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Abstract—Memristor is being considered as a game changer
for the realization of neuromorphic hardware systems due
to its similarity with biological synapse. Recent studies show
that memristor crossbar can provide high density and high
performance neural network hardware implementation at low
power due to its physical layout, nano scale size and low power
consumption feature. This paper describes the training method
that can be used for the implementation of memristive multi-layer
neural network with ex-situ method. We mimic the behavior of
memristor crossbar in software training process to achieve more
accurate and close computations to hardware. Voltage divider
has been used to calculate the dot product in this method.
To demonstrate the accuracy and effectiveness of this method,
different patterns and non-separable functions using memristor
crossbar structures are simulated. The results demonstrate that
more accurate computations can be produced using this learning
method for ex-situ. It also reduces the learning time of functions.

Keywords-Memristor; neuron circuit; memristor crossbar; neu-
ral network; voltage divider.

I. INTRODUCTION

The major obstacles in the neuromorphic systems are to
build highly dense, reliable and low power consumption neural
systems, which are required for efficient and fast computing
[1]. The current CMOS technology is unable to provide
high density and high connectivity as well as it consumes
more power [2]–[4] and increases the design complexity of
neuromorphic systems. Hence, memristor is expected to drive
revolution in neuromorphic systems due to its nanoscale size,
non-volatility, high density, low power consumption as well as
compatibility with CMOS technology.

Memristor is the fourth basic fundamental element with
variable resistance that was proposed by Leon Chua in 1971
[5]. The proposed theory predicts the relationship between
the charge and magnetic flux. HP labs fabricated the first
physical memristor model in 2008 [6] and it reveals the same
behavior as predicted by Leon Chua in 1971. Applying voltage
pulses at its terminals can alter the resistance of a memristor
device. Owing to the similarity between memristor devices
and biological synapses, more research interests have been
seen in the neuromorphic domain. Memristor devices are being
utilized as synapses in the implementation of neural systems.

Memristor can be used in memory [7] as well as logic design
[8], [9]due to its retaining proficiency. Moreover, it can also be
used in analog circuits [10] and image processing for storage
and memory organization due to its nano scale size and low

power consumption features [11]. A memristor device pre-
sented in [1] demonstrated that it could be used as synapse in
neuromorphic applications and higher synaptic density could
be achieved by using high-density memristor crossbar grid
due to its physical layout. Numerous neuromorphic systems
are developed by using memristive crossbar circuits in [12]
[13] which illustrates the potential of the memristive crossbar
structure in massive neural network implementation. Hence,
memristors can be effectively used to build neural networks
with a large number of neurons and synaptic connections.

The training methods are required to train any neural net-
work. The weight value of each neuron in the neural network
is calculated and updated using the training methods. Two
basic training methods are used to train the networks called ex-
situ and in-situ. During ex-situ training process, the training is
provided in software; final weights are calculated and imported
into the hardware. In the in-situ method, the weight value of
each memristor devices has been updated after each iteration
during training process in hardware. The key benefit of ex-situ
method is that any learning algorithm can be used for training,
which is difficult in the in-situ method. However, to achieve
accuracy in ex-situ is difficult due to lack of efficient mapping
schemes and device variability.

Recent studies show that different mapping schemes and
neuromorphic circuits are proposed for ex-situ to achieve more
accurate computations between hardware and software [12]
[14]. This paper presents the modified training method for ex-
situ. The memristor crossbar behavior has been studied deeply
from literature and we tried to model the same behavior of
crossbar in software training. We calculated the dot product
using voltage divider so that software computations could be
matched more closely to hardware computations and more ac-
curacy can be achieved. Thus, the network trained in software
mimic the memristor crossbar in hardware.

The rest of the paper is organized as follows: Section II
describes the neuron circuit, proposed learning method and
the experimental setup for the implementation of memristive
neural network based on ex-situ training method. Section III
describes memristor crossbar based single-layer and multi-
layer neural networks implementation using proposed learning
method introduced in section II. It also shows the experimental
results and comparison between the training method using
simple dot product and our proposed method. The paper is
concluded in section IV.



II. MEMRISTOR BASED NEURAL NETWORK CIRCUIT
DESIGN AND LEARNING

A. Neuron Circuit
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Fig. 1: Memristor based Neuron Circuit

The schematic in Fig. 1 displays memristor based neuron
circuit, which is used to train and implement ex-situ neural
network. The training has been provided in software and final
weight values have been written in hardware. Conductance
values are considered as weight values in the memristor
based neural network circuits. So the weights are updated
according to the conductances of memristor in memristive
neural networks. The 0T1M approach is used in the circuit as
shown in fig.1 as 0T1M memristor crossbars are much denser
and smaller in area than 1T1M crossbar structures.

In this circuit, the rows represent the input values and
columns the outputs. X1, X2 and X3 are inputs and b is
considered as bias in this structure. Memristor acts as synapse
and interconnects each row with the column. Two memristors
are used per synapse to present either positive or negative
effect on total weight values. Using the following equation,
the value of W in the memristor crossbar array is always
calculated.

W = Wi,j+ −Wi,j− (1)

The weight value in the memristor crossbar is obtained by
subtracting Wi,j− from Wi,j+ .

All the inputs along with memristors of each column are
connected to a comparator as shown in fig.1. If the output of
the column on the positive side of the comparator is greater
than the column output on the negative side of the comparator,
then the pair of memristors used per synapse represents a
positive weight and vice versa. The output of the comparator
represents the output of each neuron. The comparator gives an
output as two discrete values as it behaves as ideal threshold
function.

The Dot product is the most important part in any neural
network algorithm. The output of any neuron depends on the
dot product and activation function in neural networks. The
dot product of any neural network in software is represented

by Eq. (2). However, any simple memristor crossbar array
provides the output as shown in Eq. (3).

V outj =
∑

i
XiWi,j (2)

Here, Xi represents the input values and Wj,i represents the
weight values in software neural networks.

V outj =

∑
i V iniCi,j∑

i Ci,j
(3)

V ini and Ci,j represnt voltage and conductance values
corresponding to each input i.

The output at each column in memristor crossbar is calcu-
lated as Eq. (3). It represents a voltage divider between the
memristor conductance values as conductance is the reciprocal
of resistance.

B. Modified Learning Method for Ex-situ Training

In the proposed training method, the dot product at each
column has been calculated using the voltage divider as our
training process mimics the memristor crossbar in hardware.
The simple memristor crossbar structure uses voltage divider
between the resistances connected in series and parallel to
provide the output at each column as described in the previous
section. Hence, all the networks have been trained using
the voltage divider instead of using simple dot product. The
arctan function is used as an activation function. Two weight
values per synapse are used in the learning process. The back
propagation learning algorithm [15] has been used to train
the networks with modified dot product and weight update
equations. As it is the most powerful learning algorithm,
however, its implementation in hardware is difficult. Following
are the steps of the learning algorithm that have been used to
train the networks in software.

1) Initialize the weights with low random conductance
values.

2) Calculate the dot product at each column of the output
layer and the hidden layer as the networks are trained
in crossbar fashion. The output value of each column is
calculated using the following equations as it represents
the voltage divider. Then apply the activation function.

Oj =

∑
iXiWi,j∑
iWi,j

Yj = f(Oj)

(4)

where,
Oj = O+

j −O
−
j (5)

Here, i and j represent input and hidden-layer nodes.
Eq. (4) shows the dot product and activation function of
each neuron at hidden-layer.
The following Eq. (6) represents the output and activa-
tion function at hidden-layer.



Oo =

∑
j YjWj,o∑
j Wj,o

Yo = f(Oo)

(6)

where,
Oo = O+

o −O−
o (7)

The output of the hidden-layer is considered as input to
the output layer as shown in Eq. (6). Wj,o is the weight
value between hidden-layer and output layer.

3) Calculate the error at output layer and hidden-layer using
the following equations:

Eo = To − Yo (8)

Here, Eo is the error at output layer. To and Yo represent
the target and actual outputs and backpropagate the
error to the previous layer. Eo represents Error function
having values either +1, -1, or 0 (corresponds to weight
increase, decrease or no change respectively).

Eh =
∑

j
EoWj,o (9)

Here, Eh is the error at hidden-layer. Wj,o represents
the weight values of synapse connecting neuron o with
previous layer neuron j and Eo is the error which is back
propagated from the output layer.

4) Update the weights using following equations at each
layer:

∆Wj,o = ηEo
1

1+O2
o

Xj,o (10)

∆Wi,j = ηEh
1

1+O2
j

Xi,j (11)

W+
j,o,new = W+

j,o,old + ∆Wj,o (12)

W−
j,o,new = W−

j,o,old −∆Wj,o (13)

W+
i,j,new = W+

i,j,old + ∆Wi,j (14)

W−
i,j,new = W−

i,j,old −∆Wi,j (15)

Here, η is a constant learning function. The above
mentioned Eq. (10) and Eq. (11) determine the total
amount of weight change at the output layer and the
hidden-layer. Eq. (12) and Eq. (13) are used to update the
weights connected with the output layer and Eq. (14) and
Eq. (15) are used to update the weights of the hidden-
layer.

5) All the steps from step 2 are repeated for each data
pattern until the error becomes zero.

C. Experimental Setup

A single and multi-layer layer neural networks based on
memristor have been trained and implemented to perform
linear, non-linear separable functions and pattern classifiers.
All the networks have been trained in software using the
proposed training method and then, final weights are written
into the memristor crossbar neural circuits in hardware. The
C++ environment is used for training and SPICE is used for
hardware simulation of these networks.

The memristor model published in [16] [17] has been
utilized for the implementation of memristor crossbar in
hardware due to its high resistance ratio (Roff /Ron=106).
The maximum and minimum resistance values used for this
simulation are 125MΩ and 125KΩ. 0T1M crossbar structure
is simulated in SPICE to implement these networks. 0T1M
memristor crossbar structures are significantly denser and
consume less area than 1T1M structures. Write and read
operations have been performed on memristor crossbar in
SPICE to program the final pre-determined weights. The
resistance of each memristor is set according to the target
resistance calculated during training in software.

III. MEMRISTOR BASED NEURAL NETWORK
IMPLEMENTATION AND RESULTS

This section explains the implementation and results of
a single layer and multi-layer neural networks. We have
implemented different non-linear separable functions and pat-
tern classifiers using memristive crossbar circuits. First, the
networks have been trained in software using general dot
product and proposed dot product calculations in the learning
process. Then, the final weight values as conductance values of
memristors that are calculated in software have been directly
updated in memristor based crossbar structure in hadware.
The networks have been tested and the experimental results
produced from both methods are compared.

A. Single Layer Network

This section illustrates the classification of a linear function
and pattern classifier using single layer neural network.

1) Four Bit Linear Function: The Fig.2a shows a single
layer network and Fig.2b displays the corresponding mem-
ristive crossbar circuit for four input linear function. The
rows represent the input values and columns the outputs.
X1, X2, X3 and X4 are inputs and b is considered as bias
in a memristive crossbar. Memristor acts as a synapse and
interconnects each row with the column. All the inputs along
with the pair of memristors are connected to a comparator. The
comparator output is the output of each neuron at each layer.
The Fig.3 represents the number of epochs required for both
the methods to learn linear function. The proposed method
required fewer epochs to learn the function as compared to
simple dot product method as shown in Fig.3. After hardware
implementation of both methods, the general dot product
method shows 6.25% error rate during testing. However, our
method shows zero error as shown in Table I.



X1

X2

X3

X4

b

O

(a)

−+

X1

X2

X3

b

X4

O

(b)

Fig. 2: (a) Single-Layer Network (b) Memristor Neuron Crossbar Circuit for
Linear Function
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Fig. 3: Training error in each epoch for four input linear function

2) Pattern Classifier: This section presents pattern classi-
fication for 3× 3 binary images using a single-layer network.
The network has been trained through perceptron learning
algorithm with modified dot product and weight update equa-
tions. Fig. 11 displays 3×3 binary pixel image and single layer
perceptron network for pattern classification. The network
consisting of nine inputs, one bias and two outputs. The value
of bias is fixed and considered as 1, whereas the values
of inputs and outputs are 1 or 0. The memristor crossbar
for pattern classification contains 10 × 4 memristors in total
including bias as two memristors per synapse.

The set of patterns considered for classification in Fig. 5a
and Fig. 5b represents the alphabets ’X’ and ’T’ and their
noisy versions. First patterns in Fig. 5a and Fig. 5b are ideal
patterns for letters ’X’ and ’T’ and rest are noisy patterns. The
grey and white pixels of images are represented by 1 and 0
respectively and the output value for pattern ’X’ is considered
as 1 and ’T’ is 0. The training set contained 50 patterns and
some of these patterns are repeated.

The results in Fig. 6 show the number of epochs required
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Fig. 4: (a) 3 × 3 Binary Image (b) Single-Layer Network for Pattern
Classification
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Fig. 5: (a) Set of input patterns for ’X’ (b) Set of input patterns for ’T’

for average error to reach zero. The network is learned
only in 3 epochs by proposed method. However, simple dot
product method takes two more epochs to learn. During the
implementation and testing in hardware, our method shows
100% accuracy than another method as mentioned in Table I.

B. Multi-Layer Crossbar Network Implementation

A multi-layer neural network is required for the classifi-
cation of complex non-linear separable functions. We imple-
mented the multi-layer neural networks with one and two
hidden layers to classify three-bit parity functions and full
adder function.

1) Two-Layer Network:
The two-layer neural network is utilized to perform three-bit

parity and full adder functions.
a) Three Bit Parity Function: The network in Fig.7a

displays a two-layer neural network for three input parity
function. The network contains one hidden-layer consisting
of four hidden neurons. The Fig.7b displays the memristor
crossbar neuron circuit. In this circuit, first layer consisting of
4×8 memristor crossbar and the output layer consists of 5×2
including bias. The Fig.8 represents the results of training with
both methods. The network with proposed method learns more
quickly as compared to another method. Proposed method
requires less than 10 epoch to train the network whereas
simple dot product network learns three input parity function
in almost 70 epochs and its error rate is more than the proposed
method while implementing and testing in hardware as shown
in Table I.

b) Full adder Function: The full adder function has also
been trained and implemented using the two-layer neural net-
work. The two-layer network and its corresponding memristor
crossbar circuit for full adder function are displayed in Fig.9a
and Fig.9b. This network contains 3-input neurons, four hidden
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Fig. 6: Number of epochs required for average error to reach zero
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Fig. 7: (a) Two-Layer Network and (b) Memristor based Neuron Crossbar
Circuit for three-bit parity function

neurons and two output neurons. One output is for sum and
other is for carry in full adder function. In memristive crossbar,
the first layer and output layer have been implemented using
4 × 8 and 5 × 4 memristor crossbars respectively. The error
reaches to zero after 40 epochs using proposed method and
it required more than 200 epochs to learn with simple dot
product method. Table I shows 50% error rate during testing
and implementation in hardware.

2) Three-Layer Network Simulation:
This section describes the implementation of the three-

layer neural network to perform three-bit parity function. A
three-layer neural network is shown in Fig. 11a for three
input parity function. The network consists of 3 input ×
4 hidden-1 × 2 hidden-2 × 1 output nodes to classify 3-
bit parity function. Hidden-layer1 consisting of four hidden
neurons and hidden-layer2 contains two hidden neurons as
shown in Fig. 11a. We used this three layer network to perform
the non-linear separable function. The memristive crossbar
circuit corresponding to this network which is implemented
in hardware is shown in Fig. 11b. In hardware, the first layer
is implemented using 4 × 8 crossbar, the second layer is
implemented using 5× 4 crossbar and the final layer contains
3× 2 crossbar.

Fig. 12 shows the number of epochs required to learn
three-bit parity function with both methods. The simple dot
product learning method takes more epochs to learn as shown
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Fig. 8: Epoch required to learn three bit parity function on two-layer network

	
	
	
	
	

													X1	
	

												X2	

	

Y1	

Synapse(W)	

  Output 
   Layer 

	

     Hidden  
     Layer 
 

        Input  
        Layer 
 

X3	

	
Y2	

(a)

−+ −+ −+ −+

−+

X1

X2

X3

b

b

−+

Y2Y1

(b)

Fig. 9: (a) Two-Layer Network and (b) Memristor Crossbar Circuit for Full
adder Function

Fig. 12. In the proposed method, after nine epochs, an error
becomes zero and the network is learned three-bit parity
function successfully. The proposed method also shows the
better result than another method during simulation and testing
of the memristive crossbar circuit in hardware as shown in
Table I.

Our simulation results have successfully demonstrated that
the modified learning method is capable of train complex
non-linear functions successfully using multi-layer crossbar
networks. The experimental results also show that it provides
the training faster than using simple dot product in learning
algorithm. Moreover, it provides more accuracy while using
it with ex-situ method. We achieved zero error rate with the
implementation of these small networks using this method.
Our aim is to mimic the behavior of memristor crossbar in
software training to obtain more close computations to hard-
ware in ex-situ. It also works well with the back propagation
learning algorithm. Hence, more accuracy could be achieved
for more massive networks using ex-situ process by finding
the ways to produce more accurate computations.

TABLE I: Comparison of dot product methods used in software training

Error rate during testing in hardware
Function Network Configuration Simple Dot Product(%) Proposed Method(%)

Four-bit-AND 4-1 6.25 0
Pattern Classifier 9-2 2 0
Three-bit-parity 3-4-1 37.5 0

Fulladder 3-4-2 50 0
Three-bit-parity 3-4-2-1 37.5 0
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Fig. 10: Error during training process of fulladder function
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Fig. 11: (a) Three-Layer Network and (b) Memristive Neuron Crossbar Circuit
for Parity Function

IV. CONCLUSION

In this paper, a modified learning method has been proposed.
We used memristive crossbar architecture to simulate and
train a single layer and multi-layer networks by using C++
and SPICE environment. The networks trained in software
mimic the memristor crossbar in hardware. Therefore, voltage
divider has been used to calculate dot product in the learning
process.The aim of this method is to reduce the error rate
while implementing networks in hardware with ex-situ training
methods. It also reduces learning time in software. The simula-
tion results have successfully demonstrated the classification of
linear and non-linearly separable problems and provide more
accuracy during the implementation of ex-situ method.
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