (both 27%)36.  

 

Toro et al36 reported the five most important desired uses for gait assessment tool to 

be intervention (42.1%), to assist in the diagnosis of a gait abnormality (36.9%), to 

monitor patient progress (31.5%), to take a baseline assessment (31.2%) and to 

assist with orthotic prescription (9.4%).  
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1.1  Gait 
 
Human movement is a complex phenomenon with many contributing factors which 

help to determine the quality of life6. Human movement is therefore important to 

understand to get an insight into quality of life and wellbeing of a person. More 

specifically gait assessments can provide valuable information. Interaction with a 

local or greater community, developmental skills such as communications and 

relationships with friends or family can all be dependent on human movement37. On 

the other hand there are also environmental factors involved, such as community 

mobility and type of work which can influence movement patterns37. Both these 

factors are influenced by somebody’s physiological health. For example when 

suffering from cognitive or emotional disorders this has a big effect on community 

mobility affecting children38 as well as elderly39. Spirduso et al40 have mapped the 

most common aspects and the influences on human movement as a vicious cycle as 

shown below in Figure 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Important factors within human movement showing the  

‘vicious circle’ according to Spirduso et al40. 
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1.1.1 Gait cycle 
 
Gait is a combination of various muscles, joints and bodily processes perfectly 

adjusted to each other working to propel the human body. Systems to arrange 

balance, power, control of movement and sensory systems need to react in an 

adequate manner to have a successful gait cycle. Leading robot laboratories in the 

world are trying to create a successful stand-alone robot that can imitate all these 

processes as smooth as human beings. The most and well known example is ASIMO 

made by Honda41. 

 

During the stance phase the energy is transferred from the swinging leg towards the 

stance leg which will prepare for toe-off. One gait cycle is defined by Perry42 as ‘the 

movements and events that occur between successive heel contacts of the same 

foot’. The swing and stance phase are shown in Figure 2 normalised to their stride 

cycle as a percentage.  

These phases can be divided in six main factors, being initial, heel and terminal 

contact as well as toe-off, foot-flat and heel-off42.  

 

 
Figure 2 Walking gait cycle as defined in clinical terms  

  Source: American Academy of Orthogonists & Prosthetics 
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Heel contact is the point in the gait cycle of initial contact where the heel touches the 

floor, also known as the loading phase43. During this period the force vector will be 

posterior of the knee and will move more towards the ankle when moving towards 

midstance43. This creates stability on the ‘stance leg’. Research by Woollacot44 45 

showed that in an eventual slip, the surface of the foot during heel strike increased 

the activity of the tibialis anterior and rectus femoris muscles indicating the 

continuous control of balance. Heel strike can also be seen as the starting point of 

the ‘inverted pendulum model’ which will be explained in further detail in the next 

section.  

During mid stance or foot flat the force vector moves anteriorly to the ankle and 

posterior to the knee and hip43. This phase occurs at around 12% into the gait cycle 

as displayed in Figure 2. Electromyography research by Matsusaka46 revealed that 

during the mid stance the peroneus longus was more active during a greater force 

vector in mid stance and therefore concluded that mid stance plays a role in the 

control of medial-lateral balance in walking. 

Finally during the terminal stance, also known as the toe off, the force vector will 

move posterior to the ankle. This cycle will repeat on the opposite leg until one gait 

cycle is completed. The time between the start to finish of one gait cycle is known as 

the stride time. When looking into one step (50% of a gait cycle) this known as the 

step time42.  Besides the basic timing aspects the single phase can be determined as 

the point from where only one foot is in contact with the floor, which is equal to the 

swing phase of the opposite limb. It follows that the double stance phase is the 

remaining part of the step cycle. Measurements of these phases can be taken by 

means of foot switches47 48, force sensors such as forceplates49 50 or pressure soles51 

but also accelerometers48, gyroscopes52 and electromyography (EMG) 

measurements53. 

 

Aspects of a gait cycle can also be expressed in spatial and temporal factors. Spatial 

factors such as step length (distance between heel strikes on ipsilateral leg), stride 

length (summation of left and right step length)  walking base (medio-lateral distance 

between left and right heel strike) and walking speed (metres per second) are the 

most used parameters42. The most used temporal aspects of gait are step time (time 

between heelstrikes on ipsilateral leg), cadence (measures as steps per minute), or 

step frequency (measured as steps per second)42. These parameters are often 

grouped together and labelled as spatio-temporal measurements of gait.  

The ratio between step length and cadence, also known as the step factor and 

changes during development towards a mature gait. It has been shown by 
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Sutherland et al54 in a study with 186 children ranging between the age of 1 and 7 

years, that the step factor increases until the age of 4 after which the change in 

walking speed is more related to changes in limb length. These results are in 

agreement with Beck et al55 who used a relative greater age range. Both studies also 

agreed that after the age of 5, changes in walking speed were more related to height 

than the step factor54 55. In elderly people it has been suggested that there is a 

decrease in step length56. Reductions up to 10% in step length after correction for leg 

length in healthy elderly compared to healthy younger people have been reported56. 

Maximum step length difference between young and older females of 40% have 

been reported by Schulz and colleagues57. This can be explained by different muscle 

strategies during gait as well as joint weaknesses in elderly participants as showed 

by Monaco et al58 59. Research by Beauchet et al60 concluded that the reduction of 

stride length and increase in stance time were related to decreased walking speed.  

 

Gait is a complex cycle with many variables. In order to understand gait better, 

models have been used to simplify gait. The main models and their use are 

explained in the next paragraph.  

 
1.1.2 Models of gait 
 
Gait is a cyclical movement which can be described with many models. The original 

‘six determinants of gait’ theory is often contradicted by simplified models such as 

‘inverted pendulum’ to ‘multi-muscle’ models61. This section will discuss the 

commonly used theories and models to describe gait from a multilevel perspective.  

 

The ‘six determinants of gait’ were introduced in a classical paper by Saunders and 

Inman61 in 1953. This theory rests on the effectiveness of an object moving in space 

in relation to Newton’s first law of motion. This states that the least expenditure of 

energy can be mechanically achieved by a uniform motion in a straight line. In order 

to make motion of the CoM as uniform as possible over a straight line there are 

certain contributing determinants, the first determinant being 1)pelvic rotation. When 

simplifying the lower limbs as being rigid pendulums in order to eliminate knee flexion 

it becomes visible that the centre of mass (CoM) is rising and falling in a sinusoidal 

manner. When there is no hip rotation the CoM excursion will be increased and will 

therefore subsequently increase energy consumption since there is an increase in 

muscular activation needed to raise the CoM62. With the introduction of pelvic rotation 

the CoM excursion can be reduced which will also reduce energy consumption.  A 
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study by Della Croce and colleagues63 has shown that walking with pelvic rotation 

reduces energy consumption by 10%. Besides pelvic rotation, 2)pelvic tilt plays a role 

in optimizing gait61. By tilting the pelvis the CoM pathway can be lowered and 

therefore optimized in terms of energy cost. However it has been shown that the 

range of motion of pelvic tilt does not affect gait efficiency, as proven by Joseph et 

al64. Another way to reduce CoM excursion is by 3)knee flexion during stance phase. 

During normal gait the leg is extended at heel strike after which it flexes around 15 

degrees during the stance phase. During toe off the leg is extended as well as the 

opposite limb which counts as roughly 40% of the gait cycle and is also known as 

‘double knee lock’. Double knee lock meaning that both knees are fully extended. 

The three determinants above all reduce the excursion of the CoM. Pelvic rotation 

will elevate the extremities of the CoM trajectory whereas pelvic tilt and knee flexion 

will reduce the extremities.  

 

The fourth and fifth determinants are focussed around the foot and knee. After heel 

strike the 4)foot acts as a lengthening of the leg. During the transition phase from 

heel strike towards mid stance it controls the pathway and furthermore smoothen and 

lower the CoM pathway at the same time. During toe off rapid plantar flexion will 

extend the leg and therefore increase the speed of the CoM which will result in a 

decrease in metabolic cost and therefore better efficiency during walking. Equally the 

knee plays a vital more specific role as it will change 5)velocity of knee flexion 

according to the CoM position in order to smooth the sinusoidal wave.  

 

The sixth and last determinant explains how the efficiency of gait is based on 6)step 

width. Humans prefer to walk at a step width of ~0.12L (where L is the leg length) as 

reported by Bauby and Kuo65. Metabolic cost increases at step width smaller than 

0.10L (where L is the leg length) and the preferred step width (0.13L ± 0.03) was not 

significantly different from the minimum metabolic cost compared with the enforced 

0.12L ± 0.05 step width nor 0.11L ± 0.01 as reported by Donelan66. According to the 

‘six determinants of gait’ theory, lateral change of the CoM reduces the excursion 

and makes the movement smoother61.  To summarize, the ‘six determinants of gait’ 

theory rests on the assumption that vertical and lateral excursion of the CoM is 

energetically costly and should be reduced. 

 

The first simplified model of gait that has already been partly assumed by the first 

three determinants of gait is the pendulum model of gait. This model assumes that 

the leg is rigid by excluding the knee, ankle and foot. This model can be 
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mathematically described as a pendulum with L being the length of the pendulum 

and m being the mass and fixed on a vertical circular path around support point O 

and having one degree of freedom can be seen as a simple pendulum67. This is the 

mechanical working of the inverted pendulum model used in most gait analysis22 68-70. 

The simple inverted pendulum is shown in Figure 3.  

 

 
Figure 3 mechanics of an inverted pendulum with h being the excursion of the Centre of 
Mass (CoM), L being the leg length measured from the anterior superior illiac spine to the tip 
of the medial malleolus. When using this model forward displacement can be derived using 
the model proposed by Zijlstra et al71 where d equals the forward distance by for each step. g 
represents the gravitational acceleration and az represents the vertical acceleration.  
 
The mechanical definition of walking is that bipedal walking fits a mechanical 

description as an ‘inverted pendulum’, in which kinetic energy at the beginning of 

each stance phase translates into gravitational potential energy as the CoM rises to 

its highest point near mid-stance62. After mid-stance the potential energy is returned 

into kinetic energy as the CoM falls towards the end of stance72-74.  

 

In clinical gait analysis, mechanical energy is the gait variable which can derive the 

energetic walking cost of a patient’s movement75. During mid-stance the potential 

energy should be returned to kinetic energy as the body falls during the second half 

of the inverted pendulum72.  
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Knowing the characteristics of an inverted pendulum, the step length can be 

estimated by measuring the vertical excursion of the CoM (h) with the leg length (L) 

which can be described as:  

 

 22 2d Lh h   (1.1.1) 

 

Research showed that a correction factor is needed for healthy subjects, which is set 

at 1.25 due to a 25% underestimation of step length71 76. This underestimation can be 

mainly explained by the missing length of the foot, as it lengthens the pendulum and 

therefore increases step length d. Models such as the ‘foot rocker’l can potentially 

model the effects of the foot on gait which are based on a pivot system of the heel, 

ankle, forefoot and toe rocker to preserve energy42.  The inverted pendulum model 

proposes that if the stance leg acts like an inverted pendulum it reduces the energy 

cost more than during the ‘six determinants of gait’ theory77. Both the six 

determinants of gait and the inverted pendulum model are shown in Figure 4.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4 The two major theories of gait with displaying the minimalisation of vertical excursion 
of the Centre of Mass in the a) ‘six determinants of gait theory’ and b) ‘Inverted Pendulum 
model’ both trying to reduce the energy consumption during walking.  
Source: Kuo 2007, The six determinants of gait and the inverted pendulum analogy: A 
dynamic walking perspective 
 

As explained above the correction factor of 1.25 can be more accurately estimated 

by introducing a model proposed by Gonzalez et al78. They have proposed that 

during double stance the CoM is still moving forward. This forwards movement can 

be calculated as 

 

dsd Kp      (1.1.2) 
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Whereby p  is the length of the foot and K the propotial constant. K has been 

estimated as 0.83 by Han et al79 and 0.67 by Schmid et al80. These factors (imagine a 

EUR shoe-size 45 = 29cm) relate to an addition of 24.1cm (when using K=0.83) or 

19.4cm (when using K=0.67). By combining the inverted pendulum model with the 

double stance displacement as 

t dsd d d       (1.1.3) 

The total forward distance (dt) can be determined. However, instead of calculating 

the double stance displacement this can be replaced by a correction factor ɣ as used 

throughout this thesis. As with a step length of 0.77m, the double stance model 

would relate to a correction of the single stance output by 23.8%=100-

(0.77/(0.77+0.241)*100%) when using K=0.83 and 20.1%=100-

(0.77/(0.77+0.194)*100%) when using K=0.67. 

 

Recent work by Alvarez et al81 however addressed the forward movement of the CoM 

by placing an IMU on each foot. They developed a method, combining the gyroscope 

output in the sagittal plane with the acceleration in x- and z-axis, which allowed them 

to measure horizontal displacement without having the uncertainty of the correction 

factor when using the inverted pendulum model.  

 
Throughout this work the inverted pendulum model has been chosen. The aim of this 

thesis was to develop an easy to use method to derive accurate spatio-temporal gait 

parameters which would included the least amount of measurements and technical 

challenges for the end user. Over the next chapters the validation of the inverted 

pendulum will be looked at as well as the determination of the correction factors 

belonging to typical developed adults and Parkinson’s disease.   

 

1.2  Centre of Mass 
 

Human gait and is essential for an independent life. Any abnormalities in gait could 

result in a decrease of mobility and therefore a decrease in health and social life and 

perhaps change in emotional status6. Gait is controlled by a ‘vicious circle’ of internal 

and external influences6 as seen in Figure 1. Therefore it is crucial that gait can be 

understood, defined and accurately analysed in a quick and cost effective way. 
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1.2.1  Reference value of the Centre of Mass 
 

Centre of Mass (CoM) is an important aspect of human locomotion. CoM can be 

defined as being “the point through which, for all orientations of a body, the resultant 

of the gravitational forces acting upon particles in the body pass” as reported by 

Dempster in 195582. CoM is used as a reference point to measure gait dynamics83. 

Research dating back to 1876 by Marey utilized CoM movement in order to perform 

gait analysis84. Measurement devices were primitive but effective for the time; they 

normally did not contain more than a wooden frame with a kymograph. Cavagna et 

al62 reported in 1963 that measurements of the displacement of the CoM represents 

between 60-70% of the total mechanical work done in walking. Furthermore recent 

studies demonstrate that CoM displacement can be used to determine gait 

parameters such as step-frequency and time85 86.  

Researchers have developed a range of methodologies for calculation of CoM 

displacement during walking. Some of the methods utilize kinematic data acquired 

from markers that are placed on the body, and others utilize kinetic data acquired 

from force platforms83.  A simple kinematic method is placing a single marker on the 

sacrum which represents the projected CoM87, whereas a more sophisticated method 

is done by the segmental analysis method which involves multiple markers which are 

integrated with anthropomorphic models to calculate segmental CoM positions. 

Accelerometers have also been used as an alternative kinematic method by Pfau et 

al17 33 to estimate CoM displacement in quadrupedal gait. 

Furthermore techniques as described by Gard et al83 use anthropomorphic data from 

standard tables to determine mass fractions of segmental locations of centres of 

mass.  
 
1.2.2  Location of Centre of Mass 
 

The location of CoM was first estimated by Harless in 1860 by using cadavers88. By 

dissecting the cadavers into 18 segments, he was able to weigh the segments. The 

mass and CoM of the body segments were then measured or estimated using 

sensitive scales and balance plates. The specimens were beheaded criminals, with 

an unknown amount of blood loss, for which the weight cannot be accounted.  

Braüne et al89 followed up Harless in 1891 by using cadavers of German soldiers 

who died due to suicide. To avoid blood loss, they kept the bodies frozen throughout 

the research. They dissected the bodies as previously described, but instead of using 

balance plates, they drilled three thin rods into the segments. The point of the 

crossover of the three external fixed planes, perpendicular onto each other, 
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corresponded to the CoM of that segment82 89. This research was generally accepted 

and therefore used as a standard for more than over half a century31.  

With the introduction of more advanced measurement systems researchers were 

able to determine the location of the CoM in more detail. There are currently two 

methodological approaches in order to determine whole body CoM location being a 

kinetic and kinematical approach.  

 

When Herbert Elfmann invented the first force plate in 1934, a new kinetic method of 

deriving the CoM arose90 91. CoM could be reviewed and balance of whole bodies 

could be measured in living people. As stated in his paper in 1938 where he 

explained the physics regarding his force plate: ‘although designed for the 

investigation of movement, this apparatus can also be used for the more traditional 

measurement of the position of the center of gravity when the body is stationary.’91. 

Dempster82 defined the CoM as ‘The point through which, for all orientations of a 

body, the resultant of the gravitational forces acting upon particles in the body pass.’  

 

For kinetic measurements force plates are embedded in the floor of a gait laboratory 

in the path of the participant. From the force signals that arise when the participant 

walks over the designated force plate, acceleration vectors can be derived in three 

dimensions by using Newton’s second law which can be described as: 

 F ma  (1.1.4) 

where the mass (m) undergoes an acceleration (a)  that has the same direction of the 

force (F). However during the integration process, to obtain the CoM location, 

opportunities for errors will be introduced. The general integration processes will be 

explained in chapter 2.3.4. The advantages of this method are that there are no 

markers needed and it does not rely on anthropometric estimates and therefore 

avoids the errors associated with a segmental kinematic approach92. However , the 

method is prone to error related to stride length variation as participants need to step 

fully on the force plates without deviating from their normal gait92 93. Therefore the 

force platform measurements can be unrepresentative of the participants’ gait93. In 

addition problems are associated with pathological and children’s gait as their step 

length may result in a double strike on the same platform92. 

 

The kinematic segmental method has been suggested as the ‘gold standard´ for CoM 

displacement measurements16. This method relies on a model considering the head, 

arms and trunk as one segment where the lower limb are made up of thigh, shank 

and foot segments94. For each of the segments the CoM is calculated based on data 
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collected from cadavers31. Three dimensional whole body CoM can be derived using 

motion capture systems during locomotion. The major inaccuracies associated with 

the kinematic method are the reference data for segmental CoM positions which may 

not be accurate for the morphology of the test participant94. Furthermore error may be 

introduced by skin movement and incorrect positioning of markers used.  

 

Using the methods above, the whole body CoM is often taken from the 4th lumbar 

vertebra62 95, better known as the projected CoM. Auvinet et al96 confirmed that the 3rd 

Lumbar region is a sufficient approximation of the CoM during normal walking. It has 

been demonstrated by Kerrigan et al87 that the projected CoM motion can be 

estimated anywhere between the sacrum and the 4th lumbar vertebra.  Lundberg97 

reported in 1996 that the fascia over the spinious processes is relatively rigidly fixed 

to the bone, and thus skin movement will follow bone movement more closely than 

many others regions. This area is close to the location of the 4th lumbar vertebra and 

suffers from minimal skin movement during walking98.   

 
1.2.3  Measurements of Centre of Mass 
 
As mentioned before CoM can be used to measure several aspects of gait. Peak-to-

peak amplitude of the CoM vertical displacement is often referred to as vertical 

excursion or vertical displacement. Researchers have reported the vertical 

displacement of the CoM to be 4-5cm for healthy adults at their self selected walking 

speed61. However, as reported by Saini et al93, vertical CoM displacement obtained 

from kinetic and kinematic methods show a significant difference. Gard and 

Childress99 have shown that CoM excursion is underestimated when using force 

platforms. In comparison, CoM excursion has been overestimated during faster 

walking speeds using the sacral marker method83.  

 

Different problems arise when measuring CoM with force platforms in human gait. As 

reported by Donelan in 2001, footsteps in heavy subjects are difficult to trace back to 

their origin of first contact66. Measuring the CoM in children was proven to be difficult 

due to their short step length, resulting in a double heel strike on the force platforms; 

this same problem was found in adults with pathological gaits92. When using force 

platforms it can be assumed that deriving the position of the CoM is accurate, as the 

CoM is not dependent on accurate marker placement83.  
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Vertical CoM displacement can be used to estimate mechanical energy changes100-

102, work62 68 72, to describe symmetry103-105 and as an indicator as overall quality of 

gait61. Mechanical energy is the gait variable which can validate the energetic state of 

the disorder of patient’s movement75.  

 
It has been shown that energy fluctuations in the Centre of Mass (CoM) during 

treadmill walking in humans are not equivalent to ground walking18. Ground reaction 

force have been showed to be significantly different106. The same research concludes 

that forces in mid- and late-stance are different to humans walking overground. 

Furthermore joint kinematics and metabolic rate have shown to be different when 

walking on a treadmill107 108. So for optimal gait mechanics overground walking will 

provide more valid data.  

 

1.3 Gait Survey 
 

In order to gain in insight into the required gait parameters as perceived by clinicians 

a questionnaire was setup via “SurveyMonkey” (http://www.surveymonkey.com) 

where questions related to gait analysis were derived from a previous study by Toro 

et al36 in 2003. Questions were asking about the type of gait analysis and required 

gait parameters that would be useful during their daily clinical routine. The results of 

this survey were taken in account during the development of the gait analysis tool 

described in this work. Thirty specialist physiotherapists with a background in 

neurological rehabilitation were targeted throughout the United Kingdom of who 16 

responded.  

 

Of all respondents 70% were currently doing at least one kind of objective 

measurement regarding gait. The remaining 30% did not do any gait measurements 

but indicated they wish they could. 

 

None of the responses indicated they did perform gait analysis on a majority of 

patients, while they did confirm that gait analysis was needed according to the NICE 

guidelines109.  The top four reasons for not doing the analysis were lack of time, 

budget restraints, wrong equipment and no available space, which is in agreement 

with results found by Toro et al36.  

 

The respondents indicated that they were interested in measuring the following gait 

parameters: Effort (56%), Symmetry (43%), Smoothness (37.5%) and Cadence 
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(31%).  They indicated that there was no currently available equipment which could 

provide these measures in their clinical setting. 

 

The survey respondents were asked if there were any other gait parameters that they 

wanted to use, 42% answered positively. The three main suggestions were the 

quality of movement, the activity at specific joint angles and an overall objective 

measurement regarding ratios within walking (for example normal distributed gait 

parameters linked to age, height, weight and gender).  

 

All survey respondents expressed interest in a method that gave an objective 

measure for the previously mentioned gait parameters that was quick, valid and 

reliable. 75% of the survey respondents indicated such a tool would add clinical value 

in the rehabilitation of patients in particular patient groups suffering from neurological 

conditions. Survey respondents indicated patients with orthopaedic problems 

(43.5%), musculoskeletal problems (37.5%) and elderly with gait deficits (31%) could 

also benefit.  

 

Finally, clinicians taking part were asked for any open comments regarding the 

current gait analysis used in their clinic. The following answers were typical and 

representable for this group:  

 Most indicated the main problems with gait analysis are due to cost and time 

to do analysis  

 One clinician reported that for gait analyses they had to travel about one hour 

by car to be at a gait laboratory in order to obtain objective gait parameters.  

(There is only one clinical gait laboratory in Oxfordshire) 

 Another participant acknowledged the importance of gait analyses, however 

she mentioned due to the lack of technical knowledge their mobile camera 

system hadn’t been used in the last 3 years  

 
The results from Toro et al36 were confirmed by these findings, pointing out that there 

is a clinical need for a cheap, small and quick device to describe clinical gait 

parameters (walking speed, effort, symmetry, smoothness and cadence) in an 

objective way.  

 
From this chapter it can be concluded that current gait measurement tools are 

relatively expensive, difficult to use and not accessible to clinicians. Gait analysis in a 
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clinical setting could provide valuable information about someone’s wellbeing and 

disease progression.  

 

This thesis sets out to develop a tool which can provide an objective outcome 

measurement of spatio-temporal aspects of gait which is accessible and easy to use 

for clinicians. In addition this work sets out to derive spatio-temporal aspects of gait in 

an accurate and reliable manner, as measured by a single body reference point.  
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Chapter 2: Mechanics  

 
 
 

This Chapter explores the sensory technology and mechanics used throughout this 

thesis. It focuses on the sensors in inertial measurement units and relevant parts of 

digital signal processing needed in order to drive gait models as described in Chapter 

1. At the end of this chapter, the main methodological approach with regards to the 

digital signal processing of inertial measurement unit data will be described.  

 

In less than 20 years, MEMS (micro electro-mechanical systems) technology has 

gone from an interesting academic exercise to an integral part of many common 

products. MEMS structures are not only electronic such as processors, but also 

mechanical. This includes a wide spectrum ranging from cog wheels (Figure 5) to 

pressure switches. MEMS technology is used in normal day to day products, for 

example airbags, accelerometers, television screens and disposable medical 

devices110.   

 

Figure 5 Mechanical MEMS (http://www.memx.com/) 
 

2.1:   Inertial Measurement Units 
Sensor fusions between accelerometers, gyroscopes and magnetometers in an 

algorithm are used as inertial measurement units (IMU). In the next paragraphs these 

systems will be treated separately to discuss their functioning in more detail. 

 
2.1.1 Accelerometers 
 
A single axis accelerometer consists of a mass, suspended by a spring in a housing. 

Springs work according to Hooke’s law. Hooke’s law states that a spring will undergo 
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a restoring force which is proportional to the distance it has been expanded111. 

Therefore we can write:  

 F kx  (2.1.1) 

where k  is a specified constant of the spring, x equals the expanded distance. 

Another physical principle is Newton’s second law112. It states that the force operating 

on a mass which is being accelerated will have amplitude  

 F ma  (2.1.2) 

where m  equals the mass in kg and a equals the acceleration in m/s2. Combining 

these two laws we can write: 

 F kx ma   (2.1.3) 

This tells us that an acceleration a will cause the mass to be displaced by: 

 
max
k

  (2.1.4) 

In order to measure in multiple axes, this system needs to be duplicated along all 

required axes. 

 

Development of MEMS technology allows accelerometers to become smaller and be 

more accurate. Dataflow can still be obtained, but less accurately by using Hooke’s 

Law in MEMS technology as mechanics are replaced by digital components. Figure 6 

shows a MEMS triaxial accelerometer by Hitachi Metals. In comparison to the 

accelerometer described before, there is still a mass involved and a housing which is 

vacuum sealed113. Polysilicon springs suspend the MEMS structure above the 

substrate such that the body of the sensor (also known as proof mass) can move 

around in the x and y axis.  Around the four sides of the proof mass, there are 32 

radial fingers. These fingers are positioned between plates that are fixed to the 

substrate. Each finger and a pair of fixed plates generate a capacitor. In this way the 

displacement of the proof mass can be measured by the difference in capacitance.  

 

Capacitance can be written as a function of the amount of charge stored between 

plates which hold a potential difference in Volts. We can write that: 

 

 
QC
U

  (2.1.5) 

 
Where C is the capacitance in Farads, Q equals the charge in Coulomb and U equals 

the potential difference in Volts.  
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Figure 6 MEMS triaxial accelerometer (http://archives.sensorsmag.com/) 

 

In reality there are two main issues concerning the accuracy of measurements. First 

of all is the error of the acceleration measurements. All MEMS acceleration sensors 

are critically damped, otherwise a sudden movement would cause them to resonate. 

Besides, the sensor cannot distinguish between vibration and real movement. These 

can be separated by using digital filters which can distinguish frequencies within 

movements as a result of vibrations known as noise.  

 
2.1.2 Gyroscopes 
 

Gyroscopes are used to measure angular motion or change. There are two main 

categories, mechanical and optical gyroscopes. Within these two categories there 

are many different gyroscopes available for specific purposes. The first rotating 

gyroscope was built by Leon Foucault in 1852. His gyroscope emerged from an 

investigation of the rotation of the earth and consisted of a rapidly rotating disk with 

very heavy rim, mounted in low-friction gimbals.  His theory was that if the earth 

would turn beneath the gyroscope, it would maintain its position in space. Due to 

torque in the gimbals which created extra friction, it was difficult to observe114. Leon 

Foucault is seen as the inventor of the gyroscope, but in 1817 Johann von 

Bohnenberger invented the ‘Bohnenberger’s machine’ which consited of three 

movable gimbals, but a non-rotating ball in the middle115.   
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Mechanical gyroscopes operate on the basis of conservation of angular momentum 

by sensing the change in direction of an angular momentum2 31. According to 

Newton’s second law, the angular momentum of a body will remain unchanged 

unless it is acted upon by a torque112. The fundamental equation describing the 

behaviour of the gyroscope is:  

 
( )dL d I I

dt dt
     (2.1.6) 

Vector   is the torque on the gyroscope with an angular momentum L . Scalar I  is 

its momentum of inertia, vector ω is its angular velocity and α stands for its angular 

acceleration.  

Gimballed gyroscopes or laser gyroscopes are too expensive to be practical and too 

large in size to use in human movement analyses. With the introduction of MEMS 

technology, vibrating gyroscopes are used to replace mechanical gyroscopes. 

Vibrating MEMS gyroscopes have advantages as they are small in size, inexpensive 

and low in power consumption. This makes them ideal to combine in small sensors 

and apply them in human movement tracking. As the earth is moving, any vibrating 

element will be undergoing the Coriolis effect. The Coriolis effect was first described 

by Gaspard-Gustave Coriolis in 1835. For example, taking the plane from Europe 

straight towards the south will give a deflection to the east, as the earth keeps on 

turning. However, this is only when the Coriolis effect is not taken into account. The 

Coriolis effect is caused by the Coriolis force which appears in the equation of motion 

of an object in a rotating frame of reference116. This force creates a second vibration 

when rotating a MEMS vibrating gyroscope in a rotating frame, of which the rate of 

turn measured in angular velocity   can be measured. The Coriolis force is given by: 

 2 ( )cF m v    (2.1.7)    

Where m equals mass and v the momentary speed of the mass relative to the object 

to which it is attached. One of the most dramatic and visible results of the Coriolis 

force is the centrifugal force in cyclones. Due to the linear movement of the 

differences in the pressure zones, and the deviation at the equator to the east and 

west, high and low pressure areas can collide which could create a potential origin 

for hurricanes.  

 

Gyroscope’s outputs mostly used are Euler angles and Quaternions in order to 

describe orientation of the sensor. These two outcome measurements, their 

advantages and disadvantages will be discussed at a later stage in this section.  
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2.1.3 Magnetometers  
 

Magnetometers determine the direction and or strength of the earth’s magnetic field. 

Carl Friedrich Gauss (also known from the Gaussian distribution), published a paper 

in 1832 with a device that could measure the strength of the earth magnetic field117. 

The device worked on the fundamental assumption that every body, in which 

magnetic flux occurs, always contains an equal amount of north and south flux117. 

Bear in mind that there are two main types of magnetic bodies: firstly materials such 

as soft iron, immediately change the north and south flux under the influence of a 

slight external force. Once the force decreases and returns to the default force, such 

bodies return to their previous magnetic state. In contrast materials such as 

tempered steel remain in the changed state even after the external force deceases117 

118. When measuring the earth’s magnetic field, measurements of the second sort of 

magnetic bodies is meant. 

In order to measure the angular change in magnetic bodies of the second kind, we 

can assume that all the different parts can be described as 0dm   where dm stands 

for the element of free magnetism in a particle. When measuring in a three fixed 

plane, perpendicular to each other x,y and z flux can be designated as xdm = X, ydm 

= Y and zdm = Z . Since under the assumption that k refers to an arbitrary constant 

magnitude, (x-k)dm = X 117. From these relations, by using the equation (2.1.8) it is 

possible to determine the earth’s magnetic field vector (V


). 

 

 ( cos cos cos )V x y z dm    


 (2.1.8) 

 
2.1.4 Sensor Fusion 
 
Moore’s law, which describes the decreasing size of electronics over time, plays an 

important role in predicting the future regarding cost and size within MEMS32. Sensor 

fusion is the combination of sensory data to obtain a more reliable and accurate 

single outcome measure than the combined sensors can produce individually.  

The sensor used in this work uses Kalman sensor fusion between a tri-axial 

accelerometer, tri-axial gyroscope and tri-axial magnetometer. These systems are 

commercially available (Xsens, Enschede, the Netherlands, and Philips Pi-Node, 

Eindhoven, the Netherlands). The Kalman fusion between sensors remains a black 

box of which the specifications are unclear but has to be similar to Figure 7.  
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Figure 7 A general outline of the fusion integration process 

 

In this case, the magnetometers are used to correct drift caused by the gyroscope. 

However, the influence of iron influences the local magnetic field which is measured 

by the magnetometers which on its turn affects the orientation output of the 

gyroscope. The sensor fusion in the IMUs used in this research creates the 

possibility to acquire accurate orientation within human movement.  

 
2.2: Orientation Outputs 
 

As mentioned before gyroscopes measure angular change or motion. The outputs of 

the gyroscopes (and Kalman fusion) are combined into two parameters, the Euler 

angles and the quaternions. Both outputs are explained in the next sections.  

 
2.2.1 Euler Angles 
 

The term Euler angle is used for any representation of 3 dimensional (3D) rotations 

decomposed into 3 separate angles119. When thinking about rotations, using the 

same algebras for 2D rotations is common. Euler angles can be seen as angles used 

in 2D rotations. But within 3D rotations, using a rotation matrix, many more aspects 

need attention. 

 

Euler angles are commonly used in the aviation and engineering industry but also in 

astronomy. They are mainly applied in devices that rely on gyroscopes, as Euler 

angles are one of the raw outputs of a gyroscope. Each sector has its own terms for 

the Euler angles. Table 1 shows the term in combination with the symbol of the Euler 

angles.  
Table 1 Symbol and names of Euler angles2 

 

 

 

 

Rotation order Airplane Telescope symbol angular velocity 
1 Attitude Elevation   Pitch 
2 Bank Azimuth    Roll 
3 Heading Tilt    Yaw 

Accelerometers 

Magnetometers 

Gyroscopes 

Static  
Estimate 

Continuous 
Estimate 

Fusion  
Integration Orientation 
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Starting off with the 2D rotations using a 2D orthogonal matrix, the transformation of 

Cartesian coodinates by 

 2

' cos sin cos sin
( )

' sin cos sin cos
x x x x y
y y y x y

   


   
          

                    
M  (2.2.1) 

(Basic 2D rotations with orthogonal matrix M2 setup for a rotation with angle ɵ) 
 
The 2x2 matrix M2 is written in the form shown in equation(2.2.2) with the properties 

as shown in equation(2.2.3) and equation(2.2.4) 

 2

cos sin
( )

sin cos
A B
B A

 


 
    

    
   

M  (2.2.2) 

(Matrix M2 described as a 2x2 matrix with variables A and B) 
 

2 2
2 1det A B  M     (2.2.3) 

(Determinant of matrix M2 in fuction of variables A and B) 
 

 
2 2

2 2 2 2

1 00
0 10

T A B
A B

   
        

M M  (2.2.4) 

(The balance on both sides of the 2D rotation matrix M2) 
 
When looking into a 3D rotation, many more aspects should be taken in mind. Figure 

8 shows what happens to x,y,z-axis and their vectors in corresponding planes while 

performing a 3D rotation. When writing M2 as a 3D orthogonal matrix, it results in 

matrix R.   

 
Figure 8 3D rotations starting with roll defined as angle θ followed by pitch defined as angle Ф and 
ended by yaw defined as angle Ψ  
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3 dimensional (3D) rotations can be divided into single dimensional rotations. They 

emerge in a specific order, depending on order of rotation. When following the 

rotations in Figure 8, angles for each rotation can be determined starting with the 

rotation around the x-axes with angle θ. This rotation can be defined as matrix RX 

  

cos 0 sin
( ) 0 1 0

sin 0 cos
yR

 


 

 
   
  

    (2.2.5) 

  
(RX in Euler angles) 

 

The rotation around the x-axes is followed by a rotation around the y-axes with angle 

ϕ will result in the rotation matrix RY defined as: 

  

 

 
1 0 0

( ) 0 cos sin
0 sin cos

xR   
 

 
   
  

    (2.2.6) 

(RY in Euler angles) 

Following the two rotations, there is a rotation around the z-ax with angle Ψ. This can 

be defined in a rotation matrix defined as RZ: 

  

     
cos sin 0

( ) sin cos 0
0 0 1

zR
 

  
 
   
  

                   (2.2.7) 

(RZ in Euler angles) 

 

The order of rotation also determines the order of multiplying. In this example there is 

the matrix multiplication or RXRYRZ which results in rotation matrix RX,Y,Z: 

 

, ,

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

x y zR
    

           
           

 
    
   

  (2.2.8) 

(RX,Y,Z in Euler angles) 
 
This rotation matrix can be used to transform vectors from the object system to the 

global system. The result will be VOG defined as: 
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 , ,

O

OG X Y Z O

O

X
V R Y

Z

 
    
  

 (2.2.9) 

(VOG in Euler angles) 

 

Where VOG stands for the transposed vectors X, Y and Z from the object system into 

the global system.  

 

2.2.1.1 Mechanical gimbal lock 

Euler angles are relatively easy to understand, easy to represent and can be 

visualised. However they can suffer from singularities of which one important one is 

called ‘gimbal lock’. Gimbal is a term used in the structures from a gyroscope (Figure 

9), it forms a single ring around an axle within the gyroscope on which the stable 

member turns. Gimbal lock is a loss of one degree of freedom in 3D space. When a 

plane rotates 90 degrees (or 270 degrees) from its initial position in the y-axis, the 

gimbal rings of the x and z axis align to each other. When the plane would move into 

the x or z axis, it would still give the same reading for both axes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Inside mechanics of a gyroscope used in the Apollo 11 flight in 1969 
Source: http://history.nasa.gov/ 
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One of the most familiar gimbal lock problems happened during the Apollo 11 flight in 

1969. They encountered the problem of losing one degree of freedom just before 

reconnecting the lunar excursion module to the command module but managed to 

get out of the gimbal lock with some minor corrections. 

 

2.2.1.2 Mathematical gimbal lock 

The gimbal lock explained above, is purely mechanical. There is also a possibility of 

going into mathematical gimbal lock. The Euler angle sequence xyz can be used to 

show where this problem arises.  

 

In the rotation matrix from equation(2.2.8) and that Φ, θ and Ψ represent rotation 

about the x, y and z axes. As mentioned earlier, to create this singularity called 

gimbal lock in the xyz sequence, there must be a rotation around the y-axis to align 

the z and x axes. Bear in mind that if 
2
   the resulting rotation matrix would result  

 

 , ,

0 0 1
( , , ) sin sin cos cos sin sin sin sin cos cos 0

2
cos sin cos sin sin cos sin sin sin cos 0

X Y ZR 
           

         

 
    
   

 (2.2.10) 

(Rotation matrix RX,Y,Z with θ = π/2) 

 

Considering Φ being 0 and Ψ being a random angle within the range of 1 to 360 

degrees, equation(2.2.8) will result in: 

 

 , ,

0 0 1
(0, , ) sin cos 0

2
cos sin 0

X Y ZR    
 

 
   
  

 (2.2.11) 

(Rotation matrix RX,Y,Z with Φ = 0 and Ψ being an arbitrary angle) 
 

When turning into the different axis with Ψ being 0 and Φ being a random angle 

within the range of 1 to 360 degrees, equation(2.2.8) results in: 

 

 , ,

0 0 1
( , ,0) sin cos 0

2
cos sin 0

X Y ZR   
 

 
   
  

 (2.2.12) 

(Rotation matrix RX,Y,Z with Ψ = 0 and ɵ being an arbitrary angle) 
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When replacing the Φ with - Φ, the equation(2.2.12) results in: 
 

 , ,

0 0 1
( , ,0) sin cos 0

2
cos sin 0

X Y ZR   
 

 
    
  

 (2.2.13) 

(Rotation matrix RX,Y,Z with Ψ = 0 and -ɵ being an arbitrary angle) 
 
Looking at the equations (2.2.11), (2.2.12), (2.2.13) notice that 

, , , ,( , ,0) (0, , )
2 2X Y Z X Y ZR R    and results in a single loss of one degree of 

freedom. Mathematical gimbal lock often occurs in program code which results in 

sudden loss of control and or signal120.  

 

In order to resolve this problem quaternions were considered in order to transpose 

the acceleration vectors from the object to the global system. Quaternions and the 

use of quaternions will be discussed in the next section.  
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2.2.2 Quaternions 
 
Quaternions are commonly used to represent rotations. Quaternions were introduced 

by Sir William Hamilton in 1844 at a conference at the Royal Irish Academy121. 

According to the story, Sir William Hamilton walked along the canal in Dublin on the 

16th of October 1843 when he found the solution to use complex numbers into higher 

dimensions as shown in equation (2.2.14)121. Quaternion algebra can be used in 

rotations of rigid bodies in 3 dimensional (3D) space122. Rotations through 

quaternions are used in many applications such as virtual reality120, aerospace 

engineering28 and orbital mechanics. This is mainly due to the fact that quaternions 

require less time than any other representations in calculations and are not affected 

by singularities123.  

 2 2 2 1i j k ijk      (2.2.14) 

(Fundamental formula of quaternion algebra by Hamilton, 1844 
where  i, j, and k represent complex numbers) 

 

Quaternion comes from the Latin word Quaternio which means ‘A set of four’. The 

combined operation of Scalar and Versor requires four numbers: one for scale, one 

for angle and two for orientation (common plane)122. 

 

Vector and scalar mathematics form the basis of quaternion multiplication. A vector is 

defined as a line segment with a starting point and direction. When a vector has a 

starting point in point A, the direction of the vector x will lead to a unique point B. 

Hamilton introduced an equation (2.2.14) looking at the relationship between two 

vectors in the same way that a vector represents the relationship between two points. 

When quaternions are applied to a vector, they create a unique new vector with a 

new length and direction.  

A vector is defined by a fixed length and a variable orientation, however a quaternion 

is defined by a fixed relative length, and a variable relative orientation124.  

A scalar is defined as the ratio between the lengths of two parallel vectors 


A  and 


B . 

It presents the relative length of one vector with respect to the other. The scalar in 

programming language has been replaced by the term real part.  

A quaternion is an operator that changes the orientation and length of a vector as: 

 

 A Q B
 

   (2.2.15) 

(Quaternion (Q) representing a Geometrical Quotient of two vectors A and B with the 
quaternion operator noted by ◊ ) 
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The definition in equation (2.2.15), is specified into vector and scalar changes. 

Following up (2.2.14) and knowing that a quaternion exists out of a scalar and three 

vectors (one for angle and two for orientation) we can write: 

 0

0 1 2 3

q q q
q iq jq kq



 
  

 (2.2.16) 

(Quaternion displayed as the function between one scalar (q0) and three vectors (q1q2 q3) multiplied 
according to the Hamilton’s formula i, j, and k)  

 

where q0, q1, q2, and q3 are real valued numbers and i, j, and k are the standard 

orthonormal basis and can be written as  2 124 125. Hamilton’s fundamental formula 

for quaternion algebra is not complete without going into the complete multiplications: 

 
k ij ji
i jk kj
j ki ik

  
  
  

 (2.2.17) 

(Remaining fundamentals for quaternion algebra by Hamilton 1844) 
 

Knowing a single quaternion equation (2.2.16), quaternion multiplication can be 

done. A multiplication between the quaternions p and q is defined as: 

 

0 1 2 3 0 1 2 3

0 0 0 1 0 2 0 3

2
1 0 1 1 1 2 1 3

2
2 0 2 1 2 2 2 3

2
3 0 3 1 3 2 3 2

( )( )pq p ip jp kp q iq jq kq
p q ip q jp q kp q

ip q i p q ijp q ikp q

jp q jip q j p q jkp q

kp q kip q kjp q k p q

      
   

   

   

   

 (2.2.18) 

(Result of a quaternion multiplication between p and q) 

 

Looking into Hamilton’s rule for quaternion algebra equation (2.2.17) there is a way to 

simplify the multiplication shown in equation (2.2.18). 

 0 0 1 1 2 2 3 3 0 1 2 3 0 1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

( ) ( ) ( )
( ) ( ) ( )

pq p q p q p q p q p iq jq kq q ip jp kp
i p q p q j p q p q k p q p q

         

     

 (2.2.19) 
(Result of quaternion multiplication p and q according to Hamilton’s rule for quaternion algebra) 

 

2.2.2.1 Quaternions and rotations 

As seen earlier in the Euler angle Section 2D rotations with an arbitrary value ɵ in the 

easiest way can be written in a 2D matrix Called M2 and thus: 
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 2

' cos sin cos sin
( )

' sin cos sin cos
x x x x y
y y y x y

   


   
          

                    
M  (2.2.20) 

(Basic 2D rotations with orthogonal matrix M2 setup for a rotation with angle ϕ) 
 

Quaternions can also be written as a function of Euler angles in radians119 124 125. 

Pitch is displayed in equation(2.2.21), roll in equation (2.2.22)and yaw in 

equation(2.2.23). To convert these formulas to degrees they have to be multiplied by 

180 / . 

 

 1 0 1 2 3
2 2
1 2

2tan
1 2( )

q q q q
q q

  


 
 (2.2.21) 

(Pitch [ϕ] in a function of quaternions) 
 

 
 1

0 2 3 1sin (2( ))q q q q    (2.2.22) 

(Roll [θ] in a function of quaternions) 
 
 

 

1 0 3 1 2
2 2
2 3

(2 )tan
1 2( )

q q q q
q q

  


   (2.2.23) 
(Yaw [Ψ] in a function of quaternions) 

 
This unique aspect creates the possibility to use quaternions which are not affected 

by singularities, to transform them to Euler angles when needed. It combines the two 

together into a new dimension. To refer back to Pitch Roll and Yaw, please see 

Figure 8. 

 

As shown before in section 1.3.1 the Euler angle method suffers from singularities. 

Therefore quaternions might offer another opportunity to transpose vectors from the 

object onto the global system. A 4x4 rotation matrix R(q) consisting of quaternions has 

been used throughout this thesis and is shown in equation (2.2.24) 

 

 

2 2 2 2
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2 2 2 2
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0 1 2 3

(q q -q -q ) (2q q -2q q ) (2q q +2q q ) 0
(2q q +2q q ) (q -q q -q ) (2q q -2q q ) 0
(2q q -2q q ) (2q q +2q q ) (q -q -q q ) 0

0 0 0 (q q q q )

q

 
  
 
 

    

R  (2.2.24) 

(Matrix R(q) expressed as a function of quaternions) 

 

Using a matrix multiplication between the translatory acceleration vectors, the 

transformation between the object and global system can be made. Therefore we 
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can write equation (2.2.25), where a(gs) is the global translatory acceleration, and a(os) 

is the translatory acceleration in the object system. 

 

      0 1 2 3, , , , ,gs os q

x
a x y z a y

z

 
   
  

R   q q q q  (2.2.25) 

 

2.3: Digital Signal Processing 

 

Digital processing is the processing of signals by digital means126. Historically 

analogue signal processing goes back to early electrical engineering and can still be 

found in simple radios, and televisions. However, digital signal processing circuits are 

currently replacing analogue processing in devices such as MP3 players, mobile 

phones and internet modems which allow the systems to become smaller, more 

energy efficient and robust126.  

 

A very important part of digital processing is digital filtering. With systems becoming 

smaller and therefore more sensitive to the surrounding environment, filtering 

becomes an essential step in creating new systems. In order to establish which 

frequencies in the signal are noise (i.e. movement artefact, power net frequency) 

frequency analysis has to precede the actual filtering process. Filtering processes are 

commonly processed according to Figure 10 where xa(n) refers to the analog noisy 

signal which becomes transformed by an analogue-to-digital convertor (ADC) to xd(n) 

which is the noisy digital signal. The next block is the actual digital signal processing 

(DSP) block which performs the necessary frequency analysis and appropriate digital 

filtering127.   

 
Figure 10 Simple block displaying the analogue to digital conversion (ADC) combined with a 

simplified digital signal processing (DSP) filtering block according to Tan127. 

 

The next two short paragraphs will explain the basics and effects of the combination 

of frequency analysis and digital filtering.  

 

Digitized Noisy 
Input 

Clean Digital Signal Analogue Noisy 
Input 

ADC DSP 
Digital Filtering 

( )ax n  ( )dx n  ( )dy n  
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2.3.1 Digital Filtering 
 

Digital filters can be divided in two primary types into, the Infinite Impulse Response 

(IIR filters) and the Finite Impulse Response filters (FIR filters). FIR filters are also 

known as recursive filters, as the output is only calculated from current and previous 

input values. IIR filters on the other hand use the output in addition to input values 

which rely on previous output values, so there is a feedback within the filter128. Using 

this feedback system an IIR filter requires less memory and calculations than a 

similar FIR filter129. However, IIR filters introduce another aspect of noise into the 

signal and are often hard to implement in existing applications128 129. FIR filters have 

more advantages as they can be easily designed, simple to implement on existing 

systems and when not using a feedback system, FIR filters run on less memory, 

which makes them faster and therefore introduce less noise128 129. 

 

Sampling theorem states that a continuous-time signal can be reconstructed from 

discrete, equally spaced samples if the sampling frequency is at least twice that of 

the highest frequency in the time signal128. The sampling frequency is well 

established and known as 
1

sf t
  where t  indicates the sampling interval. 

According to the sampling theorem, the highest frequency that the filter can process 

is called the Nyquist frequency (fnyq) and can be calculated by using equation(2.3.1)  

 

 
1/

2nyq
tf 

  (2.3.1) 

 

Sampling frequencies within gait research performed by using optical motion capture 

systems range between 50Hz in slow walking130 up to 100Hz in walking18 131. 

Accelerometers in gait generally have a sampling frequency of 100Hz71 132. 

 

A filter often used in gait research is the Butterworth filter71 76 131 133 134  also known as 

a maximally flat magnitude filter as, the bandpass is mathematically as flat as 

possible. The specific bandpass for the most common filters are displayed in Figure 

11, in which different magnitude responses are shown129. The effect of a 2nd order, 

Butterworth low-pass filter with a cut-off frequency of 13Hz is shown in Figure 12.  
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Figure 11 Magnitude response shapes for the most commonly used filters with a stop and 
pass of the low pass band set at 250Hz and 200Hz respectively. The upper pass band pass 
and stop frequencies are set at 400Hz and 450Hz.  
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Figure 12 Simple example of a sinewave sampled at 128Hz (grey solid line) with additional 
uniform white noise filtered by a 2nd order, Butterworth low-pass filter with a cut-off frequency 
of 13Hz (red striped line). 
 

The order of digital filtering can be defined as the number of previous inputs used to 

calculate the current output126. Formula (2.3.2) shows a zero order filter.  

  

 n ny x  (2.3.2) 
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Filters can be either act as an amplifier (K>1), attenuator (0<K<1) or inverting 

amplifier (K<1) as shown in formula (2.3.3): 

 

 n ny Kx  (2.3.3) 

 

The order of a filter can be defined as the maximum delay in samples used in 

creating each output sample135. Equation (2.3.4) shows what different order filters 

look like with respect to their amplification function where the first function if a zero 

order filter, the second function is a first order filter and the third function is a j-order 

function:  
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0 ...

n n

n n n

n n j n j

y K x
y K x K x
y K x K x







 
  

 (2.3.4) 

  

By an increase of order within a filter, the cut-off bands are steeper as more previous 

points are being selected and processed during the filtering process. It also creates a 

minimal offset (delay) that increases with an increasing order, which becomes 

apparent in Figure 12.  

 
2.3.2 Frequency Analysis 
 
In order to determine the frequency of a certain signal, a frequency analysis has to 

be performed. An easy example to explain the use of frequency analysis in 

combination with filtering is audio sampling. Expensive video cameras have the 

ability to eliminate the noise caused by the wind touching the microphone by active 

frequency analysis and filtering. When performing a frequency analysis on this signal 

containing both signal and noise, it becomes apparent in which frequency bins the 

actual signal and noise is. In this example of wind a high-pass filter needs to be 

applied (cutting the low frequencies out of the signal) of about 200Hz136. Within 

walking depending on the research question the general accepted sample frequency 

is 100-120Hz18 71 131 132 137 138. Taking fnyq in mind the maximal frequency is about 50Hz 

within walking. An example of a Fast Fourier Transform (FFT) analysis is displayed in 

Figure 13.  

 



 

   37 

FFT spectrum

0

200

400
600

800

1000

1200

0 25 50 75 100 125 150 175 200 225

Frequency Bins (#)

A
m

pl
itu

de
 (a

u)
FFT spectrum

 
Figure 13 FFT spectrum generated from a sine wave (217Hz, sample rate 1000Hz) divided 
over 250 frequency bins which show the real and imaginary part with peak amplitude 
response on frequency bin 54 and 196 which relates to 217Hz.  
 
Discreet Fourier Transform (DFT) analysis is another method to determine frequency 

responses with in a signal. This however requires more time to process as more 

operators ( 2
2 ( )N Log N ) are included than in a Fast Fourier Transformation ( 2N ) but 

will result in a higher resolution of the frequency spectrum128.   

 
2.3.3 Allan Variance analysis 
 

One way to notice noise, as it is a short time variation in the output, is to look at the 

peak-to-peak output variation or the standard deviation of the output while the sensor 

is at rest. These measurements will be in degrees per second ( 0 /s ).  

Noise can also be defined as a function of frequency and be detected by using a Fast 

Fourier Transform (FFT) or power spectral density (PSD) analysis. The output of this 

analysis is often 0 / /s Hz  or 0 2( / ) /s Hz . Depending on the application of a sensor 

long term measurements error can be expressed in 0 /hr  and short term in 0 /s .  

 

Allan variance is a time domain analysis technique originally developed to study 

frequency stability of oscillators139. In the Allan Variance, unknown variables in the 

known data are assumed to be generated by noise of a specific character. It defines 

five noise terms known as the quantization noise, angle random walk, bias instability, 

rate random walk, and rate ramp140.  

 

Quantization noise occurs at the start of the measurement within the first few 

seconds before noise of different spectra start to disturb the signal127. Quantization 

noise related to the rounding of analogue numbers when using an analogue-digital 
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convertor is shown in Figure 10. Angle random walk (AWR) is the initial (white) noise 

that can be measured at start of a measurement, that is directly applicable to angle 

calculations over a relative short duration141. It has been proven that the white 

noise ( ( ))t  increases in linear fashion over time as ( )t t    where   is the error 

over time t (Thong et al142). Since an angular rate sensor measures the rotation rate 

about its sensitive axis, the output of a rate sensor will be a signal proportional to 
0 /hr . Bias instability is the minimal and most stable part of the Allan variance often 

measured in 0 / hr . This point determines the best given stability for the gyroscope 

tested and represents the integrity of the MEMS sensor. This could be dependent on 

temperature sensitivity as well as measurement (validated) and operating (maximum 

and minimum detectable values) range143. Sensors like the Xsens (Enschede, 

Netherlands) have internal temperature sensors which correct for variation in 

temperature automatically. Bias instability is always influenced in direct current 

devices by Flicker Noise, also known as pink noise127. These noises exist due to 

‘impurities’ within the electrical systems, which use for example transistors or 

conductors. When the measurement duration is prolonged there will be an increase 

in Allan variance which is known as the rate random walk (RRW)144. 

 

Time series with n samples obtained from a sensor can be divided in a certain 

sample time with duration t  between data points. Taking a constant sample 

frequency clusters can be created by taking 0 0, 2 ,....t t m t    where ( 1) / 2m n  . In 

this way averages of the sum of each cluster can be calculated140. Allan variance can 

be defined as the two-sample variance of the data cluster averages as a function of 

cluster time140. A possible log-log plot is shown in Figure 14. 

 

Allan variance ( 2 ) as a function of logarithmic time intervals ( t ) with number of 

samples (n), with data recorded length (m) and as a sum of list of average bins ( k ) 

is  estimated as follows140 
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   (2.3.5) 

 

In order to determine the characteristics of the underlying noise processes the Allan 

deviation ( 2 ) is plotted as a function of t  on a log-log scale141. It follows that  
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 2 2( ) ( )t t     (2.3.6) 

 

Different types of random process cause slopes with different gradients to appear on 

the plot, as shown in Figure 14.  

 

 
Figure 14 A possible log-log plot of Allan Deviation analysis results141 

 

An attempt to perform the Allan deviation analysis on the IMU sensor (MTx, Xsens, 

Netherlands) failed due to the masses of data and the limitations of own written 

software (LabVIEW 8.5, National Instruments, Ireland) which required more memory 

than available. Woodman141 performed similar analysis in 2007 on these sensors. 

Results from this study were used to model the drift over durations and to compare 

the sensors performance against simulated theoretical results. It was found that the 

first 60 seconds of a measurement are affected by white noise. It was concluded that 

these sensors could not be used for Inertial Navigation Systems since long term 

accuracy was impossible to achieve141.   
 
 
2.3.4 Integration and differentiation 
 

In order to track the movement of an object in space, the position is needed. Hence 

accurate integration is needed. The raw output of an accelerometer is acceleration. 

Acceleration can be expressed as the change of speed over time and be displayed 

according to the SI (le Système International d’unités145) unit as ms-2. The most 

commonly known form of acceleration is the local gravitational constant (g). This 

constant is averaged globally and equals approximately 9.81ms-2 as documented in 

1901 by the 3rd Conférence Générale des Poids et Mesures (CGPM)146.  
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There are several forms of integration. An example of the most commonly known 

integration is displayed in equation (2.3.7) 

 

 11
1

n nx dx x C
n

 
  (2.3.7) 

 

The formula displayed above however cannot be used within numerical integration. 

One of the possibilities of integration with numerical values is Simpson’s rule of 

Integration which calculates a definite integral128. Simpson’s rule of integration is 

displayed in equation (2.3.8). Figure 15 shows the difference between the two 

integrals shown in equation (2.3.7) and (2.3.8). 

 

 1 1
1 ( 4 )
6

i

i j j j
j o

y x x x t 


     (2.3.8) 

 

It has been shown by Thong et al142 and Farell and Borth147 that the standard 

deviation of the measured position due to acceleration noise, in the absence of drift 

and initialization errors, increases as 1.5t , where t is the integration time. Therefore 

de-drifting signals in their static phase is a commonly accepted method to reduce the 

drift and therefore increase the accuracy of double integration148. 

 

 

 

 

 
Figure 15 two different types of integrations shown on generated data. The graph on the left 
showing the standard ‘area under the curve’ numerical integration and right showing the 
integration process according to the Simpson’s rule of integration taking the residue in 
account. Using Simpson’s rule of integration results in a more accurate integration and 
therefore cleaner integral of distance over time.  



 

   41 

It is worth pointing out that the integration effect is not always deterious. For instance, 

if the vibration is perfectly symmetric, then the integration effect can actually diminish 

the error by cancelling out the deviations149. Unfortunately these circumstances can 

only be obtained in perfect laboratories conditions. Overall, error in the 

measurements will cause the accumulation of speed and distance errors very quickly 

over a short period of time which can last up to 15 seconds in static state, and less 

than 5 seconds in dynamic state150. 
 
This approach to integration has been chosen throughout the methodology of this 

thesis since the combination of filtering and integration (as shown in the next 

Chapter) resulted in the most accurate integrals of acceleration to speed and 

position.  

 

As well as integration there is also differentiation. Differentiation can be defined as 

the ‘rate of change’ of one quantity against another151. Error due to rounding will 

appear within numerical differentiation. This has been formed into a mathematical 

formula by Kranzer152 in 1963 and used as a basis to develop more difficult 

algorithms by current research153 154. Within this aspect differentiation will always be 

referred to the rate of change of a derivative of distance over time, of which the most 

commonly used units are displacement [m], velocity [ms-1] and acceleration [ms-2].  

 

2.4: Practical Application 

This section will discuss the practical application and outcome measurements from 

the different digital processing applications as decribed above. Data shown in this 

section is real data collected by an IMU (MTx, Xsens, Netherlands) applied over the 

projected CoM during self selected walking in typical developed adults. The aim of 

this paragraph is to show and justify why certain methods have been chosen above 

others in order to derive accurate relative vertical position of the projected CoM.  

 

2.4.1 Transposing acceleration vectors from object to global system 

As described in Chapter 2.2 there are two main orientation outputs that result from 

measurements taken from the IMU (MTx, Xsens, Netherlands). Both have their 

advantages and disadvantages which are mentioned throughout Chapter 2.2.1 and 

2.2.2. The aim of this first approach was to explore the Euler angle output in order to 

rotate the acceleration vectors from the object to global frame by means of the 

rotation matrix displayed in equation (2.2.8).  
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Results have shown that they suffer from singularities which could affect 

measurements taken during walking.  A visible example is shown in Figure 16Error! 
Reference source not found. where a subject takes a couple of steps while the 

trunk tilts over 90 degrees, causing mathematical Gimbal lock.  

Singularities in Gait using Euler Angles
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Figure 16 Visible singularities when using Euler angles where the pitch (red line) reaches 90 
degrees, where the yaw (green line) and roll (blue line) lose their data accordingly.   
 

Based on these results quaternions have been chosen throughout this work instead 

of Euler angles as they do not suffer from these singularities. Quaternions at the 

same time have the benefit that they require less processing power124 which resulted 

in less time required to transpose the accelerations from the object to global system.  

 

2.4.2 Double integration process from acceleration to relative position 

Another utilized raw output of the IMU measurements is acceleration. As acceleration 

itself can’t be utilized within the gait models proposed in Chapter 1.1.2 double 

integration of the signal is needed. Within LabVIEW 8.5 there were about 83 general 

integration methods available. Each could be specified by changing, for example, the 

integration width, initial and final condition and point-by-point integration. Adjusting 

these factors will change the outcome of the integration significantly. Therefore the 

aim of this stage was to explore the effects of different means of integration on the 

effect of the integral of acceleration.  

 

A typical short sampling integration, according to numerical and Simpson’s rule of 

integration, is shown in Figure 17Error! Reference source not found. showing 

signals from a reference point of real life data over 3.5 seconds. It becomes apparent 

that there is a short sign wave drift in the position signal which was also reported by 
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Woodman141. It is important to mention that over short time integrations the error is 

relatively small but will increase by 1.5t , as mentioned earlier.  
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Figure 17 Example of standard numerical integration compared to the Simpson’s rule of 

integration. Blue thin line showing the numerical integration and the red thick line showing the 

Simpson’s rule of integration with the Green line indicating the error over a small 

measurement period. 

 

These results show that numerical integration is introducing drift in the signal over a 

short duration of time which increases the error when compared to the Simpson’s 

rule of integration. These results are in agreement with Chapter 2.2.3.  

 

2.4.3 Filtering and de-drifting 

 

As mentioned before, integration alone without additional DSP would cause the 

signal to drift. The aim of this section was to determine if commonly used filters found 

in the literature review would suit DSP when processing IMU data.  

 

From literature it was decided to use a Butterworth Filter (4th order, cut-off frequency 

of 25Hz) which is commonly used throughout biomechanical movement research. 

Figure 18 shows a practical example of an applied 4th order Butterworth Filter on 

vertical, un-transposed, gravity corrected acceleration data as recorded by the MTx 

(Xsens, Enschede) on a typical developed adult. It becomes visible when looking at 

the difference between the raw and filtered data, that the peak amplitudes of the raw 

data are suppressed after filtering. Furthermore the offset (as mentioned in Chapter 

2.3.1) becomes visible. Fast Fourier Transform analysis showed that with these 

settings all (unwanted) frequencies below 25Hz were removed from the raw signal. 
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Therefore it was accepted that a Butterworth filter could be used to filter the vertical 

acceleration before and between the integration steps.  
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Figure 18 Applied example of 4th order Butterworth Filter on a section of vertical un-
transposed but gravity corrected acceleration data over a 10 metre walk in typical developed 
adults. The dashed line (black) shows the raw data, the red line shows the filtered data with 
the blue line indicates the difference after filtering.  
 
Additionally by combining the filter with the use of a Hanning spectral analysis (as 

discussed in Chapter 2.2.3) as an active filter, slow frequency drift can be detected 

and subtracted. The flow diagram for double integration including DSP throughout 

this thesis happens according to Figure 19.  

 

 
Figure 19 Flow diagram of double integration with parts of the digital signal processing 
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Throughout this chapter it becomes clear which parts of digital signal processing 

needed to be done in order to drive the gait models from Chapter 1 with data 

gathered by IMU devices attached to the projected CoM. As seen above there are 

many factors that have to be considered to measure vertical displacement of an 

object in space.  

 

In the following chapters the CoM vertical acceleration is measured after which it is 

transposed from object to global system by combining the Quaternion output. The 

Quaternions are chosen as they are free of risk of singularities. After rotation double 

integration of the signal according to Simpson’s rule of integration is performed to 

minimize the error. Furthermore low frequency drift is subtracted between each 

integration by means of a Hanning Window. The combinations of these steps are 

sound; however they need to be validated against the gold standard of OMCS in 

order to determine their accuracy. 
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Chapter 3:  IMU Validation with OMCS 

 

3.1 Relevant Publications to chapter 

Esser P, Dawes H, Collett J, Howells K. IMU: Inertial Sensing of Vertical CoM 

Movement. Journal of Biomechanics 2009;42:1578-81. 

Esser P, Dawes H, Collett J, Howells K, Maynard K. United Kingdom patent 
 UK0823374.4 (Applied for) 

 
3.2 Summary 
 
The aim of this Chapter was to examine the accuracy of a method utilizing a 

quaternion rotation matrix in combination with an integration approach to transform 

translatory accelerations from the object to the global frame. Measurements were 

taken from the centre of mass (CoM) using an inertial measurement unit (IMU) during 

walking. Secondly this chapter utilised double integration to determine the relative 

change in position of the CoM from the vertical acceleration data. The results showed 

that quaternions, in combination with Simpsons rule of integration, can be used in 

transforming translatory acceleration from the object frame to the global frame and 

therefore obtain relative change in position, thus offering a solution for using 

accelerometers in accurate global frame kinematic gait analyses. 

 

3.3 Introduction 
 

Optical motion capture systems (OMCS) are often used for kinematic analyses of an 

object in a 3 dimensional calibrated volume and are seen as the gold standard155. 

The downside of these systems is that they are relatively expensive, and time 

consuming and not easily applicable outside laboratory conditions156. Accelerometers 

may offer an alternative way to obtain kinematic data and offer opportunities to utilize 

motion analyses in a wide range of objects3 157. However, when using 

accelerometers, certain methodological problems need to be addressed23. When 

using accelerometers on cyclic movements, such as in human gait, the 3D axes 

rotate while moving. Thus vectors in the object system are not equal to the global 
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system, and do not allow speed and displacement to be derived in relation to the 

environment.  

 

Commercially available systems combining accelerometers, gyroscopes and 

magnetometers into an algorithm, known as Inertial Measurement Units (IMUs), 

create the possibility to transpose translatory acceleration from the object system to 

the global system using a rotation matrix2 31.  

 

Conventional rotation matrices use Euler Angle matrices to perform their rotations2 31 

33. Euler Angle rotation matrices show singularities when using a certain sequence of 

rotations. Quaternions (as discussed in section 2.2.2, page 30) are geometrical 

operators that represent rotations by using complex numbers forming an algebra 

existing of 4 scalar variables121 158. Quaternions require less time than other 

representations and are not affected by singularities123 124. In addition the existence of 

an algebra (i.e. quaternion algebra) means that simple expressions may be 

developed for complex rotations and rotating reference frames123. 

 

This study investigated a lower spine point estimate of Centre of Mass (CoM), as it 

offers a simple reference to indicate global gait quality98. Quaternions were chosen 

as rotation matrix operators, as fixation of an IMU over the lower spine has an 

increased risk of showing singularities using conventional methods, due to anatomy 

and movement of the lower back during walking.  

 

3.4 Materials and Methods 

 
3.4.1 Subjects and experimental design 
 

Four men and one woman (age: 23.4 ± 3.8 years, weight: 80.5 ± 14.3kg and height: 

181 ± 5.4 cm) volunteered for the study. The IMU (MTx, Xsens, Enschede, 

Netherlands) was fixed with adhesive tape, at an angle of ±900 (due to sensor 

design), over the 4th lumbar vertebra. A reflective marker was placed on the middle of 

the IMU to measure the displacement with the OMCS (Proflex, Qualisys,  Stockholm, 

Sweden). Both systems were synchronized and measured at a sample frequency of 

100Hz. 

 

Before the subject walked through the three dimensional calibrated measurement 

volume, they were asked to stand rigid for three seconds for baseline gravitational 
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measurements. Subjects walked three times through the calibrated measurement 

volume at their self selected walking speed (SSWS).  

 

Global axes are defined as, x being forward movement in the transverse plane 

perpendicular to the frontal plane, y pointing to the left in the transverse plane 

perpendicular on the sagittal plane and z upwards vertical movement in the frontal 

plane perpendicular to the transverse plane68. 

 
3.4.2 Data analyses 
 

Position data of the OMCS was smoothed by using a Savitzky-Golay smoothing 

filter159 with a window of 5 points. Acceleration was symmetrically derived from 

position160 by using 2 2( ) / )z za r t
 

    where a


 represents the translatory 

acceleration in the object frame, and r


 represents the position of the reflective 

marker in the calibrated global frame.  

 

IMU data was analysed using LabVIEW 8.5.1 to transpose the accelerations from the 

object system onto the orthogonal system using a matrix multiplication. (3.1) 
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 (3.1) 

 

Where a(gs) is the translatory acceleration in the global system, a(os) is the translatory 

acceleration in the object system displayed as a 3x1 matrix and R(q) is the quaternion 

rotation matrix with q0 as real value and q1,q2 and q3 as complex numbers combined 

in a 4x4 matrix. Rotation matrix R(q) is displayed in equation(3.2). 
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 (3.2) 

  

A 4th order Butterworth low-pass filter with a cut-off frequency of 25Hz was applied to 

the transposed acceleration. An average of the gravitational forces during rest was 

set to -1G (-9.82 ± 0.02 ms-2) and subtracted from z-axis translatory acceleration in 
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order to make a comparison with the z-axis data from the optical motion capture 

system.  

 

The gravity corrected acceleration in the global frame was de-drifted by subtracting 

the estimate of the DC component determined by using a Hanning window of 3 

points, as previously described by Karié et al161. Afterwards the signal was integrated 

to velocity [ms-1] according to Simpsons rule128 as described in equation(3.3), with the 

initial and final condition being zero as a state of rest assumed at the start and end of 

measurement. By repeating this step, relative position [cm] could be achieved. 

Dedrift value was calculated by 3rd order polynomial and applied to the relative 

position. Differences between peak and trough were taken to calculate relative 

change in velocity and position. Error in velocity and relative position was calculated 

as being the difference between the OMCS and IMU at tn. Random error of 

acceleration, velocity and position was calculated as twice the standard deviation. 

Step time was calculated as being the difference in time between the troughs in 

position. 

 

 1 1
1 ( 4 )
6

i

i j j j
j o

y x x x t 


     (3.3) 

    
3.4.3 Statistical analyses 
 

Peak amplitudes of acceleration, velocity and position for each gait cycle in vertical 

direction were extracted from both data sets and imported into SPSS 14 for 

Windows. Data sets were compared using a paired sample t-test and a Two–Way 

Mixed effect with consistency Intra Class Correlation test (ICC) according to 

McGraw162 et al. BIAS, defined as the mean of differences between tests and 

standard deviation was calculated. Also a partial linear correlation test between the 

speed in the x-axes and the BIAS was performed. Adequate test-retest reliability was 

defined as an ICC   0.75 for continuous variables163. 

 

Relative peak and trough difference of velocity and position of the CoM in the vertical 

axes were calculated for both systems and compared using a paired sample t-test. A 

Two-Way ICC was performed as previously described. Error described as the relative 

difference in speed and position of the OMCS subtracted from the IMU error was 

calculated for as many peaks and troughs as were visible in both data sets.  
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3.5 Results 
 

The data is displayed in Table 2 and Figure 20. Table 2 shows the average 

difference and standard deviation over 3 walks for 5 healthy subjects in the z-axis. 

Error between both systems of a representative participant is plotted in Figure 20. 

The data between the IMU and OMCS acceleration shows good agreement between 

the OMCS and IMU.  
 

Table 2 Mean data collected from IMU and OMCS over 3 walks for each subject including the 

standard deviation calculated over the three walks.  

∆ aIMU ∆ aOMCS ∆ vMU ∆ vOMCS ∆ pIMU ∆ pOMCS 

Subject (ms-2) (ms-2) (ms-1) (ms-1) (cm) (cm) 

1 2.16 ± 0.30 2.36 ± 0.26 0.40 ± 0.06 0.44 ± 0.06 4.11 ± 0.40 4.22 ± 0.44 

2 2.65 ± 0.26 2.70 ± 0.20 0.57 ± 0.05 0.57 ± 0.04 5.08 ± 0.29 4.99 ± 0.40 

3 1.75 ± 0.17 1.92 ± 0.18 0.36 ± 0.01 0.36 ± 0.01 3.34 ± 0.27 3.34 ± 0.07 

4 1.58 ± 0.09 1.83 ± 0.10 0.31 ± 0.05 0.35 ± 0.04 3.24 ± 0.38 3.33 ± 0.36 

5 2.38 ± 0.08 2.64 ± 0.09 0.45 ± 0.01 0.47 ± 0.05 4.42 ± 0.13 4.43 ± 0.48 

 

Z-axis amplitudes from the IMU (2.1 ± 1.2 ms-2) and the optical motion capture 

system (2.3 ± 1.2 ms-2) were not significantly different (p≥0.05) indicating agreement 

between systems. In addition ICC = 0.952 and random error 0.176ms-2 also 

demonstrates strong agreement between systems. The partial linear correlation 

among subjects, between speed in the x-axis in the orthogonal system and the BIAS 

(Figure 21) were not correlated (r2 =0.065).  

 

A paired sample t-test between the relative change in speed (peak to trough) in the 

OMCS and IMU shows a significant difference (p<0.05). A Two-Way Mixed ICC was 

performed as previously described and showed a significant relationship between the 

IMU and OMCS (ICC=0.888 and p<0.01) with a random error of 0.121ms-1. Error 

between the OMCS and IMU is visible in Table 4. 

 

A paired sample t-test between the relative position (peak to trough) in the OMCS 

and IMU shows no significant difference (p≥0.05). A Two-Way Mixed ICC shows a 

highly significant correlation (ICC =0.782 and p<0.01) and a random error of 1.35cm. 
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Step time (shown in Table 3) showed no significant difference (p ≥ 0.05). A two-way 

mixed ICC showed a significant correlation (ICC=0.757 and p<0.05) with a random 

error of 8.62ms. 
 
 

 
 
 
 
Table 3 Step time calculated as the difference in time between 
troughs of position measured by the IMU and OMCS  

Step timeIMU Step timeOMCS 

Subject [s] [s] 
1 0.598 ± 0.01 0.591 ± 0.02 
2 0.572 ± 0.01 0.571 ± 0.01 
3 0.632 ± 0.01 0.633 ± 0.01 
4 0.615 ± 0.01 0.616 ± 0.01 
5 0.579 ± 0.02 0.567 ± 0.03 

 
 
 

Table 4 Error between Inertial Measurement Unit and Optical Motion 
Capture System displayed as the mean value over 3 walks between 
subjects. 

 
Error in z-axe IMU-OMCS over three walks 

Subject a [ms-2) v [ms-1] p [cm] Step time [s] 
1 -0.197 -0.037 -0.026 -0.064 
2 -0.050 -0.004 -0.128 0.108 
3 -0.260 0.006 0.002 0.100 
4 -0.268 -0.039 -0.091 0.015 
5 -0.174 0.014 0.008 0.377 

avg -0.190 -0.012 -0.047 0.107 
std 0.088 0.025 0.060 0.166 
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Figure 20 Representative data collected from a subject 3 who initiated their gait at t0 and 
walked out of the pre-calibrated frame of the optical motion capture system at t=4s (capture 
volume of 2.8m for this subject). Graphs are showing relative position, speed and translatory 
vertical acceleration from subject 3. The blue dotted line represents the IMU, and the solid red 
line represents the OMCS. The acceleration, speed and position are de-drifted using the DC 
estimate acquired by using the Hanning window. The dotted line represents the overall error 
which is calculated as the data at the difference between OMCS and IMU at tn 
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Figure 21 Correlation Box Plot representing the speed in the orthogonal x axes compared 

with the BIAS between the peaks of the IMU and OMCS 

 
3.6 Discussion 
 

This study found that the mathematical transformation using quaternions in 

combination with double integration according to Simpsons rule applied to IMU data 

resulted in accurate speed and relative position in the global z-axis during self 

selected walking.  

 

Translatory acceleration in the global axes showed a high correlation between the 

IMU and OMCS data. There was no significant difference in IMU and OMCS peak 

acceleration. However, an error is visible when comparing both signals in the z-axis. 

The OMCS is the gold standard for measuring position with an accuracy of ±0.1% of 

motion capture volume164 165. When deriving position to speed and finally acceleration 

the error increases with each step166. This error can result in higher peak 

accelerations due to artefacts which have been multiplied by the differentiation 

process. These errors are unavoidable due to the limitations in primary output of both 

systems.  

Farrell147 has shown that the standard deviation of the measured position due to 

acceleration noise, in the absence of drift and initialization errors, increases as 
1.5t   where t is the integration time and   the error167. Therefore a de-drifting 
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technique using the Hanning window161 was applied after every integration in order to 

resolve this.  

  

There was a significant difference in z-axis CoM speed between the IMU and OMCS, 

However peak and trough difference was highly correlated demonstrating good 

agreement between systems. Due to the typical double peaks in the speed data, ∆v 

becomes less accurate to calculate as the peaks vary during locomotion. There was 

a strong correlation, as the difference in peak and trough followed each other in IMU 

as well in OMCS data, but a significance difference between peak speeds were not 

equal between both systems as the average peak is taken. Error in speed compared 

between the average error and OMCS was less than -2.5%.  

Deriving position from the IMU requires two steps of integration. The error increases 

during this process. After subtracting the drift from the signal it becomes apparent 

that both signals were not significantly different. Position compared between the IMU 

and OMCS shows a highly significant correlation.  

Errors in translatory acceleration, speed and relative position can be introduced due 

to the use of a low-pass filter. The dampening effect of the low-pass filter has been 

addressed by Kartić et al161 and shows a reduction in the peak and trough amplitudes 

within commonly used averaging filters. Error in relative position compared between 

the average error and OMCS was shown to be -1.2%  

 

Limitations of the present study need to be considered. Participants walked at SSWS 

and therefore the results may not apply to extreme walking speeds. However, the 

results show no correlation between the BIAS and the SSWS, suggesting that the 

error was not related to the speed of participants. The correlation between walking 

speed and accuracy of the presented method needs to be addressed in future 

research in a wider range of speeds. 

Skin movement has been observed to influence data accuracy168. Different 

techniques have been used to reduce the skin artefacts on signal such as firm fitting 

belts23, Velcro straps169 and direct skin fixation (e.g. taping). In the presented method, 

however, at the location of the projected CoM skin movement is minimal as shown by 

Fuller et al170. The marker was fixed on the IMU and therefore skin movement 

artefact between IMU and OMCS data collection should be equal. The only 

difference would occur with angular displacement of the IMU resulting in increased 

acceleration with radius. The IMU needs to be placed over the projected CoM (lower 

spine) at an angle of ±90 degrees due to curvature of the back which increases the 

risk of losing data as a result of mathematical gimbal lock171. In this present research, 
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this will not be noticeable as only one dimensional movement is required, but in 

planned future research this might be of interest.  

 

Issues regarding IMU sensor accuracy are critical for this method. A combination 

between gyroscopes, magnetometers and accelerometers fused into a Kalman 

algorithm resulted in an almost driftless orientation signal2 31. However, it has been 

shown by several researchers that in static as well as in dynamic circumstances the 

RMS error is >150 and >300 respectively172 173. We utilised an IMU from the same 

supplier as used in this research. Cutti174 compared the manufacturer specifications 

with collected data and found that instead of the 30 RMS error there was a 120 error.   

Pfau et al17 showed that, with tracking position in horses with an IMU placed 

horizontally on the horses back, errors in z-axis in walk, trot and canter are 

respectively within -0.6; +0.6mm, -4.3; +4.9mm and -4.5; +5.1mm in comparison with 

OMCS. These values were obtained using Euler angles and using a step-by-step 

analysis method described in previous publications17 33. Our results however show 

good correlation between measurement systems with the IMU placed in the vertical 

plane. For this method, the IMU used in this research was sufficiently accurate for 

short periods of measurements (~10 seconds) as only a few strides were required. 

There is a need however to look into long term effects of drift 

 

Our results show good agreement between IMU and OMCS over short time 

measurements. However, error over time is affected by drift2. Therefore it has to be 

noticed that this method is valid for short term measurements but for long term 

measurements further research is required. Furthermore in order for this method to 

have clinical value, validation in patient groups is needed.  
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Chapter 4: Parkinson’s disease  
 
4.1 Summary 
Parkinson’s disease is one of many long term neurological conditions which affect 

people around the world. With the cause unknown and the increasing number of 

people suffering from Parkinsonism symptoms this condition threatens to overtake 

cancer as the second most common cause of death by 2040. This chapter sets out to 

explore the underlying symptoms of Parkinson’s disease focussing on motor 

symptoms, their effect on gait and the most used measurements when describing 

gait in Parkinson’s disease. 

 

4.2 Parkinson’s Disease 
Parkinson’s disease (PD) is a neurodegenerative disorder of unknown cause, which 

is mainly related to progressive loss of dopaminergic-cells in the substantia nigra, a 

brainstem structure belonging to the basal ganglia175. It has been estimated that 

there are 400,000 dopaminergic neurons in the substantia176. Interestingly about 80% 

of the dopamine needs to disappear before the first symptoms of PD become 

visible176 177. First symptoms were discovered by James Parkinson in 1817 followed 

by another hundred years until the cause was found in the substantia nigra and 

another 40 years to find the deficit in dopamine178. The World Health Organisation 

(WHO) reported179 that PD is expected to overtake cancer as the second most 

common cause of death by the year 2040. A study by Elbaz et al180 revealed that 

there is a 1% chance of developing PD before the fourth decade. Another study by 

Marras et al181 showed that over a 13 year period 37% (out of 800 participants) 

participants, suffering from PD, died. The medical costs for people with PD in the 

United States were estimated to be £7 billion in 2009, of which 58% was related to 

direct medical costs182. This worked out to be £6,545 to £8,434 more than people 

requiring medical care who did not suffer from PD that year.  

 

PD is considered to be an age related neurodegenerative disorder with symptoms 

usually starting after the fifth decade of life183. About 7% of the general population will 

develop parkinsonism symptoms after their fifth decade184. Recent studies however 

have shown that in 2.7% of people with PD the disease is drug induced185. The 

prevalence within the United Kingdom is estimated between 6 – 11 per 6000 people 

with a rising prevalence and incidence in males186. It has also been assumed that the 

biology of the disease might start earlier in life and be dependent on several 
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environmental178 187-189 and inherited factors190 (see Figure 22). PD can be divided in 

three main groups based on age. PD with an onset after the age of twenty is 

classified as juvenile-onset PD, before the age of fifty is also known as early-onset of 

PD, the onset above the age of fifty are considered to have late-onset PD191. Clinical 

pathological studies have suggested that the pre-symptomatic phase of PD starts 

about 4 to 6 years prior to the onset of the symptoms190. Barlow et al189 suggest that 

the amount of environmental ‘hits’ can determine damage to the dopaminergic-cells 

during perinatal and prenatal periods and therefore speed-up symptoms of PD. A 

recent study by Tanner et al192 found that there was an increased risk of developing 

Parksonism symptoms when working with pesticides. However there was no relation 

found between any specific occupation and the early onset of Parkinson’s disease 

(<50years)192. As such the presence and prediction of PD is variable. 

 
Figure 22 Common concept of Parkinson’s Disease course and the new disease course 
suggested by Le et al183 and Barlow et al187 which shows that the disease starts at a very 
early age, perhaps even during pre or perinatal periods. (Source Le et al183, Etiopathogenesis 
of Parkinson Disease: A new beginning?) 
 

It has also been shown that PD can have a negative effect on the quality of life193. 

Hristova and colleagues193 have shown that under  a sample of 866 participants with 

PD, there was a significant lesser score on ‘mobility’, ‘activities of daily living’ and 

‘emotional well-being’ on the Parkinson’s Disease Questionnaire (PDQ-39) quality of 
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life questionnaire. This and other research shows that there is an increasing need to 

understand how to diagnose and treat PD at an early stage194 195.  
 
4.2.1 Pathophysiology of Parkinson’s Diseases 
 
There are several differences between voluntary movements and reflexes. Voluntary 

movements are organized around the optimal performance of a task and can be 

divided into three stages. First of all a plan of the movement to reach the objective or 

goal is made, followed by the program in which the necessary movements are 

described in kinetic and dynamic variables for which the body has to adapt177. The 

final stage is the execution of the movement with a feedback loop to adjust the 

program to adapt for variables. Reflexes on the other hand are involuntary motor 

responses initiated by a stimulus applied to the peripheral receptors196.  

The following paragraph will explain the role of the basal ganglia, which is involved in 

movement coordination, in typical developed adults. Later in this chapter these 

control mechanisms will be discussed in relation to Parkinson’s disease.  

 

The basal ganglia consist of three main nuclei, the caudate, putamen and the globus 

pallidus197. The global pallidus (GP) is the most primitive structure present and is 

divided by the medial medullary lamina into the internal (GPi) and external part (GPe) 

which is bigger than the GPi. The two remaining and smaller nuclei are the 

substantia nigra (SN) and the subthalamic nucleus (STN)197. The major outputs of the 

basal ganglia can be found in the GPi and the ventral region of the SN, also called 

the ‘substantia nigra pars reticulata’ (SNr) which are connected to the thalamus177 197. 

Wide areas of the cerebral cortex create the input for the basal ganglia, after which 

the processed signals are returned through the thalamus back to the cerebral cortex, 

creating a cortex-basal ganglia-cortex loop197 198. This cycle can be divided into the 

direct and indirect pathway. Information from the direct pathway flows from the 

caudate and putamen to the GPi and SNr whereas the information from the indirect 

pathway flows via the GPe and STN which have no direct output to the thalamus197.  

The thalamus is part of the diencephalon together with the hypothalamus. The 

thalamus integrates motor information coming from the basal ganglia and redirects it 

to the motor control areas on the cortex. It is also the essential link between the 

sensory information returning towards the cortex199.  

 

Dopaminergic cells can be found in the substantia nigra which deliver dopamine to 

the caudate and putamen, which inhibits the neuronal motor pathway. To be more 

specific, dopamine inhibits the neurons of the indirect pathway, and excites the 
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neurons of the direct pathway200. Dopamine receptors can be found throughout the 

central nervous system (CNS) There are two main groups of receptors, the D1 and D2 

family receptors which are excitatory and inhibitory respectively201. Knowing that the 

indirect pathway is inhibited by dopamine, there must be D2 receptors present and 

vice versa. Research by Severson et al202 in 1982 showed a decrease in 

dopaminergic binding sites in the caudate nucleus and SN due to age by a factor of 

three. They found however that there was no reduction in binding sites in the 

putamen. 

 

The output of the basal ganglia to the cerebellum can be responsible for voluntary 

movements such as mastication203 or locomotion204 as mentioned above. The outputs 

of the cerebellum are excitatory, while the outputs of the basal ganglia are inhibitory. 

 

Dopamine is produced by dopaminergic-cells in the substantia nigra (SN) from where 

it is being transported to the caudate and putamen. Studies using positron emission 

tomography scanning within people suffering from PD showed that after 

administering fluorodopa, radioactivity was highest in the corpus striatum, indicating 

a high metabolism of fluorodopa within the corpus stratium205. This indicates that the 

dopaminergic cells within the SN are degenerating, since Levodopa is replacing the 

need for dopamine within the corpus striatum.   

 

The presence of Lewy-bodies in neurons is a well known histology marker of 

idiopathic PD206 207. Until recent it was not possible to detect the presence of Lewy-

bodies in PD without straining of post-mortem brain tissue. Koh et al208 developed a 

way to detect Lewy-bodies in midbrain tissue by using phase contrast radiography 

but only post-mortem. 

 
4.2.2 Motor characteristics of Parkinson’s Disease 
 
Typical motor symptoms such as bradykinesia, resting tremor, rigidity, freezing, also 

known as cardinal symptoms, are typical for Parkinson’s disease178 

Bradykinesia refers to the slowness of movement and is the most characteristic 

clinical feature of PD. The initial expression of bradykinesia is often slowness in 

performing activities of daily living and slow movement and reaction times209. 

Weakness, tremor and rigidity may contribute to, but can not fully explain 

bradykinesia209.  
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Resting tremor is the most common and easily recognised symptom of PD. Tremors 

are unilateral and occur at a frequency ranging between 4 and 6Hz191 210 and are 

often found at the end of the upper limbs (hand and fingers) but can also spread to 

the lower limbs209.It has however been shown by Hughes and colleagues that 

tremors do not occur in all cases and can disappear during the progressions of the 

disease211.  

Rigidity is cause by an increased resistance during movement. This can also be 

accompanied by a circular jerking rigidity combined with a slight tremor, which is 

known as the cogwheel phenomenon211. Rigidity often limits the range of limb 

movement which on its turn can decrease the distance in the swing phase during 

walking212.   

Freezing of gait is a characteristic feature of PD, however does not occur in all 

cases213. AResearch by the German Parkinson Association reported that 47% out of 

12,000 members experienced freezing during gait initiation and it occurred less in 

people who experienced tremors214. There are several sub-types of freezing215, 

however tricks such as walking to music or shifting body weight can overcome these 

freezing moments216 217.  

As shown above, the Basal Ganglia plays a role in the planning, initiation and 

execution of movement. With a decrease in dopamine production these functions 

become decreased204. It is therefore not unsurprising that the cardinal symptoms of 

Parkinson’s disease correlate with the degree of dopamine deficiency218.  

Other symptoms include postural instability and deformity as well as disturbed 

blinking rate, speech disorders or respiratory disturbances178.  

 

4.2.2.1 Functional effects of motor symptoms 

The cardinal motor symptoms affect function and activities of daily living.  Buckley et 

al219 let patients with PD make the transition from sit to stance to walk (SSW) and 

found that some participants had trouble in making this transition. A study from 

Franzén et al220 concluded that patients with PD in the ‘off’-state (person not under 

the influence of any medication for Parkinsonism symptoms) had a reduced SSW 

performance including higher muscle tones which affected posture and therefore 

balance. Studies looking at the impact of gait disorders within the PD community 

showed that gait disorders have a substantial impact upon the ‘quality of life’ with 

extra attention to the ‘fear of falling’221. Research directed at fall detection confirm 

that cadence222 223 or walking speed224 can predict a history of falls within healthy age 

matched controls.  
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Other research looking into sit-to-stance (STS) and gait initiation (GI) phases by 

means of a ‘Timed get-up and go’ test showed that there are clear differences 

between healthy and neurological groups225. When looking in more detail into the 

STS and GI phases there was a clear overlap of both within healthy young adults, 

however with age these phases seemed to become more separated225 226. This 

separation of phases found was also found within the Parkinson’s population227. This 

could partially be explained by impaired balance227, fear of falling228 or affected 

posture stability229. Therefore Buckley et al225 suggest that healthy elderly as well as 

people with PD prioritise stability versus speed.  
 
 
4.2.3 Non-motor characteristics of Parkinson’s Disease 
 
Besides motor symptoms there are also less noticeable symptoms in people who 

suffer from Parkinson’s Disease. Symptoms such as anxiety, fatigue and sleep 

disorders have been described230. Moreover, psychosis, depression and cognitive 

problems have been mentioned with a strong correlation with disability in PD231 232. A 

study by Raudino233 studying 47 PD participants revealed that 60% recognized non-

motor symptoms. These were classified in autonomic, cognitive and sensory 

symptoms and were not related to age, severity or length of the disease233. Rinne et 

al234 showed a relation between dementia and Parkinsonism when looking at neural 

loss in the medial SN. The most common form of dementia in PD is dementia with 

Lewy Bodies. Cognitive problems within PD affect 80% of the PD population235. 

Another 30% will suffer from mild to profound dementia at a later stage which makes 

this condition a very frequently disabling non-motor complication236 237.  

 
4.2.4 Current diagnosis and treatment of Parkinson’s Disease 
 
According to the ‘United Kingdom Parkinson’s Disease Society Brain Bank Clinical 

Diagnostic Criteria’ PD can be determined in three steps211 238, the first of which is the 

typical Parkinsonism symptoms such as bradykinesia, tremor and muscle rigidity. 

The second and third steps are related to specific inclusion and exclusion criteria as 

shown in the table first printed by Hughes et al211 (see Appendix 10.1)   

 

Currently there is no cure for PD, however some drug companies like ProSavin 

(Oxford BioMedica, UK) have recently launched phase III trails to investigate if the 

production of dopamine could be stimulated239. Furthermore developments such as 

stem cell treatment could be the solution to the degeneration of dopaminergic cells in 
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the substantia nigra240. However since these treatments are still in the experimental 

stages future research needs to point out if they are actually effective.  

 

Medical treatment for people with PD is considered as being on a ‘honeymoon’ within 

the first few months since they enjoy symptomatic relief with minimal side effects241-

243. Levodopa is the most successful and most often used treatment to reduce motor 

and non-motor symptoms specific to PD238. Research showed that while under 

treatment of Levodopa, the effects on motor as well as non-motor functions could 

start wearing off after two years of treatment244 245. Therefore Levodopa is not often 

used in mild symptoms of PD. In these stages the use of monoamine oxidase type B 

(MOA-B) inhibitor or a dopamine agonist is preferred246. A typical and often used 

MOA-B is l-Deprenyl. One of the most famous branded drugs containing l-Deprenyl is 

Seleginine. Research looking into the effects of Seleginine goes more than two 

decades back. Golbe et al247 248 looked into the use of l-Deprenyl within 96 people 

with PD. They found that l-Deprenyl was found to increase gait scores in 56% of 

cases. Side effects such as nausea and hallucinations were reported and confirmed 

by other research in the years following247-249. A study by Riederer250 showed that the 

start of treatment with Levadopa could be delayed by 12-18 months. Exposure to l-

Deprenyl was not associated with mortality, but the severity and rate of worsening of 

parkinsonism remained associated with mortality181. A Cochrane review from 2008 on 

29 trials with 5247 patients with PD found that treatment of a dopamine agonist 

compared to Levodopa resulted in less chance of developing dyskinesia, dystonia or 

motor fluctuations251. The disadvantage however was that non-motor symptoms such 

as oedema, constipation, dizziness and hallucinations were more likely to occur251.  

 

Levodopa/Carbidopa (Sinemet) can be seen as the gold standard for symptomatic 

treatment of PD, however, long-term treatment can cause adverse effects and 

therefore affect the quality of life252. There is some evidence that people with PD who 

are being treated by Levodopa/Carbidopa can develop compulsive gambling or hyper 

sexuality (18.7%)253. A study by Bowes et al254 looked into the effects of 

Levodopa/Carbidopa compared to a placebo treatment. They found that stride length 

increased for the Levodopa/Carbidopa as well as the placebo treatment (7% and 

0.5% respectively) compared to the ‘OFF’ phase254. L-Deprenyl can be given in 

combination with Levodopa/Carbidopa. This will reduce the doses of 

Levodopa/Carbidopa with the same effects as a higher doses of 

Levodopa/Carbidopa alone255. 
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A study looking into the effects of Levodopa/Benserazide found that there was a 

significant increase in walking speed, stride length and range of motion of hip, knee 

and ankle256. They furthermore found that these effects were not found in patients 

who substituted Levodopa/Benserazide for Tolcapone256. Tolcapone is known as the 

first inhibitor available for use as adjunctive therapy for PD. Ondo et al257 found that 

after administering Tolcapone in daily treatment only 22% noticed an improvement in 

gait, however these results did not reach statistical significance. Even so, finger 

tapping increased in 7% of cases but did also not reach statistical significance257 

 

Švehlík et al258 looked at the effects of participants with PD taking short-acting 

dopaminergic medications in the ‘OFF’ stage. They found that people with PD in the 

‘OFF’ stage walked more slowly, however cadence did not significantly differ from the 

control subjects. The PD group did however have a prolonged double stance phase 

compared to the control group both in ‘ON’ and are ‘OFF’ phase258. Double stance 

can be defined as the point during the gait cycle where both feet are in contact with 

the ground42.  

 

A common phenomenon within PD is restless leg syndrome. This is often treated by 

Requip and Pramipexole which are dopamine agonists259. Research has shown that 

the use of these drugs could be related to pathological gambling addictions260. A 

comparison between people with PD and Amyotrophic Lateral Sclerosis showed that 

people with PD under treatment with either Requip or Pramipexole showed a higher 

gambling rate than people with ALS (13% and 3% respectively). This compared to 

healthy population (.25-1.7%) shows an increase in gambling activity within people 

with PD260. These results are also confirmed by Bostwick et al253 who found that 

gambling rates were higher in people taking dopamine agonists. 

 

Chastan et al261 looked at the effects of subthalamic nucleus (STN) stimulation on 

gait initiation, posture and gait. They found that under treatment with Levodopa 

compared to ‘OFF’ stage, step length and walking speed increased by 32% and 33% 

respectively. Under stimulation conditions step length and walking speed increased 

by another 41% and 40% respectively compared to Levodopa treatment261. These 

results were confirmed by Kelly et al262 who found an increase directly after STN 

stimulation on an individual bases. However results directly after the operation 

compared to pre-surgical function did not show a significant increase262.  Deepbrain 

stimulation over a five year period was found to increase the Unified Parkinson’s 

Disease Rating Scale score by 54%, however functional measures did not show 
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improvement in daily activities263. Furthermore it was found that Levodopa doses was 

decreased by 69% compared to pre-implant after which stimulus energy were 

progressively increased over time263.  

 

Gait initiation can be measured by the centre of pressure (CoP), which can be 

defined as the point where all the mass of a body is concentrated264, that is shifted 

backwards causing a prolongation of the stepping phase265. Due to less effective 

anticipatory postural adjustments and less dynamic stepping characteristics there is 

an increased chance to create an imbalance in dynamic conditions266 (i.e walking). It 

has been found that patients with PD moved with slower velocities (0.85±0.23 ms-1) 

leading to shorter, slower steps and decreased separation of the CoM and CoP219. In 

comparison a study by Ferrarin et al267 found that patients with PD did not 

significantly differ from controls in steady state walking, and changes emerged on 

gait initiation and turning strategies. Yang et al268 found that those with PD 

demonstrated a significantly slower gait speed (0.89±.27ms-1) and shorter stride 

length (1.036±.242m) compared to age matched controls (1.12±.21ms-1 and 

1.25±.178m). This effect is often compensated by an increase in cadence269 270.  

 

 
4.2.5 Outcome measures in Parkinson’s disease research 
 
Following the recommendations from the International Classification of Functioning, 

Disability and Health (ICF) to structure patient outcome measurements a 

classification in outcome measures can be made271. The framework shown in Figure 

23 describes aspects of a person’s health and health-related well-being in terms of 

restrictions, limitations in functional activities as well as impairment in body structure 

and function271. The mostly used outcome measures in PD research have been 

divided in two groups following this framework namely ‘activity and participation’ and 

‘body function and structure’.  
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Figure 23 Framework set by the World-Health-Organisation for the international classification 
of function, disability and health to structure outcome measures in physiotherapy evaluations 
 

4.2.5.1 Activity and Participation outcome measurements 

This section allows description of the tasks (activities) and/ or life situations 

(participation) the person wishes to be involved in, and the impact the impaired body 

function/ structure is having on these aspects271. This section focuses on motor 

symptoms and the effect on activities of daily life.  

  

The ‘Parkinson’s Disease Questionnaire 39’ (PDQ-39) which was developed by 

Jenkinson et al272 in the late 1990’s is often used as an outcome measurement within 

research. This questionnaire can be divided in eight parts, mobility, activities of daily 

living, emotional well-being, stigma, social support, cognitions, communication and 

bodily discomfort. Scores of the PDQ-39 will range from not affected by PD (score of 

zero) with a higher number indicating more severely affected in daily life. Research 

looking into the validity of the PDQ-39 however shows that it is not more specific than 

a generic questionnaire194 273. It has recently been concluded once more that the 

interpretation of the PDQ-39 needs to be done carefully since it could suggest multi-

dimensionality and therefore result in misinterpretation274. The PDQ-39 is currently 

still being used in gait research221 275 276.  

 

PD is hard to classify on a severity rating. However several attempts have been 

made throughout the decennia. The most commonly accepted rating scale is known 

as the Hoehn & Yahr (H&Y) scale134 220 226 268-270 275-298. This scale is divided in six 

sections where zero describes no symptoms of PD whereas five describes severe 

symptoms with possible wheelchair bound circumstances. However with the 

introduction of the use of Levodopa this scale was modified by Jankovic in 1990 

adding increments of .5 to the scale299. Quinn et al300 mention that the H&Y scale can 
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either show a scaling of 4-5 in the ‘off’ phase, however under the influence of 

Levodopa it can go down to 2-3. A brief review by the ‘Movement Disorder Society 

Task Force’ recommended that the modified H&Y scale should be used in its original 

form since the addition of the .5 rating scale would over-complicate the analysis as 

well as the actual scoring of the modified H&Y scale301. They also mentioned that the 

H&Y scale is losing its use to the Unified Parkinson’s Disease Rating Scale 

(UPDRS)301. 

 

The UPDRS is an outcome measure to follow the longitudinal course of PD. It exists 

in three main sections assessing mental capacity (part I), daily activities (part II) and 

motor skills (part III)302. Part I contains another two subsections assessing behaviour 

and mood303. Starkstein & Merello304 looked into the validity of Part I of the UPDRS to 

screen for dementia, psychosis, depression and apathy. They found that part I is an 

adequate screening test to detect depression and apathy in people with PD. However 

it could not be used solely to detect dementia or psychosis unless used in 

combination with the mini-mental state examination304. Mostly used within PD 

research (as shown in Table 5) is the motor section (part III) of the UPDRS. The 

motor examination section of the UPDRS provides a useful measure of PD 

function305. An inter-rater reliability study by Richards et al306 showed that there was 

good-to-excellent agreement for the motor section of the UPDRS but found poor 

agreement for speech disorder and facial immobility. These results show that there is 

satisfactory inter-rater reliability with the UPDRS motor scoring306. However the motor 

section of the UPDRS was found to be time consuming and not sensitive enough 

when compared to a brief timed motor test307.  

After the UPDRS received critiques by the Movement Disorder Society (MDS)308 a 

follow-up was presented and named the MDS-UPDRS309 310. The MDS-UPDRS puts 

more emphasis on the mild and non-motor symptoms related to PD. A set of detailed 

instructions are also provided which supply international standardisation across 

multiple centres310.  

 

With gait being a marker for mortality in the elderly311 and a sensitive indicator for 

progression of Parkinson’s disease (PD)296, the focus of this work explores the 

possibility of gait being a descriptive of body function and participation. In the next 

section the main outcome measurements for gait are explored in a short review.  
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4.2.6 Gait outcome measurements in Parkinson’s Disease  
 

As described above, many measurement tools are available for the description of 

motor and non-motor symptoms of PD. In order to determine what the main outcome 

measurements are within clinical research, a short review was performed to 

determine the most common outcome measurements in PD research. Furthermore 

this review set out to determine what equipment was used to obtain gait 

measurements.  

 

A search on PubMed was performed on the terms ‘Parkinson’s disease Gait’, 

‘Parkinson’s Gait’, ‘Parkinson’s Locomotion’ and ‘Parkinson’s walking’ resulted in 83 

papers related to gait specific research. After initial screening for primary walking 

outcome (spatio-temporal outcome measurements), measures 47 papers remained. 

Collected data is shown in a table that can be found in Table 5.  

 

A recent study by Ellis et al281 measured the effects of physical therapy in two clinics 

in Boston (United States) and Amsterdam (Netherlands). They used the H&Y scale 

as a descriptive of PD, MMS as cognitive measure and the UPDRS as a motor 

function descriptive. A study by Rochester et al296 compared the relationship between 

gait activity and fatigue using the UPDRS and the MMS. They found this relationship 

remained unclear due to the complex relationship between these factors296. These 

two previous studies however show the three main outcome scales and 

questionnaires used within PD gait related research. The H&Y scale was used in 

68% to describe the state of PD, 49% used the UPDRS of which 15% used the full 

UPDRS and the remaining 85% the UPDRS motor subscale308. Current exploring the 

affects of PD on gait, use the motor subscale as a descriptive of PD severity134 220 275-278 

281-284 286-292 296-298 312-314.  
 

Temporal measures of gait are measured in several ways such as by electronic 

walkways268 278 291, accelerometry226 288, treadmill275 315, force platforms220, optical 

motion capture systems269 283 or newly invented devices292. Also standard measures 

such as stopwatch based measurements are used within research316 317. Ebersbach 

et al316 conducted a study looking into walking differences within different social 

cultural environments within PD. They found that people with PD in Berlin (Germany) 

walk faster than their counterparts in Innsbruck (Austria)316. Roiz et al276 looked into 

the relation between clinical and spatio-temporal and kinematic measurements within 

people with PD. They found that clinical measurements did not present psychometric 
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measures compared to advanced 3-dimensional analysis. These studies represent 

the general outcome measurements in PD gait studies. The top three outcome 

measures found in this short review were walking speed [ms-1], stride length [m] and 

cadence [steps/min] in 60%, 55% and 44% respectively. Furthermore it was 

noticeable how these gait parameters were matched. In half the cases where walking 

speed was measured, stride length and cadence were naturally measured as well. 

These parameters were mainly acquired during the 10-metre walking test and the 

Timed up & go (TUG) for 38% and 28% of all cases as shown in Table 5. 

 
Table 5 Research outcome measures found during the short PD review with percentages as 

shown taken from the total amount of reviewed papers. 

Outcome measure Percentage use ‘n’ participants References found 

Freezing of gait 
questionnaire 10.64% 415 280 282 287 289 314 

Timed up&go 27.66% 527 220 226 275 276 278 282-284 289 290 292 297 317 

10 metre walking test 38.30% 425 268-270 275-278 280 288 290 294 316 318-320 

2 minute walking test 4.26% 79 281 320 

6 minute walking test 12.77% 194 275 277 282 288 313 314 

Walking speed 59.57% 1067 
134 256 261 268-270 276-279 281 283 285 288 290 
291 294 295 313 314 316-319 321 322 

Stride length 55.32% 879 
134 256 261 268-270 276-278 283 285 288 291 
293-295 314 318 319 321 323 

Cadence 44.68% 479 
134 268-270 276-278 288 293-295 312 314 316 318 
320 321 

Step frequency 10.64% 86 290 291 293 320 322 

Step time 23.40% 270 268 276 280 283 288 293 297 312 314 318 320 

Step symmetry 2.13% 22 322 

Single stance 14.89% 180 134 268 276 278 283 285 318 

Double stance 17.02% 195 134 268 276 278 283 285 318 319 

Energy (oxygen measure) 8.51% 123 275 279 298 313 

 

Based on 29 papers which were accessible and provided information about their gait 

analysis it was found that in most cases a timing device such as a stopwatch was 

used (38%)282 287 316 319. This was often combined with the use of a camera system 

(7%)296 312 or the GAITRite pressure mat (14%)256 276. Secondly an OMCS was used 
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when using gait as an outcome measurement (34%)261 268 289. Force-plates were used 

24% of the time, but often combined with OMCS or stopwatch measurements269 294 

298.  

 

Gait outcome measurements in clinical PD research are therefore often reliant on 

measurements taken over the 10-metre walk269 and the times up and go317. As 

mentioned by Toro et al36 access to advanced systems that measure gait are 

inaccessible to clinicians around the world as there is a lack of technical knowledge. 

Therefore a stopwatch is often used as an alternative to gain more insight into for 

example the 10 metre walk or the timed up and go. A review on gait analysis 

published by Baker in 2006, mentioned that gait can be accurately measured over 10 

metres with the right equipment324. He hereby referred to sophisticated systems such 

as optical motion capture systems and force platforms. Therefore it can be assumed 

that an IMU system (as proposed throughout this thesis) can potentially add value to 

current gait measurements as it can be easy to use for clinicians as it doesn’t require 

technical knowledge when measuring gait analysis over 10-metres. These results are 

in agreement with data found in Cochrane reviews by Deane302 303 and Mehrholtz315. 

 

Therefore in order to use inertial measurement units in combination with the method 

proposed in Chapter 3, validity and reliability measurements in PD are required and 

will be explored in the next chapters. 
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Chapter 5: IMU Gait Validation & Reliability within PD 

 
5.1 Summary 
Walking models driven by data obtained from Inertial Measurement Units (IMU) can 

be used to objectively measure gait. However current models have only been 

validated within typically developed adults (TDA). The purpose of this study was to 

validate an inverted pendulum model to obtain gait measures within Idiopathic 

Parkinson’s disease (PD) and to explore its inter-rater reliability. Ten people with PD 

showed no difference (p>0.05) for vertical, translatory acceleration, speed and 

relative position between IMU and optical motion capture system data. Furthermore 

no difference (p>0.05) was found for step time, stride length and walking speed for 

people with PD. Inter-rater reliability was found not to be different for step time 

(p=.299), stride length (p=.883) and walking speed (p=.751) with an adequate %-

variability (-7.7±9.5%, 2.7±7.7% and 2.9±6.1% respectively). Results show that gait 

measurements taken from an IMU are valid and reliable within people with PD and 

shows good inter-rater reliability. 

 

5.2 Introduction 
 

National Institute for Health and Clinical Excellence (NICE) guidelines in the UK 

direct the need for clinicians to obtain objective outcome measurements in order to 

provide quality assurance109. Walking has been indicated as a marker for mortality in 

the elderly311 and a sensitive indicator for progression of Parkinson’s disease (PD)296. 

Gait analysis systems such as optical motion capture (OMCS) provide an objective 

means of measuring walking, but are expensive, time-consuming and inaccessible to 

most clinicians36. Inertial Measurement Units (IMU) can be used to obtain objective 

measurements of gait parameters inexpensively, quickly and easily in a clinical 

environment5. However their validity, reliability and utility has not been established in 

pathological populations5-8.  

 

People with PD have an altered gait pattern including: a significantly slower gait 

speed (0.89±.27ms-1), shorter stride length (1.036±.242m) and increased cadence269 

270 compared to age matched controls (1.12±.21ms-1 and 1.25±.178m)268. Gait has 

also been shown to be a sensitive marker of degeneration in PD293. As such careful 

observation of gait is clinically desirable in PD. 

 



 

   71 

IMU gait analysis requires accurate double integration of translatory acceleration 

towards relative position, which has been shown to be valid in typically developed 

adults (TDA) as shown in Chapter 3, but in older adults increased peak acceleration 

of the CoM may affect the double integration325. Considering the altered gait pattern 

in PD, exploration of IMU gait analysis in this group was needed. This study 

compared IMU to OMCS data to explore 1) the validity of vertical translatory 

acceleration, velocity and relative position of CoM and 2) temporal spatial aspects of 

walking calculated from models driven by change in relative position of the CoM. 

Furthermore clinical utility was explored by 3) investigating the accuracy of temporal 

spatial parameters measured by a clinician using the IMU in a clinical setting. 

 

5.3 Materials and Method 
 
5.3.1 Participants 
 
Ten people with PD as diagnosed by a consultant neurologist were recruited under 

National Health Service ethical approval 10/H0308/12 at Oxford Brookes University. 

The experiment was conducted in accordance with the Declaration of Helsinki. 

 

Participants were excluded when they 1) scored eight or lower on the Rivermead 

Mobility Index (RMI)9 indicating safe mobility, 2) they were not able to complete a two 

minute walk or 3) had insufficient mental capacity to consent. Furthermore the 

physical activity readiness-questionnaire326 (PAR-Q) was administered to assess 

readiness to partake in this procedure.  

 
5.3.2 Protocol 
 
Participants were asked to choose a time for their assessment which suited their 

daily routine. Prior to the gait assessment the Barthel Index of independence in daily 

activities327 was administered  (a range from zero to twenty, with a higher score 

suggesting lesser impairment). Participants were asked to partake in a 2 minute 

walking test328 (2minWT) where the total covered distance is recorded after 2 minutes 

walking.  

 

Validity and inter-rater reliability measurements were taken on 10 metre walking 

tests329 (10MWT) where the recorded time over 10 metres was taken from a standing 

start. These tests were conducted at the participants self selected walking speed in a 

quiet and obstruction free 16 metre corridor. Measurements from the 10MWT were 
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conducted by a clinician without previous knowledge of the IMU gait system and an 

expert (defined as a person with at least 1 year’s of experience with the IMU system) 

in random order. For this study two clinicians (physiotherapist and medical doctor) 

and two experts performed the measurements independently of each other with an 

IMU (Pi-Node AGWorldium-11-07, Philips, Eindhoven, Netherlands) comprising a tri-

axial accelerometer, gyroscope and magnetometer. Additionally, participants were 

measured with an OMCS (Qualisys, Stockholm, Sweden), which was synchronized 

on gait initiation. Both systems measured at a sample frequency of 100Hz. A 

standard operating procedure was followed for all measurements.  

 

IMU data analysis was performed according to previously described methods 

(Chapter 3.4) using a customised program written in LabVIEW 8.5 (National 

Instruments, Austin, USA). Step time, stride length and average walking speed were 

calculated according to methods previously described using the inverted pendulum 

model including a personal correction factor71 78. 

 
5.3.3 Statistical Analysis 
 

OMCS data was exported to Excel 2003 (Microsoft Windows, Redmond, USA) where 

peaks and troughs were extracted for vertical translatory acceleration, velocity and 

relative position, according to the method described in Chapter 3. Temporal spatial 

measures were derived by using a model reliant on vertical CoM excursion76. Step 

time, stride length and average walking speed were calculated from peak interval 

times and average forward change in position over time.  

 

For concurrent validity, peak and trough values from z-axis translatory acceleration, 

velocity and relative position were extracted and compared between IMU and OMCS 

using a paired sample t-test and intra class correlation test 3.1 (ICC3.1), according to 

McGraw and Wong162. Root mean square (RMS) error was calculated for vertical 

acceleration, velocity and excursion. Identical analyses were performed on step time 

and stride length analyses between the OMCS and IMU as well on average walking 

speed derived from an inverted pendulum model as proposed by Zijlstra & Hof330.  

 

Inter-rater reliability between expert and clinician measurement was tested by a 

paired sample t-test, ICC3.1 with consistency as well as %-variability on step time, 

stride length and average walking speed. Adequate test-retest reliability is defined163 

as an ICC≥0.75. 95% confident intervals (95%CI) were calculated for reliability ICCs.   
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5.4 Results 
 

Participants (age 59.7±11.7years) covered 125±34m during the 2MWT. The time 

recorded for the 10MWT was 10.05±1.8s for PD. The Barthel Index score for the 

participants with PD was found to have a median 19, range 15-20, whereas the RMI 

score was found to be median 14.5, range 13-15. Individual descriptive measures are 

displayed in Table 6. 
  
Table 6 Individual, average and standard deviations of descriptive measurements taken of 
age, height, weight, Barthel Index, RMI and two minute walking test (2MWT). 

Patient Sex Age Height Weight 2MWT Barthel RMI 
ID M/F [years] [m] [kg] [m] [au] [au] 
1 M 56.47 1.82 91.3 80 18 13 
2 F 61.49 1.68 77.2 136 20 15 
3 M 55.65 1.79 82.1 132 20 15 
4 F 58.81 1.72 64.7 160 15 15 
5 F 32.15 1.56 67.6 70 18 13 
6 M 70.64 1.83 95.8 123 20 14 
7 M 70.8 1.76 83.2 120 20 15 
8 M 71.2 1.74 85.9 100 19 15 
9 M 53.73 1.82 89.3 168 19 14 

10 M 66.10 1.87 96.7 164 20 15 
Average 59.7 1.76 83.4 125.3   

Stdev 11.7 0.09 10.9 34.1   
 
5.4.1 Validity 
 
Figure 24 shows data from a representative trial of the IMU vs. OMCS data.  For 

concurrent validity vertical translatory acceleration measured by the IMU and OMCS 

did not show any significant difference in either peaks (IMU 4.31±2.21ms-2; OMCS 

3.58±1.87ms-2) or troughs (IMU -2.70±1.29ms-2; OMCS -2.68±1.11ms-2) (p=0.13 and 

p=0.90 respectively) and showed a high significant correlation (ICC=0.953 and 

.0.894, p<0.001 respectively). The same results were found for vertical velocity 

(IMUPeak 0.38±0.27ms-1; OMCSpeak 0.33±0.12ms-1 and IMUthrough -0.19±0.15ms-1; 

OMCStrough -0.17±0.12ms-1), which were not significantly different (p=0.33 and 

p=0.21), with a high significant correlation (ICC=0.924 and 0.77, p<0.001). Finally no 

significant difference was found between the IMU and OMCS in vertical relative 

position in either peaks (IMU 1.29±0.32cm; OMCS 1.11±0.52cm) or troughs (IMU -

3.55±0.46cm; OMCS -3.64±0.61cm) (p=0.13 and p=0.57) which was found to have a 

high significant correlation (peak; ICC=0.954 and trough ICC=0.982, p<0.001). RMS 

error for vertical acceleration, velocity and excursion was found to be 1.21±1.11ms-2 

(10.2±9.3%), 0.05±0.04ms-1 (8.9±6.4%) and 0.6±0.5cm (9.3±7.6%) respectively.  
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Results of model derived step time, stride length and walking speeds are displayed in 

Table 7. There was no significant difference for step time between the IMU and 

OMCS measurements (p=0.357), which also showed a significant correlation 

(ICC=0.982, p<0.001). Same results were found for stride length (p=0.876) also with 

a significant correlation (ICC=.705, p=0.042). Furthermore no significant difference 

was found for the IMU and OMCS within the average walking speed (p=0.177).  
 
Table 7 Concurrent validity measurements showing step time, stride length and walking 
speed for the IMU and OMCS systems and the differences between the two systems for 
individual participants and as a group in percent. 

 Step Time Stride Length Walking Speed 
Patient  OMCS IMU Diff OMCS IMU Diff OMCS IMU Diff 

 ID [s] [s] [%] [m] [m] [%] [ms-1] [ms-1] [%] 
1 0.67 0.66 -0.50 1.01 1.13 10.52 0.59 0.68 13.95 
2 0.53 0.53 0.00 1.00 1.11 9.51 1.20 1.18 -1.01 
3 0.59 0.58 -1.74 1.05 1.10 4.34 1.13 1.13 0.32 
4 0.45 0.46 1.46 1.15 1.15 -0.16 1.68 1.68 0.19 
5 0.69 0.69 0.61 0.97 1.01 4.26 0.69 0.70 0.16 
6 0.72 0.71 -0.96 0.95 1.01 5.30 0.65 0.66 0.48 
7 0.70 0.69 -1.45 1.04 1.12 6.84 0.73 0.72 -0.54 
8 0.57 0.57 0.00 1.05 0.97 -8.41 0.97 0.95 -1.80 
9 0.53 0.53 0.94 1.05 1.01 -3.98 1.52 1.56 2.82 

10 0.57 0.57 0.00 1.14 1.14 0.25 1.66 1.66 -0.19 
Average 0.60 0.60 -0.16 1.04 1.07 2.85 1.08 1.09 1.44 

Stdev 0.09 0.09 1.02 0.06 0.07 5.95 0.42 0.42 4.56 
 
5.4.2 Reliability 
 
To test the inter-rater reliability a paired sample t-tests between measurements taken 

by the expert and clinician found no significant difference for step time (p=.299 and 

ICC=.979 p<0.001; 95%CI=0.942-0.993), stride length (p=.883 and ICC=.958 

p<0.001; 95%CI=0.884-0.985) and walking speed (p=.751 and ICC=.978 p<0.001; 

95%CI=0.963-0.992) with a significant correlation. % variability between expert and 

clinician 10MWT for step time, stride length and walking speed were found to be -

7.7±9.5%, 2.7±7.7% and 2.9±6.1% correspondingly. Data for both users is shown in 

Table 8.  

 
Table 8 data collected by expert user and clinician 

  
Steptime 

[s] 
Stride Length 

[m] 
Walking Speed 

[ms-1] 
Expert 0.51±0.12 1.26±0.31 1.25±0.26 

Clinician 0.49±0.10 1.26±0.30 1.27±0.26 



 

   75 

 

 
Figure 24 Data from a representative participant, walking during their steady walking phase 
(i.e. middle 10 metre walk) at 1.13ms-1, showing relative position, speed and translatory 
vertical acceleration. The blue dotted line represents the IMU, and the solid red line 
represents the OMCS. The acceleration, speed and position are de-drifted using the DC 
estimate acquired with a Hanning window161. The green dotted line represents the overall 
error between the two systems which is calculated as the difference between OMCS and IMU 
at any time. 
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5.5 Discussion 
The results show that IMU data had concurrent validity with the OMCS, which 

enabled accurate derivation of temporal spatial parameters in people with PD. In 

addition, temporal spatial gait parameters were accurately measured by clinicians in 

PD. These results support the accuracy of clinicians measuring gait in PD.  

 

Vertical translatory acceleration, velocity and excursion of the CoM did not show any 

significant differences when comparing IMU to OMCS measurements. Results have 

previously been reported in typical developed adults131, although a slightly higher 

error for acceleration, velocity and relative position (0.176ms-2, 0.05ms-1 and 0.12cm) 

in PD participants could be explained by tremors and rapid movements expressed in 

their day-to-day gait178. It was noted by Farrell and Borth147 that the error by each 

integration increases as 1.5t  , where t is the integration time and   is the error. 

However, by applying the method for integration and de-drifting131 a relatively small 

RMS error was found in the PD group. 

 

Walking speed as derived by IMU was accurate to 0.02ms-1 (1.4% walking speed 

difference) in PD. Whilst there is no comparable data using IMU, a study by Webster 

and colleagues331 found that gait in patients post-knee replacement measured by 

GAITRite® instrumented mat compared to OMCS gave an error of 0.02ms-1. Step 

time compared between IMU and OMCS showed a maximum difference of 0.01s 

whereas maximum difference of the GAITRite® was found to be 0.05s at SSWS.  

 

Participants were randomly recruited to include a wider range of PD. The statistics 

between the IMU and OMCS measurements on average walking speed shows a 

strong significant agreement indicating that the range of speeds are not affecting the 

inverted pendulum model. Inter-rater reliability between expert and clinician was 

found to be similar. Studies looking into inter-rater reliability in brain injured trauma 

participants found ICCs of 0.95-0.99 indicating excellent agreement. ICCs found 

within this study were lower, however a greater variability in gait was present due to 

natural PD gait variability178. Inertial measurement units can be used by clinicians to 

objectively measure gait within routine clinical practice in line with NICE clinical 

guidance.  

 

A limitation of the present study however is the use of gait models developed for TDA 

to determine gait spatio-temporal parameters; however the gait parameters are in 
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agreement with previous studies269 270. This current study compared the outcome of 

the gait model driven by both the OMCS and IMU data which did not require any 

adjustments to the model. Future studies are needed in order explore the use of the 

inverted pendulum model to determine its accuracy and reliability when driven by 

IMU collected data.  

 

So far it has been shown that the IMU collected data is in agreement with OMCS 

derived vertical acceleration, velocity and relative position in TDA (Chapter 3) and 

PD. The next chapter will therefore investigate the accuracy and reliability of the use 

of the inverted pendulum model71 330 when driven by IMU collected data in TDA and 

PD.  
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Chapter 6:   Assessment of spatiotemporal modelling 
 

6.1 Summary  
Laboratory based gait analysis techniques are expensive, time consuming and 

require technical expertise. Inertial measurement units can directly measure temporal 

parameters and in combination with gait models may provide a solution to obtain 

quick spatial gait measurements within daily clinical assessments. However it is not 

known if a model used to accurately derive step / stride length parameters in typically 

developed adults (TDA) can be used in pathological gaits.  

This research set out to determine the correction factor required to derive step/stride 

length in TDA and participants with Parkinson’s disease (PD) when using the 

inverted pendulum model during a ten metre walk at self selected walking speed.  

Ten TDA of similar age, and twenty-nine people with PD participated. Correction 

factors determined for step length for TDA (1.25±0.01) agreed with previous data and 

were the same for PD (1.25±0.03) Walking impairment as measured by speed did 

not relate to the required correction factor.  

Inertial measurement units can be used to obtain step/stride length using a correction 

factor which needs to be calculated on an individual basis. 

 

6.2 Introduction 
Neurological populations such as Parkinson’s disease (PD) include a wide variety of 

people including an ethnical and demographic spread and comprise about  

3 million individuals in the UK179. Maintaining mobility is one of the most consistently 

cited key concerns in these and other clinical populations332. As such, objective 

measurements of mobility and gait are a critical marker for clinicians to accurately 

diagnose medical conditions and monitor their progression109. Tests such as the ten 

metre or six minute walking tests can be used to assess walking performance327 but 

do not provide insightful information on underlying gait performance. However spatio-

temporal gait parameters such as individual leg step time, step length, step speed, 

cadence and walking speed  can be used to direct rehabilitation332. Gait mats 

measure these parameters but offer a limited capture volume and have limitations in 

accurately measuring pathological gaits331. Inertial measurement units (IMU), which 

combine gyroscope, accelerometer and magnetometer data, provide an alternative 

method for obtaining objective measurements of pathological gait in a variety of 

settings131. Accurate vertical acceleration, speed and position measurements of the 

Centre of Mass (CoM) can be obtained during walking by transposing acceleration 
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from the object to the global system131. The resulting data of the CoM can then be 

used to determine temporal gait parameters. However, spatial parameters (i.e. step 

length) need to be derived from additional mathematical equations such as equation 

(6.1)  

  22 2d lh h   (6.1) 

where (h) is the CoM vertical excursion, (l) is the leg length and ( ) is the correction 

factor. In typically developed adults (TDA) the model underestimates step length by 

25%, which has been shown to be stable across individuals and testing days. 

Therefore, a correction factor of 1.25 is implemented to accurately determine step 

length with the IMU71 76.  

 

However the model may not be accurate or stable in clinical populations333 who may 

not walk with a typical gait pattern and have higher levels of day to day variability in 

motor performance. However, considering the utility of measuring gait using IMUs in 

these individuals, the accuracy of, and possible adaptations to this model should now 

be explored. From previous investigations where walking speed was shown to relate 

to the level of disability and gait impairment332, this study proposes that, for gait in 

PD, the correction factor may be different for people with altered gait patterns and 

that there will be a negative correlation between walking ability and the required 

correction factor.   

 

In contrast with the previous chapter (Chapter 5) where the validity and reliability of 

IMU measurements has been established, this study set out to determine the 

correction factor required to derive spatial parameters using the inverted pendulum 

model for PD when using IMU acquired data.  

 

6.3 Materials and method 
 
6.3.1 Participants 
 
Data from Individuals with PD and typical developed adults (TDA) was included in the 

analysis (Ethics #07/H0606/81; #10/H0308/12). Participants data was included if they 

were able to walk 10 metres unassisted. Barthel Index327 (BI) was administered for 

people with PD. The study was conducted in accordance with the Declaration of 

Helsinki. 
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6.3.2 Protocol 
 
Participants performed a standard clinical ten metre walk with participants asked to 

walk twice over a predefined distance at self selected walking speed (SWSS). The 

time taken to walk ten metres was recorded by a stopwatch.  

 

A commercially available IMU (MTx, Xsens, The Netherlands) was attached over the 

skin of the 4th lumbar vertebra, reflecting the participant’s projected CoM87 during 

walking. The IMU signals from the tri-axial accelerometer, gyroscope and 

magnetometer were processed with quaternion rotation matrices and integrated to 

obtain vertical excursion of the CoM in the global frame (as shown in Chapter 3).  

 

Step time was taken as the time interval between peak-to-peak CoM excursions 

during one gait cycle. Step length was calculated 78 330 from equation (6.1) with the 

initial correction factor set at 1.25 (Zijlstra et al76) for all groups, after which walking 

speed (VI) was derived by dividing step length by step time. Walking speed was also 

calculated by dividing the time it took the participant to cover the 10 metres 

measured by stopwatch (VS). Furthermore the duration of the ten metre walk was 

derived from vertical IMU acceleration data. Correction factors for each participant 

were optimised by comparing VI and VS. If the two velocities did not equate, VI was 

adjusted by an iterative process which manipulated the correction factor in equation 

(6.1) until VI matched VS. A mean group correction factors for each neurological 

condition was calculated. 
 
6.3.3 Statistical Analysis 
 

Descriptive statistics analyses were performed on the spatiotemporal gait 

parameters. Group correction factors from each neurological condition were 

submitted to independent sample t-tests. Significance was set at p ≤0.05. In addition 

correlations between correction factor, walking disability expressed as walking speed 

and disability level expressed as BI were tested. Intra class correlation between IMU 

and stopwatch gait timing was tested where adequate test-retest reliability is 

defined163 as an ICC≥0.75. All statistical tests were conducted in SPSS17 for 

Windows. 

 

6.4 Results 
Descriptive measurements, group correction factors and derived data from the 

inverted pendulum model are displayed in Table 9. 
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No significant difference was found for the group correction factors between TDA and 

PD (p=0.833).  

 

After optimising the correction factor, the derived spatiotemporal gait parameters (i.e. 

walking speed, cadence and stride length) in PD were found to be significantly 

different (p<0.05)  from TDA.  

 
Table 9 Characteristics for the typical developed adults and Parkinson’s disease. The level of 
impairment in PD as measured by Barthel Index (BI) is displayed with the adjusted individual 
correction factor ( ) and sex is indicated as the number of males (M) taking part.  

Diagnosis n Sex BI scores Age Diagnosis Cadence Adjusted Stride Length Speed 
      (median & range) (years) (years) (steps/min)   (m) (ms-1) 

Control 10 M = 6    66.4± 4.4     123.2 ± 5.6 1.25 ± 0.01 1.37 ± 0.08 1.36 ± 0.33 
PD 29 M = 25 20 range 16-20 63.4± 7.7 6.1 ± 4.8 109.5 ± 11.6 1.25 ± 0.03 1.16 ± 0.29 1.08 ± 0.22 

 

Considering the relationship of the level of disability to the calculated correction 

factor, no correlation was found for PD (R2<0.01) between BI scores and the 

individual correction factor. Furthermore no significant correlation (Figure 25) was 

found between walking ability measured by walking speed and the individual 

correction factors for the TDA (rho = 0.380; p=0.099) or PD (rho= -0.026; p=0.893). 

Results are shown in Figure 25. 

 

Time over the ten metre walk as measured by stopwatch (9.5±1.9s) and IMU 

(9.6±2.0s) did not show any significant difference (p=0.28) and showed a high 

correlation (ICC=0.996, p<0.01). RMS Error between measurements was 1.4%.  

 
Figure 25 Relationship between the individual correction factor and walking ability measured 
as walking speed. Showing Parkinson’s disease where the horizontal dotted line represents 
the standard correction factor of 1.25 set by Zijlstra et al. 
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6.5 Discussion 
This study shows that correction factors calculated for people with PD were not 

significantly different from the correction factor of 1.25 that was confirmed to be 

representative of TDA76. Furthermore a high degree of heterogeneity was observed 

within the TDA and PD group.  

 

The findings of this study demonstrate that a group correction factor of 1.25 used to 

model gait in TDA can be generalised to a PD group but that individual correction 

factors should be used to model gait irrespective of PD or severity of disability. The 

stability of individual correction factors over time and replication of these findings in a 

wider population should now be determined.  

 

Indeed the correction factor for TDA of 1.25 is equal to the results found by previous 

research71 78 which used less sophisticated analysis. As TDA walk relatively smoothly 

with 5-10degrees deviation in the sagittal plane334, this was an expected finding. 

However the strength in this approach lies in the applicability within a vast range of 

neurological gait patterns as, for example, stroke survivors have a larger lateral hip 

movement during walking335 which could affect the outcome of the inverted pendulum 

model. Within this particular tested group of people suffering from Parkinson’s 

disease the digital signal processing method (Chapter 2.4), showed that the data of 

the IMU could be used in combination with the inverted pendulum model in order to 

derive spatio-temporal parameters accurately.  

 

During this study stopwatch measurements are used for the timing of the ten metre 

walk. This is standard practice within clinical environments in order to describe 

walking ability329. It has been reported before by Youdas et al336 that measurements 

performed by a stopwatch contribute for 1% total variance within gait measurements 

in persons with gait impairments. The comparison between IMU and stopwatch 

timing did not show any significant difference over the ten metre walk.  

 

Furthermore it was found that walking ability expressed as walking speed is not 

related to the individual correction factor within PD. Identical results were found when 

correlating BI score to the individual correction factors. This indicates that the 

individual correction factor cannot be estimated based on the gait speed or ability.  

 

Indeed step length has not been validated versus the gold standard (OMCS). Due to 

limitations in the measurement location these measurements could not be taken. 
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Appendix 10.3 however describes a single case study of step length validation within 

a 75 year participant who suffers from PD.  

 

Analysis of IMU technology, using the methods developed through this thesis, has 

shown that PD spatio-temporal gait characteristics can be derived from the inverted 

pendulum model in combination with an individual correction factor. Whilst these 

measures are the most commonly used to investigate walking in PD (Table 5), gait 

may be better characterised by more sophisticated analysis276, as common spatio-

temporal parameters can not stand alone when describing gait severity337. The next 

chapter will therefore explore a more sophisticated analysis method, which could 

describe and visualise gait variability Parkinson’s disease.  
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Chapter 7:   Non Linear analysis applied to gait  
 

7.1 Summary 
 

Gait variability has been shown to be increased when comparing typical developed 

adults (TDA) with Parkinson’s disease (PD). Variability analysis can, for example, be 

an indication for risk of falling. Current methods rely on relatively large datasets 

which can be seen as a demanding for people suffering from a walking impairment. 

We set out to explore a simple phase plot variability analysis to differentiate TDA 

from PD based on data collected over a standard ten-metre walk.  

Fourteen people with PD and ten TDA aged matched controls were recruited and 

asked to walk over a ten-meter at self selected walking speed. All participants scored 

eight or higher on the Rivermead Mobility Index indicating good mobility. An inertial 

measurement unit (IMU) was placed over the projected CoM with double adhesive 

tape sampling at 100Hz. Relative vertical CoM position was derived by means of 

double integration after which the proposed phase plot analysis was applied in order 

to describe the CoM variability. 

Cadence (p=.342) and stride length (p=.615) did not show a significance between 

TDA and PD however a difference was found for walking speed (p=.041). 

Furthermore a significant difference was found for   (p=.010) and SDA (p=.004) 

other than SDB (p=.385) or   (p=.830). 

Two sequential ten-metre walks showed an insignificant difference in PD for  

cadence (p=.193), stride length (p=.683), walking speed (p=.684) and   (p=.194), 

SDA (p=.051), SDB (p=.145) or   (p=.226). 

This study indicated that the proposed phase plot analysis, performed on CoM 

motion could be used to reliably differentiate PD from TDA over a ten-meter walk 

whereas standard spatio-temporal parameters could not.  

 
7.2 Introduction 
Parkinson’s Disease (PD), a progressive disorder of the central nervous system, 

presents with resting tremor, short slow steps, decreased CoM movement219 and an 

increase in variability of temporospatial parameters such as stride length and step 

time338. Variability in stride-to-stride time and length can be an indication for risk of 

falling297. Spatio-temporal gait asymmetry is higher in PD339 which has been found to 

relate to “freezing of gait”340. As such, temporal spatial variability is a sensitive marker 
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of gait, however in these studies fractal analysis has been used, which relies on 

longer walks (i.e. two and six minute walking tests). Similar analysis have been used 

to explore variability in spatio-temporal analysis such as coefficient of variation 

analysis341 or other ‘diagnostic’ variability analysis342. An issue with these studies is 

that the data sets required are relatively large. Gathering this amount of data can be 

seen as time consuming and therefore rather stressful for participant, especially 

those with gait disabilities.  

 

IMU technology can be used to measure centre of mass (CoM) movement, providing 

a quick and relatively cheap way of gathering larger amounts of data over relative 

few steps where a high sample frequency is used.  Inspired by the Poincaré analysis, 

we developed phase plot analysis using IMU technology, in order to describe gait 

step-to-step variability in vertical CoM movement. This simple approach requires only 

a small amount of steps utilizing all individual data points of the CoM excursion 

(measured at 100Hz) which can be employed in this analysis over a short walking 

distance.  

 

This study will initially explore the fidelity of a simple phase plot analysis based on 

Poincaré methods in order to detect step-to-step variability using theoretically 

generated sine waves. Secondly this study explores the use the phase plot method 

applied to human gait in order to compare gait variability between TDA and PD. 

 

7.3 Materials and Method 
Vertical CoM excursion can be derived using IMU translatory acceleration in 

combination with previously published methods using quaternion rotation matrices in 

combination with double integration131. Vertical CoM excursion can be used to 

determine temporal aspect of gait such as step time or cadence. Furthermore when 

using gait models such as the inverted pendulum330 spatial parameters such as step 

and stride length can be estimated343. Models like these describe the mechanical 

energetic state during a gait cycle62 72 in which the CoM excursion behaves like a sine 

wave.  

 

For this study further analysis is performed on vertical CoM excursion, whereby CoM 

Excursion (CoM Excursioni) is plotted against the same data minus one step (CoM 

Excursioni-1), based on peak and trough analysis.  
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In order to better understand this analysis the theoretical exploration of these CoM 

plots by means of generated sine waves was performed in LabVIEW2010 by means 

of a sine-generator which varied frequency, amplitude and phase shift. In order to 

mimic changes typically observed over a ten-meter walk the following components 

were altered: 

1) Amplitude ranges from 5 to 7cm, which represent typical vertical CoM 

movement during human walking69 (Figure 30A)  

2) Frequency values vary between 10-10.4Hz, representing the change in 

walking frequency during a 10 metre walk based on previous collected data 

as observed in Chapter 5 (Figure 30B) 
 
 

Firstly a least square linear fit129 was applied and superimposed on this cloud, r2 was 

recorded and the linear fit was plotted as a function f ax b  . The slope (a) was 

derived to angle (degrees) as shown in equation (7.1). 

 

 1tan ( ) (180 / )a    (7.1) 

 

A computer generated sine wave which assumes consistency and therefore no 

variability, would result as shown in Figure 26 will result in 45O  .  

 

 
Figure 26 Sine wave mimicking no step-to-step variability with a constant 

phase shift of 180 degrees, indicating ϐ=45o 
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A circle was fitted onto the data in order to find the origins of the cloud (x0, y0, z0) with 

the spread (SDA) of the given data cloud128 as shown in equation (7.2) 

 

       22 2 2 2
0 0 0

1

n

A i i i
i

SD x x y y z z r


         (7.2) 

 

which leads to a linear equation in x0, y0, z0 where (xi, yi, zi) are the given points, (x0, 

y0, z0) is the origins or midpoint and r is the unknown radius128. Using the previously 

fitted sum of least squares the data was de-trended by subtracting the outcome of 

i iy ax b  from CoM Excursioni-1 after which the standard deviation around the best 

fit was calculated (SDB).  

 

An ellipse was fitted around the spread of data based on two standard deviations 

where SDA determine the length and SDA the width. Ratio  , between SDA and SDB 

was determined to describe the ellipse. Furthermore angle  shows the direction of 

the data points indicating a level of symmetry as shown in Figure 27.  

 

 

 
Figure 27 Showing the phase plot analysis and variables SDA and SDB indicating the 

standard deviations of the data cloud with   indicating the angle of the least square fit129 
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7.3.1 Theoretical exploration 

A double sine wave (being theoretically non variable) generated within LabVIEW8.5 

containing a frequency of 10.1Hz, amplitude of 5cm with an intersect of 1cm, 

indicating a phase shift, sampled at 100Hz will result in an angle 45O   with an R2 

value of 1.00, SDA of 4.98cm and SDB of 0. When changing the phase shift (in steps 

of 45 degrees) of CoMi-1 the plots will change according to the plots shown in  

Figure 28.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 Phase plots based on equal sine waves (frequency 10.1Hz, amplitude 5cm) while 
being out of phase by 1800 (A), 2250 (B) 2700 (C),  3150 (D), 3600 (E), 450 (F), 90o (G) and 

1350 (H). It becomes clear that the sine wave produced data clouds rotate around their own 
axes (anti-clockwise) with change in phase shift.  
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CoM vertical excursion can vary with differing limb or stride length. In order to explore 

the theoretical models two sine waves were generated with an amplitude of 5cm and 

7cm respectively which represents typical human walking69. The remaining 

configurations were similar to the previously used sine wave. Figure 29 shows the 

generated plots where it becomes visible that any variance in the CoM excursion 

results in a change in   (54.5 degrees) and SDA (3.04) , however SDB (0).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29 Phase plots based on two sine waves (frequency 10.1Hz, 
amplitude 5 and 7cm) with different while being out of phase by 1800 (A), 
1700 (B) 3600 (C) and 900 (D).  

 

 

Changes such as walking speed can be related to an increase in step length and 

cadence. Change in step length will be followed by a change in CoM vertical 

excursion when assuming the inverted pendulum model330. The effects of the 

variability of step length is shown by creating three sine waves with different 

amplitudes (3, 5 and 7cm respectively) representing typical vertical CoM excursions 

during human walking69 which effect is visible in Figure 30A. It becomes visible that 

  is 47.2 degrees, SDA is 2.62 and SDB is 0.23. Analysis with three sine waves with 

different frequency (10Hz, 10.2Hz and 10.4Hz), in which the change (steps of 0.1Hz) 

represents human gait step time or cadence variability344, is shown in Figure 30B. It 

becomes visible that   = 44.8 degrees, SDA = 1.41 and SDB is 0.04. 



 

   90 

A B 

 

 

 

 

 

 

 

 

 
Figure 30 Phase plots based on three sine waves (constant amplitude of 5cm  

 and phase shift of 180o) representing a change in step length (A) and step  
 frequency (B) 
 
7.3.2 Practical application  

 

7.3.2.1  Participants 

Data collected from participants suffering from Parkinson’s disease was re-analysed 

(Chapter 6). Data from aged matched typical developed adults who were recruited on 

a different study, was re-analysed. Both studies were approved by local ethical 

committees (#07/H0606/81 and #09/H0606/45 respectively) and were performed in 

agreement with the declaration of Helsinki.   

 

7.3.2.2  Procedure 

The Parkinson’s Disease Questionnaire (PDQ) was administered for people with PD 

before partaking in this study. Participants walked over a ten-metre walkway free of 

obstacles at their self selected walking speed. Participants started at a static position 

at the zero-point and came to a complete stop at the ten-metre line. The duration of 

the walk was recorded by a stopwatch. An IMU was placed over the projected CoM 

located over the fourth lumbar vertebrae, measuring at a sample frequency of 100Hz.  

 

7.3.2.3  Analysis 

IMU data was analysed by a program written in LabVIEW 8.5 (National Instruments, 

Ireland) to obtain vertical position according to a method described in Chapter 3. 

Temporal and spatial gait parameters were calculated according to Zijlstra’s inverted 

pendulum model76 resulting in stride length and walking speed (vI).  , SDA , SDB and 

  were derived by applying the phase plot method as explained in section 7.3.  
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TDA and PD group were compared using an independent t-test on stride length and 

walking speed as well as  , SDA and SDB. Furthermore a Pearson’s regression test 

was used to test for a relationship between walking speed and   for both PD and 

TDA.   was tested by an independent t-test between PD and TDA.  

 
7.4 Results 

From the theoretical exploration of this phase plot analysis it became clear that  is 

affected by a change in step length, SDA is affected by a change in step frequency as 

well as step length, SDB is affected by a change in step frequency and   is the ratio 

between SDA and SDB. 

 

An independent t-test showed no difference between TDA and PD participants for 

cadence (123±5.6steps/min and 109.5±11.6steps/min respectively; p=.342) and 

stride length (1.37±0.08m and 1.16±0.29m respectively; p=.615). However, a 

difference was found for walking speed (1.36±0.33ms-1 and 1.08±0.22ms-1 

respectively; p=.041). Moreover an independent t-test between the TDA and PD 

group revealed a significant difference for   (p=.010) and SDA (p=.004). No 

difference was found between groups for SDB (p=.385) or   (p=.830). Results for 

each group can be found in Table 10.  
 

Table 10 Outcomes from phase plot method applied to gait in typical developed 
adults (TDA) and Parkinson’s disease (PD) showing the angle (  ) of the least 
square fit with SDA and SDB describing the standard deviations of the phase plot with 
ratio  . An asterix indicates a significant difference between both groups.   

Diagnosis  [deg] SDA [cm] SDB [cm]  [au] 

TDA 42.0 ± 1.8 * 2.5 ± 0.5 * 0.3 ± 0.1 7.8 ± 2.0 

PD 39.4 ± 3.9 * 1.9 ± 0.5 * 0.4 ± 0.1 4.6 ± 3.9 
 
No correlation was found between  and walking speed for PD (r2=.001 p=.996) or 

TDA (r2=.060 p=.810). Three representative analysis figures for each condition can 

be found in Figure 31. 



 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31 Representative graphs where the top three show typical graphs of participants with Parkinson’s disease and the lower three represent typical 
graphs for typical developed adults.   
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7.5 Discussion 
This study found that a phase plot analysis performed on CoM motion could be used 

to differentiate PD from TDA collected using IMUs over a 10 metre walk, whereas 

standard spatiotemporal parameters over the same distance could not. These 

findings are important as they promote the possibility of utilizing a phase plot 

variability analysis to objectively quantify gait variability and symmetry over a small 

sample frame, thus allowing people with PD at all stages of the disease to be 

monitored.  

 

Previously, reduced step length has been reported as one of the key features of PD 

gait268. Indeed, Hausdorff345 suggested that variability analysis may be used to 

closely monitor and describe gait disorders than measurements based on mean 

values of spatio-temporal walking parameters. The results of the present study 

support this as, whilst there was no difference in stride length,   and SDA showed a 

significant difference between TDA and PD. Thus PD could be differentiated from 

TDA based on CoM variability (Figure 31). The significant difference in SDA can be 

explained due to increased step length variability reflected in CoM excursion330. 

Although it should be noted that walking speed was significantly reduced for PD 

when compared to TDA which is reported previously269 270, a significant difference 

was found for   and SDA independent of walking speed.  

 

PD has previously shown to be detectable by an increased stride-to-stride variability 

which is independent of a reduced stride length and is not reflected inconsistent in 

motor unit recruitment or muscle force output346. In more advanced PD where 

treatment with Levodopa has started this variability has been shown to be 

decreased347; however an increase in severity of PD is accompanied by an increase 

of stride-to-stride variability348 349. Gait timing variability has been related to the risk of 

falls350 and freezing of gait within PD351 during the “on” and “off” stage.  This study 

demonstrated step to step gait alterations quantified through CoM motion could be 

explored for variability through the simple phase plot method explained in this studyt.  

 

Considering the novelty of this approach in exploring gait, a range of simulated CoM 

motions were modelled and run through the phase plot analysis in order to better 

understand the changes observed in PD. Group stride length variance observed in 

the data collected during this research, was 17cm for TDA and 21cm for PD during a 

ten-meter walk without step initiation. Assuming the inverted pendulum 
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methodology330 and a constant leg length an increase in stride length of 17 and 21cm 

TDA and PD would increase the vertical CoM excursion by approximately 0.3 and 

0.5cm. As shown in Figure 30A the effect of a simulated increase in step length of 

these values would change the angle of the phase plot plot by 3 and 5 degrees 

respectively. But it is worth noticing that this diversion in angle will only occur for one 

gait cycle when the change in step length occurred. Once the CoM excursion is 

symmetric and in phase between left and right after the asymmetrical cycle,   will 

return to 45 degrees. Therefore it becomes visible that   is influenced by a change 

in step length, SDB is affected by a change in step frequency, SDA is affected by both 

a change in step length as well as step frequency and   is the ratio between the 

change in step frequency versus step length. No phase shift has been detected in 

this particular group of participants. However in case of an inaccuracy in defining the 

subsequent foot contact this would introduce a constant phase shift. In this particular 

group of participants it’s very unlikely to happen. However in more severely affected 

participants, who do not walk according to the inverted pendulum model, there is an 

increased change of introducing a constant phase shift.   

 

As seen in Figure 30B an increase in frequency will enlarge SDB as measured over 

the 10 metre walk. An increase of 0.2Hz walking frequency represents an increase of 

12 steps per minute. As seen in Error! Reference source not found. cadence 

variance is 5.6 for TDA and 11.6 for PD. A larger change in frequency results in a 

greater variance of SDB. Perfect symmetry in lower limb stepping frequency causes 

the plots to assume a SDB equal to zero. Indeed, with variability in CoM excursions 

due to step length variability in combination with step frequency variability a phase 

shift is expected. As shown in Figure 31 phase shifts will change  , SDA and SDB. 

During this study, however, no phase shift was detected within either TDA or PD 

measurements.   

 

Novel methods have often been used to look into gait in more depth. For example 

fractal dynamic analysis has been used in TDA33, 34 and PD2, 35 to explore stride-to-

stride fluctuations. An increase in stride-to-stride variability both in stride length as 

step time has been observed in early27 and late stages29 of PD. Furthermore a study 

by Sekine et al35 used fractal dynamics to describe the motor outputs in PD while 

walking. Our findings are in agreement with these previous findings by showing an 

increase in stride length variability (SDA) as well as an increase in stride-to-stride 

symmetry ( ) within a variety of PD. Despite a visual decrease in SDA and SDB in 
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Figure 4, only SDA shows a significant difference between PD and TDA. This could 

be explained by the reduced stride length which has also been reported by other PD 

research36. Furthermore it is noticeable that the ratio   does not show a significant 

difference between PD and TDA. This indicates that the symmetry variability (SDB) 

decreases by reducing stride length variability (SDA).  

 

Fractal and principal component analysis of gait variability require multiple gait 

cycles. During this study walking measurements were taken during a 10 metre test, 

which is a standardised clinical measurement329 and therefore only a limited amount 

of cycles were required to obtain variability through the phase plot analysis. The IMU 

records projected CoM excursion at a sample frequency of 100Hz. All individual data 

points are used within the proposed method. Therefore variabilities can be detected 

over a short distance in comparison with studies by Hausdorff et al337 338 347 which 

required longer walking distances.  

 

Due to the small numbers of participants, which were allowed to partake due to the 

inclusion and exclusion criteria in this study, there is a limited variety and severity of 

PD within our data. However when comparing the data to TDA and other studies we 

find comparable variability and gait temporospatial outcomes31 43. Whilst our findings 

are comparable with those of larger data sets containing around 700steps38, this 

method needs to be validated in larger groups and ranges of disability. In addition to 

standardised clinical tests such as ten-meter and six minute walking tests39, 

variability can be objectively measured over ten-meters. This is in contrast with 

findings published by Hausdorff et al2, 33 who suggested that variability 

measurements can only be taken over longer distances.  

 

Results from this study show that IMU-derived data used in combination with a phase 

plot analysis can provide a quantitative measure for gait variability in spatial and 

temporal parameters over a 10 metre walk. The major benefit of this proposed 

method is that it can be employed during standardised clinical assessments. Thus 

this method may provide a valuable measure for clinical use. Whilst this study has 

only been conducted within PD alone and more research is required this method may 

have the potential to indicate the severity of their gait impairment in PD and other 

populations. This might also be a methodology that can assist in early diagnosis in 

people with PD and monitor their gait during deep brain stimulation. It may also be 

possible to use these gait parameters to more accurately monitor efficiency of 

medication in PD.  
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Chapter 8: General Conclusion 
 

8.1 Summary 
 
The general conclusions that can be derived from this body of work are discussed in 

this Chapter. The validity of IMU sensing and modelling is described followed by the 

reliability of this method and the phase plots are discussed as a novel means of 

obtaining variability analysis in gait.  

 

8.2 Inertial measurement unit tracking of CoM movement 
There is a pressing need for objective outcome measurements within clinics with the 

introduction of the National Institute for Health and Clinical Excellence (NICE) 

guidelines109. Whereas walking has been indicated as a sensitive marker for 

mortality296 354 and neurological function324, objective measurements can only be 

accurately collected by relatively expensive and time consuming systems such as 

optical motion capture systems (OMCS) measurements, which remain inaccessible 

to most clinicians36. 

 

OMCS measurements are also time consuming, require specific technical expertise 

and laboratory space in order to be able to successfully collect data. During this work 

an inertial measurement unit (IMU) was used to measure vertical CoM movement in 

order to provide an objective way of describing human gait. With the introductions of 

micro electro mechanical systems (MEMS) technology, new technological 

opportunities have arisen to measure human motion. A sensor fusion of tri-axial 

accelerometers, gyroscopes and magnetometers within an IMU sensor was used to 

measure accurate orientation and acceleration. This sensor was used to measure 

centre of mass motion during walking. Using the orientation expressed in complex 

numbers (quaternions) instead of Euler angles, which are susceptible to singularities, 

it became possible to rotate the accelerations from the object to global frame and 

thus capture centre of mass acceleration without loss of data. Digital signal 

processing was then developed, which consisted of a 4th order Butterworth low-pass 

filter with subtraction of the estimated direct current (DC) component determined by a 

Hanning window161 and double integration by using Simpson’s rule of integration128. 

These findings are unique, previous research17 33 or IMU-based systems (Pegasus, 

Cambridge, UK) has only found centimetre instead of millimetre accuracy. The 



 

   89 

process described above provided a possible means to determine outcome 

measurements such as vertical acceleration, vertical velocity and vertical position of 

the centre of mass during walking that require validation in not only healthy 

individuals, both young and old, but also in clinical populations.  

 

The current “gold” standard for measuring CoM displacement remains the kinetic 

method, by means of utilizing force plates. As discussed in Chapter 1.2.2 this has 

been used to determine internal CoM motion accurately avoiding errors which are 

known to be present when using the segmental method92. The segmental method 

refers to the kinematic approach by means of OMCS, such as VICON or Qualisys. 

The latter was used throughout this work and was found to be prone to errors with an 

increase in capture volume as discussed by Ehara et al164 165. Since a less 

complicated system was required as indicated by the Gait Survey (Chapter 1.3) a 

single reference method was chosen. Therefore the CoM referred to in this thesis 

refers to the “projected centre of mass” which reflects the movement of the internal 

CoM most accurately96.  

 

This thesis indicates that the fourth lumbar vertebra method of estimating vertical 

CoM displacement can be accurately measured over short time measurements by 

the use of inertial measurement units (IMU) and using the described quaternion and 

filtering methods with millimetre accuracy. This accuracy is not only held in typical 

developed adults131 as shown in Chapter 3, but also in people with altered gait 

patterns such as Parkinson’s disease as shown in Chapter 5. This was an important 

finding as clinical populations have altered gait patterns325 which can affect peak 

acceleration and therefore the double integration required to estimate the CoM 

relative displacement. This work supports the utility of this measurement system for 

use in clinical applications as a similar level of accuracy within OMCS 

measurements, when capturing data over similar volumes, has been reported by 

Ehara et al164 165. Indeed, other researchers, who validated the use of IMUs in order 

to measure CoM displacement in previous work, when using Euler angles to rotate 

the acceleration vectors, have only achieved an accuracy of 0.6 to 4cm error when 

measuring horses over different gait speeds17. There is to date no other study 

published that describes the accuracy of IMUs of CoM displacement within human 

subjects. The first two studies show that the method proposed to rotate, integrate and 

filter the acceleration, velocity and position of the CoM movement, was accurate 

within typical developed gait as well as in participants suffering from Parkinson’s 

disease when compared to the OMCS.  



 

   90 

The second study (Chapter 5) further explored whether the IMU could be reliably 

used by experts and clinicians to obtain the same spatiotemporal gait parameters in 

clinical populations of PD. This group was selected due to well documented specific 

motor abnormalities, such as tremor and reduced walking speed, in their walking 

patterns355 which could affect the analysis difficulty. A standard operating procedure 

both for data collection and analysis was developed with a non-expert user (defined 

as no previous experience in using the system) in mind. Whilst it was shown that the 

acceleration peaks did increase in amplitude, when performing the data analysis 

according to the standard operating procedures, the level of concurrent validity and 

intra-rater reliability support the use of this system as an objective gait measure for 

this clinical group by non experts such as clinicians.  

 

8.3 Gait model validation of human gait 
 

Maintaining mobility is one of the most consistently cited key concerns in clinical 

populations332. As such, objective spatial and temporal measurements of gait are 

critical markers for clinicians to accurately diagnose medical conditions and monitor 

their progression109. Currently however in daily clinical routine these measurements 

are taken by tests such as the ten metre or six minute walking test to assess walking 

performance327. These tests however are prone to error introduced by the subjectivity 

or the assessor, involved in timing the gait events with a stopwatch. Indeed it has 

been shown that within abnormal gait patterns, stopwatch measurements are valid in 

persons with gait impairments336. Furthermore these tests do not provide information 

of the underlying gait pathology. A more detailed and objective measure giving 

accurate and reliable spatial and temporal measurements can be used to give 

feedback to the clinician who can incorporate the results into in the decision making 

in rehabilitation programs109 324.  

 

Preliminary quantitative research carried out with clinicians (Chapter 1.3) revealed 

that clinicians are mostly interested in measuring gait parameters such as cadence, 

walking speed, symmetry, but also smoothness and effort. However measurement 

tools providing these parameters were inaccessible for clinicians because of budget 

and time constraints. A recent update from the “Gait and Clinical Movement Analysis 

Society”, revealed that gait analysis is an effective tool in the clinical decision making 

process for improving patient treatment outcomes for individuals356. This research set 

out to use accurate CoM position data to provide useful clinical measures of gait.  
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There are several models for determining spatial as well as temporal parameters 

proposed by other researchers71 77 330. Looking at the feedback received from the 

survey (Chapter 1.3) which was in agreement with previous results published by Toro 

et al.36, a simple model was chosen to limit the amount of technical expertise 

required to provide valid and reliable data. Therefore a single reference point, the 

CoM, was chosen as this has proven to provide valuable gait information in the past62 

73 105 337 347. The inverted pendulum model proposed by Zijlstra & Hof330 was used 

throughout this work as it requires the CoM position data and leg length only. Utilizing 

this model, parameters such as step time, cadence, step length and walking speed 

can be derived, but are prone to a constant error, due to forward movement of the 

CoM during double stance, in typical developed adults (TDA)71. For TDA it has been 

found that this model reliably underestimates step length by 25% allowing its use to 

determine speed and step length. Throughout this work, the correction factor has 

been altered by measuring the timing (as defined by acceleration signals) from gait 

initiation to termination. By knowing the distance and the fact that step time has been 

proven to be accurate (Chapter 3) the average stride length can be derived from the 

estimated walking speed. Gonzalez et al78 have previously adapted the inverted 

pendulum model to adjust for the forwards displacement of the CoM during double 

stance. As reported by Han et al79 and Schmid et al357 this horizontal displacement is 

proportional to the foot length by a varying factor of 0.83 and 0.67 as found by both 

researchers respectively. Gonzalez et al took this variation in account and calculated 

the individual factor from a random experiment of each individual by asking them to 

walk over a timed 25 meters. For these models, to be applied in clinical populations 

that have altered walking mechanics it is important that they are specifically validated 
333. Outcome parameters, estimated from the inverted pendulum model combined 

with a correction factor, are in agreement with previous data published by others who 

had access to more sophisticated systems268 358. 

 

Validation of this model, as described in Chapter 6, found that there was no 

significant difference found when comparing the use of the inverted pendulum model 

and clinical tests to obtain walking speed in people with PD. However it was noted 

that individual correction factors varied to a degree both within individuals on different 

walks and between individuals, therefore supporting the use of individual correction 

factors determined at each walk when measuring neurological conditions such as 

Parkinson’s disease. It was also found that the correction factor was not correlated to 

disability level or walking ability, suggesting that prediction of utility of the TDA 

correction factor based on ability or disability is unlikely.   
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During numerous analyses, it became visually clear that there was a lot of variability 

within steps and strides in clinical populations. Indeed as shown by Hausdorff et al. 
337 338 347 349 359 360 gait variability could be an important marker of gait, but requires 

participants to walk for a long duration of time (~15minutes) which could be seen as a 

unfeasible for many patients.  

 

8.4 Variability Analysis 
 

Variability within measurements is often seen as noise and therefore unwanted. 

Variability analysis within heart rate beat-to-beat measurements has shown to 

change with disease and age361. Hausdorff et al337 suggested that variability analysis 

in gait can convey important information regarding gait dynamics.  Alterations in gait 

dynamics can determine disease severity348 349, risk of falling350 and freezing of gait 

(FoG)351.  

 

As conventional gait analysis relies on spatial and temporal gait parameters, larger 

datasets need to be gathered in order to look for variability. A recent study by Bollens 

et al362 found that variability analysis could be successfully applied to detect gait 

variability over a 15 minute walk on a controlled treadmill. People suffering from 

neurodegenerative conditions such as PD might not be able to walk for 15 minutes. 

Therefore the final study looked into a novel phase plot method in order to explore 

the variability within TDA and PD gait over a standard 10 metre walk as described in 

Chapter 7. It was found that gait measurements at self selected walking speed over a 

standardised clinical distance of 10 metres could provide variability measurements. 

Where the study did not point to any significant difference between step length in 

TDA and PD, step length variability measured by vertical CoM movement was 

increased in PD. This is in agreement with previous data from Baltadjieva et al346 who 

showed that stride-to-stride variability is independent of a reduced stride length. 

Furthermore this study found an increased step timing variability which can be an 

indicator for risk of falling and FoG337.  

 

This study showed that variability in gait measurements, collected during clinical 

assessments of gait over a short distance363, can be objectively measured. Thus this 

approach could provide valuable information regarding disease severity and 

therefore be an outcome parameter for gait mobility and potential risk assessments 

for falls in PD.  
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8.5 Limitations of the proposed studies 
The insight gained from the studies of this thesis should be viewed in the light of the 

limitations of this work. In Chapter 3 the main limitation of the validity study in TDA, is 

the relatively small capture volume. This study might not have been statistically 

powered to evaluate differences between new measurement approaches and 

reference systems. The number of participants in these studies is based on 

comparable studies looking into new measurement techniques using inertial 

measurement units26. TDA may not have reached their self selected walking speed. 

Furthermore the participants were asked to walk at their self selected walking speed 

and therefore the results may not apply to extreme walking speeds. Gait spatio-

temporal parameters however, were in agreement with previous studies looking at 

TDA and PD gait characteristics269 270 and we did not find a relationship of walking 

speed to accuracy. The capture volume is also typical of that used when measuring 

both using OMCS and if attempting to measure in the clinic. 

 

All the studies were statistically powered to detect differences between groups; 

however the variance of severity of PD was limited and a larger sample size would 

generate greater confidence in the application of our findings to people with PD per 

se. All participants were recruited from Oxfordshire via consultants working at the 

Nuffield Orthopaedic Centre of Enablement and the John Radcliffe Hospital to ensure 

the widest spread possible within the county. Questionnaires such as the Parkinson’s 

disease questionnaire (PDQ39; Chapter 10.2.2) might be biased due to the higher 

level of education in the South East Region364 and not represent a true reflection of 

the state of PD.  

 

As suggested by Meichtry98 accelerometers have unresolved methodological 

considerations, such as issues regarding drift over long term measurements. Indeed 

as demonstrated by an Alan variance analysis (Chapter 2.3.3) the drift will behave 

exponentially after an initial 15-20 seconds140. To overcome this problem this system 

is solely meant for short term measurements. Longer measurements (i.e. two or six 

minute walks) need to be analysed in small sections.  

 

The model proposed to derive spatio-temporal parameters from inertial sensed CoM 

movement as by Zijlstra & Hof330 has been proven to be valid in TDA and PD. Since 

this model is based on the inverted pendulum analogy, it is worth noticing that this 

validation might not always hold in clinical conditions. For example stroke survivors 
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tend to swing more bilaterally, increasing oxygen consumption costs but reducing the 

CoM mechanical energetic cost365.  

 
8.6 Final Remarks 
Inertial measurement units can measure the lower spine projected centre of mass 

displacement in human gait within TDA and PD. This, in combination with gait 

models, to estimate temporal and spatial measurements, can provide clinicians with 

information in order to accurately diagnose medical conditions and monitor their 

progression. With indication from the World Health Organisation that PD will become 

increasingly predominant over the incoming years, there will be an increasing need 

for accurate monitoring of this and other neurological conditions. 
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10 Appendices 
 
10.1 UK Parkinson’s Disease Society Brain Bank Clinical diagnostic 
 

Step 1 Diagnosis of Parkinsonian syndrome 
 Bradykinesia (slowness of initiation of voluntary movement with progressive 

reduction in speed and amplitude of repetitive actions) 
 And at least one of the following: 

o Muscular rigidity 
o 4-6 Hz rest tremor 
o Postural instability not caused by primary visual, vestibular, cerebellar, or 

proprioceptive dysfunction 
 
Step 2 Exclusion criteria for Parkinson’s disease 
 History of repeated strokes with stepwise progression of parkinsonian features 
 History of repeated head injury 
 History of definite encephalitis 
 Oculogyric crises 
 Neuroleptic treatment at onset of symptoms 
 More than one affected relative 
 Sustained remission 
 Strictly unilateral features after 3 years 
 Supranuclear gaze palsy 
 Cerebellar signs 
 Early severe autonomic involvement 
 Early severe dementia with disturbances of memory, language, and praxis 
 Babinski sign 
 Presence of cerebral tumour or communicating hydrocephalus on CT scan 
 Negative response to large doses of Levodopa (if malabsorption excluded) 
 MPTP exposure 
 

Step 3 Supportive prospective positive criteria for Parkinson’s disease 
(Three of more required for diagnosis of definite Parkinson’s disease) 
 Unilateral onset 
 Rest tremor present 
 Progressive disorder 
 Persistent asymmetry affecting side of onset most 
 Excellent response (70-100%) to Levodopa 
 Severe Levodopa-induced chorea 
 Levodopa response for 5 years or more 
 Clinical course of 10 years or more 
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10.2 Questionnaires 
10.2.1 Barthel Index 
 
Bowels 
0 = incontinent (or needs enema) 
1 = occasional accident 
2 = continent 
 
Bladder 
0 = incontinent, or catheterised and unable to manage alone 
1 = occasional accident (maximum once per 24 hours) 
2 = continent 
 
Grooming 
0 = needs help with personal care 
1 = independent face/hair/teeth/shaving (implements provided) 
 
Toilet use 
0 = dependent 
1 = needs some help, but can do something alone 
2 = independent (on and off, dressing, wiping) 
 
Feeding 
0 = unable 
1 = needs help cutting, spreading butter, etc. 
2 = independent 
 
Transfer (bed to chair and back) 
0 = unable, no sitting balance 
1 = major help (one or two people, physical), can sit 
2 = minor help (verbal or physical) 
3 = independent 
 
Mobility 
0 = immobile 
1 = wheelchair independent, including corners 
2 = walks with help of one person (verbal or physical) 
3 = independent (but may use any aid; for example, stick) 
 
Dressing 
0 = dependent 
1 = needs help but can do about half unaided 
2 = independent (including buttons, zips, laces, etc.) 
 
Stairs 
0 = unable 
1 = needs help (verbal, physical, carrying aid) 
2 = independent 
 
Bathing 
0 = dependent 
1 = independent (or in shower) 
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10.2.2 Parkinson’s disease questionnaire 39 (PDQ39) 
 
Due to having Parkinson’s disease how often during the last month have you….. 
 

 Never Occasionally Sometimes Often Always 
1 Had difficulty doing the 

leisure activities which 

you would like to do? □ □ □ □ □ 

2 Had difficulty looking 

after your home, e.g. 

DIY, housework, 

cooking? 
□ □ □ □ □ 

3 Had difficulty carrying 

bags of shopping? □ □ □ □ □ 

4 Had problems walking 

half a mile? □ □ □ □ □ 
5 Had problems walking 

100 yards? □ □ □ □ □ 

6 Had problems getting 

around the house as 

easily as you would like? □ □ □ □ □ 

7 Had difficulty getting 

around in public? □ □ □ □ □ 

8 Needed someone else to 

accompany you when 

you went out? □ □ □ □ □ 

9 Felt frightened or worried 

about falling over in 

public? □ □ □ □ □ 

10 Been confined to the 

house more than you 

would like? □ □ □ □ □ 

11 Had difficulty washing 

yourself? □ □ □ □ □ 

12 Had difficulties dressing 

yourself? □ □ □ □ □ 
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13 Had problems doing up 

your shoe laces? □ □ □ □ □ 
14 Had problems writing 

clearly? □ □ □ □ □ 

15 Had difficulty holding 

cutting up your food? □ □ □ □ □ 
16 Had difficulty holding ad 

rink without spilling it? □ □ □ □ □ 

17 Felt depressed? □ □ □ □ □ 
18 Felt isolated and lonely? □ □ □ □ □ 

19 Felt weepy or tearful? □ □ □ □ □ 
20 Felt angry of bitter? □ □ □ □ □ 

21 Felt anxious? □ □ □ □ □ 
22 Felt worries about your 

future? □ □ □ □ □ 

23 Felt you had to conceal 

your Parkinson’s from 

people? □ □ □ □ □ 

24 Avoided situations which 

involve eating or drinking 

in public? □ □ □ □ □ 

25 Felt embarrassed in 

public due to having 

Parkinson’s disease? □ □ □ □ □ 

26 Felt worried by other 

people’s reaction to you? □ □ □ □ □ 

27 Had problems with your 

close personal 

relationships? □ □ □ □ □ 
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28 Lacked support in the 

way you need from your 

spouse or partner? □ □ □ □ □ 

29 Lacked support in the 

ways you need from your 

family or close friends? □ □ □ □ □ 

30 Unexpectedly fallen 

asleep during the day? □ □ □ □ □ 

31 Had problems with your 

concentration, e.g. when 

reading or watching TV? □ □ □ □ □ 

32 Felt your memory was 

bad? □ □ □ □ □ 
33 Had distressing dreams 

or hallucinations? □ □ □ □ □ 

34 Had difficulty with your 

speech? □ □ □ □ □ 
35 Felt unable to 

communicate with people 

properly? 
□ □ □ □ □ 

36 Felt ignored by people? □ □ □ □ □ 
37 Had painful muscle 

cramps or spasms? □ □ □ □ □ 

38 Had aches and pains in 

your joints or body? □ □ □ □ □ 
39 Felt unpleasantly hot or 

cold? □ □ □ □ □ 
 
Please check that you have ticked one box for each question before going on to 
the next page 
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10.2.3 Rivermead Mobility Index 
Overview: The Rivermead Mobility Index is a measure of disability related to bodily mobility. It 
demonstrates the patient's ability to move her or his own body. It does not measure the 
effective use of a wheelchair or the mobility when aided by someone else. It was developed 
for patients who had suffered a head injury or stroke at the Rivermead Rehabilitation Centre 
in Oxford England. 
 

Rivermead Motor 
Index No  

Parameter  Question  Yes = 1 
No = 0 

1  Turning over in bed  Do you turn over from your back to side 
without help?  

 

2  Lying to sitting  From lying in bed do you get up to sit on 
the edge of the bed on your own?  

 

3  Sitting balance  Do you sit on the edge of the bed without 
holding on for 10 seconds?  

 

4  Sitting to standing  Do you stand up (from any chair) in less 
than 15 seconds and stand there for 15 
seconds (using hands and with an aid if 
necessary)?  

 

5  Standing unsupported  Observe standing for 10 seconds without 
any aid or support.  

 

6  Transfer  Do you manage to move from bed to chair 
and back without any help?  

 

7  Walking inside with an aid if 
needed  

Do you walk 10 meters with an aid or 
furniture if necessary but with no standby 
help?  

 

8  Stairs  Do you manage a flight of stairs without 
help?  

 

9  Walking outside (even 
ground)  

Do you walk around outside on 
pavements without help?  

 

10  Walking inside with no aid  Do you walk 10 meters inside with no 
calliper splint aid or use of furniture and 
no standby help?  

 

11  Picking off floor  If you drop something on the floor do you 
manage to walk 5 meters pick it up and 
then walk back?  

 

12  Walking outside (uneven 
ground)  

Do you walk over uneven ground (grass 
gravel dirt snow ice etc.) without help?  

 

13  Bathing  Do you get in and out of bath or shower 
unsupervised and wash self?  

 

14  Up and down 4 steps  Do you manage to go up and down 4 
steps with no rail and without help but 
using an aid if necessary?  

 

15  Running  Do you run 10 meters without limping in 4 
seconds (a fast walk is acceptable)?  
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10.3 Single case study: step length validation in PD  
 
One participant (75 years old, suffering from PD for 5 years) was recruited under 

ethics number 10/H0308/12. An inertial measurement unit (IMU) was placed over the 

projected CoM as reported previously within this thesis. Sample frequency was 

100Hz for both the IMU and optical motion capture system (OMCS) which were 

synchronized on gait initiation.  

 

The participant was asked to walk over ten metres at self selected walking speed 

along a corridor free of obstacles. Walking measurements recorded included walking 

time (as measured by stopwatch) and leg length. By utilizing these extra 

measurements a individual correction factor was derived for all walks.  

 

Four walks were recorded with both systems resulting in 12 steps. By processing the 

data through Excel for Windows and a custom written program in LabVIEW8.5 step 

length for both limbs and stride length were derived.  

 

Step and stride length were compared using a paired sample t-test and intra class 

correlation coefficient (ICC3.1) on consistency. Adequate test-retest reliability was 

set at ICC≥0.75. 

 
Descriptive measurements can be found in table A 
 
Table A Descriptive walking measurements as taken by optical motion capture system 
Walk Steps walking speed Step length L Step length R Stride length 

  [#] [ms-1] [m] [m] [m] 
1 3 0.72 0.63±0.02 0.64±0.02 1.28±0.04 
2 3 0.95 0.62±0.01 0.63±0.01 1.24±0.01 
3 4 0.90 0.63±0.01 0.64±0.01 1.28±0.01 
4 2 0.97 0.70±0.02 0.70±0.03 1.40±0.04 

 
No significant different was found between the OMCS and IMU measurements for left 

(p=.231) and right (p=.165) step length. Nor was there a significant difference in 

stride length determined by OMCS and IMU measurements (p=.152). Root mean 

square error between OMCS and IMU measurements for left and right step length 

was found to be -1.5±2.1% and -2.4±3.7% respectively. Stride length was found to 

show an RMS error of -2.1±2.7% when comparing OMCS and IMU measurements. 

ICC showed an significant correlation between OMCS and IMU measurements for 

left (ICC=0.959 p<0.01) and right step length (ICC=0.802, p=0.04) but also stride 

length (ICC=0.916, p=0.02).  
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10.4 Flow diagram LabVIEW8.5 
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10.4.2 Output parameters 
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