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Abstract  
 
 
 
The 7 nicotinic receptor is a promising drug target for neurological and inflammatory disorders. 
Although it is the homomeric member of the family, a novel 72 heteromeric receptor has been 
discovered. To decipher the functional contribution of the 2 subunit, we generated heteromeric 
receptors with fixed stoichiometry by two different approaches comprising concatenated and 
unlinked subunits. Receptors containing up to three 2 subunits are functional. As the number of 2 
subunits increases in the pentameric arrangement, the durations of channel openings and 
activation episodes increase progressively probably due to decreased desensitization. The 
prolonged activation episodes conform the kinetic signature of 72 and may have an impact on 
neuronal excitability. For activation of α7β2 receptors, an 7/7 binding-site interface is required, 
thus indicating that the three β2 subunits are located consecutively in the pentameric arrangement. 
7 positive allosteric modulators (PAMs) are emerging as novel therapeutic drugs. The presence of 
2 in the pentamer affects neither type II PAM potentiation nor activation by an allosteric agonist 
whereas it impairs type I PAM potentiation. This first single-channel study provides fundamental 
basis required to decipher the role and function of the novel α7β2 receptor and opens doors to 
develop selective therapeutic drugs. 
 
 
 
 
Key words: Cys-loop receptors, nicotinic receptor, single-channel recordings, patch-clamp. 

 

Abbreviations: 

nAChR: Nicotinic Acetylcholine Receptor. 
ACh: Acetylcholine. 
PAM: Positive Allosteric Modulator. 
5-HI: 5-Hydroxyindole. 
7LC: 7 Low Conductance. 
TM: Transmembrane Domain. 
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Introduction 
 

The 7 nicotinic acetylcholine receptor (nAChR) is one of the most abundant nAChRs in the 
brain. It is especially located in the hippocampus, thalamus, and cortex and contributes to cognition, 
attention, and working memory [1–3]. Decline or alterations of cholinergic signaling involving 7 
have been implicated in neurological diseases, such as schizophrenia, epilepsy and Alzheimer 
disease [1, 4]. 7 is also expressed in non-neuronal cells where it plays a role in immunity, 
inflammation and neuroprotection [4, 5]. Enhancement of 7 activity is emerging as a potential 
therapeutic treatment for neurological, psychiatric, and inflammatory disorders [2–4, 6–9]. In 
particular, positive allosteric modulators (PAMs), which act only in the presence of the endogenous 
agonist, are emerging as novel tools to enhance 7 function [2, 3, 7, 10, 11]. Allosteric ligands have 
several advantages, including higher receptor subtype selectivity and conservation of the spatial 
and temporal pattern of the activation by the endogenous neurotransmitter [7]. 7 PAMs are 
classified as type I and type II based on their effects on macroscopic currents. Both types of 7 
PAMs increase receptor sensitivity to agonists, current magnitudes and empirical Hill coefficients. 
The type I PAMs (for example 5-HI or NS-1738) do so with little or no effect on the onset and decay 
rates of the macroscopic responses to the agonist, while the type II PAMs (for example PNU-
120596) markedly slow current decay rate and can also reactivate desensitized receptors [6, 10–
13]. 

7 was classically considered to be the homomeric member of the family. However, recent 
evidence has demonstrated the presence of heteromeric 72 nAChR in rodent and human brain 
[14–17]. The physiological role of this receptor is not yet known, but it might be involved in 
therapeutic and pathological processes, such as anesthesia and Alzheimer’s disease [14, 15, 18, 
19].  

To date, the determination of functional properties of 72 receptors has been restricted to 
the macroscopic level [14–18, 20, 21]. Currents from the heteromeric receptors have been recorded 
from neurons [14, 15, 18] and from heterologous expressing systems using unlinked subunits [17, 
18, 20, 21] or concatenated 7 with one or two 2 subunits [16].  

Whether 72 exhibits an altered pharmacological and functional profile compared to 7 is 
still unclear (Reviewed in [22]). To find a way to unequivocally establish the functional signature of 
72 we used two different approaches combined with patch clamp recording to monitor single-
channel properties of receptors with defined stoichiometry. One strategy is based on the 
concatemeric technology, which allows control of stoichiometry and limits expression to exactly one 
receptor subtype [3, 23–25]. To confirm the functional equivalence of the concatemeric with the 
wild-type receptor [26], we also applied the electrical fingerprinting strategy with unlinked subunits 
[3, 27–30]. To this end, we used an 7 subunit carrying a triple mutation at the intracellular region 
as a reporter of subunit stoichiometry (7LC for low conductance). Homomeric 7LC receptors are 
functional but single-channel openings cannot be detected due to their low amplitude. Co-
expression of 7LC with 7 leads to multiple and discrete amplitude classes, each corresponding to 
receptors of a given stoichiometry [27–31]. In an analogous manner, we here combined 7LC with 
2, and inferred the possible stoichiometries of functional heteromeric receptors through the 
detected amplitude classes.  
 Our results, which include the first report of single 72 channels, reveal the possible 
heteromeric arrangements, the contribution of 2 subunit to channel kinetics and ion channel 
conductance, and the differences on PAM selectivity with 7. This information could be useful for 
identifying functional heteromeric receptors in native cells and for understanding their distinct roles; 
and opens doors for the development of specific ligands. 
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Materials and Methods 
 
Drugs. Acetylcholine (ACh) and 5-Hydroxyindole (5-HI) were purchased from Sigma-Aldrich (St 
Louis, MO, USA). PNU-120596 (N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea) 
and 4BP-TQS (4-(4-Bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) 
were obtained from Tocris Biosciences (Bristol, UK). NS-1738 (N-(5-Chloro-2-hydroxyphenyl)-N'-[2-
chloro-5-(trifluoromethyl)phenyl]urea) was purchased from Santa Cruz Biotechnology (Dallas, 
Texas, USA).  
 
Site directed mutagenesis. Human 7 and 2 subunits were used. Mutations were generated 
using the QuikChange® Site-Directed Mutagenesis kit (Agilent, UK). The low conductance form of 
7 (7LC) contained three mutations at the intracellular loop (Q428R, E432R, S436R, [29]).  
 
Construction of pentameric concatemers. Concatenated subunit receptors were constructed as 
described before for 42 receptors [23–25, 32]. Briefly, two consecutive PCR steps were used to 
prepare the subunits for concatenation. The first PCR step eliminated stop codons (for all 
constructs) and inserted the kozac sequence GCCACC immediately before the signal peptide of the 
first subunit. Half of the length of the linkers was added with the first PCR step upstream and 
downstream from the 5’ and 3’ coding regions of each subunit. The second PCR step introduced 
unique restriction sites upstream and downstream of the linkers to allow successive subcloning into 
a modified pcDNA3.1 Hygro (-) plasmid vector (Invitrogen, UK). This plasmid was also used to 
assemble the concatemers. To facilitate assembly and subcloning, AscI, XbaI and AgeI restriction 
sites were inserted by oligonucleotide hybridization between the NheI and XhoI sites in the multiple 
cloning site of the plasmid. For all constructs, the enzyme restriction sites introduced were: 1st 
subunit AscI/XbaI; 2nd subunit XbaI/AgeI; 3rd subunit AgeI/XhoI; 4th subunit XhoI/NotI; 5th subunit 
NotI/EcoRV.  
The signal peptide was removed from all the subunits except in the first and the subunits were 
bridged by tripeptide alanine-glycine-serine linkers (AGS) of variable length to compensate 
differences in the length of the C-terminus of the 7 and 2 subunits. The number of the AGS 
repeats was 10 for 7-7, 9 for 7-2, and 8 for 2-7. The total number of residues from the C-
terminal domain to the N-terminal domain of the following subunit was 44 (7-7), 41 (7-2), and 
48 (2-7). Following assembly, pentameric concatamers were subcloned into the vector pCI 
(Promega, UK). The presence of a pentameric concatenated construct was verified by enzymatic 
digestion (EcoRV, XhoI) taking advantage of the restriction sites between subunits followed by 
electrophoresis in agarose gel (0.8%) to detect the fragments with specific lengths. Concatemeric 
receptors were first tested by functional assays in oocytes. 
To engineer 72 nAChR containing 2 L9’T subunits, L9’T mutation was first introduced into the 
desired 2 subunit subcloned into the modified pCI vector. The mutated subunit was then ligated 
into the concatemer using unique restriction enzyme sites. To confirm that the mutated subunit was 
incorporated into the concatemer, the subunit was cut from the concatemer using unique restriction 
enzyme sites and then its nucleotide sequence was verified by DNA sequencing 
(SourceBioscience, UK, Eurofins, UK). All concatemeric constructs were assayed for integrity using 
restriction enzyme digestion. 
 
Expression of receptors in mammalian cells. Receptors were transiently expressed in BOSC 23 
cells, which are modified HEK 293T cells (Provided by Dr. Sine, Mayo Clinic, USA). The cells were 
tested to discard mycoplasma contamination by 4,6-Diamidino-2-phenylindole (DAPI) staining and 
fluorescent microscopy. Cells were transfected by calcium phosphate precipitation with subunit or 
concatemeric cDNAs together with Ric-3 and/or NACHO cDNAs for cell surface expression [29, 33]. 
GFP cDNA (5 % of total cDNA amount) was incorporated during the transfection to allow 
identification of transfected cells. The ratio for unlinked subunit cDNAs was 7:2 1:8 or 1:10, and 
the ratio for nAChR subunit and chaperone (Ric-3 or NACHO) cDNA was 1:4. For concatemers, the 
ratio was concatemer: Ric3 1:4 or concatemer: Ric3: NACHO 1:1:1. We did not observe significant 
differences in the expression among these conditions. All transfections were carried out for about 8-
12 hours in DMEM with 10% FBS and were terminated by exchanging the medium. Cells were used 
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for single-channel recordings 2 to 3 days after transfection at which the maximum expression levels 
are usually achieved [29–31, 33–36]  
 
Single-channel recordings. Single-channel recordings were obtained in the cell-attached patch 
configuration [33]. Each patch corresponds to a different cell (n indicates the number of 
independent experiments). For each condition (different receptors or drugs), at least three different 
cell transfections from different days were used for the recordings.  
The bath and pipette solutions contained 142 mM KCl, 5.4 mM NaCl, 1.8 mM CaCl2, 1.7 mM MgCl2 
and 10 mM HEPES (pH 7.4). For potentiation, 2 mM 5-HI, 10 M NS-1738 or 1 M PNU-120596, 
were added to the pipette solution with ACh. Thus, single channels were recorded in the continuous 
presence of the drugs. Typical recordings lasted between 5 and 10 minutes. The final concentration 
of DMSO used to solubilize PAMs (PNU-120596 and NS-1738) was lower than 0.1% (v/v). This 
DMSO concentration does not affect 7 activation properties [29, 36]. ACh and 5-HI were 
solubilized directly in pipette solution [29]. For recordings in the absence of calcium, the pipette 
solution contained 80 mM KF, 20 mM KCl, 40 mM K-Aspartate, 2 mM MgCl2,1 mM EGTA and 10 
mM HEPES (pH 7.4) [30]. Single-channel currents were digitized at 5-10 s intervals, low-pass 
filtered at a cut-off frequency of 10 kHz using an Axopatch 200B patch-clamp amplifier (Molecular 
Devices Corp.,CA) and analyzed using the program TAC (Bruxton Corporation, Seattle, WA, USA) 
with the Gaussian digital filter at 9 kHz (Final cut-off frequency 6.7 kHz). In the presence of PNU-
120596 or 4BP-TQS the filter was 3 kHz as described before [29, 37]. Open-time histograms were 
fitted by the sum of exponential functions by maximum likelihood using the program TACFit 
(Bruxton Corporation, Seattle, WA, USA). Bursts of channel openings were identified as a series of 
closely separated openings preceded and followed by closings longer than a critical duration, which 
was taken as the point of intersection between components as described before [29, 33].  
Critical durations were defined by the intersection between the first and second briefest 
components in the closed-time histogram for bursts of 7, (7)5 and (7)42 (200-400 µs) and 
second and third closed components for bursts of (7)3(2)2 and (7)2(2)3 (2-6 ms), in the 
absence of PAMs.  
In presence of potentiators, the critical time was defined for 7 and different concatemeric receptors 
between the second and third closed components in presence of 5-HI (2-6 ms), between the third 
and fourth components in presence of NS-1738 (10-20 ms) and between the third and fourth 
components in presence of PNU-120596 (60-100 ms). The longest-duration closed components 
were not considered for the analysis since they depend on the expression level of 7 in each cell. 
 
Electrical fingerprinting strategy. To define amplitude classes from receptors generated by co-
expression of high and low conductance subunits, analysis was performed by tracking events 
regardless of current amplitude. Amplitude histograms were then constructed, and the different 
amplitude classes were distinguished. Open time histograms were then constructed for a given 
amplitude class by selecting only openings with amplitudes of  SD pA of that of the mean of the 
class [27–29]. 
 
Expression and electrophysiology in Xenopus oocytes. Stage V and VI Xenopus oocytes were 
prepared as previously described [24], and then injected with 100 ng of 7, (7)5 or concatemeric 
72 receptor cRNA. Injected oocytes were incubated until use at 18ºC in Barth’s solution: 88 mM 
NaCl, 1 mM KCl, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 2.4 mM NaHCO3, 10 mM 
HEPES, supplemented with 0.1 mg/mL streptomycin, 1000 U/mL Penicillin and 100 g/mL amikacin 
(pH 7.5, with 5 M NaOH). 
Oocytes were impaled by two microelectrodes filled with 3M KCl (0.5–2.0 MΩ) and voltage-clamped 
at –60 mV using an Oocyte Clamp OC-725C amplifier (Warner Instruments, USA) and Labscribe 
software (Iworx, NH, USA). All experiments were carried out at room temperature. ACh 
concentration–response curves were obtained by normalizing ACh-induced responses to the 
control responses induced by 1mM ACh in the same oocyte (a near-maximum effective 
concentration at 7 as well as 72 receptors). An interval of 5 min was allowed between agonist 
applications, as this was found to be sufficient to ensure reproducible recordings. Allosteric 
modulators (PNU-120596 or 5-HI) were co-applied with ACh EC20 (30 M) for the receptor under 
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study and the peak current responses were normalized to the responses elicited by ACh EC20 alone 
in the same oocyte. 
Concentration–response curves for ACh or allosteric modulators were fitted by a non-linear least-
squares algorithm according to the equation: 𝐼 =  𝐼𝑚𝑎𝑥/[1 + (𝐸𝐶50/𝑥)𝑛], in which Imax is the 
maximum obtainable peak current; EC50 is the concentration of the agonist that elicits 50% of the 
maximum obtainable peak current; x is the agonist or allosteric modulator concentration and n is the 
slope factor.  
 
Statistical analysis. Data were presented as mean ± SD, or as mean ± SEM only when indicated. 
Data sets that passed the Shapiro-Wilk test for normality and the Levene Median test for equal 
variance were analysed using two-tailed Student’s t-test for pairwise comparisons or OneWay 
ANOVA followed by Bonferroni’s post-hoc tests for multiple comparisons. All the tests were 
performed with SigmaPlot 12.0 (Systat Software, Inc.). Statistically significance difference was 
established at p-values<0.05 (p<0.05*, p<0.01**, p<0.001***). Concentration-response curves were 
determined by nonlinear regression fits to the Hill equation using Prism 5.0 (GraphPad, San Diego, 
CA). 
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Results 
 

7 concatemeric receptors. The 7 concatemeric receptor, (7)5, was constructed by 
linking five human 7 subunits (Fig. 1a), expressed in BOSC 23 cells, and examined by single-
channel recording. 

In the presence of 100-500 M ACh, 7 exhibits infrequent and single brief openings (0.25 
ms) flanked by long closings, or less often, several openings in quick succession, known as bursts 
(Fig. 2a, Table 1, [29, 33]). Discarding the lower frequency of channel openings, there are no 
statistically significant differences in mean open and burst durations of (7)5 (n=3) respect to 7 
(n=4) (p>0.05, Fig. 2a, Table 1). For both receptors, channels show a broad amplitude distribution 
due to the lack of resolution of the brief events, being the maximal amplitude of 10 pA at -70 mV 
(Fig. 2a, [33]). 

No single-channel activity elicited by ACh was detected from non-transfected cells (n=8) or 
from cells transfected only with Ric-3 cDNA (n=7) or Ric-3: NACHO (1:1) (n=5). 

In the presence of 100 M ACh, the type II PAM PNU-120596 gives rise to significantly 
prolonged openings of 10 pA (-70 mV). Openings separated by brief closings are grouped in 
bursts, which in turn coalesce into long activation periods, named clusters (1-3 s) (Table 1, Fig. 2b, 
[35, 36]). The mean duration of the slowest open component and the mean cluster duration of 
potentiated (7)5 (n=3) are indistinguishable from those of wild-type 7 (n=8) (p>0.05, Fig. 2b, 
Table 1).  

In agreement with the single-channel results, the EC50 values for ACh as well as for two 
different types of PAMs, PNU-120596 (Type II PAM) and 5-HI (Type I PAM), determined from 
macroscopic currents in oocytes, are identical between 7 (n=10) and (7)5 (n=10) (p>0.05, Fig.3a-
c, Table 2).   

These findings led us to conclude that the concatemeric receptor (7)5 has comparable 
pharmacological signatures, in terms of activation by its endogenous agonist and potentiation by 
two types of PAMs, to those of wild-type 7 receptors. It is an important control that shows that 
concatenation of α7 subunits does not affect the functional properties of the receptor, and therefore, 
the concatemeric receptor is a valid model of the wild-type receptor. Therefore, we next constructed 
concatemers combining 7 and 2 subunits in different stoichiometries to be used as models of 
native 72 receptors. 
 

Kinetic signature of 72 concatemeric receptors. To determine how the number of 2 
subunits contributes to function, we constructed concatemeric receptors containing one, two or 
three 2 subunits (Fig. 1b-e). All concatemeric receptors are functional in oocytes, and their EC50 
values for ACh are similar to that of 7 (p>0.05, n=6-10 for each receptor, Fig. 3a and Table 2).  

When expressed in BOSC 23 cells, ACh-elicited single-channel currents of receptors 
comprising one 2 subunit in the second position of the linear sequence (7)42 show a maximal 
mean amplitude of 10 pA, similar to that of 7 (Fig. 1b, Fig. 4b). The presence of one 2 subunit 
does not change significantly open-channel lifetime (p>0.05, n=3). However, the burst duration 
increases ~1.5-fold with respect to 7 (p<0.001, n=3, Table 1, Figs. 4b and 5a).  

 Changing the position of the 2 subunit in the linear arrangement from the second to the 
third place (Fig. 1c), leads to channels with identical burst and open durations as those of (7)42 
with 2 in the second position (Fig. 4b).  

 Concatemeric receptors with two alternate 2 subunits are also functional (Fig. 1d). The 
second 2 subunit leads to an additional increase in mean open and burst durations, which are 
~1.6-fold (p<0.01, n=3) and ~3-fold (p<0.001, n=3), respectively, longer than those of 7 (Table 1, 
Fig. 4c and 5a). The maximal amplitude remains constant (10 pA). Another construct containing 
two alternate 2 subunits but starting with 2 in the linear sequence did not show functional 
expression in BOSC 23 cells.  

 A pentameric arrangement with three consecutive 2 subunits (7)2(2)3 (Fig. 1e) also 
forms functional channels. For this arrangement, open channel lifetime and burst durations are 
even more prolonged than in (7)3(2)2 receptors, and are 2-fold (p<0.001, n=5) and 7-fold (p<0.05, 
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n=5) longer with respect to 7 (Table 1, Figs. 4d and 5a). Again, single-channel amplitude remains 
constant with respect to 7.  

. Thus, the increase in the number of 2 subunits leads to a linear increase in the open 
channel lifetime (Fig. 5a). From the slope of the curve, we determined that each 2 subunit 
contributes to 0.10 ± 0.03 ms. Interestingly, the burst duration increases exponentially with the 
number of 2 subunits, indicating that it is more sensitive to the presence of this subunit (Fig. 5a, 
Inset to Fig. 5a). 

 The amplitude histograms constructed only for events longer than 0.3 ms to allow full 
amplitude resolution show no statistically significant differences (p>0.05) between 7 (9.65 ± 0.41 
pA, n=4) and (7)2(2)3 (9.70 ± 0.21 pA, n=3) (Fig. 5b).  

 
72 concatemeric receptors carrying pore-lining mutations. The ring of hydrophobic 

residues in TM2 at 9’ position forms the channel gate [38]. Replacement by polar residues 
significantly increases open probability  [20, 39]. As another means to confirm the assembly of 2 
with 7 and to determine the functional contribution of the hydrophobic residues at TM2 9’, we 
incorporated the L9’T mutation in the 2 subunit of the concatemeric receptors and compared 
channel activity of the mutant heteromeric receptors with that of 7L9’T receptors. The single-
channel pattern of 7L9´T shows, instead of the typical isolated brief openings of 7 wild-type 
receptors, long-duration bursts (200 ms), and, occasionally, super long-duration clusters (1 s) 
containing openings of 10 ms (Fig. 6a). The activity patterns of concatemeric receptors containing 
wild-type 7 together with one, two or three 2 subunits carrying the L9´T mutation (Fig. 1f-h) are 
also strikingly different from their respective controls (Fig. 6). For receptors with one mutant 2 
subunit, open channel lifetime (0.61 ± 0.06 ms, n=5) and mean burst duration (3.31 ± 1.22 ms, n=5) 
are longer than the corresponding control. Occasionally, even longer openings (~3-4 ms) forming 
clusters of ~100-200 ms are detected (Fig. 6b). Activity patterns of concatemeric receptors with two 
and three mutant 2 subunits exhibit a similar variable behavior but even more prolonged openings 
and bursts respect to their controls (Fig 6c-d). Receptors with three 2L9’T subunits show several 
long-duration open components (0.72 ± 0.04 ms, 2.28 ± 0.20 ms, 8.28 ± 2.00 ms, n=4). 
Occasionally, very long-duration clusters (1459 ± 156 ms) containing even more prolonged 
openings (43.90 ± 7.40 ms) are observed (Fig. 6d). Thus, we conclude that 2 is incorporated into 
the pentamer and that it contributes to channel gating and to the stability of the open channel.  

 
Positive allosteric modulation of 72 concatemeric receptors. PAMs have been 

developed as selective allosteric ligands for 7 homomeric receptors. However, the presence of 
72 heteromeric receptors led us to explore if PAMs can also act at 72 instead of being 
selective for 7. To determine the effects of 7 PAMs on 72 receptors, single-channel currents 
elicited by ACh in the presence of either type II PAMs (PNU-120596) or type I PAMs (5-HI or NS-
1738) were recorded. 

 In the presence of 100 M ACh and 1 M PNU-120596 (type II PAM), the typical long 
openings and clusters detected in 7 are also observed for (7)42, (7)3(2)2 and (7)2(2)3 (Fig. 
7a, Table 1). As determined from Table 1, there are no statistically significant differences in the 
mean open and cluster durations with respect to those of 7 (p>0.05, Fig. 7b, Table 1). Also, 
macroscopic current recordings in oocytes show no differences in EC50 values for PNU-120596 
between 7 and heteromeric receptors (Fig. 3b, Table 2). Thus, we conclude that PNU-120596 
does not select between homomeric and heteromeric receptors.  For all pentameric arrangements, 
the mean channel amplitude is similar to that of 7 (9.87 ± 0.20 pA, 10.21 ± 0.72 pA, and 10.20 ± 
0.26 pA for receptors with one, two or three 2 subunits, respectively, p>0.05, n=4 for each 
condition). 

 For 7, single channel activity in the presence of ACh and 2 mM 5-HI (Type I PAM) appears 
in bursts composed of successive openings of prolonged duration [29, 36] (Table 1). For the 
heteromeric receptors, the increase in open and burst durations due to the presence of 5-HI 
decreases with the number of 2 subunits (Table 1 and Fig. 8a-b). Although (7)3(2)2 and 
(7)2(2)3 have longer durations than 7 in the absence of 5-HI, these durations are significantly 
briefer than those of 7 in the presence of 5-HI (n=4 for each receptor, p<0.01 for (7)3(2)2 and 
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p<0.001 for (7)2(2)3). For each pentameric arrangement, normalization of open and burst 
durations in the presence of 5-HI to its respective control value in the absence of 5-HI reveals 
decreased potentiation as a function of the number of 2 and no significant potentiation for 
(7)2(2)3 (Fig. 8b, Table 1). In agreement, negligible 5-HI potentiation of (7)3(2)2 is observed 
from macroscopic current recordings in oocytes (Fig. 3c, Table 2). 

In the presence of another type I PAM, NS-1738, 7 receptors show prolonged open 
channel-lifetime and mean burst durations respect to the control [36] (Table 1). The degree of NS-
1738 potentiation of (7)2(2)3 (n=5), measured by the increase in open (p<0.01) and burst duration 
(p<0.001), is significantly lower than that of 7 (n=4) (Fig. 8c-d, Table 1). Thus, 5-HI and NS-1738 
show higher selectivity for 7 than for heteromeric receptors, whereas PNU-120596 leads to 
potentiated episodes of similar durations between both receptor types.  

In the presence of all PAMs, channel amplitude remains constant among all heteromeric 
receptors. We took advantage of PNU-120596, which by leading to frequent and prolonged 
openings allows accurate measurement of single-channel amplitude, to determine the conductance 
from current-voltage relationships. We found no differences in the conductance between 7 and 
(7)2(2)3 in the presence or absence of calcium (n=3 for each receptor and condition). The mean 
conductance values are: 155.2 ± 7.0 pS for 7 and 159.8 ± 4.4 pS for (7)2(2)3 in 1.8 mM Ca2+, 
and 175.2 ± 5.8 pS for 7 and 184.0 ± 10.7 pS for (7)2(2)3, in the absence of Ca2+ (Fig. 7c). 

 
Activation of (7)2(2)3 by an 7 allosteric agonist. 7 is activated by the allosteric agonist 

4BP-TQS probably through an intrasubunit transmembrane cavity [40, 41]. In 7, this agonist elicits 
prolonged openings (55.4 ± 40 ms, n=4), which are grouped in very long duration clusters (1834 ± 
970 ms, n=4) (Fig. 9). We found that (7)2(2)3 receptors can be also activated by 4BP-TQS. The 
activation pattern as well as mean open (71.7 ± 38 ms, n=6) and cluster durations (1396 ± 539 ms, 
n=6) are similar to those of 7 (p>0.05, Fig. 9).  

 
Co-assembly of unlinked 7 and 2 subunits. To confirm that co-assembly of 2 and 7 

subunits takes place with unlinked subunits and to establish the stoichiometry of the functional 
arrangements, we applied the electrical fingerprinting strategy. The strategy is based on the use of 
an 7 subunit that contains three arginine substitutions at the intracellular TM3-TM4 loop region 
(7LC). Although the receptors are functional as evidenced by macroscopic current recordings, 
single channels cannot be detected because the amplitude is reduced to undetectable levels [27–
31] (Fig 10a). Due to the brief duration of 7 openings, the strategy has to be performed in the 
presence of a modulator that increases open channel lifetime to accurately measure channel 
amplitude [29, 42]. We here used PNU-120596 since it well potentiates all heteromeric receptors.  

When 7 is co-expressed with 7LC, instead of the homogenous amplitude population 
detected for 7 alone, different amplitude populations can be well distinguished from the histograms 
(Fig. 10a). Our previous works show that the different populations report the number of low 
conductance subunits in each pentameric arrangement [27–29]. Thus, populations of 2, 4, 6, 8 and 
10 pA channels correspond to arrangements containing four, three, two, one and zero 7LC 
subunits, respectively [29–31].  

We first used this strategy as an important control of (7)5. When we co-expressed 7LC 
with (7)5, only one amplitude population corresponding to that of wild-type 7 was detected (10 
pA), in contrast to the results with 7LC and unlinked 7 (n=4). This result confirms that the 7 
concatemeric receptor remains intact and does not yield 7 individual subunits as degradation 
products (Fig. 10a). 

Although single-channel openings in the presence of ACh and 1 M PNU-120596 are not 
detected from cells transfected with 7LC cDNA alone, they are detected when the 2 subunit 
cDNA is added during transfection (1:8-1:10 subunit ratio). This result indicates that 2 assembles 
with 7LC. The frequency of the active patches is significantly lower, indicating that the functional 
expression of heteromeric receptors is lower than that of homomeric receptors. Instead of the five 
amplitude classes detected for 7 and 7LC, only the three of lower amplitude are detected for 
7LC and 2 (Fig. 10a).  
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Our concatemeric receptors show that 2 subunits do not affect channel amplitude.  2 does 
not contain the arginine residues at the portal region shown to govern the low conductance of 5-
HT3A and 7LC receptors, instead it contains negatively charged residues as 7 (Fig. 10b). Thus, 
we infer that the contribution of 2 to 72 channel conductance is mainly governed by these portal 
residues and that each 2 subunit contributes approximately equally (2 pA) to the single-channel 
conductance (Fig 10c). In consequence, similarly to the 7:7LC results (this work and [29]), 
amplitude classes of 2, 4 and 6 pA would correspond to receptors containing one, two and three 
2 subunits, respectively. In line with this, we do not detect the 8 and 10 pA classes, which would 
correspond to receptors containing four and five 2 subunits, respectively (Fig. 10c). 

 We conclude that wild-type 7 can assemble with 2 into pentameric arrangements 
containing one, two or three 2 subunits. As shown for the concatemeric receptors, the open and 
cluster durations of the amplitude classes in the presence of PNU-120596 are not statistically 
significantly different from those of 7 (p>0.05, Table 3).  

 To determine if the 2 subunit contributes to the complementary face of the binding site, we 
co-expressed 2 with an 7LC subunit containing the W55T mutation at Loop D of the 
complementary face that completely inactivates ACh activation in 7 receptors [27], and recorded 
single channels in the presence of ACh and 1 M PNU-120596. The hypothesis is that if activation 
takes place through the 7/2 interface, where 2 provides the complementary face of the ACh 
binding site, single-channel activity should be restored in 7LCW55T/2 receptors. In a total of 19 
patches from three different cell transfections no channels were detected (Fig. 10d). This result 
indicates that the 7 complementary face is required for activation and, consequently, that 
activation of 72 occurs mainly through the 7/7 binding-site interface (Fig. 10d).  
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Discussion 
 

The discovery of the novel 72 receptor inevitably led to key questions regarding its distinct 
role and location. To find the answers, it is first required to establish the molecular functional 
differences between 7 and 72 receptors that will help distinguish each functional receptor in 
native cells. However, functional studies using macroscopic current recordings have shown that the 
impact of the 2 subunit on the pharmacology of the 72 receptors, compared to that of 7 
homomeric receptors, appears not sufficient to distinguish unequivocally the two receptor subtypes 
[16, 17, 21, 22]. The fact that 72 can assemble into different pentameric arrangements introduces 
additional complexity. Therefore, there is an urgent need to decipher the features of activation and 
potentiation contributed by the 2 subunit to the different 7-containing pentameric arrangements. 

We here report the first single-channel study of heteromeric 72 receptors. By combining 
single-channel recordings with two different approaches -concatemeric receptor technology and 
electrical fingerprinting strategy- we reveal the stoichiometry of receptors and the kinetic signature 
of each pentameric arrangement. 

Concatenation of subunits is used as a strategy to express channels with fixed stoichiometry 
[26]. However, the resulting information should be verified with unlinked subunits to discard that the 
concatenation allows assembly of subunits that cannot occur in native systems. On the other hand, 
our established electrical fingerprinting strategy for 7 [27–29, 31], which uses unlinked subunits, 
can only be applied in the presence of a potentiator that by increasing open duration allows 
accurate measurement of channel amplitude [29]. Thus, each strategy has proven significant by 
itself while their combination has provided a complete picture of 72 activation and modulation.   

We show that 7 co-assembles with one, two or three 2 subunits and that the 7/7 
interface is required for activation [20]. This scenario clearly differs from that in which 2 is 
combined with 4, where only two receptor stoichiometries, comprising two or three 2 subunits, 
are functional [43, 44]. It also differs by the fact that in both 42 receptor stoichiometries each 2 
subunit contributes to the complementary face of an agonist binding site and that the additional 
4/4 binding site present in the (4)3(2)2 receptor cannot per se drive efficacious activation [24]. 
Thus, among 2-containing heteromeric receptors, the presence of the 7 subunit provides a 
unique functional behavior. This discovery opens doors to explore why 7/2 binding site interfaces 
cannot mediate efficacious activation. The conclusion that only one 7/7 interface is enough to 
activate (7)2(2)3 receptors is in line with our previous findings showing that only one functional 
ACh binding site is sufficient for 7 activation [29]. It also agrees with previous results from  
macroscopic current recordings of 72 receptors formed by unlinked subunits [20]. Moreover, the 
fact that the 8 pA-amplitude class is not detected in recordings from cells co-expressing 7LC and 
2 indicates that receptors with four 2 subunits, which should contain one 7/2 binding site 
interface, are not functional.   

When compared to 7, heteromeric 72 receptors show increased open and burst 
durations. The open duration increases linearly with the number of 2 subunits whereas the burst 
duration is more sensitive since it shows an exponential increase. Increased burst duration is 
probably a consequence of decreased desensitization, indicating that the kinetics of activation and 
desensitization differs between heteromeric and 7 receptors. This result explains previous 
observations from macroscopic current recordings showing reduced decay rates for 72 [16, 17, 
21]. It also explains the variable results regarding its pharmacological properties because in a 
mixed population of homomeric and different heteromeric arrangements the changes may be too 
subtle to be resolved at the macroscopic level [22]. The prolonged bursts, never detected in 7, can 
be used as the signature of the presence of 72 receptors. Prolonged activation and reduced 
desensitization may have an important impact on calcium-dependent intracellular signaling and 
neuronal excitability. 

The two different arrangements of 42 receptors -(4)2(2)3 and (4)3(2)2- show different 
single-channel amplitude [25]. Unexpectedly, we found that all 72 receptors show similar 
amplitudes to that of 7 and the conductance of (7)2(2)3 in the presence of PNU-120596 is not 
statistically different to that of 7.  As described before for 7 [2, 33, 35, 36], 72 receptors show a 
homogenous amplitude population in the presence of PAMs whose mean amplitude is the same as 
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that of the longest-duration openings in the absence of PAMs (which can be fully resolved). 
Therefore, we can infer that 2 contributes mainly to channel kinetics. The determinants governing 
the different amplitudes of 42 arrangements have not been determined to date. However, for 7-
containing receptors our electrical fingerprinting strategy shows that portal residues at the 
intracellular TM3-TM4 domain [45], previously reported as responsible for the low conductance of 5-
HT3A [46, 47] and the high conductance of 7 [29, 31], are the main determinants of channel 
amplitude. When combined with 7, the contribution of 2 to channel amplitude is mainly governed 
by these portal residues, and each 2 subunit contributes approximately equally and similarly as 7 
to the single-channel amplitude of 72 receptors. It is important to note that although the single 
channel conductance in high K+ solution is similar between 7 and (7)2(2)3, our results cannot 
discard differences in calcium selectivity that due to technical reasons could not be determined.  

7 PAMs are emerging as novel therapeutic drugs for neurological and inflammatory 
disorders.  They are promising drugs because they maintain the temporal and spatial characteristics 
of endogenous activation, are more selective than agonists, and reduce tolerance due to 
desensitization [2, 7]. PAMs have been classified based on their macroscopic effects on 7, and the 
determination of their selectivity has been performed under the premise that 7 is a homomeric 
receptor. It is therefore required to establish if they also act at 72. We here show that PNU-
120596, the prototype type II PAM, which has been typically considered as highly selective for 7 
[48], cannot select between 7 and 72 receptors. Potentiation of 72 by this PAM has been 
suggested in previous macroscopic current studies [17]. Thus, it should be kept in mind that in in 
vivo situations both receptor types will be potentiated and their kinetic differences will be probably 
unmasked. On the other hand, the tested type I PAMs appear to be more specific for 7 than for 
72, and their exposure will make 7 activity prevail over that of 72. Indeed, 5-HI potentiation of 
(7)2(2)3 is negligible. Thus, we propose that the characterization of novel PAMs should include 
their actions at 72.  

The most plausible explanation for the different actions of PAMs is that they interact at 
different sites which, in turn, are differently conserved between 7 and 2. To date there is no 
structural evidence unequivocally showing the PAM binding site(s) for 7. One of the key 7 
residues for PNU-120596 potentiation or 4BP-TQS allosteric activation, M254, is a leucine in 2, 
and the 7M254L mutant is insensitive to both compounds [35, 41, 49]. Thus, it could be possible 
that in 72, 7 is the only subunit involved in the actions of these two compounds. NS-1738 (type 
I) and PNU-120596 (type II) share structural determinants for potentiation [35, 36, 49]. Since the 
effects of these two PAMs are different on 7 and 72, it could be possible that the allosteric 
mechanism of potentiation differs between homo and heteromeric receptors or between type I and 
type II PAMs. Thus, our study opens doors to explore new aspects of 7 potentiation and shows 
that it is possible to selectively potentiate one of the two receptors. This information will help in the 
design of more specific ligands.  

The unique fast kinetics of 7 -extremely rapid desensitization and very brief open duration- 
indicates that this receptor harbors a built-in filtering mechanism against excessive stimulation. 
Because the incorporation of 2 slows receptor kinetics and reduces desensitization, it is possible 
that the action of the two receptors occurs at different temporal scales. Our study is focused on 
deciphering the kinetic differences of the ionotropic responses. However, 7 has been shown to act 
as a dual ionotropic/metabotropic receptor [2, 3, 50–52]. Thus, further studies would be required to 
determine how the metabotropic activity differs between homomeric and heteromeric 7-containing 
receptors.  

The identification of the kinetic signature by which 72 can be distinguished from 7 
provides tools for the elucidation of its physiological role and functional location in native tissues, 
which is emerging as a new field of research.  
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Figure legends 
Fig. 1 Schematic diagram of pentameric concatenated constructs 7 and 2 subunits are 
shown in blue and red, respectively. Subunits containing TM2 L9’T mutation are shown in green. 
The linkers of AGS are represented with black lines in linear constructs and dotted lines bridging 
the subunits in the assembled concatemers. 
Fig. 2 Comparison between single-channel profiles of 7 and (7)5 Left: Typical single-channel 
traces from recordings in the continuous presence of 100 M-1 mM ACh (a) or 100 M ACh + 1 M 
PNU-120596 (b). Right: Typical open and burst/cluster duration histograms are shown. Channel 
openings are shown as upward deflections. Membrane potential: -70 mV. Filter: 9 kHz (a) and 3 
kHz (b).  
Fig. 3 Pharmacological properties of human 7, (7)5 and 72 concatameric receptors 
expressed in Xenopus oocytes. Concentration dependent effects of ACh (a), PNU-120596 (b) or 
5-HI (c) were fitted by the Hill equation, as described in Materials and Methods. Dose-response 
curves were obtained from macroscopic currents elicited by ACh at different concentrations (a), or 
by 30 µM ACh, which corresponds to the EC20 value, in the presence of different concentrations of 
the PAMS (b and c). Data points are mean values ± SEM of 7 (n=10), (7)5 (n=10), (α7)4β2 (n=8), 
(α7)3(β2)2 (n=8) and (α7)2(β2)3 (n=6). n corresponds to the number of independent experiments 
(oocytes) for each condition. EC50 and percentage of maximal potentiation values are shown in 
Table 2. 
Fig. 4 Kinetic properties of concatemeric receptors with increasing number of 2 subunits 
Left: Typical traces from single-channel recordings of concatemeric receptors in the continuous 
presence of 1 mM ACh. Right: Representative open and burst duration histograms. Blue dotted 
lines indicate the mean open and burst durations for (7)5 showing their increase with the increase 
in the number of 2 subunits. Membrane potential: -70 mV. Filter: 9 kHz. Channel openings are 
shown as upward deflections.  
Fig. 5 Single-channel properties of 72 concatemeric receptors (a) Plot of mean open (open) 
and burst (burst) durations as a function of the number of 2 subunits in the receptor. Data are 
plotted as mean ± SEM for zero 2 (n=3), one 2 (n=3), two 2 (n=3) and three 2 subunits (n=5). n 
corresponds to the number of independent experiments, each from different cell patches (See 
Table 1). Solid lines represent the fitted curves. For open, the curve was obtained by linear 
regression. For bursts, the exponential function parameters were obtained from the linear 
regression of the ln(burst) vs number of 2 subunits (inset). (b) Amplitude histograms for 7 and 
(7)2(2)3 constructed with opening events longer than 0.3 ms.  
Fig. 6 Single-channel recordings from 72 concatemeric receptors containing 2 subunits 
carrying the L9’T mutation in the TM2 segment Left: Typical traces from single-channel 
recordings of in the continuous presence of 1 mM ACh are shown at two different time scales. For 
comparison, single-channel activity of 7L9’T is also shown (a). The recordings show the longest 
duration clusters detected. Right: representative duration histograms are shown. Channel openings 
are shown as upward deflections. Membrane potential: -70 mV. Filter: 9 kHz.  
Fig. 7 Potentiation of concatemeric 72 receptors by PNU-120596 (a) Single-channel traces of 
recordings in the continuous presence of 100 M ACh + 1 M PNU-120596.  Channel openings are 
shown as upward deflections. Membrane potential: -70 mV. Filter: 3 kHz. (b) Mean open (open) and 
cluster (cluster) durations in presence of PNU-120596. Data are plotted as mean ± SD for zero 2 
(n=4), one 2 (n=5), two 2 (n=5) and three 2 subunits (n=4). n corresponds to the number of 
independent experiments, each from different cell patches (See Table 1). open and cluster for 2-
containing concatemers in presence of PNU-120596 compared with homomeric 7 do not show 
significance differences (p>0.05 by two-tailed Student’s t-test). (c) Curves showing the relationship 
between the single-channel current amplitude and the holding potential for 7 and (7)2(2)3 
potentiated by PNU-120596 in the absence or presence of 1.8 mM Ca2+ in the pipette solution. Non-
statistically significant differences in amplitude at each holding potential are detected between 7 
and (7)2(2)3 for each condition (Two-tailed Student’s t-test, p>0.05, n=3 independent experiments 
from different cell patches for each condition). 
Fig. 8 Potentiation of concatenated 72 receptors by 5-HI and NS-1738 Single-channel traces 
of recordings in the continuous presence of 500 M ACh and 2 mM 5-HI (a) or 10 M NS-1738 (c). 
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Membrane potential: -70 mV. Filter: 9 kHz. Channel openings are shown as upward deflections. (b 
and d, left) Mean open (open) and burst (burst) durations in presence of PAMs. Data are plotted as 
mean ± SD. For 5-HI n=4 for each condition, for NS-1738 n=4 for 7 and n=5 for (7)2(2)3. n 
corresponds to the number of independent experiments, each from different cell patches (See 
Table 1). Statistical significance was determined by comparing the durations of 2-containing 
receptors with respect to 7 in the presence of PAMs, by two-tailed Student’s t-test (p<0.05*, 
p<0.01**, p<0.001***). (b and d, right) Mean open and burst durations in the presence of PAMs 
(shown in panels b and d left) were normalized to the values of their respective control receptors in 
the absence of PAMs. Statistical significance was determined by comparing the degree of 
potentiation between 2-containing receptors respect to 7, by two-tailed Student’s t-test (p<0.05*, 
p<0.01**, p<0.001***).  
Fig. 9 Allosteric activation of concatenated 72 receptors by 4BP-TQS Left: Single-channel 
traces of 7 and (7)2(2)3 from recordings in the continuous presence of 10 M 4BP-TQS. Right: 
Typical open and burst/cluster duration histograms are shown. Channel openings are shown as 
upward deflections. Membrane potential: -70 mV. Filter: 3 kHz.   
Fig. 10 Electrical fingerprinting strategy (a, left) Single-channel currents activated by 100 M 
ACh + 1 M PNU-120596 from 7LC, 7LC + 7, 7LC + (7)5 and 7LC + 2. The traces for the 
mixed subunits are excerpts from the same recording in the continuous presence of ACh and PNU-
120596. Amplitude histograms constructed with events longer than 0.3 ms are shown (right). 
Membrane potential: -70 mV. Filter: 3 kHz. Channel openings are shown as upward deflections. (b) 
Alignment of amino acid sequences of human 5HT3A, 7LC, 7 and 2 subunits highlighting the 
amino acids that determine single-channel conductance. (c) Plot of mean current amplitude against 
the number of 2 subunits. The fitted slope by least-squares method is 1.91 ± 0.02 pA/ 2 subunit. 
Data are plotted as mean ± SD of n=4 for amplitude classes of 2 pA and 4 pA, and n=5 for the 
amplitude class of 6 pA. n corresponds to the number of independent experiments, each from 
different cell patches. (d) Representative single-channel recording in the presence of 100 M ACh + 
1 M PNU-120596 showing lack of single channel-activity from cells expressing 7LC carrying the 
W55T mutation in Loop D (complementary face (-)) and 2 subunits. Membrane potential: -70 mV. 
Filter: 3 kHz.  Schematic diagrams of (7)2(2)3 concatemeric receptor showing possible binding 
sites at 7/7 or 7/2 interfaces are shown. The presence of an 7/7 interface allows activation 
(grey arrow). 
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Table 1. Mean open and burst or cluster durations of 7 and 72 concatemeric receptors in the 
absence or presence of PAMs.   
Receptor Agonist PAM open (ms) burst or cluster (ms) n 
7 100 M-1 mM ACh  - 0.25 ± 0.01 0.34 ± 0.01 4 
7 100 M ACh 1 M PNU-120596 221 ± 72*** 1988 ± 718*** 8 
7 500 M ACh 2 mM 5-HI 2.26 ± 0.33*** 5.20 ± 0.28*** 4 
7 500 M ACh 10 M NS-1738 2.91 ± 0.66* 18.42 ± 3.00*** 4 
      
(7)5 100 M-1 mM ACh - 0.24 ± 0.02 0.33 ± 0.02 3 
(7)5 100 M ACh 1 M PNU-120596 205 ± 44*** 1867 ± 937*** 3 
      
(7)42 100 M-1 mM ACh - 0.22 ± 0.10 0.49 ± 0.02 3 
(7)42 100 M ACh 1 M PNU-120596 256 ± 79** 2229 ± 442*** 5 
(7)42 500 M ACh 2 mM 5-HI 1.64 ± 0.64** 6.24 ± 0.86*** 4 
      
(7)3(2)2 100 M-1 mM ACh - 0.41 ± 0.03 0.98 ± 0.02 3 
(7)3(2)2 100 M ACh 1 M PNU-120596 234 ± 57*** 2382 ± 540*** 5 
(7)3(2)2 500 M ACh 2 mM 5-HI 0.93 ± 0.14** 4.14 ± 0.10*** 4 
      
(7)2(2)3 100 M-1 mM ACh - 0.52 ± 0.06 2.42 ± 0.79 5 
(7)2(2)3 100 M ACh 1 M PNU-120596 178 ± 45*** 2081 ± 587*** 4 
(7)2(2)3 500 M ACh 2 mM 5-HI 0.74 ± 0.01*** 2.54 ± 0.20 4 
(7)2(2)3 500 M ACh 10 M NS-1738 2.28 ± 0.57*** 10.46 ± 3.22*** 5 

open and burst or cluster correspond to the slowest open components of the corresponding histograms. 
Single-channel currents were recorded in the continuous presence of agonist alone or combined with 
PAM. Values are mean ± SD. n: number of independent experiments, each from different cell patches. 
Statistical significance was determined by comparing the mean value in the presence of the PAM 
respect to the absence of the PAM by two-tailed Student’s t-test (p<0.05*, p<0.01**, p<0.001***). 
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Table 2. Concentration effects of ACh, PNU-120596 and 5-HI on 7, (7)5 and 72 concatemeric 
receptors.  

Receptor ACh PNU-120596 5-HI n N EC50 (M) EC50 (M) % Potentiation EC50 (mM) % Potentiation 
7 108 ± 5 1.5±0.2 3513± 33 2.8±0.6 1376 ± 105 10 5 
(7)5 93 ± 5 1.5±0.4 3492 ± 85 2.6±0.3 1346 ± 205 10 5 
(7)42 95 ± 4 1.6±0.2 3338 ± 76 3.2±0.8 1301 ± 114 8 5 
(7)3(2)2 97 ± 6 1.4±0.3 3300 ± 50 2.4±0.6 114 ± 6*** 8 5 
(7)2(2)3 104 ± 12 ND ND ND ND 6 5 

 
The concentration-dependent effects of PNU-120569 or 5-HI were determined on ACh responses 
elicited by EC20 ACh (30 M) in the same oocyte. The data points were used to generate 
concentration response curves from which EC50 was estimated, as described in Materials and 
Methods. The percentage of maximal potentiation was calculated as (IACh EC20+PAM) /IACh EC20. Values 
represent the mean ± SEM. Statistical analysis on ACh and PAMs was conducted using OneWay 
ANOVA followed by Bonferroni’s post-hoc tests for multiple comparisons (p<0.05*, p<0.01**, 
p<0.001***, ND: not determined). N is the number of batches of oocytes used for experiments and n 
corresponds to the number of independent experiments carried out.  
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Table 3. Mean open and cluster duration of channels corresponding to each amplitude class 
detected from cells expressing 7LC and 2 in the continuous presence of 100 M ACh + 1M 
PNU-120596. 
 

Amplitude classes (pA) open (ms) cluster (ms) n 
2.15 ± 0.26 108 ± 27 1451 ± 1322 4 
4.10 ± 0.32 142 ± 55 1907 ± 752 4 
5.97 ± 0.26 179 ± 55 2897 ± 743 5 

 
open and cluster correspond to the slowest component of the open and burst or cluster duration 
histograms, respectively. Values are mean ± SD. n corresponds to the number of independent 
experiments, each from different cell patches. There are not statistically significant differences in 
open and cluster between the distinct amplitude classes and respect to 7, p>0.05 by two-tailed 
Student’s t-test.  
 


