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SUMMARY 41 

In many species, the pattern of growth and physiological development in utero has an important role in 42 

determining not only neonatal viability but also adult phenotype and disease susceptibility. Changes in 43 

fetal development induced by a range of environmental factors including maternal nutrition, disease, 44 

placental insufficiency and social stresses have all been shown to induce adult cardiovascular and 45 

metabolic dysfunction that often lead to ill health in later life. Compared to other precocious animals, 46 

much less is known about the physiological development of the fetal horse or the longer term impacts 47 

on its phenotype of altered development in early life because of its inaccessibility in utero, large size 48 

and long lifespan.  This review summaries the available data on the normal metabolic, cardiovascular 49 

and endocrine development of the fetal horse during the second half of gestation. It also examines the 50 

responsiveness of these physiological systems to stresses such as hypoglycaemia and hypotension 51 

during late gestation.  Particular emphasis is placed on the role of the equine placenta and fetal 52 

endocrine glands in mediating the changes in fetal development seen towards term and in response to 53 

nutritional and other environmental cues. The final part of the review presents the evidence that the 54 

early life environment of the horse can alter its subsequent metabolic, cardiovascular and endocrine 55 

phenotype as well as its postnatal growth and bone development.  It also highlights the immediate 56 

neonatal environment as a key window of susceptibility for programming of equine phenotype.  Although 57 

further studies are needed to identify the cellular and molecular mechanisms involved, developmental 58 

programming of physiological phenotype is likely to have important implications for the health and 59 

potential athletic performance of horses, particularly if born with abnormal body weight, premature or 60 

dysmature characteristics or produced by assisted reproductive technologies, indicative of an altered 61 

early life environment.   62 

 63 

INTRODUCTION 64 

 65 

Compared to other species, much less is known about the physiology of the fetal horse.  Its long and 66 

variable gestational period, large size and relative inaccessibility within a diffuse placenta make studying 67 

development in utero in the conscious state particularly challenging in equids [1].  As a consequence, 68 

the physiological data available on fetal horses are largely from ponies between mid and late gestation 69 
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and relate to specific organ and tissue systems that can be studied without complex interventions [1-3].  70 

For instance, there are very few equine studies investigating the effects of manipulating fetal 71 

concentrations of hormones known to be important in controlling physiological development in utero in 72 

other species. This review concentrates on (i) the three aspects of physiological development that have 73 

been studied most extensively in the equine fetus, namely metabolic, cardiovascular and endocrine 74 

development, and (ii) the developmental programming of equine physiological phenotype by 75 

environmental cues during intrauterine and early neonatal life. 76 

 77 

GROWTH AND METABOLIC DEVELOPMENT 78 

 79 

The equine fetus grows linearly during the second half of gestation and gains 75% of its final birth weight 80 

between mid and late gestation [4].  The fetal nutrient requirements for tissue accretion and oxidative 81 

metabolism, therefore, increase rapidly over this period as fetal mass rises. This places a significant 82 

drain on maternal nutritional resources and is accompanied by increasing maternal insulin resistance 83 

as pregnancy advances [5-7]. In turn, this increases the availability of maternal glucose for feto-84 

placental use and is associated with ontogenic changes in the rates of fetal and utero-placental 85 

metabolism towards term [8, 9]. Maternal body condition score (BCS) as a proxy index of maternal 86 

nutrient availability does not appear to be related to foal birthweight over the normal range consistent 87 

with the concept that the fetus has priority over the mother for available nutrients [10, 11].  However, at 88 

the extremes of the BCS range or when there are acute reductions in BCS during pregnancy there is 89 

evidence for a positive correlation between maternal BCS and foal birthweight [12, 13].  90 

 91 

Absolute rates of umbilical glucose uptake increase between 180 and 290 days of gestation but then 92 

remain stable until term (≈ 335 days), despite a trend for an increasing transplacental gradient in the 93 

glucose concentration [9]. Consequently, the weight specific rates of fetal glucose uptake decline 94 

progressively towards term (Figure 1A).  Similar ontogenic decreases in glucose utilisation per kg body 95 

weight are observed between 180 days and term [9]. In contrast, the umbilical uptake of oxygen 96 

continues to rise progressively between mid and late gestation in line with fetal weight [9], so that there 97 

is no change in the weight specific rate of fetal oxygen consumption throughout the second half of 98 

gestation (Figure 1B).  As a result of these changes, glucose tends to make a smaller contribution to 99 



4 
 

fetal oxidative metabolism with increasing gestational age towards term, despite the increasing 100 

requirement for energy of the growing fetus [8]. The gestational fall in glucose metabolism is 101 

ameliorated, in part, by increasing the distribution of uterine glucose uptake away from the utero-102 

placental tissues towards the fetus and by the onset of utero-placental production of lactate [9]. 103 

Placental delivery of lactate into the umbilical circulation becomes significant in the last 20% of gestation 104 

[8], although the rate of delivery declines towards term when expressed per kg fetal body weight (Figure 105 

1C).  In sheep, fructose is also synthesised from glucose in the placenta and released into the umbilical 106 

circulation for oxidative use by the fetus [14].  Like sheep, fetal fructose concentrations are high in the 107 

horse but the source and metabolic fate of this fructose in fetal horses remains unknown [1].  In addition, 108 

the equine placenta is lipid permeable and can synthesise lipid in late gestation [15]. Fat may, therefore, 109 

be a more important oxidative fuel in fetal horses near term than in other species [16].  110 

 111 

The equine placenta undergoes a number of other functional and structural changes during the later 112 

part of gestation, which facilitate nutrient transfer to the fetus [17].  Unlike the cotyledonary ovine 113 

placenta, the diffuse equine placenta increases in weight and macroscopic area right up until term [4]. 114 

The fetal villi continue to elongate and branch throughout the second half of equine pregnancy, which 115 

increases the total villous area for exchange 5 fold between mid and late gestation [18]. The distance 116 

between the maternal and fetal blood vessels also decreases with increasing gestational age towards 117 

term [19], which will enhance transplacental transfer of substances transported by simple diffusion, such 118 

as oxygen [17]. In contrast to the ovine placenta, there is little evidence for gestational changes in the 119 

abundance of glucose transporters (GLUTs) in the equine placenta towards term [20, 21]. Spatial 120 

localisation of the different GLUTs on the equine placental membranes in mid-late gestation shows that 121 

GLUT1 and GLUT3 are the predominant isoforms and are used sequentially to transfer glucose from 122 

the maternal to the fetal circulation in line with findings in other species with an epitheliochorial type of 123 

placenta [21, 22]. Given the kinetics of the different isoforms, localisation of GLUT3 at the maternal-124 

fetal interface may aid glucose transport to the equine fetus, particularly at lower glucose concentrations 125 

[17, 21]. Gene expression of other GLUT isoforms, including those sensitive to insulin, has been 126 

detected in pre-implantation equine embryos [23], but whether these isoforms are involved in placental 127 

transport of glucose and other hexoses like fructose in late gestation remains unclear.  In addition, a 128 

range of environmental factors have been shown to alter the morphological and transport characteristics 129 
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of the equine placenta at term, including season of the year, nutrition, maternal size and the genetically 130 

determined demands of the fetus for growth (Table 1). Collectively, these studies have shown that the 131 

equine placenta can adapt to help support fetal growth when nutrient availability is restricted in utero 132 

(Table 1).  133 

 134 

The normal reduction in mass of utero-placental tissue between the maternal and fetal circulations 135 

towards term may contribute to the gestational decrease in utero-placental glucose consumption and 136 

account for the increased proportion of uterine glucose uptake delivered to the equine fetus between 137 

mid and late gestation [8].  In contrast, distribution of uterine oxygen uptake between the fetal and 138 

uteroplacental tissues does not change with gestational age, which suggests that, like the fetus, 139 

uteroplacental tissues may change their preferred oxidative substrate in late gestation. Nevertheless, 140 

weight specific rates of glucose consumption by equine uteroplacental tissues are high compared to 141 

other species near term, which adds to the metabolic burden on the mare in late pregnancy [17].  When 142 

utero-placental glucose availability is restricted in late gestation by short term fasting of the mare, 143 

maternal and fetal concentrations of lipids and free fatty acids rise in association with enhanced utero-144 

placental production of prostaglandins and the early onset of labour [30, 31]. This suggests that utero-145 

placental metabolism is responsive to substrate availability and, by switching to fat metabolism when 146 

glucose availability is limited, the utero-placental tissues may increase production of arachidonic acid, 147 

the precursor of prostaglandin synthesis [8, 15, 30].  148 

 149 

Equine fetuses appear to have a limited capacity for endogenous glucose production in late gestation 150 

compared to other precocial species [16].  They have lower activities of key gluconeogenic enzymes 151 

and store less glycogen in their livers than sheep fetuses at a similar stage of late gestation [17, 32].  152 

They do not activate glucogenesis close to term or in response to short term maternal fasting, unlike 153 

ovine fetuses [9, 33].  Fetal glucose utilisation, therefore, falls by a greater extent in fetal horses than 154 

sheep during maternal undernutrition [9, 33].   Moreover, during short term maternal fasting, fetal horses 155 

use proportionately more of their available glucose for oxidative metabolism, which suggests that they 156 

have limited ability to switch to alternative fuels when glucose availability is reduced acutely [9]. There 157 

is, therefore, a tight metabolic balance between the mare and her gravid uterus in late gestation, which 158 

may have adverse consequences for pregnancy outcome if maternal nutrient availability is lower or fetal 159 
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nutrient demands are higher than normal for the stage of gestation [31, 34]. This may explain, in part, 160 

the variable gestational length in mares and their inability to carry twins to full term [34].   161 

 162 

CARDIOVASCULAR DEVELOPMENT 163 

 164 

In common with other species, fetal blood pressure increases with gestational age towards term in the 165 

horse. It rises from a mean value of 30-35 mmHg at 150 days to about 80-90 mmHg at term in 166 

association with a decline in heart rate from 120 to 80 beats per minute (Figure 2) [35, 36].  These 167 

changes occur gradually between 150 and 300 days and then accelerate towards term (Figure 2) with 168 

a further decrease in heart rate in the last 30 minutes before birth [35-37]. They are accompanied by 169 

increases in the fetal concentrations of several vasoactive hormones including adrenaline, 170 

noradrenaline and vasopressin and by elevated fetal plasma and pulmonary concentrations of the 171 

angiotensin converting enzyme responsible for producing angiotensin II, another potent circulating 172 

vasoconstrictor [35, 36, 39].  Vasoconstriction of peripheral vessels and pressor responses to fetal 173 

administration of phenylephrine, angiotensin II and vasopressin are also all greater at 300 than 200 174 

days of gestation with further maturational changes during the immediate neonatal period [36, 40, 41].  175 

This may reflect changes in receptor density, efficiency of intracellular receptor coupling or an increased 176 

mass, or contractility, of cardiac muscle and vascular smooth muscle.  177 

 178 

In contrast, fetal cardiac baroreceptor sensitivity decreases over the last third of gestation [41], which 179 

suggests that there may be central resetting of baroreflex function to accommodate the ontogenic rise 180 

in basal blood pressure.  In turn, this rise in blood pressure would help maintain placental perfusion. 181 

Indeed, blood flow to the placenta and hind limbs of the fetal horse increases in line with the rise in 182 

blood pressure towards term [1, 36].  In the hind limbs, there is also an ontogenic fall in basal vascular 183 

resistance which leads to an increase in the weight specific flow towards term [36]. In contrast, the 184 

gestational rise in umbilical flow does not keep pace with the increase in fetal weight, despite the rise 185 

in fetal blood pressure, so umbilical flow per kg fetus decreases by 50% between mid and late gestation 186 

[9].Consequently, weight specific umbilical flow is low in the horse compared to other species in late 187 

gestation, probably due, in part, to the lack of a ductus venosus in the fetal horse [1].  Less is known 188 

about the vascular shunts in the fetal circulation of equids than other species, although there are 189 
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morphological changes in the foramen ovale of the fetal equine heart towards term which may aid the 190 

functional closure of this shunt at birth [42].  Taken together, the maturational changes in the 191 

cardiovascular systems towards term prepare the foal for the loss of the low resistant placental pathway 192 

and for the greater flexibility in blood flow required to support new postnatal activities such as exercising 193 

muscles, gastrointestinal nutrient absorption and regulated heat loss through the skin.   194 

 195 

 196 

ENDOCRINE DEVELOPMENT  197 

 198 

In all species studied to date including the horse, there are significant changes in the functioning of fetal 199 

endocrine glands during late gestation [43]. These lead to gestational changes in the circulating 200 

concentrations and tissue bioavailability of a range of hormones in both normal and adverse conditions. 201 

In the horse, many of the ontogenic changes in endocrine function occur in the last 1-2% of gestation, 202 

much closer to term than in other precocious species [2, 44].  203 

 204 

Pancreas: Basal plasma concentrations of insulin change little between mid and late gestation or during 205 

the perinatal period in fetal horses (Figure 3A), despite increasing sensitivity of the fetal pancreatic β 206 

cells to glucose over this period of gestation [45]. Exogenous administration of glucose does not evoke 207 

insulin secretion before about 200 days of gestation. Thereafter, there is a prompt β cell response to 208 

exogenous glucose, which increases in magnitude between 260 and 290 days and then again close to 209 

term when the fetus is maturing in preparation for delivery [46]. In contrast, the response of fetal 210 

pancreatic β cells to the amino acid, arginine, changes little with gestational age, even in the immediate 211 

prepartum period [46]. These observations suggest that, in late gestation, there are maturational 212 

changes in the glucose signalling pathway of fetal β cells upstream of the mechanism of insulin vesicle 213 

release used by both glucose and arginine. Much less is known about pancreatic α cell function in the 214 

fetal horse.  Glucagon concentrations increase in fetal horses during late gestation to peak at birth 215 

(Figure 3B). Equine pancreatic α cells also respond to arginine from late gestation onwards but appear 216 

to be relatively insensitive to changes in fetal glycaemia [47]. Thus, glucagon does not appear to be a 217 

glucoregulatory hormone in utero consistent with the limited glucogenic capacity of the fetal horse 218 
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whereas insulin probably regulates fetal glucose utilisation and growth in relation to glucose availability 219 

in this species as occurs in other animals [16, 51].  220 

 221 

Sympatho-adrenal system: Basal circulating concentrations of the catecholamines, adrenaline and 222 

noradrenaline, increase in fetal horses in the period immediately before birth and peak at birth or shortly 223 

thereafter (Figure 3C).  For most of this period, noradrenaline levels are 2-5 fold higher than those of 224 

adrenaline (Figure 3C). Sympatho-adrenal responses to asphyxia and hypoglycaemia also increase 225 

during late gestation and again immediately after birth [49]. These gestational changes are probably 226 

due to increased innervation of the adrenal medulla and/or increased effectiveness of the splanchnic 227 

nerves at releasing catecholamines. Before birth, there is little adrenaline secretion in response to either 228 

asphyxia or hypoglycaemia but, by 7-14 days after birth, these responses are rapid and significantly 229 

greater than those to noradrenaline [44]. These observations suggest that activation of phenyl-N-230 

methyl-tranferase (PNMT), the enzyme responsible for adrenaline synthesis, occurs very close to term 231 

in the adrenal medulla of fetal equids [52].  The poor adrenergic response of the fetal horse to stimuli 232 

may explain in part the lack of glucagon secretion in response to hypoglycaemia because adrenaline is 233 

known to be a fetal α cell secretogue in other species [16, 47].  234 

 235 

Hypothalamic-pituitary-adrenal axis: Activation of the fetal hypothalamic-pituitary-adrenal (HPA) axis 236 

in the period before birth is important for many of the maturational processes essential for neonatal 237 

survival (Figure 3D & E) [53]. This activation results in a prepartum rise in cortisol concentrations in the 238 

fetal circulation (Figure 3E), which induces functional and structural changes in a wide range of fetal 239 

tissues that have to assume new roles at birth. In fetal horses, the prepartum cortisol surge occurs very 240 

late in gestation compared with other species and is driven by maturational changes at all levels of the 241 

HPA axis (Figure 3D & E) [54, 55]. The adrenal content of the enzymes responsible for cortisol 242 

production increase in late gestation and adrenal weight doubles over the last 5% of gestation, primarily 243 

due to growth of the zona fasiculata [50, 56]. Adrenocortical sensitivity to exogenous and endogenous 244 

adrenocorticotrophic hormone (ACTH) increases between 290 days and term in parallel with the 245 

changes in adrenal size and steroidogenic capacity, and with the increased pituitary release of ACTH 246 

in response to stressful stimuli, such as hypoglycaemia [50, 57]. The gestational changes in the pulsatile 247 

pattern of ACTH levels in normal unstressed conditions also suggest that there are changes in the 248 
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release of the hypothalamic releasing factors, corticotropic releasing hormone and arginine 249 

vasopressin, and/or in the abundance of their receptors on the pituitary corticotrophs towards term in 250 

the fetal horse [57].  251 

 252 

In fetal horses, the plasma cortisol concentration in late gestation is positively correlated with blood 253 

pressure, pressor and peripheral vasoconstrictor responses to vasoactive hormones, the slope of the 254 

cardiac baroreflex, plasma and pulmonary ACE concentrations, adrenal PNMT activity, hepatic 255 

glycogen content and the plasma concentrations of tri-iodothyronine, adrenaline and vasopressin [32, 256 

35, 36, 40, 41, 44, 49, 58]. These relationships suggest that, in common with other species, cortisol has 257 

an important role in the prepartum maturation of these and other tissue and organ systems in the horse 258 

[2, 53].  However, the window for equine maturation is narrow and close to term, which may explain the 259 

range of neonatal maladjustment conditions seen clinically in foals compared to other precocious 260 

species [59]. These conditions include overt prematurity, dysmaturity and neonatal maladaptation 261 

syndrome [60].  262 

 263 

The late activation of the HPA axis in fetal horses may also have consequences for the timing and onset 264 

of labour in the mare [61].  During late pregnancy, the fetal adrenal glands appear to be the primary 265 

source of pregnenolone (P5) that is required for utero-placental production of the progestagens 266 

essential for maintaining quiescence of the equine myometrium [62]. Since P5 is also the precursor of 267 

cortisol, the prepartum onset of adrenal cortisol secretion probably accounts for the reduction in fetal 268 

P5 concentrations observed in the days preceding birth (Figure 3F). In turn, this reduces the utero-269 

placental P5 supply, utero-placental progestagen synthesis and the maternal progestagen 270 

concentrations with consequences for uterine contractile activity [44, 63]. The onset of labour may, 271 

therefore, be linked to fetal maturation via the prepartum changes in adrenal steroid synthesis in fetal 272 

equids as occurs in other species, although the range of neonatal immaturity syndromes suggests that 273 

this link is not as tightly coupled in horses as seen in sheep and other ruminants [44, 60].  In part, this 274 

may relate to the ability of utero-placental tissues to increase prostaglandin production, independently 275 

of fetal HPA axis activation and changes in the progestagenic environment in certain circumstances 276 

[31, 63].   277 

 278 
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Gonads: The gonads of the horse fetus expand and then regress in size during the second half of 279 

gestation due to altered growth of the interstitial cells synthesising steroids including the oestrogen 280 

precursor, dehydroepiandrosterone [64, 65]. Maternal oestrogen concentrations therefore closely 281 

parallel the weight profile of the fetal gonads during the second half of pregnancy and are reduced 282 

rapidly by fetal gonadectomy at 250 days of gestation [66]. In contrast, gonadectomy of the fetal horse 283 

had little effect on maternal progestogen concentrations in late pregnancy but did reduce maternal 284 

prostaglandin concentrations during labour at term in association with weak uterine contractions [65]. 285 

In addition, compared to their sham-operated controls, gonadectomised foals were growth restricted at 286 

birth at term, indicative of a reduced transplacental supply of nutrients and/or oxygen associated 287 

perhaps with the lack of oestrogen dependent changes in utero-placental blood flow [63, 65, 66]. 288 

Furthermore, gonadectomised foals were dysmature at birth with poor neonatal viability, which suggests 289 

a more complex set of interactions than previously thought may exist between the fetal gonads, HPA 290 

axis and the placenta in co-ordinating fetal maturation with the onset of equine labour at term.  291 

 292 

Collectively, the prepatum endocrine changes in the fetus activate many of the physiological systems 293 

and homeostatic mechanisms that have little or no function in utero but are essential for survival ex 294 

utero including glucoregulation, thermoregulation and the maintenance of blood pressure, pO2 and 295 

perfusion of key tissues such as the brain. Onset of these regulatory processes support the novel 296 

postnatal functions like locomotion and intermittent feeding as well as the responses to new 297 

environmental stressors such as diurnal temperature variations and the presence of predators. 298 

Certainly, when the normal prepartum maturational changes in endocrine function are circumvented by 299 

acute maternal illness, placentitis or clinical induction of labour, neonatal viability is poor, even during 300 

the period of gestation between 320 and 360 days considered full term in the horse [59, 60]. In many 301 

species the prepartum endocrine changes, particularly in the HPA axis, tightly synchronise fetal 302 

maturation at the cell, tissue and systems levels with the mechanisms controlling the onset of labour to 303 

maximise the chances of offspring survival at birth [53]. However, the relationship between gestational 304 

age, fetal maturation and parturition appears to be more complex and less well co-ordinated in the horse 305 

[59, 60]. Consequently, foals are not always ready for extrauterine life when born at full term and, 306 

conversely, they can be delivered physiologically mature well before 320 days and survive when they 307 

would not be expected to do so on the basis of gestational age alone [59]. In part, this reflects the long 308 
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gestational period, the natural variation in gestational length, the high demands for glucose by the gravid 309 

uterus and the very short time frame for final prepartum maturation in the horse relative to other species 310 

producing precocious offspring.  311 

 312 

 313 

DEVELOPMENTAL PROGRAMMING OF PHYSIOLOGICAL PHENOTYPE 314 

 315 

Changes in fetal growth and development induced by alterations in placental development and maternal 316 

dietary intake may have consequences for the foal long after birth [67, 68].  In other species, both 317 

epidemiological and experimental studies have shown that environmental conditions during early life 318 

have an important role in determining the adult physiological phenotype that develops from the 319 

genotype inherited at conception, even when there is little if any change in birth weight [2, 69].  However, 320 

compared to other species, relatively little is known about the developmental programming of the adult 321 

equine phenotype, partly because of its long lifespan [3].  322 

 323 

Changes in the metabolic, cardiovascular and endocrine phenotype have been observed in neonatal 324 

and juvenile foals in response to maternal undernutrition, altered dietary composition and glucocorticoid 325 

administration during late pregnancy (Table 2). Similarly, variations in birth weight caused by maternal 326 

parity and embryo transfer between different equine breeds are associated with differences in the 327 

endocrine and metabolic profiles of neonatal and older pre-weaning foals (Table 2) and with changes 328 

in the postnatal growth rate [83, 84].  To date, the physiological studies have concentrated on insulin-329 

glucose dynamics and on the functioning of the HPA axis and cardiovascular system with a greater 330 

emphasis on newborn and pre-weaning foals than older animals [82, 67]. In particular, there are 331 

postnatal changes in glucose tolerance, insulin secretion and sensitivity, and in the HPA and 332 

catecholaminergic responses to hypoglycaemic and hypotensive stimuli (Table 2). In addition, these 333 

metabolic and endocrine changes are often accompanied by alterations in postnatal growth and bone 334 

development [7, 29, 71].  To date, the pre- and post-natal studies suggest that developmental 335 

programming of equine physiological phenotype by environmental conditions in utero tracks from intra- 336 

to extra-uterine life and is related to alterations in resource allocation to the fetus, mediated, in part, by 337 

the accompanying changes in placental development (Table 1).  This potential role of the placenta in 338 
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developmental programming also has implications for the phenotype of foals produced by assisted 339 

reproductive technologies because use of in vitro culture and a recipient uterus unprimed by a natural 340 

embryo produces an abnormal environment for development that can alter embryonic cell fate decisions 341 

and trophoblast differentiation epigenetically [68, 85, 86]. 342 

 343 

In addition to the prenatal manipulations, experimental overexposure to cortisol in the days immediately 344 

after birth leads to altered glucose-insulin dynamics and HPA function in newborn, pre-weaning and 345 

young adult horses (Table 2). There are alterations in pituitary secretion of ACTH and in the apparent 346 

sensitivity of the adrenal cortex to the circulating ACTH which suggest that the ACTH secreted is less 347 

bioactive in the adult animals exposed to excess cortisol neonatally [82, 83]. Similarly, insulin secretion 348 

by the β cells in response to both glucose and amino acids is altered by neonatal glucocorticoid 349 

overexposure in an age-related manner with muscle specific changes in insulin receptor abundance by 350 

adulthood [79, 80]. In general, the postnatal physiological changes induced by neonatal cortisol 351 

overexposure become more pronounced with increasing age and appear to be sex-linked in some 352 

instances (Table 2) [2, 80, 87].  These findings have implications for the phenotype of premature and 353 

dysmature foals that have naturally elevated cortisol concentrations in the immediate neonatal period 354 

[48, 88].  355 

 356 

Overall, the findings suggest that, in common with other species, environmental cues during early life 357 

have an important role in determining the physiological phenotype of the horse (Figure 4), with 358 

implications for its growth, health and athletic performance in later life [2, 89].  Indeed, adult 359 

susceptibility to conditions such as hyperlipidaemia, metabolic syndrome, laminitis and exercise-360 

induced pulmonary dysfunction may all be related to environmental conditions experienced during early 361 

life. In addition, the studies undertaken to date highlight the late gestation and immediate neonatal 362 

period as key windows of developmental programming in the horse (Figure 4), consistent with the 363 

structural and functional maturation of equine tissues so close to term. However, further studies are 364 

needed to determine the extent and molecular mechanisms of this programming, particularly in older 365 

horses. 366 

 367 

 368 
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FIGURE LEGENDS 369 

 370 

Figure 1: Mean (±SD) rates of umbilical uptake of (A) glucose, (B) oxygen and (C) lactate by the fetal 371 

ponies at different gestational ages (term ≈ 335 days). N = 4-6 individual fetuses at each gestational 372 

age. Columns with different letters are significantly different in value from each other (one way ANOVA 373 

with Holm-Sidak post doc test, P<0.05). † Not significantly different from zero (t-test for significant of a 374 

single mean, P>0.05).  Data from [8, 9]. 375 

 376 

Figure 2:  Mean (±SD) values of (A) arterial blood pressure and (B) heart rate of fetal ponies at different 377 

gestational ages (term ≈ 335 days).  N = 4-9 individual fetuses at each gestational age. Columns with 378 

different letters are significantly different in value from each other (one way ANOVA with Holm-Sidak 379 

post hoc test, P<0.05). Data from [35, 36]. 380 

 381 

Figure 3: Mean (±SEM) plasma concentrations of A) insulin (n=9 fetuses), B) glucagon (n=4-8 fetuses), 382 

C) catecholamines (adrenaline, filled circles; noradrenaline, open circles, n=8-9 fetuses), D) ACTH (n=6 383 

fetuses),  E) cortisol (n=6 fetuses) and (F) prenenolone (P5, n=4 fetuses) in fetal ponies with respect to 384 

days from birth. Data from [36, 44, 46-50].  385 

 386 

Figure 4: Schematic diagram showing the environmental cues that have developmental consequences 387 

for the fetal and newborn foal with subsequent outcomes for their physiological phenotype in later life.   388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 
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