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Abstract 

   Circulating cell-derived microparticles, released from cells during activation and 

apoptosis, are involved in inflammation, coagulation and endothelial dysfunction, all 

important processes in the development of cardiovascular disease. This project aimed to 

adapt and validate a flow cytometric assay to measure microparticles derived from various 

cell types, and to utilise this assay for the investigation of microparticles in healthy 

individuals and patients with cardiovascular-associated diseases. 

   A lack of standardisation of pre-analytical variables has impeded the study of 

microparticles. Pre-analytical variables were analysed, and small changes in methodology 

were found to have a large impact on microparticle levels detected. Functional 

microparticle assays were also investigated, and results from these assays were found to be 

significantly associated with the quantitative results from the flow cytometry assay. 

   Healthy individuals were recruited to establish a normal range. Interestingly, in healthy 

individuals, hypoxia induced by exposure to moderate altitude, was shown to cause a 

decrease in procoagulant, platelet-derived and red blood cell-derived microparticles. 

   Obstructive sleep apnoea is a common syndrome, associated with an increased risk of 

cardiovascular disease. Microparticle levels were determined in two randomised controlled 

trials, investigating the impact of therapy in these patients. Initiation of treatment for six 

months in minimally symptomatic patients led to a decrease in procoagulant 

microparticles. Withdrawal of treatment for two weeks in moderate/severe patients led to 

an increase in endothelial-derived, granulocyte-derived and monocyte-derived 

microparticles. 

   Finally circulating microparticles were investigated in patients with cardiovascular-

associated conditions. Patients undergoing a dobutamine stress echocardiogram (DSE), for 

the identification of coronary artery disease, were studied. Patients with a negative DSE 

exhibited an increase in procoagulant, platelet-derived, endothelial-derived and red blood 

cell-derived microparticles during stress testing, which was not evident in patients with a 

positive DSE, suggesting that microparticles provide additional diagnostic value in this 

setting.  

   In the rapidly developing field of microparticle analysis, the flow cytometric assay 

described in this thesis, is reproducible, flexible and correlates well with functional 

microparticle assays. It has also been shown to provide novel and potentially clinically 

relevant results in a variety of clinical conditions associated with cardiovascular disease.  
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Chapter 1 – Introduction 

 

1.1. Microparticles 

1.1.1. Microparticle Definition 

   Microparticles (MPs) are sub-cellular membrane vesicles, released from cells during 

activation and apoptosis, and from activated platelets. They range in size from 0.1 m to 

1.0 m (Baron et al., 2011). They ‘bud off’ from the plasma membrane of the parent cell, 

and therefore express many of the surface markers of the cells they originate from 

(Andrews and Berndt, 2008). These surface markers make it possible to identify subtypes 

of MPs in the blood, which can be derived from circulating cells such as leucocytes, 

platelets and erythrocytes (Nomura et al., 2008), as well as tissue sources such as 

endothelial, tumours and placental tissues (Orozco and Lewis, 2010). 

   MPs were first reported in 1946, when Chargaff and West noted that a factor accelerated 

thrombin generation in platelet-free-plasma (Chargaff and West, 1946). Over 20 years 

later, a coagulant material in particulate form capable of generating thrombin, was 

identified by electron microscopy in normal plasma, and was labelled as ‘platelet 

dust’(Wolf, 1967). 

 

1.1.2. Microparticle Formation 

   MP release from cells and platelets can be instigated by a number of triggers, including 

cytokines, such as tumour necrosis factor (TNF) or interleukin 1 (IL-1), thrombin, calcium 

ionophore, and by high shear stress (VanWijk et al., 2003). 

   MPs can be generated by two mechanisms, cell activation and apoptosis. In cell 

activation, agonists are detected by a cell receptor causing cytosolic calcium to increase 

(Meziani et al., 2008). This leads to activation of kinases and calpain, inhibition of 

phosphatases, and talin breakdown. These mechanisms cause disruption of the membrane 

cytoskeleton and subsequent budding of the membrane, with formation of MPs (VanWijk 

et al., 2003), as illustrated in Figure 1.1. 

    In apoptosis, Rho-associated kinase (ROCK 1) is activated by caspase 3 (Coleman et al., 

2001), causing cell contraction, redistribution of fragmented DNA and membrane 

blebbing. MP release tends to occur late in the death process and may occur at the same 

time as the formation of apoptotic bodies (Ardoin et al., 2007). MPs formed by apoptosis 

differ from those formed by cell activation in size, in lipid and protein composition, and in 

their surface markers (VanWijk et al., 2003) (Figure 1.1). 



 

Figure 1.1 Process of microparticle formation during cell activation and apoptosis. Both pathways ultimately 

lead to disruption of the cytoskeleton and membrane blebbing. 

 

   In resting cells, a membrane lipid asymmetry is present, with phosphatidylserine (PS) 

being segregated to the inner leaflet, and phosphatidylcholine and sphingomyelin being 

sequestered to the external leaflet. Both cell activation and apoptosis involve a 

reorganization of the lipid asymmetry of the plasma membrane. Membrane phospholipid 

asymmetry is controlled by a complex enzyme balance, involving flippase, floppase and 
 2
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scramblase (Puddu et al., 2010). Flippase specifically and rapidly moves PS from the outer 

to the inner leaflet. Floppase catalyses the movement of phospholipids from the inner to 

outer leaflets, and scramblase promotes non-specific redistribution of phospholipids (Morel 

et al., 2011b). In the absence of stimuli, only flippase is active, maintaining PS on the inner 

leaflet. The increase in cytosolic calcium that occurs in activation and apoptosis, inhibits 

flippase, but activates floppase and scramblase (Beyer and Pisetsky, 2010). This leads to 

the exposure of PS on the outer surface. When the cytoskeleton is no longer able to 

counteract the surface tension, MP shedding takes place (Freyssinet, 2003). 

 

1.1.3. Distinguishing Microparticles from Other Particles 

   The other major vesicles released from cells are apoptotic bodies, exosomes and 

exosome-like vesicles, each with distinguishing features from MPs (Table 1.1). 

   Apoptotic bodies are larger (>1 µm) and they make up the condensed remnants of 

shrinking apoptotic cells. Like MPs, they externalise PS, however unlike MPs, they have a 

permeable membrane allowing staining with propidium iodide (Hristov et al., 2004). 

   Exosomes are smaller particles (0.05-0.1 µm), formed by inward budding of 

multivesicular bodies, which are released by exocytosis. They may also be released 

directly from the plasma membrane. They are differentiated from MPs by their expression 

of Lamp1 and tetraspanins (CD9, CD63), and their reduced externalisation of PS (Dignat-

George and Boulanger, 2011). They only contain cytosolic components and lack organelle 

proteins (Beyer and Pisetsky, 2010).  

   Exosome-like vesicles appear to be produced in the same way as exosomes. However, 

they can be distinguished from exosomes based on their size and sedimentation properties 

(Gyorgy et al., 2011). They can be distinguished from MPs by their smaller size. 

 

Table 1.1 – Features of Microparticles and Other Particles 

Vesicle 
Cellular 
Origin Size Shape Markers Lipids References 

Microparticles 
Plasma 
membrane 

0.1 µm –  
1 µm Irregular 

Annexin V+     
Cell Specific 
Markers 

Externalise 
PS 
Lipid Rafts 

(Dignat-George 
and Boulanger, 
2011)  

Apoptotic 
Bodies Whole Cell >1 µm Irregular 

Stains with PI, 
Annexin V+ 

Externalise 
PS 

(Gyorgy et al., 
2011; Hristov et 
al., 2004)  

Exosomes 

Internal 
Multivesicular 
Bodies 

0.05 µm – 
0.10 µm 

Cup 
shape 

Tetraspanins 
(CD63, CD9) 
LAMP 1 Lipid Rafts 

(Gyorgy et al., 
2011; Thery et 
al., 2009)   

Exosome-Like 
Vesicles Internal  

0.02 µm – 
0.05 µm Irregular 

TNF 
Receptor 1 

No lipid 
rafts 

(Hawari et al., 
2004; Thery et 
al., 2009) 
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1.1.4. Other Nomenclature for Microparticles 

   As well as describing cellular vesicles, the term microparticle is commonly used to refer 

to biopolymer particles, used in drug delivery. As the word particle suggests a particulate 

or solid structure, it has been suggested that it would be more appropriate to refer to them 

as microvesicles. This terminology has become more widely used, as has the abbreviation 

MV (Thery et al., 2009). In some publications, microparticles have been termed ectosomes 

(Sadallah et al., 2011), because they are released by ectocytosis. For the purposes of this 

thesis, the term microparticle is used throughout, along with the abbreviation of MP. 

 

1.1.5. Microparticles Subtypes      

1.1.5.1. Procoagulant Microparticles 

   The majority of circulating MPs are procoagulant and expose PS. Procoagulant MPs can 

be released from any cell, although most circulating procoagulant MPs in healthy 

individuals are platelet-derived (Berckmans et al., 2001). Procoagulant MPs have been 

found to be elevated in many conditions including acute coronary syndromes (Mallat et al., 

2000), obstructive sleep apnoea (Ayers et al., 2009) and end stage renal failure (Amabile et 

al., 2005) (Table 1.2). 

   Annexin V is a phospholipid-binding protein that has a high affinity for PS, in the 

presence of calcium (Gerke and Moss, 2002). Annexin V binds to procoagulant MPs due to 

their exposure of PS. It was originally thought that all MPs were annexin V+, and many 

assays only detect annexin V+ MPs. MPs produced by apoptosis and activation both 

express PS, although annexin V+ binding may be more evident following apoptosis 

(Jimenez et al., 2003b). 

   It is now known that not all MPs are annexin V+ (Boulanger et al., 2006). One possible 

explanation is that the PS exposed on these MPs is already engaged in other molecular 

interactions, preventing it from binding annexin V. Another explanation is that some 

vesicles do not express PS. These MPs may be produced by a similar mechanism described 

above, but without the loss of membrane asymmetry (Leroyer et al., 2008b). 

   Annexin V is not the only marker for PS. Lactadherin is a 45 kDa glycoprotein secreted 

by macrophages. It also binds to PS on apoptotic cells and MPs, and acts as an opsonin, 

resulting in clearance by macrophages (Dasgupta et al., 2008). Lactadherin preferentially 

binds to highly curved membranes (Dasgupta et al., 2006), making it a useful marker for 

MPs (Table 1.3). 

1.1.5.2. Platelet-Derived Microparticles 

   Platelet-derived MPs (PMPs) make up the majority of circulating MPs, in healthy 

individuals (Berckmans et al., 2001). They are elevated in diabetes (Nomura et al., 1995) 
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and acute vasculitis (Daniel et al., 2006). PMPs have also been found to be elevated in 

immune thrombocytopenic purpura, where they are involved in the coagulation and 

thrombotic complications (Jy et al., 1992). In preeclamptic pregnancies, PMP levels have 

been shown to be correlated with platelet counts (Lok et al., 2008). PMPs can play a role in 

the early stages of atherosclerosis, by contributing to thrombosis, enhancing leucocyte 

adhesion to the endothelium, and promoting inflammation. 

   Platelets and PMPs share glycoprotein receptors including platelet-endothelial cell 

adhesion molecule (PECAM, CD31) and integrin IIb3 (CD41/CD61). PMPs generated 

by platelet activation express activation markers such as P-selectin (CD62P) (Table 1.3). It 

has been suggested that the majority of CD41+ PMPs are actually derived from 

megakaryocytes, rather than from platelets, potentially explaining why most do not express 

CD62P (Flaumenhaft et al., 2009).  

1.1.5.3. Endothelial-Derived Microparticles 

   In healthy individuals endothelial cell-derived MPs (EMPs) are present at much lower 

numbers in the circulation than PMPs. Levels of EMPs are elevated in several diseases, 

including acute coronary syndrome (Mallat et al., 2000) and pre-eclampsia (Gonzalez-

Quintero et al., 2003), which are inflammatory conditions, suggesting that EMPs play a 

role in inflammation. 

   EMPs may also be useful as a marker of disease severity. They are positively correlated 

with the Birmingham vasculitis activity score in systemic vasculitis (Brogan et al., 2004). 

In end stage renal failure, EMPs exclusively correlated with in vivo markers of endothelial 

dysfunction (Amabile et al., 2005). 

   EMPs express PECAM (CD31), VE-Cadherin (CD144), MCAM (CD146), VCAM-1 

(CD106), Endoglin (CD105) and E-Selectin (CD62E). CD62E+ and CD106+ EMPs are 

believed to reflect endothelial cell activation, whereas EMPs with other markers may 

indicate endothelial cell apoptosis (Jimenez et al., 2003b). With the exception of CD62E 

and CD144, most of these markers are not exclusive for EMPs. CD31 is expressed on 

platelets and some leucocyte subsets, and CD146 is expressed on activated T-cells (Dignat-

George and Boulanger, 2011) (Table 1.3). 

1.1.5.4. Leucocyte-Derived Microparticles 

   Leucocyte-derived MPs (LMPs) can originate from lymphocytes, granulocytes or 

monocytes (Angelillo-Scherrer, 2012). They are present at a very low level in the 

circulation of healthy individuals. They have been found to be elevated in preeclampsia 

(Lok et al., 2009). They are often increased at the site of inflammation, such as in 

atherosclerotic plaques (Leroyer et al., 2007) and the synovial fluid of rheumatoid arthritis 

patients (Berckmans et al., 2002). 



 6

   Studies have demonstrated that LMPs impair endothelial cell function. In vitro, LMPs 

significantly reduce human umbilical cord vein endothelial cell (HUVEC) survival and 

proliferation (Yang et al., 2008). LMPs can stimulate endothelial cells (Mesri and Altieri, 

1999) and impair endothelium-dependent vasodilation (Martinez et al., 2005). 

   The main marker used to distinguish total LMPs is the leucocyte common antigen CD45 

(Amabile et al., 2008), which identifies MPs derived from lymphocytes, granulocytes and 

monocytes. Other, more specific markers can be used to identify sub-populations of LMPs 

(Table 1.3). LMPs from specific cells are discussed below. 

1.1.5.5. Granulocyte-Derived Microparticles 

   Fewer studies have addressed the specific role of granulocyte-derived MPs in disease. 

Granulocyte-derived MPs have been found to be increased in patients with obstructive 

sleep apnoea (OSA) (Priou et al., 2010) and in women with a preeclamptic pregnancy (Lok 

et al., 2009) (Table 1.2). Neutrophils are the most abundant granulocyte in the circulation, 

and are responsible for the majority of granulocyte-derived MPs. 

   In vitro, neutrophil-derived MPs can induce the expression of Intracellular Adhesion 

Molecule 1 (ICAM1) and release of proinflammatory cytokines from endothelial cells, 

suggesting a role in the pathogenesis of disease (Hong et al., 2012). However, it appears 

that neutrophil-derived MPs also have anti-inflammatory properties. Neutrophil-derived 

MPs produced early during neutrophil activation can increase the secretion of 

Transforming Growth Factor-β (TGF-β) from macrophages, a potent inhibitor of 

macrophage activation (Gasser and Schifferli, 2004). Neutrophil-derived MPs also contain 

functionally active annexin 1, which has anti-inflammatory properties (Dalli et al., 2008).  

   Granulocyte-derived MPs can be identified by their expression of carcinoembryonic 

antigen-related cell adhesion molecule 8 (CD66B) (George, 2008), an activation marker 

for human granulocytes (Table 1.3). 

1.1.5.6. Monocyte-Derived Microparticles 

   Monocyte-derived MPs are elevated during preeclamptic pregnancies versus healthy 

pregnancies (Lok et al., 2009) and in Type II diabetes (Nomura et al., 2009) (Table 1.2). 

They have the highest procoagulant activity of all MPs, because they express tissue factor 

(CD142) (Mackman, 2009), a protein required for the initiation of thrombin generation. 

Monocyte-derived MPs have been found to support faster fibrin formation and have higher 

clot stability than PMPs (Aleman et al., 2011), suggesting that they play an important role 

in thrombosis. They have been shown to cause activation of the endothelium, by delivering 

IL-1β (Wang et al., 2011). Monocyte-derived MPs express CD14, a lipopolysaccharide 

receptor (Shet et al., 2003) (Table 1.3). 
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1.1.5.7. T Cell-Derived Microparticles 

   T cell-derived MPs have been examined in a limited number of studies. They were found 

to be elevated in active hepatitis C, compared to patients with mild hepatitis C. These MPs 

were shown to fuse with the hepatic stellate cells, the major cells involved in excess matrix 

deposition and in liver fibrosis (Kornek et al., 2011). They are also elevated in 

polymyositis and dermatomyositis patients compared to healthy controls (Baka et al., 

2010) (Table 1.2). T cell-derived MPs can be identified by their expression of CD3, CD4 

and CD8 surface markers (Table 1.3). 

1.1.5.8. Red Blood Cell-Derived Microparticles 

   Red blood cell derived MPs (RBC MPs) are detectable in the plasma of healthy 

individuals. RBC MPs are elevated in sickle cell disease patients. In fact, they constitute 

the majority of circulating MPs in patients with this disease (Shet et al., 2003). RBC MPs 

are also elevated in nephrotic syndrome, where they may be in part responsible for the 

thrombophilic susceptibility of these patients (Gao et al., 2012). Elevated levels of RBC 

MPs can be detected in allogeneic hematopoietic stem-cell transplant patients who develop 

graft-versus-host disease (Rank et al., 2011b). 

   RBC MPs can be detected using a monoclonal antibody against glycophorin A 

(CD235a), a membrane spanning protein present on the surface of RBCs (Shet et al., 2003; 

Xiong et al., 2012) (Table 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8

Table 1.2. Microparticle Subtypes in Disease 
 

MP Subtype 
Diseases in which Elevated MP 

Levels are Found References 

Procogulant MPs Acute Coronary Syndromes (Mallat et al., 2000) 

  Obstructive Sleep Apnoea (Ayers et al., 2009) 

  End Stage Renal Failure (Amabile et al., 2005) 

Platelet-Derived MPs Diabetes Mellitus (Nomura et al., 1995) 

  Severe Hypertension (Preston et al., 2003) 

  Obstructive Sleep Apnoea (Ayers et al., 2009) 

  Meningococcal Sepsis (Nieuwland et al., 2000) 

  Active Vasculitis (Daniel et al., 2006) 

Endothelial-Derived MPs Acute Coronary Syndromes (Mallat et al., 2000) 

  Severe Hypertension (Preston et al., 2003) 

  End Stage Renal Failure (Amabile et al., 2005) 

  Type II Diabetes (Nomura et al., 2009) 

Leucocyte-Derived MPs Subclinical Atherosclerosis (Chironi et al., 2006) 

  Obstructive Sleep Apnoea (Ayers et al., 2009) 

  Preeclampsia (Lok et al., 2009) 

Granolocyte-Derived MPs Meningococcal Sepsis (Nieuwland et al., 2000) 

  Obstructive Sleep Apnoea (Priou et al., 2010) 

  Preeclampsia (VanWijk et al., 2002) 

Monocyte-Derived MPs Preeclampsia (Lok et al., 2009) 

  Type II Diabetes (Nomura et al., 2009) 

T-cell Derived MPs Polymyositis/Dermatomyositis (Baka et al., 2010) 

  Active Hepatitis C (Kornek et al., 2011) 

  Preeclampsia (VanWijk et al., 2002) 

RBC Derived MPs Sickle Cell Disease (Shet et al., 2003) 

 Nephrotic Syndrome (Gao et al., 2012) 

  End Stage Renal Failure (Amabile et al., 2005) 
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Table 1.3 Microparticle Subtypes and their Surface Markers (* Activation Marker) 

 

MP Subtype 
Surface 
Markers Alternative Name 

 
Reference 

Procogulant MPs Annexin V Annexin V 

(Dachary-
Prigent et al., 

1993) 

 Lactadherin Lactadherin 
(Hou et al., 

2011) 

Platelet-Derived MPs CD31 
Platelet-endothelial cell adhesion 

molecule (PECAM) 
(Amabile et 
al., 2012) 

  CD41  Platelet glycoprotein II 
(Amabile et 
al., 2008) 

  CD42a  Glycoprotein IX 
(Connor et al., 

2010) 

  CD42b Glycoprotein Ib 
(Connor et al., 

2010) 

  CD61 Glycoprotein IIIα 
(Connor et al., 

2010) 

  CD62P* P-selectin  
(Flaumenhaft 
et al., 2009) 

Endothelial-Derived MPs CD31 
Platelet-endothelial cell adhesion 

molecule (PECAM) 
(Amabile et 
al., 2008) 

  CD62E* E-selectin 
(Amabile et 
al., 2008) 

  CD144 Vascular endothelial (VE)-Cadherin  
(Faure et al., 

2006) 

  CD106* 
Vascular cell adhesion molecule 1 

(VCAM-1)  
(Tramontano 
et al., 2010) 

  CD146 
Melanoma cell adhesion molecule 

(MCAM) 
(Faure et al., 

2006) 

  CD51  Integrin alpha V 
(Sabatier et 
al., 2002) 

  CD105 Endoglin 
(Bakouboula 
et al., 2008) 

Leucocyte-Derived MPs CD45 Leucocyte common antigen  
(Amabile et 
al., 2008) 

  CD62L* L-selectin 
(Priou et al., 

2010) 
Granolocyte-Derived 

MPs CD66B 
Carcinoembryonic antigen-related 

cell adhesion molecule 8  
(George, 

2008) 

Monocyte-Derived MPs CD14 Lipopolysaccharide Receptor  
(Shet et al., 

2003) 

 CD142 Tissue Factor 
(Aleman et al., 

2011) 

T-cell Derived MPs CD3 T-cell receptor  
(Baka et al., 

2010) 

  CD4  
(Rautou et al., 

2012) 

  CD8   
(Kornek et al., 

2011) 

RBC Derived MPs CD235a Glycophorin A  
(Xiong et al., 

2012) 
 

 

 
 
 



1.1.6. Functions of Microparticles 

   There are several reasons for cells to release MPs. They can act as cellular messengers by 

the transfer of membrane receptors, by the release of cytokines, and by the exchange of 

genetic information (Morel et al., 2011b).  MPs may also be ‘cellular dustbins’, allowing 

cells to remove dangerous components, such as caspase 3, which may otherwise 

accumulate (Abid Hussein et al., 2007). The release of MPs may allow cells to escape 

phagocytosis by quickly removing ‘eat me’ signals, such as PS, from the cells surface. 

MPs are also implicated in several disease processes including inflammation, thrombosis, 

and endothelial dysfunction (Figure 1.2) 

 

 
 

Circulating 
MPs 

Inflammation

Thrombosis Endothelial Dysfunction

Leukocytes 
Proinflammatory Cytokines 

EMP and Cytokine 
Release 

Endothelial 
Cells 

LMP and 
Proinflammatory 
Cytokine Release 

Platelets 
Proinflammatory 
Cytokines 

Monocytes 

MP Release 
Expressing PS 
and tissue factor 

Figure 1.2 Functions of circulating microparticles from platelets, endothelial cells and leucocytes and 

interactions with proinflammatory cytokines 

 

1.1.6.1. Inflammation 

   MPs are known to be elevated in many proinflammatory conditions and they have been 

shown to have potent proinflammatory activities. For example, PMPs promote leucocyte 

aggregation and binding of monocytes to endothelial cells (Nomura et al., 2001), an early 

step in vascular inflammation. 

   PMPs trigger endothelial cells to release chemokines, which attract leucocytes to the 

endothelium (Nomura et al., 2001). LMPs can stimulate proinflammatory gene expression 

in endothelial cells in vitro, leading to cytokine release and expression of adhesion 

molecules (Mesri and Altieri, 1999). Monocyte MPs can actually release IL-1, which is 

derived from the original cell, giving an alternative mechanism for secretion of cytokines 

(MacKenzie et al., 2001).  

 10
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   PMPs from rheumatoid arthritis patients have complement activators and activated 

complement components on their surface (Biro et al., 2007), suggesting a role in the 

transport of inflammatory mediators.  

   MPs are also able to suppress the immune system, making their role in inflammation 

complex. Granulocyte-derived MPs contain functionally active Annexin 1, which gives 

them anti-inflammatory properties, such as down-regulating granulocyte activation, 

increasing IL-10 production, and inhibiting the interaction between leucocytes and 

endothelial cells in vitro (Dalli et al., 2008). 

1.1.6.2. Coagulation and Thrombosis 

   MPs provide a phospholipid surface for the assembly of blood coagulation factors, such 

as prothrombinase complexes, allowing for thrombin generation (Morel et al., 2011a). 

Removing PMPs from plasma by high-speed centrifugation, prevents clotting of the 

plasma (Nieuwland and Sturk, 2007). The role of PMPs in coagulation is further 

demonstrated by the rare condition, Scott Syndrome, in which patients have bleeding 

complications due to impaired release of PMPs (Satta et al., 1997). In autoimmune 

thrombocytopenia, elevated PMPs play a role in preventing bleeding complications (Jy et 

al., 1992). It has been suggested that the membranes of PMPs have 50-100 fold higher 

procoagulant activity than that of activated platelets (Sinauridze et al., 2007).  

   The role of MPs in coagulation is however complex. MPs can express PS and tissue 

factor, central components of coagulation. Conversely, PMPs can inactivate coagulation 

factors Va and VIIIa, suggesting that they also possess anti-coagulation properties (Tans et 

al., 1991).  In healthy individuals, the level of annexin V+ MPs is inversely correlated to 

the plasma concentration of thrombin-antithrombin complex, suggesting that in this case 

MPs have an anticoagulant function (Berckmans et al., 2001). Whereas under pathological 

conditions, the number of MPs exposing tissue factor can be elevated (Bakouboula et al., 

2008), leading to increased coagulation. 

   The procoagulant potential of MPs is not restricted to PMPs. EMPs express von 

Willebrand factor, resulting in platelet aggregate formation (Jimenez et al., 2003a) and 

LMPs can transfer tissue factor between platelets and trigger thrombosis (Meziani et al., 

2008). In fact, at the onset of coagulation,  monocyte-derived MPs are the main contributor 

of tissue factor activity, and are crucial for thrombus formation, whereas PMPs may be 

more of an indicator of platelet activation (Morel et al., 2011b). RBC-derived MPs may 

also be important contributors to coagulation in sickle cell disease (van Beers et al., 2009).  

1.1.6.3. Endothelial Dysfunction 

    Normal endothelial function involves control of vasodilation and the immune function 

of the endothelium. Endothelial dysfunction refers to a loss of normal homeostatic 
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functions in the blood vessels and is characterized by a shift of the endothelium toward 

vasoconstriction, a proinflammatory state, and chronic prothrombic properties. These are 

key features in early atherosclerosis development and predate clinical symptoms by many 

years (Bonetti et al., 2003). Endothelial dysfunction promotes atherosclerosis by causing 

upregulation of adhesion molecules, increased cytokine secretion and platelet activation 

(Verma and Anderson, 2002). 

    EMPs both reflect endothelial dysfunction, and can themselves induce it. EMPs are 

released from the endothelium in response to various stimuli, such as proinflammatory 

cytokines (Diamant et al., 2004). EMPs are in turn capable of impairing vasodilatation, by 

altering the release of nitric oxide (NO) and reactive oxygen species (Brodsky et al., 2004). 

MPs from metabolic syndrome patients reduce NO production and impair endothelium-

dependent relaxation when injected into mice (Agouni et al., 2008).   

   Elevated MP levels have been observed in pathologies associated with endothelial 

dysfunction, including acute coronary syndromes and hypertension (VanWijk et al., 2003). 

Correlations have been found between EMP levels and other markers of endothelial 

dysfunction, such as reduced flow-mediated brachial artery dilation and increased arterial 

stiffness (Amabile et al., 2005).  

   Again the relationship between MPs and endothelial dysfunction is made some what 

unclear by the fact that, in some cases, MPs may improve endothelial dysfunction. For 

example, elevated circulating MPs have been found to be protective against vascular 

hyporeactivity in sepsis (Mostefai et al., 2008b). 

1.1.6.4. Summary of Microparticle Functions 

   The role of MPs in inflammation, coagulation and endothelial dysfunction is still not 

fully understood. Contradicting reports suggest that MPs have both a beneficial and a 

harmful role to play in these processes. It may be that a careful balance of MPs of different 

subtypes is required for homeostasis, and when this balance is disturbed by disease, MPs 

switch to having a pathological role.  

 

1.1.7. Clearance of Microparticles 

   The presence of MPs in plasma reflects a balance between MP production by activated 

and apoptotic cells, and their clearance from the circulation. It was thought that, due to 

their smaller size and greater ability to diffuse and escape phagocytosis, MPs may be able 

to survive in the circulation longer than the cells they originate from (Freyssinet, 2003).  

However there is limited information on the mechanisms of clearance.  
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   MPs are thought to be cleared from the circulation by phagocytes in the liver or spleen. 

Phagocytes can recognise PS expressing MPs by receptors that bind PS directly or by 

receptors for the proteins that opsonize MPs (Flaumenhaft, 2006).  

   It has been shown that procoagulant PMPs are rapidly removed from the circulation 

following injection into rabbits (Rand et al., 2006), and within 30 min following infusion 

in mice (Flaumenhaft, 2006). Rank et al demonstrated that the half life of annexin V+ MPs 

in humans is 5.8 hours following transfusion of platelet concentrates, and that the removal 

of PMPs was quicker than the removal of platelets (Rank et al., 2011a). 

   Defects in the clearance of MPs can lead to problems, including increased risk of 

thrombosis. Splenectomised mice have a defect in clearing infused tumour cell MPs, and 

therefore have increased mortality compared to non-spenectomised mice (Davila et al., 

2008).  

 

1.2. Other Inflammatory Markers 

1.2.1. Cytokines 

   Cytokines are small, hormone-like, signalling molecules that modulate the behaviour of 

cells within the immune and haematopoietic systems. They act by binding specific 

receptors, inducing signal transduction pathways, leading to activation of effector 

mechanisms in target cells (Ait-Oufella et al., 2011). Cytokines share many characteristics 

with hormones and growth factors, other soluble factors that have biological effects 

(Goldsby et al., 2003). However, growth factors are produced constitutively, whereas 

cytokines secretion is in response to a stimulus and is usually short-lived.  

   There are over 200 different cytokines (Girn et al., 2007), which can by classified by the 

structural homology of their receptors; Class I family, Class II family, IL-1 family, Tumour 

Necrosis Factor (TNF) family and TGF family (Tedgui and Mallat, 2006). Cytokines can 

also be classified into functional categories. They are currently grouped by those which 

enhance cellular immune responses (Th1), antibody responses (Th2) or inflammation 

(Th17) (Stummvoll et al., 2008). Chemokines are a group of cytokines that mediate 

movement of cells around the body and direct leucocytes to sites of inflammation (Girn et 

al., 2007). 

   Once released, cytokines can act on the same cell (autocrine), neighbouring cells 

(paracrine) or rarely systemically (endocrine) (Tedgui and Mallat, 2006). Cytokine 

signalling can lead to cell survival, proliferation, release of the same or other cytokines, 

cell differentiation or cell death.  
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   One cytokine can have different biological effects on different target cells. There is often 

redundancy in cytokines, as two or more cytokines may mediate similar functions. 

Cytokines can exhibit synergy, as the combined effect of two cytokines on a cell is greater 

than the effect of individual cytokines (Tedgui and Mallat, 2006). Conversely, one 

cytokine can antagonise another’s effect (Bhandari and Elias, 2006). 

   Cytokines act by binding to cytokine receptors expressed on cell surfaces. The α-chain of 

a cytokine receptor is associated with a family of tyrosine kinases, the Janus kinase (JAK) 

family (Usacheva et al., 2002). Cytokine binding induces the association of receptor 

subunits and the activation of JAKs. Activated JAKs create sites for signal transducers and 

activators of transcription (STAT) transcription factors by phosphorylation of specific 

tyrosine residues on cytokine receptor subunits. STAT transcription factors then 

translocate from the docking sites at the membrane to the nucleus, where they initiate the 

transcription of specific genes (Goldsby et al., 2003). 

 

1.2.2. C-Reactive Protein (CRP) 

   CRP is an acute phase protein, synthesised by hepatocytes. The acute phase response 

occurs during acute and chronic inflammation, including infection, tissue injury, 

autoimmunity and malignancy. IL-6 (produced predominantly by macrophages and 

adipocytes) and other cytokines, trigger the release of CRP (Pepys and Hirschfield, 2003). 

IL-6 levels have been shown to be correlated with CRP levels (Kasperska-Zajac et al., 

2011). CRP rapidly increases following infection or cell damage, and it reaches a peak at 

48hrs. CRP levels can increase 10,000 fold in response to infection (Pepys and Hirschfield, 

2003). 

   CRP is recognised by C1q, activating the classical complement pathway and enhancing 

phagocytosis (Pepys and Hirschfield, 2003). Therefore, it is an important component in the 

effective clearance of dying cells, by acting as an opsonin. 

 

1.2.3. Microparticles and Other Inflammatory Markers 

   The relationship between MPs and cytokines can be both causal and consequential. Thus 

MPs can be formed following cell activation by inflammatory cytokines, such as IL-1β and 

IL-6, and MPs can also stimulate the release of cytokines. In vitro stimulation with PMPs 

results in production of IL-8, IL-1β and IL-6 from endothelial cells (Nomura et al., 2001). 

   MPs are able to both stimulate and suppress immune responses, at different stages of 

inflammation. In the early stages, neutrophil-derived MPs are able to induce release of 

anti-inflammatory cytokines, including TGF-β (Gasser and Schifferli, 2004). However, 
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later in inflammation, MPs cause release of proinflammatory cytokines, including IL-6 

from endothelial cells (Mesri and Altieri, 1999). 

   MPs with bound CRP have been identified in the plasma of patients with rheumatoid 

arthritis (Biro et al., 2007) and acute myocardial infarction (van der Zee et al., 2010). CRP-

bound MPs were found to be correlated with MPs that bound C1q, the first component of 

the classical pathway of complement activation, in patients undergoing cardiac bypass 

surgery (Biro et al., 2011).  

    In a study assessing the subclinical atherosclerosis burden in asymptomatic individuals, 

high levels of CRP were associated with increased levels of LMPs (Chironi et al., 2006). 

CRP has been noted to induce the release of EMPs both in vitro and in vivo (Devaraj et al., 

2011). 

    The relationship between MPs and other inflammatory markers is complex and may be 

further complicated in various disease states. There is growing interest in the investigation 

of inflammatory biomarkers and their interactions with each other, particularly in 

cardiovascular disease (CVD).  

 

1.3. Cardiovascular Disease 

   CVD is any disease of the cardiovascular system, including coronary artery disease 

(CAD), hypertension, cerebrovascular disease, congenital heart disease, shock and heart 

failure. There are also several diseases that are known to be associated with CVD, 

including diabetes, obstructive sleep apnoea and preeclampsia, which often occur prior to 

CVD. 

   Although CVD refers to any disease that affects the heart or vascular system, it is often 

used to describe the pathologies caused by atherosclerosis. Atherosclerosis is a progressive 

hardening and narrowing of the arteries, caused by the formation of plaques on the inside 

surface of the arteries. 

 

1.3.1. Inflammation and the Development of Atherosclerosis 

   In healthy individuals, endothelial cells usually resist leucocyte adhesion. Certain 

conditions such as a high-fat diet, obesity and smoking can trigger the endothelium to 

express adherence molecules, such as P-selectin and VCAM-1 (Demerath et al., 2001).In 

the early stages of atherosclerosis, selectins mediate loose rolling of leucocytes, and 

integrins mediate firm attachment. Endothelial cells secrete chemokines, which direct 

migration of attached cells into the intima (Libby et al., 2002). 
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   As atherosclerosis progresses monocytes mature into macrophages, which capture 

oxidised low-density lipoprotein (LDL), converting them into foam cells. These cells 

proliferate and secrete TNF-α and IL-1β. T cells then enter the intima and secrete Th1 

cytokines, including IFN-γ (Robertson and Hansson, 2006). Smooth muscle cells (SMCs) 

express enzymes that degrade elastin and collagen, allowing more cells to enter the 

expanding plaque (Packard and Libby, 2008). 

   Inflammatory mediators, such as IFN-γ, inhibit collagen synthesis, making the fibrous 

cap weak. When the cap ruptures, tissue factor triggers the thrombus formation, which 

causes the arterial occlusion and the acute complications of atherosclerosis. Therefore, 

inflammation is pivotal in all stages of atherosclerosis, from lesion initiation to 

destabilization (Packard and Libby, 2008) (Figure 1.3). 

   Atherosclerosis can develop silently years in advance of any coronary event, but there 

are currently limited mechanisms to detect this early development. Imaging techniques can 

miss the early stages and would be too expensive and time consuming to perform on a 

large population. Therefore, the identification of circulating biomarkers which indicate 

atherosclerosis is of much interest. 

  



 

 

Figure 1.3 Stages in the development of atherosclerosis, from the early stage of leucocyte adhesion to plaque 

rupture and thrombus formation 
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1.3.2. Microparticles in Cardiovascular Disease 

   MPs may provide a potential link between the processes of inflammation, thrombosis and 

endothelial dysfunction, and the development of atherosclerosis, because they express both 

proinflammatory and pro-thrombotic molecules on their surface and they can influence 

endothelial function. 

   Many studies have found elevated MP levels in CVD, including acute coronary 

syndromes (Bernal-Mizrachi et al., 2004; Mallat et al., 2000) and venous embolism 

(Chirinos et al., 2005a), as well as in diseases associated with CVD, such as type 2 

diabetes (Feng et al., 2009) and preeclampsia (Lok et al., 2008).  

   It is now understood that CVD is primarily a disease of inflammation. MPs are mediators 

of inflammation, for example, PMPs can trigger release of IL-6 from endothelial cells, 

inducing the expression of adhesion molecules on endothelial cells in vitro (Nomura et al., 

2001). PMPs also provide IL-1β, a proinflammatory cytokine, which contributes to 

endothelial inflammation (Lindemann et al., 2001).  

   Patients with CVD have an increased risk of arterial thrombosis, which is demonstrated 

in acute myocardial infarction and stroke. MPs are a crucial component in the coagulation 

cascade and elevated levels in CVD may provide a mechanism for the increased risk of 

thrombosis. Apoptotic MPs are present in high concentrations within human 

atherosclerotic plaques and they are responsible for the majority of tissue factor activity, 

suggesting that these MPs may largely determine plaque thrombogenicity (Mallat et al., 

2000). 

   Endothelial dysfunction is a feature of atherosclerosis (Neunteufl et al., 1997), 

hypertension (Contreras et al., 2000) and preeclampsia (Roberts, 1998). Certain subtypes 

of MPs have been shown to cause endothelial dysfunction. Circulating apoptotic MPs have 

been shown to correlate with the impairment of coronary endothelial function in patients 

with CAD. Annexin V+CD31+ MPs are able to predict severe endothelial dysfunction, 

even when controlling for other risk factors (Werner et al., 2006). MPs may play an 

important role in the initiation and development of atherosclerosis, as well as accelerating 

the progression of the atherosclerotic plaque.  

   PMPs have been shown to induce angiogenesis, both in vitro and in vivo (Brill et al., 

2005). Although angiogenesis can be beneficial by providing alternative pathways for 

blood supply within an ischemic myocardium, it can also increase plaque instability 

(Virmani et al., 2005). MPs from atherosclerotic plaques, expressing CD40L on their 

surface, have been shown to stimulate endothelial cell proliferation, potentially increasing 

plaque vulnerability (Leroyer et al., 2008a).  
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1.3.3. Other Inflammatory Markers in Cardiovascular Disease 

   Cytokines regulate every stage of the development of atherosclerosis, from endothelial 

activation, to the adhesion of inflammatory cells and the subsequent remodelling of the 

vascular environment. IL-6 enhances the expression of cell adhesion molecules on 

endothelial cells and SMCs, as well as increasing production of acute phase reactants, such 

as CRP (Haddy et al., 2003). TNF-α induces both a proinflammatory and pro-thrombotic 

local environment in the vessel (Leon and Zuckerman, 2005). TNF-α, IFN-γ and IL-1 

levels are all associated with an increased tendency for plaque rupture. IFN-γ potentially 

destabilises the fibrous cap by inhibiting SMC proliferation (Girn et al., 2007). 

   Conversely, some cytokines offer protection from the development of atherosclerosis. 

IL-10 can reduce atherosclerosis, by inhibiting the release of proinflammatory cytokines 

and by suppressing CD40/CD40L mediated responses (Terkeltaub, 1999). TGF-β inhibits 

SMC proliferation, as well as reducing proinflammatory cytokine release. In fact, there is a 

negative correlation between TGF-β levels and CAD (Erren et al., 1999). 

   Increased CRP is predictive of future atherothrombotic events, including myocardial 

infarction and stroke (Koenig et al., 1999; Ridker, 2003). CRP is deposited in the area 

surrounding a plaque and contributes to myocardial damage, by promoting complement 

activation (Nijmeijer et al., 2004). The measurement of CRP is more convenient than other 

inflammatory markers, due to its stability in serum and the availability of robust and 

standardised assays. High-sensitivity CRP assays are also available, allowing the detection 

of slightly elevated levels, which is useful in identifying individuals at low to moderate 

risk of CVD (Ridker and Cook, 2004).  

   CRP levels are strongly positively associated with BMI, which may be partly due to the 

release of IL-6 from adipocytes (Yudkin et al., 1999). Elevated CRP is also linked with the 

risk of metabolic syndrome and diabetes mellitus, both cardiovascular-associated 

conditions (Pepys and Hirschfield, 2003). Statins reduce circulating CRP levels (Ridker et 

al., 2001), explaining one of their mechanisms of action to reduce CVD risk.   

   Levels of CRP and inflammatory cytokines have been proposed as useful predictors of 

future CVD risk (Harris et al., 1999; Ridker, 2003). Cytokine and CRP levels may also be 

beneficial in monitoring the response to treatments of atherosclerosis (Girn et al., 2007). 
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1.4. Aims of the Project 

1) To adapt and fully validate a flow cytometric assay to measure all MP subtypes 

described above, and to address the issue of pre-analytical and analytical sources of 

variability in the measurement of MPs. 

 

2) To validate the cell specific markers used in this study by generating MPs in vitro using 

a variety of agonists, and to determine the impact of agonist used on the phenotype of EMP 

released.  

 

3) To investigate alternative techniques for MP analysis and examine associations between 

results from quantitative and functional assays.  

 

4) To measure levels of MPs in healthy individuals to establish a normal range, to analyse 

variability in levels based on age and sex, and to determine the impact of hypoxia on levels 

of MPs in healthy individuals. 

 

5) To determine the impact of therapy on levels of MPs and other inflammatory markers in 

obstructive sleep apnoea patients. 

 

6) To examine levels of circulating MPs in cardiovascular-associated diseases, to 

investigate MP levels 5-10 years following a preeclamptic pregnancy, and to determine if 

circulating MP levels provide additional value in the diagnosis of atherosclerosis by 

dobutamine stress echocardiogram. 
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Chapter 2 – Validation of a Flow Cytometric Assay to 

Measure Circulating Cell-Derived Microparticles 

 

2.1. Introduction 

   Despite the growing interest in MPs in the pathogenesis of disease, there is a lack of 

standardisation when it comes to their measurement (Hind et al., 2010). The variety of 

methods used by different laboratories is a major barrier to the detection and understanding 

of MPs role in disease (Shet, 2008). Details on the optimal technique for preparing, 

processing and storing blood samples, along with the influence of different analytical 

techniques on MP counts are sparse (Shah et al., 2008). In the past few years, efforts have 

been made to standardise both the pre-analytical and analytical steps. However, published 

studies still use a wide range of methods, and consequently report widely varying levels of 

MPs, even in similar patient groups. 

 

2.1.1. Plasma Samples for Measurement of Microparticles 

   Circulating cell-derived MPs are detected in plasma, which is obtained by centrifugation 

of blood samples. Citrate is the preferred anticoagulant for MP analysis, because of its 

ability to chelate calcium, which is necessary for MP release (Hind et al., 2010). Ideally all 

platelets would be removed from samples prior to freezing or analysis, by a series of 

centrifugations, to prevent ex vivo PMP production. However, this is likely to result in the 

loss of some larger MPs, as platelets and MPs may form a continuum in size (Lynch and 

Ludlam, 2007). In practice, a variety of centrifugation protocols are used by different 

groups, which produce platelet-poor-plasma (PPP), as opposed to platelet-free-plasma. 

   MPs can be isolated from PPP by high-speed centrifugation, before re-suspension in a 

filtered buffer (Lynch and Ludlam, 2007). This allows MPs to be washed prior to analysis, 

to remove lipids, such as chylomicrons, which are a similar size to MPs and cause 

significant background noise when analysing MPs by flow cytometry. However, there is no 

consensus on the optimal centrifugation speed to pellet all MPs. 
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2.1.2. Flow Cytometry Measurement of Microparticles 

   Flow cytometry has been the most commonly used method for the detection of MPs, with 

approximately 75 % of laboratories using it for clinical samples (Lacroix et al., 2010). PPP 

is incubated with fluorescence-conjugated antibodies to cell-specific markers. MPs are 

identified on a Forward Scatter (FSc) vs. Side Scatter (SSc) plot, using size-calibrated 

beads to define the MP gate. Flow cytometry can identify MPs from different cellular 

origins, with the use of cell-specific markers. It can also be quantitative, if the flow rate for 

the machine is determined or if counting beads are used. 

   Calibrated beads with defined diameters can be used for the adjustment of instrument 

settings, and to define and standardise MP size gates. However, the refractive index of 

plastic beads differs from that of MPs, making them an imperfect method for defining size 

cut-offs (Yuana et al., 2011).  

   There are many different flow cytometry protocols used for the analysis of MPs, which 

vary greatly in their methods for blood collection, centrifugation, storage of samples and 

the cell-specific antibody markers used (Jy et al, 2004). This has led to a great variation in 

the reported levels of MPs in the literature. Standardisation of MP measurement will allow 

for the comparison of results between research groups, and for a greater understanding of 

the role of MPs in health and disease.   

 

2.1.3. Aims of this Chapter 

1) To adapt a flow cytometric assay for the measurement of a wide range of MP subtypes. 

 

2) To validate this assay by determining the linearity, intra-assay precision and inter-assay 

precision. 

 

3) To identify potential causes of pre-analytical and analytical variability in MP 

quantification using this assay, and to use these findings to make recommendations 

towards the standardisation of MP analysis. 
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2.2. Methods 

2.2.1. Subjects 

   28 healthy controls were used for the validation of procoagulant MPs, PMPs and RBC-

derived MPs. They were recruited from laboratory staff. Subjects were eligible if aged 18 

or above and in good health. Subjects with a known cardiovascular condition or a known 

cardiovascular-associated condition were excluded. This study was approved by the 

Oxford Research Ethics Committee (REC No: 11/SC/0183). 

   56 obstructive sleep apnoea (OSA) patients were used for validating EMP, LMP, 

granulocyte, monocyte and T-cell-derived MP measurements, as they are only found at 

very low levels in healthy individuals (VanWijk et al., 2002). Patients were eligible if they 

were aged between 45 and 75 years, had proven OSA. This study was approved by the 

Oxford Research Ethics Committee (REC No: 05/Q1604/159). 

   Written informed consent was obtained from all participants. 

 

2.2.2. Flow Cytometric Method for Detection of Microparticles 

2.2.2.1. Preparation of Microparticles 

   A flow cytometric assay was adapted from the method originally described by Biro et al 

(2004). Blood from healthy controls and OSA patients was drawn into citrate vacutainer 

tubes (Becton Dickinson (BD), Oxford, UK) using a 19 G needle (BD, Oxford, UK). The 

first 3 ml of blood following venepuncture was discarded, to avoid contamination from 

EMPs due to vascular damage. Within 15 minutes of the blood being taken, tubes were 

centrifuged at 1550 g for 20 min at 20 C, to produce PPP. PPP was carefully removed 

from the top of the tube, without disturbing the buffy coat, and 250 l aliquots frozen 

immediately and stored at -80 C. The method described by Biro et al recommends snap 

freezing in liquid nitrogen, prior to storing at -80 ºC. However, a lack of facilities 

prevented this step. 

   When required the 250 l aliquots were thawed on melting ice and then centrifuged at 

18,000 g for 30 min at 20 C. 225 l of supernatant was removed, and the pellet was re-

suspended in 225 l of phosphate-buffered saline (PBS)-citrate 0.32 %. The samples were 

centrifuged again at 18,000 g for 30 min at 20 C. 225 l of supernatant was removed and 

the pellet was re-suspended in 75 l of PBS-citrate 0.32 %, making the final MP 

suspension 2.5 times concentrated from the original PPP. 
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2.2.2.2. MegaMix Beads 

   To establish if the BD FACsCalibur flow cytometer (BD, Oxford, UK) used in this study 

was capable of resolving particles of 0.5 µm and 0.9 µm in size, MegaMix beads 

(BioCytex, Marseille, France) were used. They are a mixture of fluorescent beads with 

defined diameters; 0.5 µm, 0.9 µm and 3.0 µm, that allow for standardisation of instrument 

settings on different flow cytometers. MegaMix Beads were acquired by flow cytometry 

according to the manufacturer instructions.  

2.2.2.3. Establishing a Microparticle Gate 

   Both FSc and SSc were set to a logarithmic gain. To establish a suitable MP gate on a 

flow cytometry plot of FSc vs. SSc, it was necessary to distinguish between MPs and small 

platelets. Platelet-rich-plasma (PRP) was therefore prepared by centrifugation of citrate 

blood at 200 g for 10 min. The PRP was analysed on a BD FACSCalibur to establish a 

platelet gate. PRP was then incubated with 0.35 µg/ml calcium ionophore A23187 (Sigma, 

Kent, UK) for 5 hours. Calcium ionophore is known to stimulate platelets to release MPs 

(Nieuwland and Sturk, 2007; VanWijk et al., 2003; Yin et al., 2008). The stimulated PRP 

was analysed to establish a MP gate. The threshold was set on SSc so to exclude 

background noise, which was determined by running 0.22 µm filtered PBS-calcium (2.5 

nmol/L) with no added sample. A fluorescence threshold was avoided to allow analysis of 

both the annexin V positive and negative MPs. This MP gate was used for all future flow 

cytometric experiments. 

2.2.2.4. Selection of Surface Markers for Microparticle Subtypes 

   AnnexinV-fluoresceinisothiocyanate (FITC) and lactadherin-FITC both bind to PS, so 

were used to stain procoagulant MPs. PECAM (CD31)-phycoerythrin (PE) and platelet 

glycoprotein II (CD41)-phycoerythrin-Cy5 (PE-Cy5) were used to differentiate between 

PMPs (CD31+CD41+) and EMPs (CD31+CD41-). VE-Cadherin (CD144)-PE, E-selectin 

(CD62E)-PE-Cy5 and VCAM-1 (CD106)-PE-Cy5 were all used as a markers for EMPs. 

Leucocyte common antigen (CD45)-allophycocyanin (APC) was used as a marker for total 

LMPs. Carcinoembryonic antigen-related cell adhesion molecule 8 (CD66B)-FITC was 

used to stain granulocyte-derived MPs. Lipopolysacharride receptor (CD14)-PE was used 

to identify monocyte-derived MPs. T-cell receptor (CD3)-Peridinin Chlorophyll Protein 

(PerCP) was used to label T-cell-derived MPs. Glycophorin-A (CD235a)-PE was used to 

stain RBC-derived MPs. All antibodies were supplied by BD (Oxford, UK), except for 

lactadherin (HTI, Vermount, USA) and CD144 (eBioscience, Hatfield, UK). 

   Antibodies were diluted in PBS-calcium 2.5 nmol/L (PBS-Ca) to an optimal 

concentration established by titration of each batch, with either samples of a known high 

MP count, or on the supernatant from stimulated cells. The following final concentrations 



 25

were used: annexin V (0.10 µg/ml), lactadherin (1.38 µg/ml), CD31 (0.10 µg/ml), CD41 

(0.013 µg/ml), CD144 (4.17 µg/ml), CD62E (0.42 µg/ml), CD106 (0.21 µg/ml), CD45 

(0.21 µg/ml), CD66B (0.10 µg/ml), CD14 (0.42 µg/ml), CD3 (0.10 µg/ml), glycophorin A 

(0.069 µg/ml), IgG1-PE (0.42 µg/ml), IgG1-PECy5 (0.052 µg/ml) and IgG1-APC (0.83 

µg/ml). Diluted monoclonal antibodies were centrifuged at 18,000 g for 5 min to remove 

protein aggregates. 

2.2.2.5. Labelling of Microparticles    

   Annexin V-FITC in the absence of calcium and appropriate isotype control antibodies 

were used as negative controls. 5 l of diluted annexin V-FITC, lactadherin-FITC or 

antibodies were added to PBS-Ca (2.5 mmol/L) to make up a total volume of 50 l. 10 l 

of concentrated PPP sample was added and incubated with the appropriate antibodies for 

30 min at room temperature, protected from light. After the incubation, 900 l of PBS-Ca 

was added.  

2.2.2.6. Acquisition and Analysis of Microparticles on the BD FACSCalibur 

   The MP gate was checked at the beginning of each assay by measuring a tube containing   

10 l of PPP and 5 l 1:1000 dilution of 1 m beads (Sigma L-2778) in 950 l of PBS-

calcium (2.5 mmol/L). The flow rate of the FACSCalibur was determined daily by 

acquiring a weighed tube of PBS-Ca for 10 min, then weighing the tube and calculating the 

volume of liquid taken up. This figure is divided by 10 to give the flow rate µl per min. 

   MP numbers per l were calculated using the following formula: 

                Event Count x % Subgroup                                  Total Volume in Tube (960 l)            Vol of Conc Sample (100 l)               
----------------------------------------------------------           X   -----------------------------------      X        ----------------------------         =   MP/l 
Flow Rate (l per min) x Time of Acquisition (2 min)            Vol of MP Added (10 l)               Vol of Original Aliquot (250 l)                
     

2.2.2.7. Single Colour Staining and Fluorescence-Minus-One (FMO) Staining 

   Compensation settings were established by acquiring single-colour stained tubes. Each 

individual fluorochrome-conjugated antibody was used to stain MPs separate from other 

antibodies. Any fluorescent cross-talk into inappropriate channels was adjusted using the 

compensation settings. These settings were saved for future experiments, and settings were 

checked every month. 

   Isotype control antibodies were used for each fluorochrome to assist in the gating of 

negative and positive events. However, as it has been previously noted that the diversity in 

staining intensity of isotype controls can lead to a large errors in the quantification of MPs 

(Trummer et al., 2008), an alternative method for establishing gates was also used. FMO 

staining involves adding all fluorochrome-conjugated antibodies to a tube minus the 

antibody of interest. This allows for a negative/positive gate to be drawn based on the 

background staining from the other fluorochromes in the tube (Baumgarth and Roederer, 
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2000). FMO staining was carried out every month to check gates established by isotype 

controls.  

2.2.2.8. Flow Rate calculated by Weighed Tube Method versus TruCount Tube 

Method 

   In order to give an absolute MP count it is necessary to calculate the flow rate of the flow 

cytometer. This can vary over time, so is measured for each run of MP samples. The flow 

rate can be calculated by weighed tube, as described above, or it can also be calculated by 

acquiring calibrated counting beads in a known volume of PBS-Ca for 10 min, then 

counting the beads acquired to calculate the µl per min. The weighed tube method was 

compared to the calibrated counting beads method (TruCount tubes, BD, Oxford, UK) on 

10 separate days. 

 

2.2.3. Validation of the Assay 

   PPP from healthy controls was used to validate procoagulant MPs, PMPs and RBC-MPs. 

However, to assess the linearity, intra-assay and inter-assay precision of EMPs, LMPs, 

granulocyte-derived MPs and monocyte-derived MPs it was necessary to use alternative 

sources, as healthy controls have very low numbers of these MPs. For this reason, PPP 

from OSA patients, with higher levels of these MPs, were used for EMP, LMP, 

granulocyte-derived MP and monocyte-derived MP populations. 

2.2.3.1. Linearity 

   40 ul, 20 l, 10 l, 5 l, 2.5 l 1.25 l and 0.625 l of sample was labelled with the 

appropriate antibodies to identify different populations of MPs and then analysed by flow 

cytometry, using the protocol described above.  

2.2.3.2. Intra-Assay Precision 

    Intra-assay precision was established by analysing a single sample 18 times on the same 

day. MPs were analysed using the protocol described above.  

2.2.3.3. Inter-Assay Precision 

    Several pooled aliquots of PPP from healthy controls and from OSA patients were 

prepared and frozen at -80 C. Each aliquot was thawed and used only once. Inter-assay 

precision was established by running these samples on each MP assay. This was carried 

out 12 times. MPs were analysed using the protocol described above.  
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2.2.4. Sources of Variability within the Assay 

   For the sources of variability experiments, only annexin V+ MPs, CD31+CD41+ PMPs, 

CD31+CD41- EMPs, CD144+ EMPs, CD62E+ EMPs, CD106+ EMPs and CD45+ LMPs 

were analysed. 

2.2.4.1. Effect of Time before Centrifugation 

   Eight blood samples were taken, from eight healthy controls. Citrate blood samples were 

left standing upright in a rack undisturbed for the following amount of time, before 

centrifugation: 15 min, 30 min, 45 min, 60 min, 75 min, 90 min, 105 min and 120 min. The 

number of annexin V+ MPs and PMPs were then analysed 8 times, according to the above 

protocol. The first tube following venepuncture was discarded, and subsequent tubes were 

randomised, so that any differences found would not be due to venepuncture order. 

2.2.4.2. Effect of Washing Platelet-Poor-Plasma Samples 

   Ten healthy controls had two 250 µl aliquots of PPP stored at -80 ºC for 1 month and 

thawed on melting ice. One aliquot for each control was washed by centrifugation at 

18,000 g for 30 min, after which 225 µl of supernatant was removed and 225 µl of PBS-

citrate (0.32%) added. Then centrifuged again at 18,000 g for 30 min, 225 l of 

supernatant was removed and 75 l of PBS-citrate (0.32%) was added. The second aliquot 

was labelled for MPs without any washing steps. 

2.2.4.3. Effect of Single versus Double Centrifugation 

   Two citrate blood samples were taken from 18 healthy controls. One tube was 

centrifuged at 1550 g for 20 min, as per a single centrifugation protocol. The other tube 

was centrifuged at 1550 g for 20 min, followed by a second centrifugation at 13,000 g for 2 

min. Aliquots of PPP were taken from each tube and were immediately frozen at -80 ºC. 

Samples were then processed according to the above protocol. 

2.2.4.4. Fresh versus Frozen Samples 

   Citrate blood was obtained from 10 healthy controls, and was spun at 1550 g for 20 min, 

followed by a second centrifugation at 13,000 g for 2 min. Two 250 µl aliquots of PPP 

were taken for each control. One was stained and analysed within 3 hours and the second 

was placed in a -80 C freezer, stored for one month then thawed on ice and analysed. 

2.2.4.5. Effect of Thawing Temperature on MP Samples 

   Citrate blood was taken from 10 healthy controls, and centrifuged at 1550 g for 20 min, 

followed by a second centrifugation at 13,000 g for 2 min. Three aliquots of PPP were 

taken and frozen at -80 ºC. The samples were thawed on melting ice, at room temperature 

(RT) or at 37 ºC, then washed, labelled and analysed. 
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2.2.4.6. Effect of Long-term Storage at -80 ºC of MP Samples 

   56 OSA patients had 2 aliquots of single centrifuged PPP stored at -80 ºC for MP 

analysis. The first aliquots were thawed and analysed within 12 months of storage. The 

second aliquots were stored at -80 ºC for an additional 20 months before they were thawed 

and analysed, according to the above protocol.  

 

2.2.4.7. Summary of Sources of Variability Experiments 

Table 2.1 – Summary of Sources of Variability Experiments 

Experiment Samples Used Difference in Method 

Effect of Time before 
Centrifugation 8 Healthy Controls 

Blood samples left 15, 30, 45, 60, 75, 90, 105, 120 
minutes between venepuncture and centrifugation 

Effect of Washing PPP 
Samples 10 Healthy Controls 

PPP washed twice at 18,000 g for 30 min to pellet 
MPs versus no washing step 

Effect of Single versus 
Double Centrifugation 18 Healthy Controls 

Blood samples centrifuged at 1550 g 20 min or at 
1550 g 20 min plus 13,000 g 2 min 

Fresh versus Frozen 
Samples 10 Healthy Controls 

PPP samples analysed either fresh or after one 
month stored at -80 ºC  

Effect of Thawing 
Temperature 10 Healthy Controls 

PPP samples were thawed either on melting ice, at 
RT or at 37 ºC 

Effect of Long-term 
Storage at -80 ºC 56 OSA Patients 

PPP samples analysed within 12 months storage, 
or after an additional 20 months storage 

 

 

2.2.5. Statistics 

   All statistics were performed using GraphPad Prism 5 Software (GraphPad Software, 

San Diego). The linearity of the MPs subtypes was assessed by linear regression. The 

percentage coefficient of variance (CV%) value for intra-assay and inter-assay precision 

was calculated for each of the MP subtypes. The effect of time before centrifugation was 

assessed by a repeated measures ANOVA, followed by the post hoc test for a linear trend. 

The effect of thawing temperature was assessed by repeated measures ANOVA. Paired 

results in the effect of washing, single versus double centrifugation, fresh versus frozen, 

and TruCount versus weighed tube experiments were compared by Wilcoxon Signed Rank 

test. A p-value of <0.05 was considered statistically significant. 

 

 

 

 



2.3. Results 

2.3.1. Flow Cytometric Method for Detection of Microparticles 

2.3.1.1. MegaMix Beads 

   Conventional flow cytometers are designed to measure cells, and often they are unable to 

detect smaller particles. So it was necessary to establish if the flow cytometer (BD 

FACSCalibur) used in this study would be capable of resolving small particles. MPs range 

from 0.1 µm to 1.0 µm in size, although conventional flow cytometers are not usually 

considered to be able to detect particles much smaller than 0.5 µm . 

   MegaMix beads were used to determine if the BD FACSCalibur was capable of 

resolving beads between 0.5 µm and 0.9 µm in size. Figure 2.1A shows that the three size 

calibrated beads, 0.5 µm, 0.9 µm and 3.0 µm can be discriminated on a SSc vs FL1 plot. 

Figure 2.1B shows that 0.5 µm and 0.9 µm beads are clearly discriminated on SSc and 

partially discriminated on FSc. Therefore, this BD FACSCalibur flow cytometer is capable 

of resolving beads down to 0.5 µm in size.  

 
Figure 2.1 – Flow Cytometry plots of MegaMix Bead showing resolution of 0.5 µm and 0.9 µm beads.              

FSc – Forward Scatter, SSc – Side Scatter 
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2.3.1.2. Establishing an Microparticle Gate 

   In order to establish a MP gate, it was important to identify where platelets and PMPs 

appear on the FSc vs SSc plot. Calcium ionophore stimulation of PRP was used to generate 

PMPs from platelets. Gates were set so that in the PRP plot the major population falls in 

the platelet gate, and in the calcium ionophore stimulated PRP plot the major population 

falls in the MP gate (Figure 2.2). This gate was used to establish the MP gate for all future 

experiments. 

 

 
Figure 2.2 – SSC vs. FSC FACS plots showing distinct red cell, platelet and MP gates. Plot A shows analysis 

of unstimulated whole blood. Plot B shows analysis of unstimulated platelet-rich-plasma. There are few MPs 

and mainly platelets. Plot C shows analysis of platelet-rich-plasma stimulated with calcium ionophore for 5 

hours. Most events now appear in the MP gate.  

 

2.3.1.3. Populations of Microparticle Subtypes 

   Figure 2.3 shows example plots of different MP subtypes. Procoagulant MPs are 

identified by annexin V binding (A) and lactadherin binding (B), as they both bind to PS 

on the surface of procoagulant MPs. PMPs were identified by CD31+CD41+ markers (C). 

Several markers were trialed for the identification of EMPs; CD31+CD41- (C), CD144+ 

(D), CD62+ (E) and CD106+ (F). LMPs were identified by CD45+ marker (G). 

Granulocyte-derived MPs were identified by CD66B expression (H). Monocyte-derived 

MPs were identified by CD14 expression (I). T-cell-derived MPs were identified by CD3 

(J). RBC-derived MPs were identified by glycophorin A (K). All plots are gated on the MP 

gate, and are not restricted to those that are annexin V+. 
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Figure 2.3 – Representative FACs plots of labelled PPP. A shows annexin V staining of MPs expressing PS. 

B shows lactadherin staining of MPs expressing PS. C shows CD31+CD41+ PMPs and CD31+CD41- EMPs. 

D, E and F show EMP staining. G shows CD45 staining of LMPs. H shows CD66B staining of granulocyte-

derived MPs. I shows CD14 staining of monocyte-derived MPs. J shows CD3 staining of T-cell derived MPs. 

K shows glycophorin A staining of RBC MPs 
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   It was originally thought that all MPs bind annexin V. However, now it is appreciated 

that some MPs do not bind annexin V, and that the proportion of MPs which bind annexin 

V may be dependent on the cellular origin of the MP. To investigate the proportion of 

annexin V positivity using the cell specific markers described above, a preliminary study 

was conducted, using 20 frozen samples from the OSA patients. OSA patients were used 

because they have higher levels of EMPs and LMPs than healthy controls. 

   Individual subtypes of MPs were assessed for their ability to bind annexin V. The 

percentage that bound annexin V in each MP subgroup varied greatly between individuals. 

The vast majority of PMPs and RBC-derived MPs were annexin V+. Other MP subtypes 

had a much lower percentage that bound annexin V, particularly CD31+CD41- EMPs and 

monocyte-derived MPs (Table 2.2). 

 

Table 2.2 – Percentage of Microparticle Subtypes that Bound Annexin V 

MP Subtype % Annexin V+ 

CD31+CD41+ PMPs 93.4 % (±3.9 %) 

CD31+CD41- EMPs 33.8 % (±14.8 %) 

CD144+ EMPs 52.6 % (±18.9 %) 

CD62E+ EMPs 70.4 % (±19.6 %) 

CD106+ EMPs 62.0 % (±29.8 %) 

CD45+ LMPs 56.8 % (±16.8 %) 

CD66B+ Granulocyte MPs N/A CD66B on same fluorochrome as AnnV 

CD14+ Monocyte MPs 36.9 % (±18.1 %) 

CD3+ T-cell MPs 45.3 % (±26.7 %) 

Glycophorin A+ RBC MPs 95.9 % (±3.9 %) 

 

Mean (±SD) percentage of MP subtype that bound annexin V in 20 OSA patients  

 

 

 

 

 

 

 

 

 



2.3.1.4. Flow Rate calculated by Weighed Tube Method versus TruCount Tube 

Method 

   The flow rate of a flow cytometer can be calculated by either a weighed tube method or 

calibrated counting bead (TruCount tube) method. The comparison of flow rate calculation 

by the two methods showed that there was no significant difference. Therefore, the 

weighed tube method will be used throughout this study, as it does not require the purchase 

of additional consumables. 

 

 

 

Figure 2.4 – Comparison of weighed tube and TruCount tubes for flow rate calculation. P-value shows paired 

T-test analysis of 10 pairs of results. Bar graph shows mean and SD. 
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2.3.2. Validation of the Assay 

2.3.2.1. Linearity 

   It is important for this assay to be capable of measuring MPs at very high and very low 

concentrations, as levels can be very variable between individuals. Therefore, the linearity 

of each MP subgroup was assessed, to determine the assays ability to perform consistently 

at both high and low levels of MPs. 

 

Table 2.3 – Table of Linearity Results for all of the Microparticle Subtypes 

MP Subtype R2 

Annexin V+ MPs 0.9999

Lactadherin+ MPs 0.9991

CD31+CD41+ PMPs 0.9992

CD31+CD41- EMPs 0.9321

CD144+ EMPs 0.9888

CD62E+ EMPs 0.9788

CD106+ EMPs 0.9976

CD66B+ Granulocyte MPs 0.9789

CD14+ Monocyte MPs 0.9637

CD45+ LMPs 0.9838

CD3+ T-cell MPs 0.9813

Glycophorin A+ RBC MPs 0.9952

 

    The R2 values are all close to 1.0000, showing that for all of the MP subtypes, results 

were closely correlated with the concentration of MPs added.  
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2.3.2.2. Intra and Inter-Assay Precision    

   The intra-assay precision indicates how consistently the assay performs within a single 

batch run of samples, and the inter-assay precision indicates how consistently the assay 

performs between different batch runs of samples. It is important for the assay to have 

good inter-assay precision, so that different batches of results can be compared to each 

other. 

 

Table 2.4 – Table of Intra-assay and Inter-assay Precision    

Mp Subtype Intra-Assay CV% Inter-Assay CV%

Annexin V+ MPs 6.2 23.0

Lactadherin+ MPs 6.2 25.9

CD31+CD41+ PMPs 6.7 26.7

CD31+CD41- EMPs 11.4 35.9

CD144+ EMPs 27.3 56.0

CD62E+ EMPs 17.9 26.0

CD106+ EMPs 16.9 36.8

CD45+ LMPs 19.9 37.5

CD66B+ Granulocyte MPs 17.2 28.5

CD14+ Monocyte MPs 28.3 33.2

CD3+ T-cell MPs 26.0 84.1

Glycophorin A+ RBC MPs 6.5 17.2

 

    The majority of CV% values for the intra-assay precision are less than 20 %. However 

the intra-assay CV% values for CD144+ EMPs, CD14+ Monocyte MPs and CD3+ T-cell 

MPs were between 20 % and 30 %.  

   The CV% values for the inter-assay precision are less than 40 % for the majority of MP 

subtypes. However for CD144+ EMPs and CD3+ T-cell MPs the CV% values are very 

high, as even in OSA patients, levels of these MP subtypes are very low.  

 

 

 

 

 

 

 



2.3.3. Sources of Variability within the Assay 

2.3.3.1. Effect of Time before Centrifugation  

 

 
Figure 2.5 – Number of annexin V+ MPs and PMPs compared to the length of time before processing of 

blood samples. 8 citrate tubes were taken from controls and left for increasing length of time prior to 

centrifugation and freezing. Each sample was analysed 8 times and the mean for each sample was plotted. 

The bars show the mean and 95% CI for the eight controls at each time point (n=8) 

    

   The time between venepuncture and processing of samples has a significant impact on 

the numbers of MPs detected using this flow cytometric method. The number of annexin 

V+ MPs and PMPs increase as the length of time in which they are left before processing 

increases. There appears to be a plateau at around 1hr post venepuncture. Repeated 

measures ANOVA was significant for both annexin V+ MPs (p <0.0001) and 

CD31+CD41+ PMPs (p <0.0001), and the post hoc test revealed a significant linear trend 

over increasing time in both cases (p <0.05). The level of MPs appear to more than double 

if blood samples are left for 2 hours before centrifugation and freezing, compared to 

processing immediately. Other MP subtypes were not examined. 
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2.3.3.2. Effect of Washing Platelet-Poor-Plasma before Staining 

  

 

 
Figure 2.6 – Number of Events in MP Gate (A), Annexin V+ MPs (B) and CD31+CD41+ PMPs (C) for 

unwashed and washed samples.  Unwashed samples were thawed and stained. Washed samples were thawed 

and centrifuged at 18,000 g for 30 min at RT, removing the supernatant, twice (n=10) 

 

   There was a significant decrease (p=0.002) in the number of events in the MP gate, 

particularly in samples with initially very high levels of MPs, following washing of PPP 

samples. There was also a significant decrease in annexin V+ MPs (p=0.002) and 

CD31+CD41+ PMPs (p=0.002) following washing of the plasma samples. There was no 

significant difference in the levels of CD31+CD41- EMPs, CD144+ EMPs, CD62E+ 

EMPs, CD106+ EMPs and CD45+ LMPs between washed and unwashed samples (data 

not shown).  
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2.3.3.3. Effect of Single versus Double Centrifugation 

 
Figure 2.7 – Number of annexin V+ MPs (A) and CD31+CD41+ PMPs (B) for single and double centrifuged 

samples. Single spun samples were centrifuged at 1550 g for 20 min, before freezing at -80 ºC. Double spun 

samples were centrifuged at 1550 g for 20 min, followed by centrifugation at 13,000 g for 2 min, before 

freezing at -80 ºC (n=18)  

 

   The addition of a second spin at 13,000 g for 2 min, prior to freezing of platelet-poor-

plasma significantly reduces the number of annexin V+ MPs (p=0.0004) and 

CD31+CD41+ PMPs (p=0.0004). The levels of CD31+CD41- EMPs, CD144+ EMPs, 

CD62E+ EMPs, CD106+ EMPs and CD45+ LMPs were not significantly different 

between single and double centrifuged samples (data not shown).  
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2.3.3.4. Fresh versus Frozen Samples 

 

 
Figure 2.8 – Number of annexin V+ MPs (A) and CD31+CD41+ PMPs (B) for fresh and frozen samples, 

when using a double centrifugation protocol.  Fresh samples were run within 3 hours of venepuncture. Frozen 

samples were centrifuged, frozen stored at -80 ºC for 1 month, then thawed and analysed (n=10) 

 
   Both annexin V+ MPs (p=0.0020) and CD31+CD41+ PMPs (p=0.0039) showed a 

significant increase in level, following freezing of the PPP sample. CD31+CD41- EMPs, 

CD144+ EMPs, CD62E+ EMPs, CD106+ EMPs and CD45+ LMPs did not show a 

significant change in level between fresh and frozen samples (data not shown). 
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2.3.3.5. Effect of Thawing Temperature on Microparticle Sample   

 

 
Figure 2.9 – Effect of thawing temperature on the numbers of annexin V+ MPs (A) and CD31+CD41+ PMPs 

(B) detected. Samples had been single centrifuged, 3 aliquots were taken and frozen at -80 ºC. For each 

control, one aliquot was thawed on ice, one at RT and one at 37 ºC (n=10) 

 

   There was no significant difference found in the number of annexin V+ MPs and 

CD31+CD41+ PMPs between samples that had been thawed on ice, at RT or at 37 ºC. 

Other MP subtypes were not assessed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40



2.3.3.6. Effect of Long-term Storage at -80ºC of MP Samples 

   56 OSA patient samples were analysed for all MP subtypes firstly within 12 months of 

storage at -80 ºC, and then after an additional 20 months at -80 ºC. 

    

 
Figure 2.10 – Effects of long term storage on the numbers of annexin V+ MPs (A), CD31+CD41+ MPs (B), 
CD144+ EMPs (C) and CD45+ LMPs (D). The short-term storage samples were all processed within 12 
months of freezing, the long-term storage samples were processed an additional 20 months later. Data 
presented as median with 95% CI. (n=56) 
 
   All subtypes of MPs were significantly reduced (annexin V+ MPs p=0.0002, 

CD31+CD41+ PMPs p=0.0004, CD144+ EMPs p<0.0001, CD106+ EMPs p=0.0021, 

CD45+ LMPs p=0.0008) after an additional 20 months storage, except for CD31+CD41- 

EMPs, which showed no significant change in levels (data not shown). 
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2.4. Discussion 

   This chapter aimed to develop a flow cytometric assay to measure subtypes of MPs, to 

establish the linearity, intra-assay precision and inter-assay precision for this assay, and to 

identify potential causes of variability in MP quantification. Validation showed that both 

the linearity and precision were comparable to other types of flow cytometry assays. This 

study found that minor protocol changes in MP analysis led to significant differences in 

MP levels.  

 

2.4.1. Flow Cytometric Method for Detection of Microparticles 

2.4.1.1. MegaMix Beads 

   MegaMix beads can be used to determine if an instrument is capable of resolving small 

particles. Most flow cytometers are optimised to detect cells, and many are unable to 

resolve these smaller particles. The MegaMix beads showed that the FACSCalibur used in 

this study is capable of resolving particles of 0.9 µm and 0.5 µm in size. 

   MegaMix beads can also be used to standardise settings between different instruments. 

The CV% values of PMP measurements between three different flow cytometric 

instruments standardised with MegaMix beads, was less than 12 % (Robert et al., 2009). 

However, when MegaMix beads were used to set-up BD flow cytometers, PMP 

measurements were much more variable. It appears that the MegaMix strategy is more 

appropriate for instruments that measure FSc with a wide solid angle (1-19º) such as 

Beckman-Coulter, but were less suitable for instruments that measure FSc with a lower 

solid angle (1-8º) such as BD. The gating, defined by MegaMix beads, may not capture the 

whole PMP population on BD flow cytometers (Lacroix et al., 2010). The use of calibrated 

beads provides a strategy for standardising flow cytometry analysis of MPs, but this 

appears be dependent on the instrument. 

2.4.1.2. Establishing an Microparticle Gate 

   Calcium ionophore stimulation showed some overlap between platelets and PMPs on an 

FSc vs SSc plot (Figure 2.2), indicating that the MP gate may include some small platelets. 

This is to be expected as the smallest platelets form a continuum in size with the largest 

PMPs (Lynch and Ludlam, 2007). This is a potential limitation of detecting MPs by flow 

cytometry, which is difficult to control for.  
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2.4.1.3. Populations of Microparticle Subtypes 

   Although not positive for all MPs (Boulanger et al., 2006; Connor et al., 2010), annexin 

V is a useful marker to determine general levels of procoagulant MPs. Preliminary data 

suggests that different subtypes of MPs appear to bind annexin V at varying levels. For 

example, more than 90 % of PMPs and RBC MPs were annexin V+, whereas only around 

50 % of CD144+ EMPs and LMPs were also annexin V+ (Table 2.2). Therefore, it is 

important to measure both annexin V positive and negative MPs, in order to not 

underestimate levels of some subtypes. 

   Lactadherin is another marker that binds PS, but it does not require the presence of 

calcium. It is potentially more sensitive at detecting PS, so could prove to be a useful 

marker of MPs (Dasgupta, 2006; Davizon and Lopez, 2009). Results from annexin V 

binding and lactadherin binding were found to be strongly positively correlated in this 

study (data not shown).  

   Bio-maleimide, a general MP marker, has been shown to give comparable results to 

annexin V. It is considerably cheaper and can be stored for longer, making it a useful 

marker for large scale analysis of total MP levels (Enjeti et al., 2008). However, the use of 

bio-maleimide restricts the ability to measure other cell surface markers and, therefore, the 

cell of origin can not be determined. Phalloidin and Calcien actoxymethyl ester (calcien 

AM) have all been recently used to improve the detection of MPs. Phalloidin is a cyclic 

peptide which binds f-actin and calcien AM is a non-fluorescent marker that becomes 

fluorescent upon cleavage by cytosolic esterases and only stains intact MPs. These both 

avoid false positive MP counts from platelets or other cellular fragments (Yuana et al., 

2011).  

   Several subtypes of EMPs exist, and they are thought to be associated with different 

pathological mechanisms. For example, CD62E + EMPs are thought to be a marker of 

endothelial cell activation, while raised numbers of CD144+ and CD31+ EMPs may reflect 

structural damage of endothelial cells (Jimenez et al., 2003b). CD144+ EMPs and 

CD31+CD41- EMPs have been shown to be correlated with haemodynamic severity of 

pulmonary hypertension, whereas CD62E+ EMPs did not correlate with severity, but were 

associated with CRP values in pulmonary hypertension patients (Amabile et al., 2008). In 

addition, in vitro experiments have shown that different stimuli can lead to the release of 

phenotypically distinct EMPs. TNF-α stimulation results in elevation of CD62E+ EMPs, 

whereas CD31+EMPs were predominately produced during endothelial apoptosis. 

Therefore, phenotypic analysis of EMPs may prove to be useful in providing information 

reflecting the nature of endothelial injury (Jimenez et al., 2003b). 
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   In this study, CD31+CD41-, CD144, CD62E and CD106 were all explored as markers 

for EMPs. It is noted that the use of negative labelling may not be sufficiently specific to 

identify MP subtypes. CD31+CD41- and CD31+CD42- has been used previously to define 

EMPs (Chirinos et al., 2005a; Periard et al., 2007; Wang et al., 2007a), however, it is 

appreciated that LMPs may also contribute to this population (Amabile and Boulanger, 

2011). 

2.4.1.4. Flow Rate calculated by Weighed Tube versus TruCount Tube Method 

   Comparison of these two methods for calculating flow rate of a flow cytometer showed 

no significant difference. Some studies use counting beads in every tube for microparticle 

analysis, which not only greatly increases the cost, but also introduces contaminating 

particles to the MP gate. Other studies use counting beads only to calculate the flow rate. 

The TruCount tubes utilised in this Chapter cost £4.50 per tube, which would significantly 

increase the overall cost of this assay. This would be an important consideration if MP 

analysis were to be offered as a routine clinical test in the future. Therefore, flow rate as 

calculated by the weighed tube method was used throughout the rest of this PhD, as it 

incurs no additional consumable costs and is comparable to calibrated counting beads. 

 

2.4.2. Validation of the MP Assay 

2.4.2.1. Linearity 

   The linearity results show that the values given for each of the MP subtypes correlated 

with the amount of plasma added to the assay (Table 2.3), suggesting that this assay is able 

to detect MPs present at variable levels in plasma samples, and the results obtained are 

independent of the concentration in the plasma. This is important characteristic of the 

assay, as MP levels can vary greatly between patients and controls. 

2.4.2.2. Intra and Inter-Assay Precision 

   The intra-assay precision of most of the MP subtypes was good, as the CV% values were 

less than 20 %. This compares favourably with other types of flow cytometry assays. 

However, for the CD144+ EMPs, CD14+ Monocyte MPs and CD3+ T-cell MPs the CV% 

values were between 20-30 %, reflecting the fact that only very small populations of these 

MPs can be detected.    

   The inter-assay precision for the majority of MP subtypes was also good, with CV% 

values of less than 40 %. However, again for CD144+ EMPs and CD3+ T-cell MPs the 

CV% were much higher. This is due to the QC, used to establish inter-assay precision, 

having extremely low levels of these particular MP subtypes. 
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2.4.3. Sources of Variability within the Assay 

2.4.3.1. Effect of Time before Centrifugation 

   The longer the time-delay between venepuncture and centrifugation, the higher the 

number of MPs detected. This is most likely due to platelets continuing to release MPs ex 

vivo in the blood tube. Therefore, it is very important that all samples in a study are 

collected and processed in the same way and within strict time-frames. 

   Often samples from a patient group will be taken in clinic, when it is not always possible 

to process the sample immediately. Healthy controls are often obtained in a laboratory 

environment, and are generally processed more quickly. This could result in significant 

differences between patient and control MP levels, simply due to the speed of processing. 

2.4.3.2. Effect of Washing Platelet-Poor-Plasma before Staining 

   There was a significant decrease in the number of events in the MP gate, particularly in 

those with very high levels, following washing. This may be due to the loss of other 

particles which may be picked up in the MP gate, such as lipids. Chylomicrons are known 

to interfere in platelet analysis in flow cytometry (Cantero et al., 1998) and they may also 

be picked up in the MP gate. There was also a significant decrease in annexin V+ MPs and 

CD31+CD41+ PMPs, following washing. It is likely that during washing, MPs stick 

together and therefore multiple vesicles are detected as a single event, artificially affecting 

the MP count. Alternatively, the centrifugation step of 18,000 g might not be sufficient to 

pellet all MPs. It would be necessary to check for MPs in the discarded supernatant, in 

order to determine this. 

   There was no significant difference in the levels of EMPs and LMPs before and after 

washing. A possible explanation could be that the washing process removes non-specific 

events from the MP gate, thereby enabling detection of smaller MP populations, such as 

EMPs and LMPs. 

   A recent study compared using a 2 min centrifugation pelleting step versus 20 min both 

at 17,000 g, and found no significant difference. This suggested that a shorter 

centrifugation time may be comparable and would be useful in a clinical setting (Dey-

Hazra et al., 2010). 

2.4.3.3. Effect of Single versus Double Centrifugation 

   Of the published MP flow cytometric techniques, no consensus exists for the speed and 

timing of centrifugation. This study compared two commonly used centrifugation 

protocols (Jy et al., 2004). The data here shows that a double centrifugation significantly 

decreases the number of annexin V+ MPs and CD31+CD41+ PMPs. This may be due to 

platelets remaining in the plasma following a single centrifugation, continuing to release 

MPs during the freeze/thaw process. A previous study found that an additional high-speed 
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centrifugation, reduces platelet counts in plasma by 65 % (van Ierssel et al., 2010). 

However, Tesselaar et al found no platelet contamination following a single centrifugation 

at 1550 g for 20 minutes (Tesselaar et al., 2007). The decrease in annexin V+ MPs and 

PMPs following a second centrifugation step could be due to the pelleting of some larger 

MPs at the higher centrifugation speed (Yuana et al., 2011).   

    Not surprisingly levels of LMPs and EMPs were not significantly altered when using a 

single or double centrifugation, as any circulating leucocytes or rare endothelial progenitor 

cells would be removed by a single centrifugation at 1550 g. 

   There is currently no optimum centrifugation protocol recommended for the complete 

removal of platelets, without the loss of large MPs. Therefore, throughout this project, the 

centrifugation protocol used for each study was dependent on the facilities available, and 

consisted of either a single centrifugation at 1550 g for 20 min, or a double centrifugation 

at 1550 g for 20 min, followed by 13,000 g for 2 min. The centrifugation protocol was 

consistent within each study. 

2.4.3.4. Fresh versus Frozen Samples 

   Even when using a double centrifugation, there was a significant increase in annexin V+ 

MPs and CD31+CD41+ PMPs following freezing of samples. It was previously thought 

that double centrifugation of 1550 g for 20 min and 13,000 g for 2 min should be sufficient 

to remove the majority of platelets from the sample, and therefore avoid the additional 

production of PMPs during freeze/thawing. However, a recent publication suggested that 

the double centrifugation protocol described in this chapter may still result in more residual 

platelets, than two centrifugations at 2500 g for 15 min (Stagnara et al., 2012). The 

additional PMPs following freezing may be produced by any remaining platelets in the 

plasma (Mobarrez et al., 2010; Trummer et al., 2009), or by larger PMPs breaking down to 

produce smaller PMPs. However, the freezing of samples was shown not to affect the FSc 

vs SSc distribution of MPs (Amabile et al., 2005), suggesting that the latter is unlikely. 

The samples in this study were not snap-frozen in liquid nitrogen, as recommended by the 

original protocol (Biro et al., 2004), and this may have compounded the differences found 

between fresh and frozen samples. 

   Freezing of PPP samples is essential if MP measurement is to be feasible in large studies 

or for routine analysis. If researchers were restricted to the use of fresh samples for MP 

analysis, it would increase sample-to-sample variation and prevent laboratory 

collaborations. 
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2.4.3.5. Effect of Thawing Temperature on Microparticle Samples 

   Protocols for MP analysis recommend varying thawing temperatures. It was previously 

found that PMPs, were significantly reduced when thawed on ice, compared to those 

thawed at RT or at 37 ºC (Trummer et al., 2009). 

   This study showed no statistically significant difference in the numbers of annexin V+ 

MPs and CD31+CD41+ PMPs in samples thawed at different temperatures. Other 

subpopulations of MPs were not analysed in this experiment. The lack of concordance 

between the previous study and this one may be due to differences in the methodology, 

such as the lack of snap-freezing. 

2.4.3.6. Effect of Long-term Storage at -80ºC of Microparticle Samples 

   This study showed that most MP subtypes were significantly reduced by long term 

storage at -80 ºC. It is possible that MPs become smaller when frozen for a long time 

period, to a size below the threshold of our flow cytometer. The samples in this study were 

not centrifuged twice prior to freezing or snap frozen, which may have affected their 

stability. CD31+CD41- EMPs were not significantly affected by long-term storage, 

however, this may simply reflect their extremely low initial levels. 

   These finding were supported by Dey-Hazra et al (2010), who systematically measured 

MP levels after freezing. They found that annexin V+ MP levels initially increase 

following freezing for 14 days, but after 28 days the levels begin to decrease, and by 56 

days they fall below the initial freshly analysed levels. 

   In large studies, blood samples are collected over a long time and MPs are analysed in 

batches. These results suggest that great care should be taken when analysing samples that 

have been stored at -80 ºC for variable time periods. Ideally all samples within a study 

would be analysed after storage at -80 ºC for an equal length of time. 

2.4.3.7. Recommendations for Standardisation 

   The results obtained in this Chapter were published in Thrombosis Research (Ayers et 

al., 2011) (Appendix 1). The following recommendations are made: 

1) Blood samples should be processed within strict time-frames and sample handling 

should be identical between patient and control groups. 

2) PPP samples can be washed prior to analysis, to remove non-specific particles, to 

concentrate samples, and to enable detection of smaller MP sub-groups. It should 

be noted that washing of samples may result in the loss of some MP populations. 

3) A double centrifugation step can assist in the removal of platelets prior to freezing, 

to avoid additional PMP production. However, it may also result in the loss of some 

larger MPs. It is essential that the centrifugation protocol is consistent throughout a 

study.  
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4) Samples processed fresh and those frozen prior to analysis should not be directly 

compared. 

5) If long-term storage of samples at -80 ºC is necessary, then ideally all samples 

should be stored for an equal length of time. 

 

2.4.3.8. Microparticle Analysis Standardisation 

   Several groups are now working to improve the standardisation between laboratories 

measuring MPs. One obstacle is the lack of a reference sample for MP analysis. This 

would assist in the calibration of assays, and would also provide a basis for external quality 

control of assays. The Scientific and Standardisation Committee (SSC) Subcommittee on 

Vascular Biology are working on developing a reference sample for MPs to improve the 

consistency of MP analysis between laboratories (Freyssinet et al., 2009). 

   Calibration beads, such as MegaMix, are one way to standardise the flow cytometry 

settings used for MP analysis. However, vesicles have a lower refractory index than 

polystyrene beads, so they scatter light about 10-fold less efficiently (Chandler et al., 

2011), and therefore cannot be used to replicate MPs when analysed by flow cytometry. 

Also their ability to standardise settings is machine dependent (Lacroix et al., 2010). 

   A very recent study also examined the pre-analytical variables of MP analysis (Lacroix et 

al., 2012). Investigation of time delay before processing samples showed that after 4 hours 

the levels were increased, supporting the data found in this study. Time delay only affected 

annexin V+ and PMPs, but not RBC MPs, suggesting that RBCs are not as quick to 

produce MPs following venepuncture. It was found that strong agitation of samples prior to 

centrifugation has an impact on MP levels, with annexin V+ and PMPs being sensitive 

(Lacroix et al., 2012). This study was similar in design to the methods described in this 

Chapter, and it supports the majority of the findings. 

   The standardisation of pre-analytical variables for MP analysis is still an un-obtained 

goal. However, interest has grown in this area, with many recent publications. International 

conferences dedicated to MP and exosome analysis now provide a platform for discussions 

on such issues, and may resolve the debate in the near future.  
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2.4.4. Limitations 

   The high inter-assay CV% determined for CD144+ EMPs and CD3+ T cell-derived MPs 

was likely due to the very low levels of these particular subtypes in the sample. No 

samples with high levels of these MP subtypes were available in a large enough volume to 

conduct inter-assay analysis.  

   The experiments on sources of variability, except for the effect of long-term storage, 

were performed on healthy samples, with very low levels of EMPs and LMP subtypes. 

This may account for the lack of significant change between the pre-analytical variables in 

these subtypes of MPs. Ideally these experiments would be repeated using samples from 

patients with known elevations in EMPs and LMPs. However, in a clinical situation it 

would be difficult to obtain the multiple samples required. 

   For the work on sources of variability, only a limited panel of MP markers were used; 

annexin V, CD31, CD41, CD144, CD62E, CD106 and CD45. Ideally all markers, 

described in the methods, would have been used in these experiments.   

 

2.4.5. Conclusions   

   A flow cytometric assay was adapted for use in this laboratory, and was successfully 

validated by linearity, intra-assay variation and inter-assay variation. Data presented in this 

Chapter shows that the levels of MP detected by flow cytometry are subject to change by 

several variables, such as time before processing, number of centrifugations, freezing of 

samples, and how long they stored at -80 ºC. It is essential to consider these factors when 

designing studies to measure MPs in different disease groups, to ensure that any 

differences in levels are due to the clinical condition, and not due to variations in the 

technique used to measure them. 

   A consensus on the methodological approach to MP analysis and the standardisation of 

techniques will be essential for successful development of MP technologies, allowing 

direct comparison of results between studies and leading to a greater understanding of MPs 

in disease.  
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Chapter 3 – In vitro Generation of Microparticles 

 

3.1. Introduction 

   The cell specific markers described in Chapter 2 have been well described for their use in 

cells and platelets. However, as it is known that the antigenic phenotype of MPs varies 

from their cell of origin (Abid Hussein et al., 2003), it was important to validate these 

markers on MPs. The cell-specific markers chosen have all been used to identify cell-

specific MPs in previous studies. Some subtypes of MPs are only present in very small 

proportions in the circulation, even in disease. Therefore it was useful to generate these 

MPs in vitro to titrate the concentration of antibody needed and to confirm its suitability 

for MP analysis. 

 

3.1.1. Stimulation of Circulating Cells to Produce Microparticles In Vitro 
3.1.1.1. Stimulation of Platelets to Produce Platelet-Derived MPs In Vitro 

   It has been well established that PMPs can be generated from platelets by incubating 

platelet-rich-plasma (PRP) with calcium ionophore A23187 (Nieuwland and Sturk, 2007; 

Yin et al., 2008), and this was demonstrated in Chapter 2 (Figure 2.1), where platelet 

stimulation was used to define the MP gate. The resulting PMPs produced have been 

previously found to express CD31, CD42b, CD61 and CD62P on their surface (Abid 

Hussein et al., 2003). 

3.1.1.2. Stimulation of Leucocytes to Produce Leucocyte-Derived MPs In Vitro 

   The generation of neutrophil-derived MPs, which express CD66B, was demonstrated by 

priming isolated neutrophils with TNF-α, followed by stimulation with anti-neutrophil 

cytoplasmic antibodies (ANCAs) (Hong et al., 2012). 

   Monocyte-derived MPs can be generated from a monocytic cell line, stimulated with 

lipopolysaccharide (LPS). These monocyte MPs contain IL-1β and may amplify 

inflammation, by enhancing the activation of endothelial cells (Wang et al., 2011). 

   T cell-derived MPs have been generated from a human T cell line stimulated for 6 hours 

with phytohemagglutinin (PHA) and phorbol 12-myristate 13-acetate (PMA). These MPs 

are capable of inducing the production of TNF and IL-1β from cultured human monocytes, 

suggesting that they express similar monocyte-activating factors, as T cells (Scanu et al., 

2008). 
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3.1.1.3. Stimulation of RBCs to produce RBC-derived MPs In Vitro 

   RBCs incubated with calcium ionophore, have been shown to release RBC-derived MPs, 

which express glycophorin A and bind to annexin V (Nantakomol et al., 2011). RBC-

derived MPs are also increasingly produced during the storage of RBC concentrates (Rubin 

et al., 2008). 

3.1.1.4. Stimulation of Endothelial Cells to Produce Endothelial Cell-Derived MPs In 

Vitro 

   Endothelial cells are difficult to isolate from humans, unlike platelets, leucocytes and 

RBCs. In order to generate EMPs in vitro it was necessary to culture endothelial cells. The 

most common endothelial cell culture used for this purpose are Human Umbilical Vein 

Endothelial Cells (HUVECs). Stimulation of HUVECs with several agonists, such as TNF-

α (Combes et al., 1999), IL-1α (Abid Hussein et al., 2003) and CRP (Wang et al., 2007b) 

have been shown to cause the release of EMPs. In this Chapter, TNF-α, IL-1α, CRP and 

IL-6 are used to stimulate the release of EMPs from HUVECs. 

   TNF-α is a proinflammatory cytokine which can induce both cell proliferation and cell 

apoptosis. It has previously been shown to trigger the release of EMPs from HUVECs 

(Wang et al., 2005). IL-1α is also a proinflammatory cytokine released by many cell types, 

and it can cause activation of endothelial cells. IL-1α has been used to induce HUVECs to 

produce EMPs (Abid Hussein et al., 2003), and in vivo its levels are positively correlated 

with levels of CD144+ EMPs (Tramontano et al., 2010). IL-6 can act as both a 

proinflammatory cytokine, by triggering the acute phase response, and an anti-

inflammatory cytokine, by inhibiting TNF-α and IL-1. Levels of IL-6 were found to be 

positively correlated with levels of CD31+ EMPs in healthy individuals (Chirinos et al., 

2005b). CRP is an acute phase protein, triggered by IL-6, which can opsonise dying cells 

and trigger the classical complement pathway. CRP has been shown to trigger the release 

of EMPs from human aortic endothelial cells in vitro (Devaraj et al., 2011). 

 

3.1.2. Aims of this Chapter 

1) To stimulate platelets, RBCs and leucocytes to produce MPs, and to use these MPs 

to confirm the suitability of markers for MP analysis. 

 

2) To stimulate HUVECs with a range of agonists, to confirm the suitability of 

endothelial markers for EMP analysis, and to determine if different stimuli lead to 

the release of phenotypically distinct EMPs. 
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3.2. Methods 

3.2.1. Stimulation of Circulating Cells to Produce Microparticles In Vitro 

3.2.1.1. Stimulation of Platelets to Produce Platelet-Derived Microparticles In Vitro 

   Citrate blood was taken from 3 healthy controls (Oxford REC No: 11/SC/0183) and PRP 

was obtained by centrifugation at 200 g for 10 min. 100µl of PRP was stimulated with 

0.625 µg/ml, 1.25 µg/ml or 2.5 µg/ml calcium ionophore A23187 for 2 hours at 37 ºC.     

10 ul of un-stimulated PRP or stimulated PRP was labelled for PMPs with annexin V-

FITC, CD31-PE and CD41-PE Cy5, for 30 min and then acquired by flow cytometry.    

3.2.1.2. Stimulation of Leucocytes to Produce Leucocyte-Derived Microparticles In 

Vitro 

   Citrate blood was taken from 3 healthy controls and whole blood was diluted 1:1 with 

PBS-Ca. 200 µl of diluted blood was stimulated with 0.25 µg/ml PMA (Sigma, Kent, UK) 

+ 0.625 µg/ml calcium ionophore (Stim 1), with 0.75 µg/ml PMA + 1.25 µg/ml calcium 

ionophore (Stim 2), or with 1.5 µg/ml PMA + 2.5 µg/ml calcium ionophore (Stim 3), for   

2 hours at 37 ºC. Following incubation, samples were centrifuged at 18,000 g for 30 min, 

supernatant was removed and replaced with PBS-Ca. 10 µl of unstimulated whole blood or 

stimulated whole blood was stained for LMPs, granulocyte-derived MPs and monocyte-

derived MPs with CD45-APC, CD66B-FITC and CD14-PE, for 30 min, and then acquired 

by flow cytometry. 

3.2.1.3. Stimulation of RBCs to produce RBC-derived Microparticles In Vitro 

   The stimulation protocol, described above for leucocytes, was used to stimulate RBCs in 

whole blood. 10 µl of un-stimulated or stimulated whole blood was stained for RBC-

derived MPs with glycolphorin A-PE, for 30 min, and then acquired by flow cytometry. 

 

3.2.2. Stimulation of HUVECs to Produce Endothelial Cell-Derived 

Microparticles In Vitro 
3.2.2.1. HUVEC Culture 

   HUVECs (Health Protection Agency (HPA) Culture Collections, UK) were thawed at   

37 ºC and grown in Endothelial Cell Growth Media (HPA Culture Collections, UK) in T75 

flasks (Sarstedt, Leicester, UK) at 37 ºC, 5.0 % CO2 in a Hera Cell 240 Incubator 

(ThermoScientific, Hampshire, UK). Media was changed every other day, and once 

confluent, cells were split 1:2. Cells were detached from the flask by vigorous pipetting to 

avoid the use of Trypsin. Confluent cells were split and transferred to a 48-well plate (BD, 

UK). Media was changed every other day. HUVECs were used for stimulation when 90 % 

confluent. 
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3.2.2.2. Stimulation of HUVECs 

   Media was removed from the wells and cells were washed twice with 500 µl of Hank’s 

Balanced Salt Solution (HBSS) (HPA Culture Collections, UK). 500 µl of agonist 

concentration was added to the wells, as listed in Table 3.1: 

 

Table 3.1 - Agonists used for HUVEC Stimulation 

Stimulant Company Concentration 
Media 
Alone     

TNF-α Enzo Life Sciences, Exeter, UK 10 ng/ml 

TNF-α Enzo Life Sciences, Exeter, UK 100 ng/ml 

TNF-α Enzo Life Sciences, Exeter, UK 1000 ng/ml 

IL-1α Sigma-Aldrich, Kent, UK 5 ng/ml 

IL-1α Sigma-Aldrich, Kent, UK 50 ng/ml 

CRP Sigma-Aldrich, Kent, UK 20 µg/ml 

CRP Sigma-Aldrich, Kent, UK 200 µg/ml 

IL-6 eBioscience, Hatfield, UK 1 ng/ml 
 

   At 1 hour, 5 hours and 25 hours following stimulation with the above agonists, 100 µl of 

cell supernatant was removed, and replaced with 100 µl of the same agonist concentration. 

At each time point, the supernatant was centrifuged at 150 g for 5 min to pellet and remove 

any cells. 80 µl of supernatant was frozen at -80 ºC, until MP analysis was performed. 

 

3.2.2.3. Analysis of Endothelial Cell-Derived Microparticles from Stimulated 

HUVECs 

   EMPs were assessed in the HUVEC supernatants by flow cytometry. 20 µl of 

supernatant was added to the appropriate antibody cocktail in 50 µl PBC-Ca. EMPs were 

stained with annexin V-FITC, lactadherin-FITC, CD31-PE, CD62E-PE Cy5,CD106-PE 

Cy5 and CD144-PE. Samples were acquired according to the method described in Chapter 

2. EMP measurement was carried out in three staining experiments. 

 

3.2.3. Statistics 

   Statistics were performed using GraphPad Prism 5 (GraphPad Software, San Diego). 

Effect of stimulation on levels of PMPs, LMPs and RBC MPs were determined by paired 

T-tests between un-stimulated and stimulated samples. Effect of stimulation of HUVECs 

on levels of EMPs after 25 hours was determined by a one-way ANOVA followed by 

Bonferroni’s Multiple Comparison test. A p-value of <0.05 was considered statistically 

significant. 



3.3. Results 

3.3.1. Stimulation of Circulating Cells to Produce Microparticles in vitro 

3.3.1.1. Stimulation of Platelets to Produce Platelet-Derived Microparticles In Vitro 

   To confirm that in vitro generated PMPs bind to the annexin V, CD31 and CD41 

markers, PRP was stimulated with calcium ionophore to generate PMPs.  

   Stimulation of PRP with all three concentrations caused a trend to increase in PMPs, with 

2.5 µg/ml calcium ionophore (Stim 3) causing a significant increase in annexin V+ PMPs 

(Figure 3.1A), CD31+ PMPs (Figure 3.1B) and CD41+ PMPs (Figure 3.1C).  

   Conversely, stimulation of PRP with calcium ionophore at all three concentrations, led to 

a significant reduction in CD31+ and CD41+ platelets (Figure 3.1D and 3.1E). 

 

 

 

Figure 3.1 - Effect of stimulation on levels of annexin V+ MPs (A), CD31+ PMPs (B), CD41+ PMPs (C), 

CD31+ platelets (D) and CD41+ platelets (E). Paired-T-test performed (* p<0.05, ** p<0.01). Platelets were 

incubated with 0.625 µg/ml (Stim 1), 1.25 µg/ml (Stim 2) and 2.5 µg/ml (Stim 3) calcium ionophore for 2 

hours at 37 ºC  
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3.3.1.2. Stimulation of Leucocytes to Produce Leucocyte-Derived Microparticles In 

Vitro 

   To confirm that in vitro generated MPs bind to the CD45, CD66B and CD14 markers, 

whole blood was stimulated with PMA and calcium ionophore to generate LMP release.  

   Stimulation with 0.25 µg/ml PMA + 0.625 µg/ml calcium ionophore (Stim 1) caused a 

trend for CD45+ LMPs and CD14+ monocyte-derived MPs to rise, and a significant 

increase in CD66B+ granulocyte-derived MPs. Stimulation with 0.75 µg/ml PMA +     

1.25 µg/ml calcium ionophore (Stim 2) caused a significant increase in CD45+ LMPs 

(Figure 3.2A), CD14+ monocyte-derived MPs (Figure 3.2B) and CD66B+ granulocyte-

derived MPs (Figure 3.2C), compared to non-stimulated cells. There appears to be a drop-

off in CD45+ LMP and CD66B+ granulocyte MP production at the highest agonist 

concentration (Stim 3). This could be due to this very high concentration causing cells to 

die by necrosis, instead of being activated or dying by apoptosis.  

 

 
 

Figure 3.2 - Effect of stimulation on levels of CD45+ LMPs (A), CD14+ monocyte-derived MPs (B), and 

CD66B+ granulocyte-derived MPs (C). Paired-T-test performed (* p<0.05, ** p<0.01). Whole blood was 

stimulated with 0.25 µg/ml PMA + 0.625 µg/ml calcium ionophore (Stim 1), with 0.75 µg/ml PMA +      1.25 

µg/ml calcium ionophore (Stim 2), or with 1.5 µg/ml PMA + 2.5µg/ml calcium ionophore (Stim 3), for  2 

hours at 37 ºC 
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3.3.1.3. Stimulation of RBCs to produce RBC-derived Microparticles In Vitro 

   To confirm that in vitro generated MPs bind to glycophorin A, whole blood was 

stimulated with PMA and calcium ionophore to generate RBC-derived MPs. 

   Stimulation of whole blood with 1.5 µg/ml PMA + 2.5 µg/ml calcium ionophore (Stim 3) 

caused a significant increase in RBC-derived MPs (Figure 3.3A), and led to a significant 

decrease in the number of glycophorin A+ cells detected (Figure 3.3B). 

 
 

Figure 3.3 - Effect of stimulation on levels of glycophorin A+ RBC-derived MPs (A) and glycophorin A+ 

RBCs (B). Paired-T-test performed (* p<0.05). Whole blood stimulated with 0.25 µg/ml PMA + 0.625 µg/ml 

calcium ionophore (Stim 1), with 0.75 µg/ml PMA + 1.25 µg/ml calcium ionophore (Stim 2), or with         

1.5 µg/ml PMA + 2.5 µg/ml calcium ionophore (Stim 3), for 2 hours at 37 ºC. 
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3.3.2. Stimulation of HUVECs to Produce Endothelial Cell-Derived 

Microparticles In Vitro 
   TNF-α, IL-1α, CRP and IL-6 were chosen as agonists to stimulate HUVECs, as they 

have been shown in previous studies to successfully generate the release of EMPs (Abid 

Hussein et al., 2003; Devaraj et al., 2011; Dignat-George and Boulanger, 2011; Wang et 

al., 2005). They were also chosen because they are physiological agonists, and may be 

responsible for triggering EMP release in vivo. 

   EMPs in the supernatant were labelled with the EMP markers described in Chapter 2, to 

identify an increase in levels following stimulation. Statistics were performed on EMP 

levels at 25 hours following stimulation, as this was identified as the time point when the 

greatest increase in levels was detectable. This is in agreement with Jimenez et al, who 

found that 24 hours incubation led to maximal EMP release from cultured endothelial cells 

(Jimenez et al., 2003b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3.2.1. TNF-α Stimulation of HUVECs 

   TNF-α at all three concentrations significantly increased annexin V+ EMPs (p<0.001, 

Figure 3.4A), lactadherin+ EMPs (p<0.001, Figure 3.4B), CD31+ EMPs (p<0.001, Figure 

3.4C) and CD62E+ EMPs (p<0.001, Figure 3.4D), compared to media alone. TNF-α 

stimulation at 100 ng/ml also significantly increased CD106+ EMPs (p<0.01, Figure 3.4E), 

and at 1000 ng/ml significantly increased CD144+ EMPs (p<0.01, Figure 3.4F), compared 

to media alone. 

 

 

 
Figure 3.4 - Effect of TNF-α stimulation on HUVECs release of annexin V+ EMPs (A), lactadherin+ EMPs 

(B), CD31+ EMPs (C), CD62E+ EMPs (D), CD106+ EMPs (E) and CD144+ EMPs (F) after 25 hours. 

Points show mean and SEM of three staining experiments (**p<0.01, ***p<0.001). 
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3.3.2.2. IL-1α Stimulation of HUVECs 

   Stimulation of HUVECs with IL-1α at 5 ng/ml significantly increased annexin V+ EMPs 

(p<0.001, Figure 3.5A), lactadherin+ EMPs (p<0.001, Figure 3.5B), CD31+ EMPs 

(p<0.001, Figure 3.5C) and CD62E+ EMPs (p<0.001 Figure 3.5D), compared to media 

alone.  

   Stimulation of HUVECs with IL-1α at 50 ng/ml significantly increased annexin V+ 

EMPs (p<0.05, Figure 3.5A), lactadherin+ EMPs (p<0.01, Figure 3.5B), CD62E+ EMPs 

(p<0.001, Figure 3.5D) and CD144+ EMPs (p<0.01, Figure 3.5F), compared to media 

alone. 

 

 

 

 
Figure 3.5 - Effect of IL-1α stimulation on HUVECs release of annexin V+ EMPs (A), lactadherin+ EMPs 

(B), CD31+ EMPs (C), CD62E+ EMPs (D), CD106+ EMPs (E) and CD144+ EMPs (F) after 25 hrous. 

Points show mean and SEM of three staining experiments (*p<0.05, **p<0.01, ***p<0.001). 
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3.3.2.3. CRP and IL-6 Stimulation of HUVECs 

   Stimulation of HUVECs with CRP at 20 µg/ml and at 200 µg/ml significantly increased 

the number of CD31+ EMPs (p<0.001, Figure 3.6C), compared to media alone. No other 

EMP subtype was significantly increased by CRP stimulation (Figure 3.6). 

   Stimulation of HUVECs with IL-6 at 1 ng/ml caused a significant increase in annexin V+ 

EMPs (p<0.01, Figure 3.6A), lactadherin+ EMPs (p<0.001, Figure 3.6B), CD31+ EMPs 

(p<0.001, Figure 3.6C) and CD144+ EMPs (p<0.05, Figure 3.6F), compared to media 

alone. 

 

 

 
Figure 3.6 - Effect of CRP and IL-6 stimulation on HUVECs release of annexin V+ EMPs (A), lactadherin+ 

EMPs (B), CD31+ EMPs (C), CD62E+ EMPs (D), CD106+ EMPs (E) and CD144+ EMPs (F) after 25 

hours. Points show mean and SEM of three staining (*p<0.05, **p<0.01, ***p<0.001). 
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3.4. Discussion    

3.4.1. Stimulation of Circulating Cells to Produce Microparticles In Vitro 
3.4.1.1. Stimulation of Platelets to Produce Platelet-derived Microparticles In Vitro 

   Calcium ionophore is thought to directly facilitate the transport of calcium ions across 

the plasma membrane, and can cause cell activation and proliferation (Dedkova et al., 

2000). In this Chapter, stimulation of PRP with calcium ionophore, for 2 hours at 37 ºC, 

led to a significant increase in annexin V+ PMPs, CD31+ PMPs and CD41+ PMPs (Figure 

3.1A – 3.1C) and a significant reduction in CD31+ and CD41+ platelets (Figure 3.1D – 

3.1E). The increase in PMP levels was not as high as expected from the subsequent loss of 

CD31+ and CD41+ platelets, or as that seen in Chapter 2 (Figure 2). It may be that a 

longer incubation time, at a lower agonist concentration (as used in Chapter 2), would 

result in a more dramatic increase in MPs.  

   CD31 and CD41 are well-characterised for their expression on platelets, and this shows 

that they are also expressed on the MPs derived from platelets in vitro. The binding of 

annexin V to PMPs indicates their expression of PS, although not all PMPs bind to annexin 

V. The proportion of PMPs that bound annexin V may be dependent on the agonist used to 

trigger their release, with physiological agonists such as collagen resulting in fewer 

annexin V+ MPs, than non-physiological agonists, such as calcium ionophore (Connor et 

al., 2010). 

 

3.4.1.2. Stimulation of Leucocytes to Produce Leucocyte-derived Microparticles In 

Vitro 

   CD45+ LMPs, CD66B+ granulocyte-derived MPs and CD14+ monocyte-derived MPs 

were all significantly elevated following stimulation of whole blood with PMA and 

calcium ionophore. PMA binds to and activates protein kinase C, causing cell 

differentiation, and calcium ionophore causes cell activation and proliferation. CD45, 

CD66B and CD14 are well-validated markers for leucocytes, granulocytes and monocytes 

respectively. This suggests that CD45, CD66B and CD14 markers able to bind to MPs 

generated in vitro, and therefore they will be used as markers for MPs in the plasma of 

healthy controls and patient groups discussed in this thesis. 

   Granulocyte-derived MPs have previously been triggered from neutrophils primed with 

TNF-α and stimulated with ANCAs. These MPs can increase the expression of adhesion 

molecules on endothelial cells and up-regulate the release of IL-6 and IL-8 from 

endothelial cells (Hong et al., 2012). Conversley, granulocyte-derived MPs from N-

formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, were found to be 

rich in the anti-inflammatory protein annexin 1, and they were able to inhibit neutrophil 
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adhesion to endothelial cells (Dalli et al., 2008). Therefore, granulocyte-derived MPs may 

have either a proinflammatory or an anti-inflammatory role, depending on the stimuli 

which resulted in their generation. 

 

3.4.1.3. Stimulation of RBCs to produce RBC-derived Microparticles In Vitro 

   In this study, glycophorin A+ RBC-derived MPs were significantly increased following 

stimulation with PMA and calcium ionophore. Numbers of glycophorin A+ RBCs were 

significantly decreased following stimulation, suggesting that this stimulation results in the 

breakdown of RBCs to produce RBC-derived MPs. Glycophorin A is a well defined 

marker for RBCs, and also successfully labelled MPs in this study. It was previously found 

that calcium ionophore activated RBCs release MPs, and that these MPs were antigenically 

and functionally different from their parent cells (Salzer et al., 2002). 

 

3.4.2. Stimulation of HUVECs to Produce Endothelial Cell-Derived 

Microparticles In Vitro 
3.4.2.1. TNF-α Stimulation of HUVECs 

   TNF-α stimulation of HUVECs for 25 hours led to a significant increase in annexin V+ 

EMPs, lactadherin+ EMPs, CD31+ EMPs, CD62E+ EMPs, CD106+ EMPs and CD144+ 

EMPs. This is supported by Coombes et al, who found an increase in CD31+ and CD62E+ 

EMPs following 24 hour TNF-α stimulation. They also found that CD62E was not present 

on resting HUVECs, but that its expression was induced by TNF-α stimulation (Combes et 

al., 1999). Another study reported that TNF-α stimulation of HUVECs generated EMPs 

that expressed annexin V+ and CD31 (Philippova et al., 2011). 

3.4.2.2. IL-1α Stimulation of HUVECs 

   IL-1α stimulation for 25 hours led to a significant increase in annexin V+ EMPs, 

lactadherin+ EMPs, CD31+ EMPs, CD62E+ EMPs and CD144+ EMPs. This is supported 

by Abid Hussein et al (2003), who found that IL-1α stimulation of HUVECs for 12 hours 

caused a significant increase in CD62E+ EMPs. They also found that CD31 was 

constitutively expressed on HUVECs, but only a sub-population of EMPs expressed it and 

that CD106 and CD144 were hardly detectable on EMPs, even following activation, 

despite being identifiable and up-regulated on HUVECs. This may explain why very few 

CD106+ EMPs were found, following stimulation with various agonists. A significant 

increase in the release of CD144+ EMPs was only found following stimulation with IL-1α 

at 50 ng/ml, suggesting that the release of these EMPs requires greater stimulation. This 

fits with the concept that CD144+ EMPs are a marker of endothelial cell apoptosis 

(Jimenez et al., 2003b). 
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3.4.2.3. IL-6 Stimulation of HUVECs 

   Data in this chapter showed that 25 hours stimulation with IL-6 caused a significant 

increase in annexin V+ EMPs, lactadherin+ EMPs, CD31+ EMPs and CD144+ EMPs, 

compared to media alone, suggesting that IL-6 triggers their release. This is supported by 

the findings that CD31+ EMPs are positively associated with levels of IL-6 in healthy 

individuals (Chirinos et al., 2005b). CD31 and CD144 are EMP markers indicative of 

endothelial cell apoptosis, as opposed to activation, suggesting that IL-6 may result in 

endothelial cell death. 

3.4.2.4. CRP Stimulation of HUVECs 

   CRP stimulation of HUVECs led to an increase in CD31+ EMP release. Confirming the 

findings of Wang et al (2007), who reported that CRP induced the release of CD31+ from 

HUVECs. They suggest that CRP levels are able to mediate endothelial cell apoptosis, by 

reducing nitric oxide (NO) formation, and therefore increasing EMPs produced by 

apoptosis. This hypothesis is supported by Verma et al who showed that CRP can impair 

endothelial function, by attenuating the bioavailability of NO (Verma et al., 2002). 

Treatment of human aortic endothelial cells with CRP also results in an increase of EMPs, 

and this was suggested to be one of the mechanisms by which CRP leads to endothelial 

dysfunction in CVD (Devaraj et al., 2011)..  

3.4.2.5. Summary of Stimulation of HUVECs to Produce Endothelial Microparticles 

   CD106+ EMP release from HUVECs was only increased by TNF-α stimulation at      

100 ng/ml. CD106 is known to be up-regulated on endothelial cells in response to TNF-α 

and IL-1 (Melendez et al., 2003), and would therefore, be expected to be present on EMPs 

released from these cells. The findings in this Chapter may suggest that HUVECs do not 

readily release CD106+ EMPs in response to the concentration of agonists used here.  

   Moderate levels of annexin V+, lactadherin+ and CD31+ EMPs were produced from 

HUVECs in the media alone well after 25 hours, as shown in Figures 3.4-3.6. This may be 

due to the stress of being cultured for 25 hours in the small well. It could also suggest that 

the un-stimulated endothelial cells release MPs under resting conditions.  

   The release of EMPs from HUVECs can be triggered by several agonists and the data 

here support the hypothesis that the antigenic composition of the EMPs released is 

dependent on the agonist used. Jimenez et al (2003) also found that the markers expressed 

on EMPs were dependent on the stimuli used to trigger them. If this is the case in vivo as 

well, then it would explain why different diseases cause different EMP profiles. For this 

reason, all of the EMP markers discussed in this Chapter will be used to label EMPs in the 

plasma of the healthy individuals and patient groups described in subsequent Chapters.  
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3.4.3. Limitations 

   It is acknowledged that the stimulation of leucocytes and RBCs was carried out in whole 

blood, and therefore the cell specificity of the MPs produced could not be identified. Also 

these experiments were only carried out in whole blood from three individuals. The T-cell 

MP marker (CD3) was not examined. Ideally granulocytes, monocytes, T-cells and RBCs 

would have been individually isolated from blood of several individuals, or grown as 

individual cultures, prior to stimulation, in order to confirm the specificity of the cell-

specific markers. However, these stimulation experiments did show that the cell-specific 

markers were capable of binding MPs produced from stimulated whole blood. 

   Not all stimulations of cells led to the release of MPs in a dose-dependent manner. For 

example, CD45+ LMP and CD66B+ granulocyte-derived MP release was increased 

following stimulation with the first two concentrations of PMA and calcium ionophore, but 

these levels decreased at the highest concentration. CD106+ EMPs were significantly 

increased following stimulation with 100 ng/ml, but not 1000 ng/ml TNF-α. Also, 5 ng/ml 

of IL-1α was more successful at stimulating the release of EMPs than 50 ng/ml. This 

suggests that the very high concentrations of agonist may be causing cell death by necrosis, 

instead of leading to MP release during cell activation or apoptosis. 

   The results shown for the HUVEC stimulation experiments were the mean and SEM of 

only three staining experiment repeats. Ideally the stimulation of HUVECs would have 

been carried out multiple times to ensure that the same pattern of EMP release was 

observed with each agonist. 

   The in vitro generation of MPs from isolated cells or cell cultures gives some 

information regarding the antigenic composition of MP subtypes. However, in vitro 

generated MPs do not necessarily correspond directly to the MPs released in vivo. 

Therefore, although the cell-specific markers were able to stain in vitro generated MPs, it 

does not necessarily infer that they would stain MPs in vivo. 
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3.4.4. Conclusions 

   Stimulation of platelets, leucocytes and RBCs led to the generation of MPs from these 

cell types. These in vitro generated MPs bound to the cell specific makers chosen for use in 

this PhD, supporting the validity of their use. 

   Stimulation of cultured endothelial cells with various physiological agonists, led to an 

increased release of EMPs expressing the EMP markers chosen for use in this thesis. The 

phenotype of the EMPs released appeared to be dependent on the agonist used to stimulate 

their release.  
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Chapter 4 – Alternative Assays for the Measurement of 

Microparticles 

 

4.1. Introduction 

4.1.1. Limitations of Flow Cytometry 

   Although flow cytometry is the most commonly used method for MP analysis, it does 

have limitations. It cannot be used to detect MPs smaller than a certain diameter. 

Depending on the threshold of the machine, this has been stated to be between 0.3-0.5 μm 

(Beyer and Pisetsky, 2010; Nomura et al., 2008; Shantsila et al., 2010). The majority of 

MPs are now thought to be less than 0.3 μm in size (Freyssinet et al., 2009). Therefore, 

flow cytometry may just be measuring the ‘tip of the iceberg’ when analysing MPs. In 

order to measure the smaller particles it would be necessary to use an alternative technique, 

such as electron microscopy.  

   The use of isotype controls in the flow cytometric analysis of MPs may also be a source 

of variation. It has been found that the diversity in staining intensity of isotype controls, 

can lead to a large CV% and errors in the quantification of MPs (Trummer et al., 2008). 

Fluorescence-minus-one (FMO) control gating is a more accurate strategy for MP analysis. 

However, it is not practical to use FMO staining on each run of MP analysis, as it requires 

several extra control tubes each time. 

   MPs do not express the same surface markers at the same level as their cells of origin, 

making it difficult to identify certain MP subtypes. Also flow cytometry analysis of MPs 

results in increased background staining, as there is more space between the MP and the 

sheath tube, for unbound antibodies to be detected. 

   This PhD project will mainly focus on the use of flow cytometry to detect MPs, because 

of its ability to detect and quantify MPs from different cellular origins. However, due to 

the above mentioned limitations, it was of interest to investigate other MP assays. It is 

recognised that these other assays have logistical advantages over flow cytometry, such as 

96-well formats and semi automation options. Also, the alternative assays investigated give 

functional information about the circulating MPs. 

 

 

 

 

 



 67

4.1.2. Well Established Microparticle Assays 

   There are several other well-established methods that have been used to analyse MP 

populations in PPP, as reviewed by Jy et al (2004). 

4.1.2.1. Enzyme-linked Immunosorbant Assay (ELISA) 

   ELISA capture methods involve coating the plate with annexin V or a cell-surface 

marker of interest. Plasma is added to the plate, then the plate is washed and a cell specific 

antibody is added, to detect the MP subtype of interest. Commercial assays are available, 

which have been standardised. ELISAs are ideal for analysing large batches of samples, as 

they can be easily automated. However, they can not detect MPs from several different 

cellular origins at the same time and they give no size indication. 

4.1.2.2. Procoagulant Activity Assays 

   Procoagulant activity based assays exploit the functional capability of the MPs. They 

involve coating a micro-titration plate with annexin V to capture the MPs from the plasma. 

Prothrombin is then added and the amount of thrombin produced is measured, as this 

correlates with the number of procoagulant MPs in the plasma. Commercially available 

chromogenic assays are available, including one to quantify tissue factor activity in MP 

samples (Yuana et al., 2011). These methods can be easily automated, are relatively low-

cost and give functional information about MPs, but they only quantify the procoagulant 

MP population, and they give no size information. 

4.1.2.3. Electron Microscopy (EM) 

   EM can be used to analyse MPs, and to give information on their size, shape and internal 

architecture. MPs can be immunogold-labelled with annexin V and cell-specific markers, 

and then visualised by whole-mount immuno-electron microscopy. This method can also 

be used to analyse small MPs and exosomes, however, it is not quantitative and requires 

extensive sample preparation, making it impractical for large-scale routine use. Also EM 

procedures require a vacuum environment and dehydration of the sample, which may 

affect the MP morphology (Yuana et al., 2011). 
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4.1.3. Alternative Microparticle Assays Investigated 

   To examine whether the results obtained from the quantitative flow cytometry method 

described in Chapter 2, correlate with results given by functional MP assays, three 

alternative methods were investigated. 

4.1.3.1. Zymuphen MP ELISA 

   The Zymuphen ELISA (HYPHEN BioMed, Quadratech Diagnostics, UK) is a functional 

assay which measures the procoagulant activity of MPs in platelet-poor-plasma (PPP). A 

microtitre plate is pre-coated with annexin V-streptavidin, so it only captures annexin V+ 

MPs. MPs bind to the plate and expose their phospholipid surface, allowing Factor Xa-

Factor Va (pro-thrombinase complex) to cleave prothrombin into thrombin. The 

phospholipid concentration in the sample is the limiting factor, so there is a direct 

relationship between the phospholipid concentration on MPs, and the amount of thrombin 

generation. Thrombin generation is measured by a specific chromogenic substrate, and this 

gives an indication of the annexin V+ MP level in the sample (Owens and Mackman, 

2011).  

4.1.3.2. STA® Phospholipid (PPL) Procoag Assay 

   STA® PPL Procoag assay (Stago, Berkshire, UK) measures the procoagulant activity of 

MPs by determining the clotting time for a sample (Owens and Mackman, 2011). The 

clotting time is dependent on the procoagulant phospholipids of the sample. A shortened 

clotting time indicates an increase in procoagulant phospholipids (van Dreden et al., 2009), 

which is proportional to the procoagulant MP levels in the sample. 

4.1.3.3. Endogenous Thrombin Potential (ETP) Assay 

   Thrombin generation can be assessed using a calibrated automated thrombogram. The 

ETP assay (Stago, Berkshire, UK) measures thrombin generation in a PPP sample. The 

platelet-rich-plasma (PRP) reagent (tissue factor and a minimal amount of phospholipids) 

is added initially and acts as a trigger to initiate thrombin generation. At fixed time 

intervals, a sample is taken from the reaction and the amount of thrombin generated is 

plotted to give a thrombin generation curve. From this curve, several read-outs can be 

determined including the lag-time, the time to peak, the peak of thrombin generation, and 

the area under the thrombin generation curve (ETP). When using PPP samples, the 

thrombin generation is attributable to the procoagulant MP concentration of that sample. 
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4.1.4. Aims of this Chapter 

1) To investigate alternative well-established assays for the measurement of procoagulant 

MPs and to determine if results correlate with each other 

 

2) To determine if the results from these functional assays correlate with the flow 

cytometry quantitative results. 
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4.2. Methods 

4.2.1 Sample Selection 

   26 healthy control samples were obtained from laboratory staff. Subjects were eligible if 

aged 18 or above and in good health. Subjects with a known cardiovascular condition or a 

known cardiovascular-associated condition were excluded. This study was approved by the 

Oxford Research Ethics Committee (REC No: 11/SC/0183). 27 healthy control samples 

were obtained from a study investigating sleep and psychomotor performance at altitude. 

Subjects were eligible if they were healthy males, between 18 and 70 years old. Subjects 

with a body mass index (BMI) <18 or >30 kg/m2, or any medical condition requiring 

treatment were excluded. This study was approved by the Zurich ethics committee (KEK 

ZH 2010-0054/1) and registered (NCT01130948).  

   47 obstructive sleep apnoea (OSA) patient samples were used to examine samples with 

elevated numbers of MPs. Patients were eligible if they were aged between 45 and 75 

years, had proven obstructive sleep apnoea. The study was approved by the Oxford 

Research Ethics Committee (REC No: 05/Q1604/159). Written informed consent was 

obtained from all participants. 

   In total, 100 samples from healthy individuals (n=53) and OSA patients (n=47) were 

used to give a wide range of MP levels. 

 

4.2.2. Flow Cytometry Analysis of Microparticles 

   Samples were analysed by the flow cytometric assay described in Chapter 2. All cell-

specific markers described in Chapter 2, were used to stain for MPs. 

 

4.2.3. Alternative Assays Investigated 

4.2.3.1. Zymuphen MP ELISA 

   The PPP samples and kit controls were diluted 1:20 in the kit sample diluent, which is 

supplemented with calcium, Factor Xa (FXa) and thrombin. A calibrator curve was 

produced by serial dilutions of the kit calibrant. The calibrator curve, diluted controls and 

diluted samples were added to the ELISA plate and incubated for 1 hour at 37 °C. The 

plate was washed 5 times in wash solution, then 100 µl of Reagent A (Fxa-FVa) and 50 µl 

Reagent 2 (prothrombin) were added, and incubated for 10 min at 37 °C. 50μl of Reagent 3 

(thrombin substrate) was added, and incubated for 3 min at 37 °C. Finally 50 μl of stop 

solution was added, and the plate was read at 405 nm, subtracting the blank. Results were 

calculated from the calibrator curve, and are expressed as nanomolar (nM) PS equivalent.  
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4.2.3.2. STA® Phospholipid (PPL) Procoag Assay 

   PPP samples were tested on the STA® automated analyser (Stago, Berkshire, UK), using 

the STA® procoag-PPL kit, according to the manufacturer instructions. Two kit controls, 

with a known clotting time, were analysed first to check the reproducibility of the assay. 

Samples were loaded and detection of procogulant phospholipids was automatically carried 

out. PPP was automatically diluted with phospholipid-depleted plasma and incubated for 

120 seconds at 37 °C. The addition of reagents permits the triggering of the coagulation 

cascade downstream from Factor Xa. The clot formation is dependent only on the 

procoagulant phospholipids contained in the plasma sample. A shortened clotting time 

indicates increased concentration of phospholipids. The final result is expressed as the 

clotting time in seconds.  

4.2.3.3. Endogenous Thrombin Potential (ETP) Assay 

   The ETP assay was performed according to the manufacturer instructions. 80 μl of PPP 

sample was added in duplicate to wells in a 96-well plate in duplicate. 20 μl PRP reagent 

was added to one set of wells. 20 μl thrombin calibrator was added to the other set of wells. 

The thrombin calibrator corrects for donor-to-donor differences in colour of plasma and 

inner filter effects (Owen et al., 2011). The plate was warmed to 37 °C, and then placed on 

the reader, a Fluoroskan Ascent FL (Thermo Electron Corporation, Helsinki, Finland).     

20 μl of Fluca-Kit Reagent, which causes the citrated plasma to be re-calcified to start the 

reaction, was automatically added to each well. The fluorescence intensity was 

continuously measured by the Fluoroskan and thrombin generation was plotted over one 

hour. The computer software calculates lag time (min), Peak (nM), ETP (nM x min) and 

time to Peak (min). 

 

4.2.3. Statistics 

   All statistics were performed using GraphPad Prism 5 Software (GraphPad Software, 

San Diego). The results from each alternative MP assay were compared to the results from 

the other assays and correlations were determined by Spearman Correlation. A p-value of 

<0.05 was considered statistically significant. 
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4.3. Results 

4.3.1. Samples Analysed 

   All 100 selected samples were analysed on the Zymuphen MP ELISA. Due to the 

required sample volume (>250 µl PPP), only 69 of the 100 samples could be run on the 

PPL assay. Also due to the sample volume requirement (>160 µl PPP) only 78 of the 100 

samples were run on the ETP assay.  

 

4.3.2. Correlations between Alternative Assays 

   In order to establish if the three alternative assays were giving similar results, correlation 

analysis was carried out. Table 4.1 and Figure 4.1 show the Spearman r-values and the p-

values for correlations between the results from the alternative assays. 

 

Table 4.1 - Associations between Alternative Assays 

  Zymuphen ELISA PPL Procoag Assay ETP Assay – ETP ETP Assay - Peak 

  
Spearman 

r P-value 
Spearman 

r P-value 
Spearman 

r P-value 
Spearman 

r P-value 

Zymuphen 
MP ELISA     -0.5308 <0.0001 0.5498 <0.0001 0.5638 <0.0001

PPL Procoag 
Assay -0.5308 <0.0001     -0.7672 <0.0001 -0.7244 <0.0001

ETP Assay – 
ETP 0.5498 <0.0001 -0.7672 <0.0001     0.9852 <0.0001

ETP Assay – 
Peak 0.5638 <0.0001 -0.7244 <0.0001 0.9852 <0.0001     
 

Analysed by Spearman correlation 

 

   The ETP assay gives several readouts for the results, including the ETP (nM x min) and 

the Peak (nM). These two results were very closely correlated (r = 0.9852, p<0.0001). 

 

 

 

 

 



 

 

 

 
Figure 4.1. Associations between results from the alternative assays. Analysed by Spearman correlation. 

Zymuphen (nM), PPL (seconds), ETP (nM x min), Peak (nM).   

 

   The results from the Zymuphen ELISA are weakly negatively associated with the STA® 

PPL Procoag assay, and weakly positively associated with the ETP and the Peak results 

from the ETP assay. 

   The results of the STA® PPL Procoag assay are negatively associated with the ETP and 

the Peak from the ETP assay, and are weakly negatively associated with the Zymuphen 

ELISA. 

   The ETP and Peak results from the ETP assay are weakly positively associated with 

Zymuphen ELISA and negatively associated with STA® PPL Procoag assay. 
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4.3.3. Correlations Between Alternative Assays and Flow Cytometry 

   In order to establish if the functional MP results from the alternative assays were 

associated with the quantitative results from the flow cytometry assay, correlation analysis 

was carried out. Table 4.2 and Figure 4.2 show the Spearman r-values and the p-values for 

correlations between the results from the alternative assays and the results determined by 

flow cytometry. 

 

Table 4.2 - Associations between Alternative Assays and Flow Cytometry Results,  

  Zymuphen ELISA PPL Procoag Assay ETP Assay - ETP ETP Assay - Peak 
Flow Cytometry 

Levels 
Spearman 

r P-value 
Spearman 

r P-value 
Spearman 

r P-value 
Spearman 

r P-value 

Annexin V+ 
MPs 0.5207 <0.0001 -0.7297 <0.0001 0.6427 <0.0001 0.6550 <0.0001

Lactadherin+ 
MPs 0.5370 <0.0001 -0.7872 <0.0001 0.7444 <0.0001 0.7505 <0.0001

CD31+CD41+ 
PMPs 0.5203 <0.0001 -0.8632 <0.0001 0.7268 <0.0001 0.7084 <0.0001

Analysed by Spearman correlation 

 

   The results from the Zymuphen ELISA are weakly positively associated with annexin 

V+ MPs, lactadherin+ MPs and PMPs as determined by flow cytometry. 

   The results of the STA® PPL Procoag assay are negatively associated with annexin V+ 

MPs, lactadherin+ MPs and PMPs as measured by flow cytometry.    

   The ETP and Peak results from the ETP assay were positively associated with annexin 

V+ MPs, lactadherin+ MPs and PMPs results from the flow cytometry assay. 

   None of the alternative assays were associated with any other MP subtype, such as 

EMPs, LMPs or RBC-derived MPs, as measured by flow cytometry (data not shown). 
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Figure 4.2 - Associations between alternative assays and flow cytometry, analysed by Spearman correlation. 
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4.4. Discussion 

   This chapter compared the quantitative results from the flow cytometric assay with 

results from well-established functional MP assays. In general, results from alternative 

assays correlated well with each other. Procoagulant MPs and PMPs measured by flow 

cytometry, correlated well with two of these assays. No other MP subtypes were associated 

with the results from the alternative assays. 

 

4.4.1. Alternative Assays Investigated 

4.4.1.1. Zymuphen MP ELISA 

   The Zymuphen MP ELISA can be semi-automated and is suitable for high through-put 

measurement of procoagulant MPs. However, samples require dilution prior to use in this 

assay, which increases the assay time and chance of human error. 

   The results from this assay were weakly positively associated with ETP and Peak from 

the ETP assay, and weakly negatively associated with the Stago PPL assay. It was 

expected that this assay would correlate well with annexin V+ MPs, as it directly binds 

annexin V+ MPs. However, it was only weakly positively associated with procoagulant 

MPs, and this association was not as strong as the other two assays. These findings are 

supported by Pagana and Chandler (2011), who noted a weak correlation between PMPs 

measured by flow cytometry and the results from the Zymuphen MP ELISA. This poor 

association could be due to the Zymuphen MP ELISA measuring smaller MPs, which can 

not be detected by flow cytometry. 

 

4.4.1.2. STA® Phospholipid (PPL) Procoag Assay 

   The STA® PPL Procoag assay is fully automated and makes use of an analyser currently 

used in routine haematology laboratories, so it benefits from being easy to integrate into a 

routine laboratory. However, it does require that a normal range is established in each 

laboratory, using at least 20 normal plasma samples.  

   The STA® PPL Procoag assay was negatively associated with ETP and Peak results 

from the ETP assay, and weakly negatively associated with the Zymuphen ELISA results. 

It would be expected to be negatively correlated with the other assays, as the shorter the 

PPL clotting time, the more procoagulant phospholipids available in the sample. This assay 

was also negatively associated with annexin V+ MPs, lactadherin+ MPs and PMPs, 

suggesting that it would be a suitable alternative for measuring procoagulant MPs. This is 

supported by the data from two other reported studies who also found strong negative 
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correlations between PMPs detected by flow cytometry and the results from the STA® 

PPL Procoag assay (Pagano and Chandler, 2011; Stagnara et al., 2012). 

4.4.1.3. Endogenous Thrombin Potential Assay 

   ETP is a useful semi-automated assay which gives results both on the thrombin 

generation and the rate of generation. 48 samples can be run in duplicate on a 96 well plate 

and it is relatively cheap. This assay can be standardised and it gives a functional 

measurement of MPs, however it does not give information on the cell of origin or the size 

of the particle. 

   The ETP and Peak results were both positively associated with annexin V+ MPs, 

lactadherin+ MPs and PMPs. Both ETP and Peak appear to be good predictors of 

procoagulant MPs present in a sample. This is supported by the findings in a study on MPs 

in ageing, where an association between annexin V+ MPs measured by flow cytometry and 

the peak measured by thrombin generation was found (Emmerechts et al., 2012). Another 

study also reported a positive correlation between PMP results from flow cytometry and 

peak thrombin generation (Stagnara et al., 2012). 

 

4.4.1.4. Summary of Alternative Assays 

   These alternative assays have been developed to detect procoagulant MPs. As expected 

they correlate with each other, and with annexin V+ MPs, lactadherin+ MPs and PMPs. No 

associations were found between these assays and other MP subtypes, such as EMPs, 

LMPs or RBC-derived MPs. EMPs have previously been found to be mainly annexin V 

negative (Ahn et al., 2004), and this was further demonstrated in Chapter 2, where a 

significant proportion of EMPs and LMPs (in some cases >50 %) did not bind to annexin 

V. Therefore, it was unlikely that they would be sufficiently detected by these alternative 

assays. 

   These alternative assays provide a quick and relatively cheap method of screening large 

numbers of samples for procoagulant MPs. They also provide functional information about 

the MPs, and they can measure particles too small to be detected by flow cytometry. 

However, they can not give an absolute count of MPs, and they provide no information 

about the cellular origin of the MPs. 

   These assays have been very useful for validating the results obtained from the flow 

cytometric assay. It appears that a range of assays may be necessary to provide the most 

comprehensive information about the quantitative levels and functionality of circulating 

MPs. 
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4.4.2. New Developments in Microparticle Analysis 

   As well as the described flow cytometric assay and alternative functional assays, there 

have been a great number of new technologies developed and investigated for their ability 

to measure MPs. The advantages, disadvantages and clinical utility of these new 

technologies is discussed below.   

4.4.2.1. New Generation Flow Cytometers 

   The lower limit of detection for conventional flow cytometers is 0.3-0.5 µm in diameter, 

depending on the threshold of the machine (Beyer and Pisetsky, 2010; Nomura et al., 

2008; Shantsila et al., 2010). However, newer flow cytometers have improved their 

resolution of small particles, down to 0.1 µm, as measured by beads (Shantsila et al., 

2010), by increasing the light collection angle to get better resolution. This improves the 

light collection on scatter, allowing small particle-dedicated instruments to have greater 

sensitivity. A recent study of high sensitivity flow cytometry found that it gave improved 

FSc resolution, lower background noise and it detected 8-20 times more MPs than standard 

flow cytometry in coronary patient samples. The ratio of small to large MPs also varied 

according to clinical status of patient, suggesting that the size of MPs may provide 

additional biological information (Robert et al., 2012). However, these machines are not 

yet widely available. 

4.4.2.2. Dynamic Light Scattering (DLS)  

   The Brownian motion of a particle depends on its diameter, making it possible to 

determine a particles size, using the Stokes-Einstein equation. DLS gives an average particle 

size, offering a rapid way to measure MPs of all sizes. However, this technique cannot 

resolve mixtures of MPs and exosomes as it is biased towards the presence of small numbers 

of large particles. DLS has been previously used to determine MP sizes in fresh-frozen 

plasma (Lawrie et al., 2009). 

4.4.2.3. Nanoparticle Tracking Analysis (NTA)  

   NTA individually measures a particles size by video analysis of its Brownian motion and 

use of the Stokes-Einstein equation. NTA can measure much smaller particles than flow 

cytometry (down to 0.05 µm), it can resolve MPs and exosomes as it measures particles 

individually, and it is rapid. However, it may be unable to discriminate other plasma 

particles, such as lipids (Yuana et al., 2011). New advances have allowed for the 

identification of surface markers by conjugating quantum dots (2-10 nm particles) to the 

antibody of interest, making it possible to distinguish MPs. This has been demonstrated 

successfully in the measurement of placental-derived MPs by NTA (Dragovic et al., 2011).  
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4.4.2.4. Atomic Force Microscopy (AFM) 

   This technique measures the surface topography of a sample on a MICA (a sheet silicate 

mineral) slide coated with a cell-specific antibody, by detecting the movement of a counter-

lever over the surface of a slide. The majority of MPs detected are 100 nm in size and range 

from 10 nm – 475 nm, which is similar to the results found by EM and DLS. This technique 

counts 1000 fold more MPs than conventional flow cytometry, and can still detect a signal in 

samples filtered at 0.22 um. This suggests that AFM is a more sensitive method for detecting 

smaller MPs than flow cytometry (Yuana et al., 2010). However, this method is labour 

intensive, and MPs need to be isolated and concentrated prior to use, which may affect the 

morphology and number of MPs detected (Yuana et al., 2011). 

4.4.2.5. Impedance Based Cytometry  

   This technology uses a two chamber system with an ionic current. As a particle moves 

through the gap between the two chambers, there is a voltage spike, which is proportional to 

the size of particle. The calculation of particle size is based on the fact that the electronic 

volume is proportional to the change in the impedance associated with the displacement of 

electrolyte in a flow cell (Coulter principle). This technology gives better discrimination 

between platelets and MPs than flow cytometry. It has been used to measure tumour-derived 

MPs in cancer patients (Zwicker, 2010). 

4.4.2.6. Proteomic Analysis 

   Mass spectrometry-based proteomic analysis allows for the characterisation of the 

protein composition of MPs, giving more information about their structure and functions. 

However, the contamination of MPs with plasma proteins, such as albumin and 

immunoglobulins, can affect the results, making interpretation difficult (Yuana et al., 

2011). 

 

4.4.3. Limitations 

   Associations between the Zymuphen MP ELISA and the flow cytometry results were 

examined in 100 samples. Sample volume requirements meant that fewer samples could be 

analysed by the STA® PPL Procoag assay and the Endogenous Thrombin Potential assay. 

Ideally all 100 samples would have been measured in all three alternative assays. 
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4.4.4. Conclusions 

   The levels of procoagulant MPs and PMPs from the flow cytometry method correlate 

with the alternative MP assay results, suggesting that the quantitative results given by flow 

cytometry are associated with the functional capability of the MPs. 

   The alternative assays have the advantages of being standardised, either semi or fully 

automated and they can give functional information about MPs. However, they can only 

provide information on procoagulant MPs, and cannot detect other MP subtypes, which 

may provide crucial information regarding disease. These alternative assays could be 

useful in screening large populations for procoagulant MPs, but flow cytometry would still 

be necessary for providing information on other MP subtypes.  

   New technologies have been developed which can detect smaller MPs and even 

exosomes. They all have advantages and disadvantages, however, most are unable to give 

cell-specific phenotyping or functional information, which the older flow cytometry or 

functional assay techniques can provide. The technology chosen for MP analysis will 

depend on the clinical question being asked. 

   Due to the fact that flow cytometry can give quantitative information on a wide range of 

MP subtypes, it will be used as the assay of choice for the analysis of MPs in healthly 

individuals and patient groups in this thesis.  
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Chapter 5 – Circulating Microparticles in Healthy 

Individuals 

 

5.1. Introduction 

5.1.1. Role of Microparticles in Health 

5.1.1.1. Platelet-Derived Microparticles 

   Circulating PMPs are present in healthy individuals, in fact they constitute the largest 

proportion of circulating cell-derived MPs (Berckmans et al., 2001; Morel et al., 2011a), 

suggesting that they play a physiological role. This theory is strengthened by findings in 

individuals with Scott Syndrome. In this extremely rare disorder there is a defect in the 

platelet membrane remodelling, a lack of PS exposure and an impaired ability to release 

PMPs, leading to a severe bleeding disorder, with no other deficiencies of platelet 

adhesion, aggregation or metabolism (Nieuwland and Sturk, 2007). This suggests that 

PMPs are an essential component of the coagulation pathway. Another very rare bleeding 

condition, Castaman Syndrome is attributed to a deficiency of PMP formation, despite 

normal PS exposure (Castaman et al., 1997). The surface of PMPs has been found to be 

50-100 fold more procoagulant than the surface of activated platelets (Sinauridze et al., 

2007). 

   Berckmans et al (2001) found an inverse correlation between the number of annexin V+ 

MPs and the levels of thrombin-antithrombin complex in the plasma of healthy 

participants. This suggests that MPs in the circulation of healthy individuals have an anti-

coagulant function, by inducing low amounts of thrombin, which activates protein C. 

   PMPs also appear to have other physiological roles. In vitro generated PMPs can serve as 

a transcellular delivery system for the chemokine RANTES (Regulated upon Activation, 

Normal T-cell Expressed, and Secreted), which plays a role in recruiting leukocytes to sites 

of inflammation (Mause et al., 2005). 

   PMPs are maintained at a relatively constant level in healthy individuals. Other markers 

of platelet activation in healthy individuals suggest insufficient platelet activation to 

account for this baseline level. There has been speculation that a proportion of these PMPs 

are maintained by the continuous release from megakaryocytes (Flaumenhaft, 2006). 

5.1.1.2. Endothelial-Derived Microparticles 

   Although present in the circulation at much lower levels, it appears that other MP 

subtypes also have physiological roles in healthy individuals. A subset of EMPs express 

Von Willebrand Factor (vWF), a glycoprotein important in coagulation, allowing them to 

induce platelet aggregation (Jy et al., 2005). EMPs also seem to act as a waste disposal 
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mechanism for endothelial cells, allowing them to avoid accumulation of toxic 

components, such as Caspase 3, and ultimately avoid apoptosis. In fact, the blocking of 

EMP release in vitro, triggers endothelial cell apoptosis (Abid Hussein et al., 2007).  

5.1.1.3. Leucocyte-Derived Microparticles 

   LMPs stimulate the release of IL-6 from endothelial cells in vitro, suggesting that they 

act as agonists of inflammation (Mesri and Altieri, 1999). In the appropriate setting, this 

role of LMPs could be a physiological one, however, in inflammatory disease, elevated 

LMPs could possibly exacerbate the problem.     

5.1.1.4. Granulocyte-Derived Microparticles 

   Granulocyte MPs may be important in anti-inflammatory processes, through their 

secretion of transforming growth factor (TGF-β) (Gasser and Schifferli, 2004), and the fact 

that they contain functionally active annexin 1 (Dalli et al., 2008), a ligand potentially 

important in the clearance of apoptotic cells (Arur et al., 2003). Therefore, a low level of 

circulating granulocyte-derived MPs in healthy individuals may be necessary to dampen 

down inflammatory responses. 

5.1.1.5. Monocyte-Derived Microparticles 

   Monocyte-derived MPs are important carriers of tissue factor, and can contribute to the 

development of a thrombus at the site of injury. It may be that tissue factor only becomes 

active once monocyte-derived MPs bind and fuse to activated platelets (Nomura et al., 

2008). 

5.1.1.6. T Cell-Derived Microparticles 

   T cell-derived MPs have been identified in the circulation of healthy individuals at low 

levels (Kornek et al., 2011). The MPs released from T cells have been shown to induce 

degranulation and IL-8 release from mast cells, suggesting that they may carry mast cell 

activating factors, possibly including OX40, a co-stimulatory molecule (Shefler et al., 

2010). It may be that in healthy individuals, T cell-derived MPs could convey surface 

molecules to other cells, which are not in direct contact with T cells. 

5.1.1.7. Red Blood Cell-Derived Microparticles 

   RBC-derived MPs are present in the circulation of healthy individuals (Chaar et al., 

2011). The release of MPs from RBCs is an essential part of the erythrocyte ageing 

process, by removal of damaged membrane molecules, it can prevent the early removal of 

otherwise functional RBCs (Tissot et al., 2010). RBC-derived MPs may also have anti-

inflammatory properties, including down-regulating macrophages. RBC-derived MPs are 

present in blood stored for transfusion, and they could account for some of the immuno-

suppressive properties attributed to blood transfusions (Sadallah et al., 2008).  
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5.1.2. Reported Normal Ranges of Microparticles 

   There has been rapidly growing interest in the role of MPs in disease. However, there are 

few published reports on the levels of MPs in healthy individuals. Studies often report 

healthy control MP levels in comparison to their patient MP levels, but due to the 

variability in the selection of healthy controls, low numbers of healthy controls, and the 

difference in techniques used to measure MPs, the range of levels reported in healthy 

individuals is extremely variable (Table 5.1). 

 

Table 5.1 – Healthy Control MP Levels 

Reference 

Centrifugation 
Protocol         
(for PPP) 

No of 
Healthy 
Controls 

(M/F) 
Annexin 
V+ MPs PMPs EMPs Other  MPs 

(Berckmans et 
al., 2001) 1550 g, 20 min 15   

237          
(116-565) CD62E       64 (16-136) 

Granulocyte MPs 46 (16-94) 
RBC MP  28  (13-46) 

(Vince et al., 
2009) 

180 g, 10 min, 
13,000 g, 2 min 

8            
(all males)     CD106+     1020 ± 263   

(Tesselaar et 
al., 2007) 1550 g, 20 min 

37 
(16M/21F) 

1600     
(720-9000) 

1500        
(700-7100)  Granulocyte MPs 31 (6-490) 

(Bucciarelli et 
al., 2012) 2880 g, 20 min 

418 
(120M/298F 

1769     
(302-7356) 

1519        
(242-7032)     

(Amabile et 
al., 2008) 

500 g, 15 min, 
10,000 g, 5 min 

20    
(7M/13F) 2991 ± 587 3163 ± 555 

CD62E           75 ± 12        
CD144+         199 ± 33      
CD31+CD41- 781 ± 132 LMPs 139 ± 22 

(Emmerechts 
et al., 2012) 

1900 g, 10 min, 
1900 g, 20 min 

18   
(10M/8F)  

3488        
IQR  

(2309-6142)  

RBC MP 281    
IQR 

(194-1507) 

(Wang et al., 
2007a) 

160 g, 10 min, 
1000 g, 6 min 

76 
(31M/45F)     

CD31+CD42b-              
1111 ± 661   

(Chirinos et 
al., 2005a) 

160 g, 10 min, 
1000g,  8 min 25    5395 

CD31+CD42b-                
383 (IQR  243-2403)          
CD62E+                          
223 (IQR  84-315)               

MPs were measured by flow cytometry and levels are events per µl. Levels are given as medians (ranges), or 

means ± SEM. IQR = Inter Quartile Range. 

 

   Table 5.1 demonstrates the immense variability of healthy control levels of MPs reported 

in the literature. This may be in part due to the different protocols used in the MP analysis, 

with the initial centrifugation to produce PPP playing only a part in this (Chapter 2). 

Another problem with the reported healthy levels of MPs is that they are often include only 

small numbers of participants. 

   There are currently no published large scale studies on MP levels in healthy controls, 

which give levels on a wide range of MP subtypes. A published normal range of MPs, for a 

standardised measurement method, would be an important step towards the introduction of 

routine MP analysis. This study aims to generate a normal control range for procoagulant 

MPs, PMPs, EMPs, LMPs, monocyte-derived MPs, granulocyte-derived MPs and RBC-

derived MPs, measured by the flow cytometry method described in Chapter 2.     
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5.1.3. Microparticle Correlations with Participant Characteristics 

   There is limited published data on the impact of age, gender, body mass index (BMI) and 

other participant characteristics on the levels of MPs in healthy individuals. It may be 

hypothesised that MP levels would increase with age, as other cardiovascular risk factors 

increase. However, a recent study found no significant increase in PMP and RBC MP 

levels between healthy young and healthy elderly participants (Emmerechts et al., 2012). 

Bucciarelli et al (2011) also found no significant impact of age on total MP levels in 418 

healthy controls. In addition, this group found that total levels of MPs were not 

significantly different between males and females, or between individuals with a low, 

average or high BMI. There is currently no published comprehensive review of the impact 

of age, gender and other participant characteristics on levels of a wide range of MP 

subtypes.  

 

5.1.4. Effect of Hypoxia on Microparticles and Other Inflammatory 

Markers 

   Hypoxia is a pathological condition where the whole body or an individual tissue is 

deprived of oxygen. It can occur in a variety of diseases including obstructive sleep apnoea 

(OSA), and may be a potential link between OSA and cardiovascular disease (Ryan et al., 

2005). 

   Hypoxia is also one of the stimuli known to induce the release of MPs from cells 

(Bucciarelli et al., 2012). However, this mechanism was established when observing MP 

release in vitro. For example, non-apoptosis inducing hypoxia leads to the release of 

vesicles from the human lung tumour cell line (Wysoczynski and Ratajczak, 2009).  

   Few publications have addressed the role of hypoxia in vivo on circulating levels of MPs. 

One study found that in healthy individuals, breathing of hypoxic air for 80 min led to a 

significant increase in CD106+ EMPs, however they did not measure other MP subtypes, 

and they only examined the levels in 8 healthy controls (Vince et al., 2009).   

   Hypoxia can be induced in healthy individuals by ascent to a higher altitude. Altitudes 

above 2500 m can cause altitude sickness due to the low partial pressure of oxygen and 

dehydration. Signs of altitude sickness are a new onset headache at altitudes above 2500 m, 

with nausea, fatigue, dizziness and insomnia (Hackett and Roach, 2001). 

   In this Chapter, data was obtained from healthy participants in a randomised, controlled 

trial primarily investigating the effects of acute exposure to moderate altitude on measures 

of cardiovascular function and lipid metabolism, to determine the effect of hypoxia on in 

vivo levels of circulating MPs, cytokines and CRP in healthy individuals. 
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5.1.5. Aims of this Chapter 

1) To establish a normal range for circulating MPs in healthy individuals using the 

flow cytometric assay. 

 

2) To investigate any correlations between MP levels and cardiovascular risk factors, 

such as age, gender and BMI, in healthy individuals. 

 

3) To determine the effect of hypoxia on in vivo levels of circulating MPs and other 

inflammatory markers in healthy individuals. 
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5.2. Methods 

5.2.1. Microparticle Normal Ranges in Healthy Individuals 

5.2.1.1. Subjects 

   For establishing a normal range, 72 healthy individuals were recruited from two studies. 

Firstly, 48 healthy control samples were obtained from laboratory staff. Subjects were 

eligible if aged 18 or above and in good health. Subjects with a known cardiovascular 

condition or a known cardiovascular-associated condition were excluded. This study was 

approved by the Oxford Research Ethics Committee (REC No: 11/SC/0183). 

   24 healthy controls were also obtained from the Early Vascular Study. In this study 

healthy individuals were examined for their cardiovascular risk factors, and are followed-

up long-term. Participants were included if they had no history of CVD. This study was 

approved by the Oxford Research Ethics Committee (REC No: 06/Q1604/118). Written 

informed consent was obtained from all participants. 

5.2.1.2. Samples for Microparticle Analysis 

   Citrate blood samples were obtained from all participants, with the first tube following 

venepuncture being discarded. Within 15 min blood samples were centrifuged at 1550 g 

for 20 min. The plasma was removed, avoiding the buffy coat, and further centrifuged at 

13,000 g for 2 min, to produce PPP. The 250 µl of supernatant was immediately frozen at  

-80 ºC. 

 

5.2.2. Microparticle Correlations with Participant Characteristics 

   MP levels in all above participants will be assessed for any associations with age and 

gender. In addition, participants from the Early Vascular Study will also have 

measurements taken for their body mass index (BMI), waist/hip ratio and blood pressure 

(BP). Any correlations between these parameters and MP levels will be examined.   

 

5.2.3. Effect of Hypoxia on Microparticles and Other Inflammatory 

Markers in Healthy Individuals 

5.2.3.1. Subjects 

   The effect of hypoxia in healthy individuals was examined in samples obtained from a 

study investigating sleep, breathing and psychomotor performance at altitude. Subjects 

were eligible if they were healthy males, between 18 and 70 years old. Subjects with a 

BMI <18 or >30 kg/m2, any medical condition requiring treatment, regular use of 

medications, a history of altitude related illness were excluded.  This study was approved 
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by the Zurich ethics committee (KEK ZH 2010-0054/1) and registered (NCT01130948). 

Written informed consent was obtained from all participants. 

5.2.3.2. Samples for Microparticle Analysis 

   On study days all participants were asked to abstain from sporting activities and received 

standard meals with an energy content of 600-800 kcal three times daily. Venepuncture 

was performed b etween 6-7 am after an overnight fast. Citrate blood (for MPs) and 

heparin blood (for other inflammatory markers) samples were taken at 490 m altitude in 

Zurich and at days 1 and 2 in Jakobshorn at 2590 m altitude. Within 15 min, citrate blood 

samples were centrifuged at 1550 g for 20 min, to produce PPP. 250 µl of PPP was taken, 

avoiding the buffy coat, and immediately frozen at -80 ºC. An additional centrifugation at 

13,000 g was not possible in this study, due to equipment limitations at altitude, however, 

all samples were processed identically. 

 

5.2.4. Measurement of Microparticles 

   MPs were measured by the flow cytometry assay as described in the Chapter 2. All cell-

specific markers described in Chapter 2, were used to label MPs. 

 

5.2.5. Measurement of Other Inflammatory Markers 

   Other inflammatory markers were measured in the effect of hypoxia study. High-

sensitivity CRP was measured by the Siemens BN II nephelometry method, which 

measures a range between 0.18 – 1150 mg/l (Siemens, Surrey, UK). The internal quality 

control (Siemens Apo-Control-Serum CHD) for high-sensitivity measurement of CRP has 

a set value and results are expected to be within 10 % of this value. 

    IL-6, TNF-α and IL-10 were measured using commercially available high-sensitivity 

ELISAs (BMS213HS, BMS223HS and BMS215HS, Bender MedSystems GmbH, Vienna, 

Austria). Plates were read on a spectro-photometer (Thermo Scientific Multiskan FC with 

SkanIt software 2.5.1) at 450 nm primary wave length. The lowest detectable limit was 

0.03 pg/ml, 0.13 pg/ml and 0.05 pg/ml respectively. The intra and inter-assay CV% were 

4.9 % and 6.0 % for IL-6, 8.5 % and 9.8 % for TNF-α, and 6.8 % and 7.5 % for IL-10. 

Cytokine measurements were carried out in duplicate and the mean value was reported.    
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5.2.6. Statistics 

   Statistics were performed using GraphPad Prism 5 (GraphPad Software, San Diego). 

Normal ranges are reported as medians (2.5 - 97.5 % percentiles) as MP levels are not 

normally distributed. Associations between MP levels and participant characteristics were 

assessed by Spearman correlation. Differences in MP levels between males and females 

were analysed by Mann Whitney tests. The effect of hypoxia over three time points was 

assessed by the Friedman Test (a non-parametric repeated measures ANOVA), followed 

by Dunns Multiple Comparison Test. Non-parametric confidence intervals were calculated 

using Confidence Interval Analysis Software (CIA Version 1.1). A p-value of <0.05 was 

considered statistically significant. 
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5.3. Results 

5.3.1. Microparticle Normal Ranges in Healthy Individuals 

5.3.1.1. Subject Characteristics 

   72 healthy individuals were recruited to establish the normal range, 31 males and 41 

females. The median age was 29, and ranged from 23-72. All participants were in good 

health, i.e. no acute infections, at the time of sampling.  

 

5.3.1.2. Normal Ranges of Microparticles 

   Normal ranges were established from the 72 participants for all MP subtypes (Table 5.2).  

 

Table 5.2 – Normal Ranges of Microparticle Subtypes 

MP Subtype 
Median 
(MPs/µl) 

2.5 % - 97.5 % Percentile Range  
(MPs/µl) 

Annexin V+ MPs 164.5 55.8 – 690.8 

Lactadherin+ MPs 184.7 74.3 – 708.2 

CD31+CD41+ PMPs 118.1 31.7 – 446.3 

CD31+CD41- EMPs 3.2 0.0 – 19.5 

CD144+ EMPs 3.6 0.2 – 55.8  

CD62E+ EMPs 4.9 0.0 – 93.8 

CD106+ EMPs 4.6 0.0 – 95.5 

CD45+ LMPs 10.7 2.7 – 50.6 

CD66B+ Granulocyte MPs 4.7 0.1 – 82.4 

CD14+ Monocyte MPs 4.4 0.1 – 46.8 

CD3+ T cell MPs 2.7 0.0 – 15.8 

Glycophorin A+ RBC MPs 8.8 1.3 – 138.7 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5.1 – Healthy range of procoagulant MPs and PMPs (A), EMPs (B), LMPs and RBC MPs (C). 

Whiskers show 2.5 % – 97.5 % percentiles 

 

   Procoagulant MPs and PMPs are the most abundant populations in healthy individuals. 

There is a large range of values for procoagulant MPs, with the majority of healthy 

individuals having levels between 100 and 300 per µl, but some having levels as high as 

700 per µl (Figure 5.1A). 

  All EMP subtypes are present at much lower levels. Of the EMP subtypes CD62E+ and 

CD106+ have the largest range of values, with some healthy individuals having levels as 

high as 90 EMPs per µl (Figure 5.1B). 

   Other MP subtypes were only detectable at low levels in healthy individuals, in some 

individuals they were not detectable at all by the flow cytometric assay. RBC-derived 

glycophorin A+ MPs have the largest range of the other MP subtypes, with some 

individuals having levels of nearly 140 RBC MPs per µl (Figure 5.1C). 
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5.3.2. Microparticle Associations with Participant Characteristics 

5.3.2.1. Age 

   No direct correlations were observed between age and any MP subtype.  

 

5.3.2.2. Gender 

   To identify any gender differences in MP levels, all MP subtypes were compared 

between healthy males (n = 31) and healthy females (n = 41) 

 

 
Figure 5.2 – Box and whisker plots (5 – 95 percentile) of procoagulant MPs and PMPs in healthy males and 

females 

 

   Healthy males have significantly elevated levels of procoagulant MPs and PMPs, than 

healthy females (Figure 5.2). No other MP subtypes were significantly different between 

males and females (data not shown). 

 

5.3.2.3. Other Factors 

   24 healthy individuals, recruited through the Early Vascular Study, also had information 

recorded on their height, weight, BMI, waist/hip ratio, systolic BP and distolic BP. These 

parameters were assessed with all MP subtypes for any correlations. There were no 

associations found between these demographics and any MP subtype (data not shown). 
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5.3.3. Effect of Hypoxia on Microparticles and Other Inflammatory 

Markers in Healthy Individuals 

5.3.3.1. Subject Characteristics 

   51 male subjects were eligible for entry and completed the study protocol. The mean age 

of the study population was 26.9 (SD 9.3) years and mean BMI was 23.1 (SD 2.5) kg/m2. 

   Blood samples in this study were only centrifuged once at 1550 g for 20 min, prior to 

freezing. This explains the higher levels of procoagulant MPs and PMPs detected in this 

study, compared to the other healthy controls. 

 

5.3.3.2. Procoagulant Microparticles 

 
Figure 5.3 – Box and Whiskers plots (5-95 percentile) of annexin V+ and lactadherin+ MPs levels at 490 m 

and Days 1 and 2 at 2590 m altitiude. MP levels were compared by a Friedman ANOVA, followed by Dunns 

Multiple Comparison Test (*p<0.05, **p<0.01, ***p<0.001). 

 

   Annexin V+ MPs were significantly decreased between 490 m and Day 1 at 2590 m 

(difference between medians -169/µl, 95% CI -278.3/-79.0, p<0.01) and further reduced on 

Day 2 at 2590 m (difference between medians -221/µl, 95% CI -370.8/-119.0, p<0.001). 

   Lactadherin+ MPs were significantly lower on Day 1 at 2590 m (difference between 

medians -140/µl, 95% CI -258.1/-55.1, p<0.05) and on Day 2 at 2590 m (difference 

between medians -202/µl, 95% CI -372.2/-93.1, p<0.01) compared to 490 m (Figure 5.3). 
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5.3.3.3. Platelet-Derived Microparticles 

 
Figure 5.4 – Box and Whiskers plots (5-95 percentile) of PMP levels at 490 m and Days 1 and 2 at 2590 m 

altitiude. MP levels were compared by a Friedman ANOVA, followed by Dunns Multiple Comparison Test 

(*p<0.05). 

 

   CD31+CD41+ PMPs were not significantly altered between 490 m and Day 1 at 2590 m 

(difference between medians -56.0/µl, 95% CI -125.9/+4.3, p>0.05). However, they were 

significantly lower on Day 2 at 2590 m (difference between medians -114/µl, 95% CI -

189.9/-51.0, p<0.05) compared to 490 m (Figure 5.4). 

 

5.3.3.4. RBC-Derived Microparticles 

 
Figure 5.5 – Box and Whiskers plots (5-95 percentile) of Red Blood Cell-derived MP levels at 490 m and 

Days 1 and 2 at 2590 m altitiude. MP levels were compared by a Friedman ANOVA, followed by Dunns 

Multiple Comparison Test (***<0.001) 

 

   RBC-derived MPs were significantly lower on Day 1 at 2590 m (difference between 

medians -61.3/µl, 95% CI -87.5/-38.9, p<0.001) and further reduced on Day 2 at 2590 m 

(difference between medians -81.4/µl, 95% CI -109.9/-57.7, p<0.001) compared to 490 m 

(Figure 5.5). 
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5.3.3.5. Other Microparticle Subtypes  

   Levels of EMPs, LMPs, granulocyte-derived MPs, monocyte-derived MPs and T cell-

derived MPs, were not significantly changed by moderate altitude (data not shown). 

 

5.3.3.6. Other Inflammatory Markers 

   Alongside the measurement of MPs in this study, the levels of other inflammatory 

markers were also determined. 

 

Table 5.3 – Levels of other Inflammatory Markers at Varying Altitudes 

Inflammatory 
Marker 

490 m Attitude      
(n = 51) 

2590 m Altitude 
Day 1 (n= 51) 

2590 m Altitude 
Day 2 (n = 51) P-value 

CRP (mg/l) 0.44 (0.18 – 0.91) 0.26 (0.17 - 0.53) * 0.33 (0.17 - 0.49) * P < 0.05 

IL-6 (pg/ml) 0.54 (0.28 – 0.94) 0.40 (0.26 - 0.62) 0.43 (0.28 - 0.63) p > 0.05 

TNF-α (pg/ml) 0.77 (0.67 – 0.97) 0.83 (0.62 - 0.98) 0.77 (0.63 - 1.04) p > 0.05 

IL-10 (pg/ml) 0.51 (0.36 – 1.18) 0.56 (0.31 - 1.05) 0.64 (0.34 - 0.92) p > 0.05 
 

Values are median (quartiles) * p<0.05 

 

   CRP levels were significantly reduced on both day 1 and day 2 at 2590 m altitude, 

compared to 490 m altitude. Levels of IL-6, TNF-α and IL-10 were not significantly 

altered at the higher altitude.  
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5.4. Discussion 

5.4.1. Microparticle Normal Ranges in Healthy Individuals 

   Levels of MPs in healthy individuals were not normally distributed, and can vary widely. 

The large spread of MP levels in healthy controls may make it difficult to identify small 

elevations in MPs in disease states.  

   Procoagulant MPs and PMPs were the most abundant populations in the circulation of 

healthy individuals, as shown previously (Chaar et al., 2011; Tushuizen et al., 2006). 

EMPs and other MP subtypes were present at much lower levels, however, it was possible 

to consistently detect them using our method, even at very low levels, in the majority of 

healthy participants. 

   The levels of EMPs detected were dependent on the surface marker used to identify 

them. CD62E+ EMPs and CD106+ EMPs have the largest range of values, possibly 

reflecting the fact that they are generated by endothelial cell activation, which may be 

occurring in healthy individuals. CD31+CD41- EMPs and CD144+ EMPs are thought to 

reflect structural damage of endothelial cells (Amabile et al., 2008), and would be expected 

to be present at much lower levels in individuals who are healthy.  

   LMPs, granulocyte-derived MPs and monocyte-derived MPs can all be detected in 

healthy individuals. T cell-derived MPs are present in some healthy people, but at much 

lower levels and are often undetectable. RBC-derived glycophorin A+ MPs have the 

largest range of levels of the other MP subtypes, which may be due to differences in 

erythrocyte aging and turnover between individuals. 

   The healthy MP ranges found in this Chapter are most similar to those reported by 

Berckmans et al (2001), who use a similar flow cytometric assay. However, they used 

CD61 as their platelet marker and they centrifuged the plasma once prior to freezing.  

 

5.4.2. Microparticle Correlations with Participant Characteristics 

   This study showed no significant association between age and any MP subtype. This is 

supported by a study which found no significant differences in PMP and RBC MP levels in 

healthy young (median age = 29) and healthy elderly patients (median age = 85) 

(Emmerechts et al., 2012).  

   Data in this Chapter indicated that healthy males had elevated levels of procogulant MPs 

and PMPs compared to healthy females. Ueba et al (2010) also found significantly 

elevated levels of PMPs in healthy males, than healthy females in a large cross-sectional 

study. As gender differences have been identified in MPs levels in healthy individuals, it is 
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important to select a healthy control group that is gender-matched to the patient group of 

interest. 

   There were no associations between BMI and any MP subgroup found, which is in 

agreement with Bucciarelli et al (2011). There were also no correlations found between 

hip/waist ratio and BP, with any MP subgroup. These correlations were only assessed in 24 

of the healthy controls, where additional data was available. Associations may have been 

identified if more participants had been examined. 

 

5.4.3. Effect of Hypoxia on Microparticles and Other Inflammatory 

Markers in Healthy Individuals 

   In this study, there was a significant reduction in procoagulant MPs, PMPs and RBC 

MPs, but no significant change in EMPs, LMPs, granulocyte-derived MPs, monocyte-

derived MPs and T cell-derived MPs, following hypoxia induced by moderate altitude, in 

healthy individuals. The reduction in these MP subtypes may be due to a decreased 

production or an increased clearance or a combination of both. 

   Procoagulant MPs and PMPs are essential components of the coagulation system, as 

demonstrated by the severe bleeding disorder Scott Syndrome (Nieuwland and Sturk, 

2007). Reports on the effect of hypoxia on coagulation are inconsistent, with some 

suggesting that hypoxia activates coagulation (Bendz et al., 2000) and others claiming that 

it has no effect (Crosby et al., 2003). A decrease in platelet count has been noted in healthy 

individuals exposed to acute hypoxia (Mantysaari et al., 2011). As PMPs are positively 

associated with platelet counts (Lok et al., 2008), this could account for the reduction in 

PMPs found here. The findings in this study indicate that MPs, an important coagulation 

component, are reduced during hypoxia. 

   Acute hypoxia in an elderly population has been shown to lead to an insufficient 

antioxidant defence response in erythrocytes and increased erythrocyte lipid damage (de 

Gonzalo-Calvo et al., 2010). The drop in RBC-derived MPs during hypoxia may reflect an 

inability to cope with oxidative stress, and may lead to premature deletion of erythrocytes 

from the circulation. 

   Data presented by Hefti et al as an abstract at the Joint Annual Meeting of the Swiss 

Society of Pneumology, Peadiatric Pneumology, Thoracic Surgery and Underwater and 

Hyperbaric Medical Society, supports the findings here. They found a trend for annexin 

V+ MPs and PMPs to decrease following exposure to high altitude (6210 m) in 8 

individuals (Hefti et al., 2012). 

   Conversely, Vince et al (2009) reported a significant increase in CD106+ EMPs in 

healthy controls following breathing of hypoxic air (15% oxygen, equivalent to 3000 m 
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altitude) in a temperature controlled laboratory, whereas in this study there was no 

significant difference in EMPs, even after 48 hours at moderate altitude. However, they 

measured CD106+ EMPs in only 8 healthy participants, and exposed them to hypoxic 

conditions for only 80 min, which could explain the confounding results. 

   Other measurements of cardiovascular function and glucose and lipid metabolism were 

carried out during this study, and these findings have been submitted for publication in 

Chest. It was found that at higher altitude, healthy individuals have increased blood 

pressure and heart rate. However, exposure to altitude actually improved the lipid profile in 

these individuals, as demonstrated by a significantly increased high density lipoprotein 

(HDL) and a significantly decreased total cholesterol/HDL ratio and triglyceride levels at 

2590 m altitude.  

   In this study, CRP levels were found to be reduced at higher altitude, suggesting that the 

acute phase response is dampened down during times of hypoxia. This may explain to 

some extent the reduced levels of MPs, as levels of CRP and PMPs have previously been 

shown to be associated (Ueba et al., 2010a). 

   No significant changes were found in IL-6, TNF-α and IL-10 levels following hypoxia 

exposure, in this study. This is supported by a study which found that daily exposure to 

hypoxia in young healthy males, resulted in no significant change in levels of IL-6 

(Querido et al., 2011). 

   Elevated levels of MPs have been identified in patients with OSA (Ayers et al., 2009; Yun et 

al., 2010) and one hypothesis is that the intermittent hypoxia, caused by the disease, results in 

increased MP release in vivo. The findings here, suggest that hypoxia itself is not a trigger for 

in vivo release of MPs, and that other causes, such as endothelial dysfunction and systemic 

inflammation, may be responsible for the increased MPs in OSA. 

 

5.4.4. Limitations 

   Healthy individuals were only included if they had no known cardiovascular conditions 

or cardiovascular associated conditions. However, some participants may have had 

underlying conditions, which led to elevated MP levels in some cases. Ethical approval did 

not permit for a full cardiovascular assessment of all healthy controls.  

   There was a predominance of females over males in the healthy control group, and it was 

shown that females have slightly lower levels of procoagulant MPs and PMPs, so this may 

have skewed the normal range downwards. There was also a predominance of healthy 

individuals in their 20s, due to inclusion of individuals from the Early Vascular Study. 

   In order to establish a stable reference range for non-parametric data, it is thought that at 

least 100 healthy participants are required (Linnet, 2000). However, in this study it was 
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only possible to recruit 72 individuals. Ideally, more than 100 participants with an even 

proportion of males and females would have been recruited. With more healthy 

participants it would also have been possible to report a separate normal range for males 

and females.   

   All participants in the effect of hypoxia study were male, so caution should be taken 

when applying these findings to all healthy individuals. Samples for the hypoxia study 

were only centrifuged once prior to freezing. However, all samples were processed 

immediately following venepuncture and identically. 

 

5.4.5. Conclusions 

   Even in healthy individuals there is a large variation in the levels of MPs detected, 

making it difficult to identify subtle changes in MP levels between disease and health. 

However, this work has provided a normal range for a wide range of MP subtypes, using a 

standardised method, with 72 healthy controls. Healthy males had slightly elevated 

procoagulant MPs and PMPs, compared to healthy females. All other MP subtypes were 

similar between males and females. Levels of MPs were not found to be associated with 

age, BMI or BP. 

   Hypoxic conditions in healthy individuals, brought about by exposure to moderate 

altitude, induced a reduction in procoagulant MPs, PMPs and RBC-derived MPs, which is 

in keeping with the improved lipid profile and reduced CRP levels also found. 
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Chapter 6 – Microparticles and Other Inflammatory 

Markers in Obstructive Sleep Apnoea 

 

6.1. Introduction 

   Obstructive sleep apnoea (OSA) is a sleep disorder characterised by upper airway 

obstruction during sleep, causing reduced (hypopnoea) or absent (apnoea) ventilation. The 

airflow is reduced to such an extent that blood oxygen levels fall and a neurological 

mechanism triggers the individual to wake up (Arias and Sanchez, 2007), resulting in a 

fragmented sleep pattern. It is characterised by repetitive apnoeas/hypopnoeas during 

sleep, associated with oxygen desaturations and arousals from sleep. 

 

6.1.1. Epidemiology of Obstructive Sleep Apnoea 

   OSA is common in western countries, and is estimated to occur in 2 % of middle-aged 

women and 4 % of middle-aged men (Young et al., 1993). Risk factors for the disease 

include a high BMI, upper body obesity, male gender and increasing age (Martins et al., 

2007). OSA is the third most common serious respiratory disorder after asthma and chronic 

obstructive pulmonary disease (Chapman et al., 2005). The prevalence of OSA in western 

countries parallels the progressive increase in obesity (Parati et al., 2007).  

 

6.1.2. Symptoms, Diagnosis and Treatment of Obstructive Sleep Apnoea 

   Symptoms include loud snoring, with periods of silence, followed by a gasp and 

resumption of snoring. Therefore, it is often the partner of a sleep apnoea patient who first 

recognises the disease. Other symptoms include daytime sleepiness, headaches, poor 

concentration, depression and increased incidence of work and traffic accidents (Patil et 

al., 2007).  

   The severity of sleep apnoea is determined by the apnoea-hypopnoea index (AHI) and 

the oxygen-desaturation index (ODI), measured per hour during sleep. In adults, an apnoea 

is defined as a cessation, and a hypopnoea as a >30 % reduction, of airflow for at least 10 

seconds (Patil et al., 2007). This is determined during an overnight sleep study, where a 

full polysomnography is carried out (Chapman et al., 2005).  

   Treatment depends on the severity of the syndrome. Often weight-loss, avoiding alcohol 

and changing sleeping position can reduce symptoms in patients with minimally 

symptomatic OSA (Parati et al., 2007). For moderate to severe OSA, treatment with 

continuous positive airway pressure (CPAP) is necessary. CPAP maintains a generally 
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constant pressure in the airway, by generating airflows into the upper airway through a 

nasal or full-face mask (Basner, 2007). The constant airway pressure prevents collapse of 

the pharynx, thereby stopping apnoeas/hypopnoeas and preventing fragmentation of sleep. 

CPAP has been shown to improve daytime symptoms, quality of sleep and blood pressure 

in individuals with OSA (Basner, 2007). 

   In moderate to severe symptomatic OSA, it has been shown that endothelial dysfunction 

improves following treatment with CPAP (Cross et al., 2008; Ip et al., 2004). Vascular 

function is known to be impaired in minimally symptomatic OSA patients when compared 

to matched control subjects without OSA (Kohler et al., 2008), so these patients may also 

benefit from CPAP treatment. 

 

6.1.3. Obstructive Sleep Apnoea and Cardiovascular Disease 

   OSA patients are at a higher risk of developing cardiovascular disease (CVD), including 

hypertension, cardiac arrhythmias and myocardial infarction. OSA patients have a 4.6 fold 

increased risk for coronary artery disease (CAD), when compared to a healthy population 

(Peker et al., 2006). Cross-sectional and prospective studies have implicated OSA as an 

important causal factor in CVD (Marin et al., 2005; Peker et al., 2002; Peppard et al., 

2000; Redline et al., 2010) 

   Many of the risk factors for OSA, such as increased age, male gender and high BMI, are 

also risk factors for CVD, making it difficult to directly link the two diseases. However, a 

study that adjusted data for these risk factors, showed OSA to be an independent risk factor 

for hypertension and its complications (Lavie et al., 2000). The link between OSA and 

CVD is not fully understood. 

   Both the acute and chronic effects of OSA have been implicated in the development of 

CVD. The acute effects include intermittent hypoxia and arousal from sleep, which lead to 

fluctuations in heart rate, sympathetic activation and rises in BP. The chronic effects 

include increased BP, increased oxidative stress, increased coagulation and development of 

insulin resistance (Arias and Sanchez, 2007), all of which are risk factors for CVD. OSA is 

also associated with elevations in CRP and proinflammatory cytokines, creating a 

proinflammatory environment (Minoguchi et al., 2005; Shamsuzzaman et al., 2002). 

   Endothelial dysfunction is reported in several diseases, including CAD (Neunteufl et al., 

1997) and hypertension (Contreras et al., 2000), and it may provide another link between 

OSA and CVD (Figure 6.1). Studies have found impaired endothelial function in patients 

with OSA (de la Pena et al., 2008). This may be caused by repetitive hypoxia, changes in 

shear stress, reduced endothelial repair capacity and vascular reactivity (Lurie, 2011). 

Treatment with CPAP has been shown to improve endothelial function, by endothelial 



nitric oxide (NO) release and stimulating endothelium dependent vasorelaxation in the 

systemic circulation (Lattimore et al., 2006). 

   The assessment of endothelial function in OSA has been carried out using a variety of 

methods, including functional analysis of vascular responses, plasma analysis of 

inflammatory mediators, brachial artery blood flow, and circulating apoptotic endothelial 

cells (Budhiraja et al., 2007). MPs could also serve as useful markers of endothelial 

dysfunction in OSA. LMPs carry the necessary components to cause endothelial 

dysfunction and EMPs may be generated in the response to endothelial dysfunction.  

 

 
Figure 6.1 – Possible mechanisms linking obstructive sleep apnoea and cardiovascular disease, including 

MPs  
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6.1.4. Microparticles and Obstructive Sleep Apnoea 

   The MSc project preceding this PhD led to a publication in the European Respiratory 

Journal on the levels of circulating MPs in patients with minimally symptomatic OSA 

(Ayers et al., 2009). Prior to this, there has been only limited work on MPs in OSA 

patients. One study found significantly more CD63+ activated platelets in OSA patients 

compared to healthy controls, but no difference in PMP levels. However, that study only 

examined 12 OSA patients and 6 healthy controls (Geiser et al., 2002). 

   My initial study (Ayers et al., 2009) examined annexin V+ MPs, PMPs, EMPs and LMPs 

in 56 OSA patients and 15 age, gender, BMI and cardiovascular-comorbidity matched 

controls. Annexin V+ MPs, PMPs and LMPs were all significantly elevated in OSA 

patients compared to controls and EMPs showed a non-significant tendency to be higher. 

Annexin V+ MPs and PMPs in OSA patients were twice those found in controls, 

suggesting that OSA could play an independent role in the formation of MPs. Although 

controls were carefully matched to the patient group, other unmeasured factors may have 

accounted for these differences. Therefore, controlled interventional studies were needed to 

confirm the findings. 

   Since this publication there has been a growing interest in MPs in OSA. Maruyama et al 

(2012) confirmed our findings of elevated PMPs in OSA patients. Jelic et al (2009) found 

that CD31+CD42- EMPs were significantly higher in OSA patients than controls. These 

EMPs were inversely correlated with endothelial progenitor cells, a marker of endothelial 

repair. They also found that four weeks of CPAP treatment, caused a tendency of 

CD31+CD42- EMPs to decrease. Similarly Yun et al (2010) reported that CD31+CD42- 

EMP and CD62E+ EMP levels were significantly higher in OSA patients than controls. 

They also found that 4-6 weeks CPAP treatment reduces the levels of CD62E+ EMPs. 

Another study found that the levels of CD31+CD42- EMPs, CD62E+ EMPs, LMPs and 

PMPs varied according to the severity of paediatric OSA, and that LMPs and PMPs were 

significantly associated with AHI (Kim et al., 2011). These studies suggest that MP levels 

may assist in determining the severity of disease in OSA. However, further work is needed 

to determine if MP levels are a useful indicator of treatment success. 

   Few studies have analysed levels of MPs in OSA, and even fewer assess the impact of 

treatment. Although there is preliminary data from several case-control studies that MP 

levels are increased in patients with OSA, and that CPAP therapy lowers these levels 

(Ayers et al., 2009; Jelic et al., 2009; Kim et al., 2011; Maruyama et al., 2012b; Yun et al., 

2010), there are no data from randomised controlled trials proving a causal relationship 

between OSA and increased levels of MPs. This uncertainty was addressed in this Chapter 

by measuring MP levels in two double-blind randomised controlled studies. The first 
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determines the effect of six months CPAP treatment in a group of minimally symptomatic 

patients. The second investigates the effect of a two week CPAP therapy withdrawal on 

levels of MPs in moderate/severe OSA patients. 

 

6.1.5. Other Inflammatory Markers and Obstructive Sleep Apnoea 

   Levels of proinflammatory cytokines, including IL-6, follow a circadian rhythm, 

suggesting a physiological role of these cytokines in sleep (Dominguez Rodriguez et al., 

2003). In OSA, intermittent hypoxia acts as a danger signal for the immune system and 

induces the synthesis of inflammatory cytokines (Kent et al., 2011). 

   Previously our group found that 4 weeks of active CPAP treatment led to no significant 

change in inflammatory cytokines, IL-6 and IFN-γ, despite large improvements in both 

symptoms and objective sleepiness scores (Kohler et al., 2009). However, other studies 

have found a positive correlation between CRP and proinflammatory cytokines, such as 

IL-6 and IL-18, with the severity of OSA (Minoguchi et al., 2005; Shamsuzzaman et al., 

2002). Plasma levels of IL-6 and TNF-α were significantly higher in OSA patients 

compared to controls, and they both correlated with AHI (Ciftci et al., 2004). Also TNF-α 

has also been reported to return to healthy control levels, following 6 weeks of CPAP 

therapy (Ryan et al., 2005). Significantly lower IL-10 plasma levels have been detected in 

OSA patients compared to age and sex matched controls (Alberti et al., 2003), suggesting a 

reduced regulation of inflammation. 

   The two double-blind randomised controlled studies in this Chapter, will also examine 

the effect of CPAP treatment on levels of CRP, IL-6, TNF-α and IL-10 in plasma. 

 

6.1.6. Aims of this Chapter 

1) To establish the impact of a 6 month introduction of CPAP therapy in minimally 

symptomatic OSA patients on circulating MPs and other inflammatory markers. 

 

2) To determine the impact of a 2 week withdrawal from CPAP therapy in moderate 

to severe OSA patients on circulating MP levels and other inflammatory markers. 
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6.2. Methods 

6.2.1. Patients and Trial Design 

6.2.1.1. Effect of 6 months CPAP Treatment in Minimally Symptomatic OSA 

   The MOSAIC trial (Multicentre Obstructive Sleep Apnoea Interventional Cardiovascular 

trial) recruited patients with minimally symptomatic OSA. Patients were randomised to 

either 6 months use of CPAP therapy or 6 months supportive care. 54 patients had their 

MP levels assessed at the 0 and 6 month time points. The trial was approved by the Oxford 

research ethics committee (RECNo: 05/Q1604/159) and registered (ISRCTN 34164388). 

Written informed consent was obtained from all participants. 

   Patients were referred to the Oxford Centre for Respiratory Medicine. Patients were 

eligible for the trial if they were aged between 45 and 75 years, had proven OSA with a 

severity defined as >7.5 oxygen desaturations of >4 % per hour, and no history of 

excessive daytime sleepiness or other daytime symptoms of OSA which would have 

justified initiation of CPAP therapy. Patients with ventilatory failure, previous exposure to 

CPAP, blood pressure >180/110 mmHg, a current professional driver or a history of any 

sleep related accident, were excluded.  

   Patients randomised to CPAP therapy were instructed in the use of an auto-adjusting 

CPAP machine (Autoset S8, ResMed, Abingdon, UK) by a trained sleep nurse. Patients 

randomised to standard care were advised to continue with their current medication, but 

were not given specific weight reduction or lifestyle advice. 

6.2.1.2. Effect of 2 weeks CPAP Treatment Withdrawal in Moderate/Severe OSA 

Patients 

   Patients previously diagnosed with OSA and treated with CPAP, were eligible for the 

trial if they were aged between 20 and 75 years, had an oxygen desaturation index (ODI, 

≥4 % dips) of more than 10 per hour in their initial sleep study, and if they had been treated 

with CPAP for more than 12 months with a minimal average compliance of 4 hours per 

night. Patients previously diagnosed with unstable and untreated CAD, severe and 

inadequately controlled arterial hypertension, a history of any sleep related accident or who 

were current professional drivers were excluded from the study. The trial was approved by 

the University Hospital of Zurich research ethics committee (EK-1600) and registered 

(ISRCTN 93153804). Written informed consent was obtained from all participants. 

   The persistence of OSA was confirmed by home overnight pulse-oximetry on the last 

night of a 4-night period without CPAP, eligible patients returned to therapy with CPAP 

for at least one week. Polysomnographic sleep studies were performed and sleepiness was 

assessed using the Epworth sleepiness score (Johns, 1991). 
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   41 patients were randomised to either continue with CPAP therapy for 2 weeks or switch 

to subtherapeutic CPAP for 2 weeks. In patients randomised to subtherapeutic CPAP, 

subtherapeutic pressure was achieved by setting the CPAP machine to the lowest pressure, 

inserting a flow-restricting connector at the machine outlet, and inserting six extra holes in 

the collar of the main tubing as previously described (Pepperell et al., 2002).  

 

6.2.2. Measurement of Microparticles 

   MPs were measured, blind of the patient group, by the assay described in the Chapter 2. 

Briefly, blood was drawn from fasting participants in the morning between 09.00 and 

10.00 am. Within 15 mins of venepuncture, the tubes were centrifuged at 1550 g for 20 

min, to produce PPP. 250 l of PPP was frozen immediately and stored at -80 C. The 250 

l PPP aliquots were thawed on ice and then washed twice at 18,000 g for 30 min.   

   In both studies, annexin V-FITC was used to stain procoagulant MPs. CD31-PE and 

CD41-PECy5 were used to differentiate between PMPs (CD31+CD41+) and EMPs 

(CD31+CD41-). CD144-PE and CD106-PE-Cy5 were also used as markers for EMPs. 

CD45-APC was used as a marker for LMPs. For the Zurich study, additional MP markers 

were used; lactadherin-FITC, CD62E-PE Cy5, CD66B-FITC, CD14-PE, CD3-PerCP and 

glycophorin-A-PE.  

 

6.2.3. Measurement of Other Inflammatory Markers 

   For the MOSAIC study, heparin blood was drawn from fasting participants at baseline 

and 6 months later. For the Zurich study, heparin blood was drawn from patients at 

baseline and at 2 weeks. Measurements of hsCRP, IL-6, IL-10 and TNF-α were performed 

on plasma samples which had been stored at -80 °C.  

   IL-6, TNF-α and IL-10 were measured by high sensitivity ELISA using commercially 

available kits (BMS213HS, BMS223HS and BMS215HS, Bender MedSystems GmbH, 

Vienna, Austria). The lower limits of detection and the intra and inter-assay coefficients of 

variation are as described in Chapter 5. Cytokine measurements were carried out in 

duplicate and the mean value was reported. 

   CRP was analysed by the Siemens BN II nephelometry method, which measures a range 

between 0.18 – 1150 mg/l (Siemens, Surrey, UK). 
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6.2.4. Statistics 

   Statistics were performed using GraphPad Prism 5 (GraphPad Software, San Diego). 

Differences in baseline characteristics were assessed by independent t-tests and chi2 tests 

as appropriate. Wilcoxon matched pairs tests were performed to assess within group 

changes. Comparisons of changes between groups were assessed by Mann-Whitney U 

tests, and expressed as median difference in change of levels between groups. Non-

parametric confidence intervals were calculated using Confidence Interval Analysis 

Software (CIA Version 1.1). Associations between levels of MPs and other inflammatory 

markers in the CPAP Withdrawal Study were assessed by Spearman correlation. For 

correlations, results from all biomarkers were log transformed to normalise data. A p-value 

of <0.05 was considered statistically significant. 
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6.3. Results 

6.3.1. Effect of 6 months CPAP Treatment in Minimally Symptomatic 

Obstructive Sleep Apnoea (MOSAIC) 

6.3.1.1. Subject Characteristics 

   54 OSA patients were eligible for the study, 27 were randomly assigned to receive 6 

months CPAP treatment and 27 were assigned to receive only supportive care during this 

time. 

   Table 6.1 shows the baseline characteristics of the two groups. There were no significant 

differences in the baseline characteristics. 

 

Table 6.1 – Baseline Characteristics of Patient Groups 

  
CPAP Group 

(n=27) 
Supportive Care Group 

(n=27) P-value 

Age 56.3 (6.3) 57.1 (6.0) 0.6152 

Males/Females 25/2 26/1 0.6463 

BMI 31.6 (5.5) 32.6 (5.3) 0.5387 
Neck Circumference in 
cm 42.9 (3.7) 44.0 (3.5) 0.2549 

Current Smokers (%) 14.8 18.5 0.7212 

Ex Smokers (%) 40.7 29.6 0.4022 

ESS before therapy 8.7 (3.9) 7.9 (3.7) 0.3958 

Systolic BP 129.1 (8.2) 132.2 (12.7) 0.2886 

Diastolic BP 82.1 (7.4) 82.5 (8.1) 0.8615 
Values are mean (SD), unless otherwise stated 

 

 

 

 

 

 

 

 

 



6.3.1.2. Procoagulant Microparticles 

   The levels of annexin V+ MPs were significantly decreased in the CPAP group 

(p=0.005), but not in the control group. The percentage decrease was greater in the CPAP 

treated group (-25.6 %) than the control group (-12.8 %) (Figure 6.2). 

 

 

Figure 6.2 – Median (IQR) levels of annexin V+ MPs in OSA patients receiving either 6 months CPAP 

treatment or 6 months supportive care.  

 

6.3.1.3. Platelet-Derived Microparticles 

   The levels of CD31+CD41+ PMPs were significantly decreased for both the CPAP 

group (p=0.008) and control group (p=0.029). However, the percentage decrease was 

greater in the CPAP treated group (-22.9 % versus -15.6 %) (Figure 6.3). 

 

 

Figure 6.3 – Median (IQR) levels of CD31+CD41+ PMPs in OSA patients receiving either 6 months CPAP 

treatment or 6 months supportive care.  
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6.3.1.4. Leucocyte-Derived Microparticles 

   The levels of CD45+ LMPs were significantly increased for the CPAP group (p=0.007), 

but not for the control group (Figure 6.4). 

 

 

Figure 6.4 – Median (IQR) levels of CD45+ LMPs in OSA patients receiving either 6 months CPAP 

treatment or 6 months supportive care.  

 

6.3.1.5. Endothelial Cell-Derived Microparticles 

   Six months of CPAP treatment did not significantly change the levels of CD31+CD41-, 

CD144+ and CD106+ EMPs in either of the groups (data not shown). 

 

6.3.1.6. Effect of 6 Months CPAP Therapy on Levels of Inflammatory Markers 

 

Table 6.2 – Effect of 6 Months CPAP Therapy on Levels of Inflammatory Markers 

  Baseline Levels Change from Baseline   

  CPAP Group 
Supportive 
Care Group CPAP Group 

Supportive 
Care Group P-value 

CRP 
(mg/l) 

1.89      
(1.06 – 2.33) 

2.21  
(0.84 – 5.50) 

0.01  
(-1.16 – 0.22) 

-0.15  
(-1.76 – 1.10) 0.7819 

IL-6 
(pg/ml) 

0.43  
(0.22 – 0.58) 

0.48  
(0.16 – 1.03) 

0.00 
 (-0.19 – 0.22) 

0.04  
(-0.16 – 0.23) 0.5165 

TNF-α 
(pg/ml) 

1.31  
(1.01 – 1.87) 

1.31  
(1.03 – 1.61) 

0.20  
(-0.08 – 0.32) 

0.14  
(-0.13 – 0.23) 0.7489 

IL-10 
(pg/ml) 

0.68  
(0.40 – 1.10) 

0.50 
 (0.25 – 0.75) 

0.02  
(-0.11 – 0.23) 

0.09 
 (-0.08 – 0.32) 0.6843 

Values are median (interquartile range) 

 

   There was no significant change from baseline values in CRP, IL-6, TNF-α, or IL10 in 

either the CPAP or the supportive care group.  
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6.3.2. Effect of 2 weeks CPAP Treatment Withdrawal in Moderate to 

Severe OSA Patients (Zurich Study) 

6.3.2.1. Subject Characteristics 

   41 patients were eligible for the study. 20 subjects were randomly assigned to continue 

on therapeutic CPAP and 21 subjects were randomly assigned to receive subtherapeutic 

CPAP. One patient from the subtherapeutic CPAP group withdrew after randomisation and 

two patients from the subtherapeutic CPAP group could not have blood drawn at two 

weeks (Figure 6.5). The baseline patient characteristics are shown in Table 6.3.  
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Figure 6.5 – Trial Profile for Effect of 2 weeks CPAP Treatment Withdrawal in Moderate/Severe OSA 

Patients 

110 patients assessed 

67 did not enter study: 
 - 51 did not consent   
 - 11 did not meet inclusion 
criteria  
 - 5 did meet exclusion criteria   

43 patients eligible 

2 patients did not attend      

20 patients continued CPAP 21 patients received Placebo-CPAP 

Data of 20 patients analysed Data of 18 patients analysed 

41 patients randomised  

1 patient 
withdrew 

2 patients not 
bled at 2 weeks 
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Table 6.3 – Baseline Patient Characteristics 
 Therapeutic CPAP 

group (n=20) 
Subtherapeutic-CPAP 

group (n=18) 
P value 

Age 63.6 (5.1) 61.8 (7.5) 0.393 

Males/females 19/1 21/0 0.300 

BMI 32.9 (6.5) 33.1 (4.4) 0.904 

Waist/hip circumference 
ratio 

1.0 (0.1) 1.0 (0.0) 0.106 

Neck circumference in 
cm 

46.4 (3.7) 46.1 (4.2) 0.838 

Current smokers (%) 19.1 5.0 0.170 

Ex-smokers (%) 38.1 25.0 0.368 

Hypertension (%) 80.9 70.0 0.414 

Diabetes (%) 23.8 20.0 0.768 

CAD (%) 4.8 10.0 0.520 

Cholesterol-lowering 
medication (%) 

33.3 35.0 0.910 

Systolic blood pressure  133.3 (16.6) 129.2 (12.7) 0.380 

Diastolic blood pressure 82.3 (7.8) 82.2 (8.2) 0.980 

AHI original sleep study 36.0 (17.3) 45.3 (22.3) 0.155 

ODI original sleep study 26.6 (13.5) 37.3 (22.7) 0.141 

AHI on CPAP 5.1 (2.7) 4.3 (2.3) 0.329 

CPAP compliance in min 373.1 (67.9) 362.8 (72.3) 0.642 

ESS before therapy 13.8 (2.6) 15.3 (3.5) 0.188 

ESS on CPAP  7.4 (3.1) 6.6 (2.7) 0.399 

 

Values are means (SD), unless otherwise stated.  

 

   There were no significant differences between the baseline characteristics of the two 

patient groups. 
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   The effectiveness of CPAP withdrawal for the return of OSA symptoms was examined 

by measuring the AHI, ODI and ESS at baseline and after 2 weeks in both patient groups 

(Table 6.4). 

 
Table 6.4 – Effect of CPAP-Withdrawal on Sleep Disordered Breathing and Sleepiness 

 Baseline Change from baseline  
 Therapeutic 

CPAP (n=20) 
Subtherapeutic 
CPAP (n=18) 

Therapeutic 
CPAP (n=20) 

Subtherapeutic 
CPAP (n=18) 

P value 

AHI   
(events/h) 

1.7 (1.8) 2.2 (2.5) +0.4 (2.8) +33.8 (24.3) <0.001 

ODI 
(events/h) 

0.5 (0.8) 0.9 (2.0) -0.2 (1.0) +26.3 (22.9) <0.001 

ESS 
 

7.4 (3.1) 6.6 (2.7) -0.7 (2.2) +2.0 (2.7) 0.001 

 

Values are means (SD). P-value is Mann Whitney test between Change from Baseline in Therapeutic CPAP 
versus Subtherapeutic CPAP 

 

   Withdrawal of CPAP therapy led to a significant increase in AHI and ODI at 2 weeks, in 

comparison to continuation on CPAP (p<0.001). ESS increased significantly at 2 weeks in 

the subtherapeutic group compared to the therapeutic group (p=0.001). These results 

indicate a return of OSA symptoms in the subtherapeutic group after 2 weeks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.3.2.2. Procoagulant Microparticles 

    Withdrawal of CPAP therapy did not significantly change the number of annexin V+ 

MPs or lactadherin+ MPs, although there was a trend for them to increase in the 

Subtherapeutic CPAP group (Figure 6.6).  

 

 

 
Figure 6.6 – Median (IQR) levels of annexin V+ and lactadherin+ MPs in OSA patients receiving either 

therapeutic or subtherapeutic CPAP 

 

6.3.2.3. Platelet-derived Microparticles 

   Withdrawal of CPAP therapy did not significantly change the number of CD31+CD41+ 

PMPs in either group. 

 

6.3.2.4. Leucocyte-derived Microparticles 

   Withdrawal of CPAP therapy did not significantly change the number of CD45+ LMPs 

in either group. 

 

6.3.2.5. RBC-Derived Microparticles 

   Withdrawal of CPAP therapy did not significantly change the number of glycophorin A+ 

RBC MPs in either group 
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6.3.2.6. Endothelium-derived Microparticles 

   Withdrawal of CPAP therapy was associated with a significant increase in the level of 

both CD62E+ EMPs (p=0.040) and CD106+ EMPs (p=0.007), not seen in the therapeutic 

CPAP group (Figures 6.7 and 6.8). There was also a significant difference in the change in 

CD62E+ EMP levels (median difference in change +32.4 per µl (95 % CI +7.3 to +64.1 

per µl), p=0.010) (Figure 6.7), but not in CD106+ EMPs (median difference in change 

+21.9 per µl (95 % CI -4.7 to +166.0 per µl) p=0.105), between the therapeutic and 

subtherapeutic groups.    

 

 

Figure 6.7 – Median (IQR) levels of CD62E+ EMPs in OSA patients receiving either therapeutic or 

subtherapeutic CPAP. Box and whisker plot shows change in CD62E+ EMPs between baseline and 2 weeks 

 

 
Figure 6.8 – Median (IQR) levels of CD106+ EMPs in OSA patients receiving either therapeutic or 

subtherapeutic CPAP.  
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   Withdrawal of CPAP therapy did not significantly change the levels of CD31+CD41- 

EMPs or CD144+ EMPs in either group. 

 

6.3.2.7. Granulocyte-derived Microparticles 

   Withdrawal of CPAP therapy was associated with a significant increase in the number of 

CD66B+ granulocyte-derived MPs (p=0.029), not seen in the therapeutic CPAP group 

(Figure 6.9). Although, there was no significant difference in the change in CD66B+ MP 

levels between the therapeutic and subtherapeutic groups (median difference in change 

+16.3 per µl (95 % CI -5.3 to +43.8 per µl) p=0.132). 

 
Figure 6.9 – Median (IQR) levels of CD66B+ granulocyte-derived MPs in OSA patients receiving either 

therapeutic or subtherapeutic CPAP 

 

6.3.2.8. Monocyte-derived Microparticles 

   Withdrawal of CPAP therapy was associated with a significant increase in the number of 

CD14+ monocyte-derived MPs (p=0.002), not seen in the therapeutic CPAP group (Figure 

6.10). Although, there was no significant difference in the change in CD14+ MP levels 

between the therapeutic and subtherapeutic groups (median difference in change +15.6 per 

µl (95 % CI -10.4 to +58.0 per µl) p=0.193). 

 
Figure 6.10 – Median (IQR) levels of CD14+ monocyte-derived MPs in OSA patients receiving either 

therapeutic or subtherapeutic CPAP 
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6.3.2.9. Effect of CPAP Withdrawal on Levels of Inflammatory Markers 

 

Table 6.5 – Effect of CPAP Withdrawal on Markers of Inflammation 

  Baseline Change from baseline   

  Therapeutic 
CPAP (n=20) 

Subtherapeutic 
CPAP (n=21) 

Therapeutic 
CPAP (n=20) 

Subtherapeutic 
CPAP (n=18) 

P value

CRP 
(mg/ml) 

1.2  
(0.7 – 2.4) 

2.4  
(1.0 – 4.5) 

-0.1  
(-0.3 – 0.6) 

-0.3  
(-1.0 – 0.1) 

0.077 

IL-6   
(pg/ml) 

0.5  
(0.3 – 1.0) 

0.3  
(0.3 – 0.8) 

0.0  
(-0.2 – 0.2) 

0.0  
(-0.2 – 0.1) 

0.838 

TNF-α 
(pg/ml) 

0.7  
(0.5 – 0.7) 

0.6  
(0.5 – 0.7) 

0.0  
(-0.1 – 0.1) 

0.0  
(-0.1 – 0.1) 

0.661 

IL-10  
(pg/ml) 

0.8  
(0.5 – 1.3) 

0.6  
(0.5 – 1.1) 

0.0  
(-0.2 – 0.1) 

0.0  
(-0.1 – 0.2) 

0.413 

Values are medians (quartiles). P-value is Mann Whitney test between Change from Baseline in Therapeutic 

CPAP versus Subtherapeutic CPAP 

 

   The effect of CPAP withdrawal on other markers of inflammation was also assessed. 

There were no significant changes in CRP, IL-6, IL-10 or TNF-α at 2 weeks, in the 

subtherapeutic group compared to the therapeutic CPAP group. These findings have been 

published in the American Journal of Respiratory and Critical Care Medicine (Kohler et 

al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.3.2.10. Associations between Microparticle and Other Inflammatory Marker Levels 

   To examine any link between MPs and other markers of inflammation, correlation 

analysis was performed. There were no significant associations found between IL-6, IL-10 

and TNF-α and levels of any MP subtype (data not shown). CRP was found to be weakly 

positively associated with annexin V+ MPs, lactadherin+ MPs and CD31+CD41+ PMPs in 

the CPAP Withdrawal study (Figure 6.11). 

 

 

 
Figure 6.11 – Associations between CRP and proacoagulant MP and PMP Levels. Data was log transformed. 
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6.4. Discussion 

6.4.1. Microparticles in Obstructive Sleep Apnoea 

   There have been no previous published reports of randomised controlled trials 

investigating the effects of CPAP therapy on the level of MPs. The first trial in this 

Chapter showed that annexin V+ MPs were significantly reduced in a group of minimally 

symptomatic OSA patients receiving 6 months CPAP therapy, and not changed in the 

group receiving only supportive care. PMP levels were significantly reduced in both 

groups of patients, and levels of LMPs were significantly elevated following 6 months of 

CPAP treatment, but were not altered in the control group. Levels of EMPs were not 

changed in either group of patients.  

   The second trial showed that withdrawal of CPAP therapy for 2 weeks was associated 

with a significant increase in CD62E+ and CD106+ EMP, granuolocyte-derived MP and 

monocyte-derived MP levels in moderate/severe OSA patients, not seen in the those 

patients continuing therapy. 

   OSA has been shown to be an independent causal factor for hypertension, and a risk 

factor for other cardiovascular diseases (Marin et al., 2005; Peker et al., 2006). The current 

opinion is that the consequences of OSA, including intermittent hypoxia, intrathoracic 

pressure changes and arousals, may result in inflammation, endothelial dysfunction and 

ultimately arterial disease (Kohler and Stradling, 2010). 

   MPs could provide a linking mechanism between OSA and CVD. MPs appear to be both 

a cause and a consequence of endothelial dysfunction, and their levels can be correlated 

with other markers of endothelial dysfunction (Amabile et al., 2005). OSA is considered to 

represent a proinflammatory state, demonstrated by increased levels of proinflammatory 

proteins and cytokines (Minoguchi et al., 2005; Shamsuzzaman et al., 2002). MPs may be 

produced in response to inflammation, but they also have potent proinflammatory 

potential. MPs can also express tissue factor, giving them thrombotic properties. Therefore, 

MPs have the potential to increase cardiovascular risk in OSA patients, through endothelial 

dysfunction, inflammation and thrombosis.  

6.4.1.1. Procoagulant Microparticles 

    In the first trial, a significant reduction of annexin V+ MPs was found following 6 

months of CPAP treatment. Procoagulant MPs are produced in response to a variety of 

stimuli, including hypoxia, inflammatory cytokines and shear stress (Nomura et al., 2008). 

CPAP treatment has been shown to reduce hypoxia, surges in blood pressure and levels of 

inflammatory cytokines (Lattimore et al., 2006; Steiropoulos et al., 2009). Therefore, 

CPAP treatment may be directly responsible for this reduction (Figure 6.12). 
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   In the second trial, withdrawal of CPAP therapy did not lead to a significant increase in 

the number of total procoagulant MPs, determined by annexin V and lactadherin. The 

majority of circulating procoagulant MPs are platelet-derived, and as PMPs were not 

significantly altered by CPAP withdrawal, it would be unlikely to detect a significant 

change in procoagulant MPs.     

6.4.1.2. Platelet-derived Microparticles 

   PMP levels have previously been shown to be elevated in patients with minimally 

symptomatic OSA (Ayers et al., 2009). Therefore, it may be expected that a treatment, 

which significantly improves the pathological consequences and symptoms of OSA, could 

also reduce the levels of PMPs. 

   A recent study found that PMP levels were elevated in severe OSA and that PMP levels 

were correlated with AHI. 6 months CPAP treatment led to a significant reduction in PMP 

levels (Maruyama et al., 2012b). However, they only examined the effect of CPAP therapy 

in 7 patients, and they used an ELISA based method for the detection of PMPs. 

   In the first trial, a significant reduction of PMPs was found in both the CPAP treated 

patients and those receiving just supportive care. It is possible that the control group 

showed a placebo effect and whilst taking part the patients in the supportive care group 

reduced their cardiovascular risk factors and therefore their circulating levels of PMPs. 

   In the second trial, PMPs were not significantly changed from baseline after either 2 

weeks of therapeutic or subtherapeutic CPAP. It may be that 2 weeks CPAP withdrawal 

was not sufficient to cause a significant increase in the levels of PMPs.  

6.4.1.3. Endothelial cell-derived Microparticles 

   The first trial found no significant alterations in CD31+CD41- EMPs, CD144+ and 

CD106+ EMPs over the 6 months. This may be due to minimally symptomatic OSA 

patients having very small EMP populations, making it difficult to determine small 

changes in their levels.  

   It is recognised that different subtypes of EMPs are formed by different mechanisms. 

CD62E+ EMPs are suggested to be markers of early endothelial cell activation, whilst 

CD144+ and CD31+CD41- EMPs reflect structural damage of endothelial cells (Amabile 

et al., 2008).  CD62E+ EMPs were not measured in the first trial, and this may explain 

why a significant reduction in EMPs was not found. 

   In the second trial, CD62E+ EMPs and CD106+ EMPs were both significantly increased 

from baseline to 2 weeks in the subtherapeutic group, and the change in CD62E+ EMP 

levels was significantly different between the therapeutic and the subtherapeutic groups 

(Figure 6.12). CD31+CD41- EMPs and CD144+ EMPs did not significantly change over 

the two weeks in either patient group. 
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   Yun et al (2010) reported significantly higher levels of CD31+CD42- EMPs and 

CD62E+ in OSA than in matched controls, and that CD31+CD42- EMPs were correlated 

with OSA severity. Following CPAP treatment, a significant reduction in CD62E+ EMPs 

but not CD31+CD42- EMPs was found, supporting the findings in this Chapter. CPAP 

treatment has previously been shown to improve endothelial function (Cross et al., 2008; 

Ip et al., 2004), and the decrease in EMP levels may be an underlying mechanism of 

endothelial function improvement. However, it is remains unclear as to whether EMPs are 

a cause or a consequence of endothelial dyfunction. 

6.4.1.4. Leucocyte-derived Microparticles 

   LMP levels have been previously shown to be elevated in patients with minimally 

symptomatic OSA (Ayers et al., 2009; Priou et al., 2010).  

   In the first trial, a significant increase in LMP levels was found in the CPAP-treated 

group, but not in the control group. This increase was unexpected, as levels of other MPs 

appear to be reduced following CPAP, and may suggest that different MP subtypes are 

triggered by very different mechanisms. Kim et al (2011) found that LMPs were positively 

associated with AHI, and as CPAP treatment is known to lower AHI, it was expected that 

LMPs would also be lowered. However, the decrease in procoagulant MPs alongside the 

increase in LMPs may suggest a skewing from a procoagulant role, to one involving 

inflammation.  

   In the second trial, withdrawal of CPAP treatment was not associated with a significant 

change in the number of CD45+ LMP levels. It is possible that 2 weeks of CPAP 

withdrawal was not sufficient to cause a significant increase in LMPs. 

6.4.1.5. Granulocyte-Derived Microparticles 

   Withdrawal of CPAP therapy was associated with a significant increase in the number of 

granulocyte-derived MPs (Figure 6.12). A previous study found that granulocyte-derived 

MPs were increased in OSA patients, with an ODI of 10 events per hour (Priou et al., 

2010). Polymorphonuclear cells have an enhanced readiness to respond with superoxide 

generation in OSA, which is reversed by CPAP treatment (Schulz et al., 2000). Therefore, 

it may be expected that granulocyte-derived MPs, a marker of polymorphonuclear cell 

activation, would be significantly elevated following withdrawal from CPAP. 

6.4.1.6. Monocyte-Derived Microparticles 

   Withdrawal of CPAP therapy was associated with a significant increase in monocyte-

derived MPs in the CPAP withdrawal group, not seen in the continuing CPAP group. This 

is the first study to have analysed the levels of monocyte-derived MPs in OSA patients. 

Monocyte MPs can cause activation of the endothelium, by delivering IL-1β (Wang et al., 

2011), and therefore they may be another trigger of endothelial dysfunction in OSA. 



6.4.1.7. Red Blood Cell-Derived Microparticles 

   Withdrawal of CPAP was not associated with a significant change in the number of 

RBC-derived MPs, suggesting that they are not a major subset of MPs affected by CPAP 

treatment in OSA patients. 

CD62E+ and CD106+ 
EMPs increased by CPAP 
withdrawal

Procoagulant MPs and 
PMPs decreased 
during CPAP therapy

Granulocyte and 
Monocyte MPs increased 
by CPAP withdrawal

 
Figure 6.12 – Possible mechanisms linking obstructive sleep apnoea and cardiovascular disease, including 

findings from randomised controlled trials. 

 

6.4.2. Other Inflammatory Markers in Obstructive Sleep Apnoea 

   There is evidence from in vitro and controlled studies in humans, implicating systemic 

inflammation as an important mechanism linking OSA with endothelial dysfunction and 

vascular disease, but there is little data from randomised controlled trials on this possible 

association.  

   The first trial found that there were no significant changes in the levels of CRP, IL-6, 

TNF-α or IL-10, following introduction of CPAP therapy for 6 months. This is 

corroborated by previous trials, including two which both found that 3 months of CPAP 

therapy did not alter levels of IL-6 and TNF-α in OSA patients (Arias et al., 2008; 

Vgontzas et al., 2008).  
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   The second trial in this Chapter found that 2 weeks of CPAP withdrawal did not lead to a 

change in cytokines, IL-6, TNF-α and IL-10. These findings confirm the results of an 

uncontrolled study in which no significant increases in IL-6 and TNF-α after 7 days of 

CPAP withdrawal were found (Phillips et al., 2007).  
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   2 weeks of CPAP withdrawal did not cause a significant change in levels of CRP. This is 

supported by a study which also found no change in CRP levels following 7 days of CPAP 

withdrawal (Phillips et al., 2007). However, another study found that treatment for three 

months with both fixed and auto-adjusting CPAP did cause a significant decrease in CRP 

(Patruno et al., 2007). 

   CPAP withdrawal for two weeks, in this Chapter, led to the recurrence of OSA and an 

increase in sleepiness score, so is an effective for examining a return of OSA. However, it 

may be that 2 weeks of CPAP withdrawal was not sufficient to induce a systemic 

inflammatory response.  

 

6.4.2.1. Associations between Microparticle and Other Inflammatory Marker Levels 

   IL-6 was not significantly associated with levels of any subtype of MPs, confirming 

previous findings of no association between IL-6 and PMPs (Diamant et al., 2002). 

However, significant associations have been found between PMPs and IL-6 in a study of 

464 healthy individuals (Ueba et al., 2010a). Data in this Chapter reveal no association 

between TNF-α and any MP subtype, in contrast to Diamant et al (2002) who noted a 

positive association between levels of PMPs and TNF-α when measuring them in type 2 

diabetes patients and healthy controls. There was also no association between IL-10 and 

MP levels. IL-10 is an anti-inflammatory cytokine, so it may have been expected to be 

inversely correlated with proinflammatory MPs. 

   The lack of associations between the cytokines measured here and the MPs could be 

explained by the very low levels of cytokines detected. Discrepancies between other 

studies that have examined the associations of MPs with these cytokines, may be due to the 

subjects selected and the techniques used to measure MPs. 

   CRP was weakly positively associated with annexin V+ MPs, lactadherin+ MPs and 

PMPs. This is supported by Ueba et al (2010) who found a positive association between 

CRP and PMPs in 210 healthy men. CRP itself can be found on the surface of MPs, and 

CRP+ MPs were found to be positively associated with CRP levels in acute myocardial 

infarction patients (van der Zee et al., 2010). The fact that the associations were found to 

be weak in this Chapter, suggests that although MPs and CRP are in some way associated, 

their interactions are complex, and that there are many other factors which have an impact 

on their levels. 
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6.4.3. Limitations 

   The patients in the first trial had only minimally symptomatic OSA, and therefore their 

elevations of MPs were small, making it difficult to detect subtle changes in levels 

following treatment.  

   In the second trial, a longer CPAP withdrawal period may have been associated with 

more pronounced changes in MP levels. However, because of ethical issues, it would be 

difficult to prolong this intervention time.  

   In both studies, samples were only centrifuged once at 1550 g for 20 minutes, to remove 

cells and platelets, prior to freezing. However, all samples were processed within 15 

minutes and were all handled identically. 

 

6.4.4. Conclusions    

   These are the first randomised controlled trials to assess the impact of CPAP therapy on 

MP levels. Treatment for 6 months with CPAP appears to reduce levels of annexin V+ 

MPs in minimally symptomatic patients. This suggests that CPAP treatment reduces some 

of the stimuli that trigger release of these MPs. However, LMPs were elevated following 

CPAP treatment, suggesting that different mechanisms trigger the release of distinct MP 

subpopulations.  

   Withdrawal of CPAP therapy for 2 weeks, in moderate to severe OSA patients, was 

associated with a significant increase in EMPs, granulocyte-derived MPs and monocyte-

derived MPs. These results provide some evidence that MP formation may be causally 

linked to OSA and may promote endothelial activation in these patients. 
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Chapter 7 – Microparticles in Patients with Increased 

Risk of Cardiovascular Disease 

 

7.1. Introduction 

7.1.1. Epidemiology of Cardiovascular Disease and Assessment of 

Cardiovascular Disease Risk 

   Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the 

developed world (Girn et al., 2007). It is the cause of almost 198,000 deaths each year in 

the UK, approximately half of which are due to coronary artery disease (CAD) (Allender et 

al., 2008a). Death rates from CVD, specifically CAD, have been falling since the 1970s, 

due to reductions in the major risk factors, particularly smoking, and improvements in 

treatments. However, in certain groups, such as young women, this improvement in 

mortality appears to be declining (Allender et al., 2008b). 

   Early detection of cardiovascular risk allows for modifications of lifestyle factors, 

reducing risk in individuals. Several risk score calculations have been developed to predict 

sub-clinical atherosclerosis, including the Framingham risk score and Systemic Coronary 

Risk Evaluation (Raiko et al., 2010). A risk score takes into account certain risk factors, 

including age, sex, BP, cholesterol, smoker status and history of CVD, to predict the risk of 

a fatal cardiovascular event in the subsequent years (Pocock et al., 2001). 

   There is considerable interest in blood biomarkers that can provide additional 

information about the status of the cardiovascular system at the early stages of 

atherosclerosis before actual clinical manifestations. Currently the blood biomarkers 

recommended for use in cardiovascular risk prediction are LDL cholesterol, HDL 

cholesterol and triglycerides. However it has been suggested that the measurement of 

inflammatory markers may enhance risk evaluation (Packard and Libby, 2008). 

 

7.1.2. Coronary Artery Disease and Microparticles 

   CAD is the narrowing of the vessels which supply blood to the heart, due to plaques 

forming in the coronary arteries. Angina is the most common symptom, as well as 

shortness of breath and tiredness following exertion. 

   It is known that patients with CAD have increased levels of EMPs (Bernal-Mizrachi et 

al., 2003; Koga et al., 2005), and that annexin+CD31+ MPs are positively correlated with 

coronary endothelial dysfunction (Werner et al., 2006). In CAD it is important to note that 

circulating MPs can be derived from two sources. Firstly they can originate from 
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circulating activated and apoptotic blood and endothelial cells. Secondly MPs can be shed 

from within an atherosclerotic plaque following plaque rupture (Morel et al., 2006). Plaque 

MPs can be derived from macrophages, lymphocytes, RBCs, smooth muscle cells and 

endothelial cells (Leroyer et al., 2007), and the composition differs from that normally 

found in the circulation. Significantly higher levels of procoagulant MPs, LMPs and 

CD105+ EMPs were found within the occluded coronary artery of patients following 

myocardial infarction, than in their peripheral blood (Morel et al., 2009), suggesting that 

circulating peripheral levels of MPs do not necessarily indicate local levels.  

 

7.1.3. Preeclampsia 

   Preeclampsia is defined as hypertension (diastolic BP ≥140 mm Hg on two or more 

occasions) and proteinuria (≥300 mg/24 hour urine) developed after 20 weeks of 

pregnancy in an otherwise normotensive woman (Valdiviezo et al., 2012). It appears to be 

an inflammatory process, leading to an exaggerated systemic immune response to the 

pregnancy. 

   Normal pregnancy is associated with adaptations of the cardiovascular system, however 

in preeclampsia these adaptations are inadequate (VanWijk et al., 2000). In normal 

pregnancy, endothelial cells, leucocytes and the coagulation system are all activated, but in 

preeclampsia this activation is exaggerated (Redman et al., 1999). 

   Certain cell-specific MP subtypes are elevated in preeclampsia. For example, increased 

levels of placenta-derived MPs, have been reported in the circulation of women with a 

preeclamptic pregnancy compared to normotensive pregnant women (Germain et al., 

2007). Elevated T cell-derived and granulocyte-derived MPs  (VanWijk et al., 2002), as 

well as monocyte-derived and RBC-derived MPs (Lok et al., 2008), have also been 

described in preeclampsia. Also increased numbers of CD31+CD42- EMPs were found in 

preeclampsia compared to controls (Gonzalez-Quintero et al., 2003). MPs isolated from 

preeclamptic women can cause increased expression of ICAM-1 on endothelial cells co-

cultured with monocytes in vitro, suggesting that they increase endothelial activation (Lok 

et al., 2011).    

   Following a preeclamptic pregnancy women are at increased future risk of CVD 

(Valdiviezo et al., 2012). In the 10-15 years after a preeclamptic pregnancy, there is an 

increased risk of hypertension, CAD and stroke (Bellamy et al., 2007). The absolute risk 

for a cardiovascular event at age 50-59 years in women with a previous preeclamptic 

pregnancy is 17.8 %, compared to 8.3 % in women with no history of preeclampsia 

(Valdiviezo et al., 2012). One hypothesis for this increased risk could be that abnormal 

levels of certain MP subtypes persist long after the preeclamptic pregnancy, increasing the 
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risk of CVD. Very few studies have investigated levels of MPs following a preeclamptic 

pregnancy. 

 

7.1.4. Dobutamine Stress Echocardiogram  

   Dobutamine stress echocardiography (DSE) is a screening test for the evaluation of 

CAD. Dobutamine is a sympathomimetic drug that has direct interactions with α1, β1 and 

β2 adrenergic receptors and induces cardiac stress by increasing contractility and cardiac 

output. During DSE, patients receive large doses of dobutamine, whilst their heart rate, BP 

and electrocardiogram (ECG) are measured. It is carried out in patients referred with chest 

pain and CVD risk factors, and is used to identify patients who would benefit from an 

angiogram, which is a more invasive confirmatory test. DSE is most effective at 

identifying coronary artery lesions which have caused at least 70 % narrowing of the artery 

(Ho et al., 1995). 

   DSE was originally used in patients who could not carry out a maximum exercise 

echocardiogram due to disability or age (Dagianti et al., 1995). However, the current NICE 

guidelines recommend the use of either exercise echocardiogram or DSE for imaging of 

stress induced cardiac wall motion abnormalities (Cooper et al., 2010). The sensitivity and 

specificity of DSE for the detection of CAD are both >85 % (Sicari et al., 2008). The 

measurement of certain inflammatory biomarkers in the plasma, such as IL-6, during the 

peak phase of DSE, provides additive prognostic value to this test for future cardiovascular 

events (Ikonomidis et al., 2008).  

   One previous study found a trend for PMPs to be increased during and following DSE, 

although this did not reach statistical significance (Galloway et al., 1998). Since that study, 

there have been no reports on the role of MPs during DSE. However, MPs have been 

shown to be elevated following strenuous exercise in healthy individuals (Chaar et al., 

2011; Maruyama et al., 2012a), which mimics the physiological effects of DSE. 

   This chapter will examine the effect of DSE on MP levels before and immediately after 

DSE. It will also examine the use of MPs as a diagnostic marker by analysing the 

difference in MP levels between patients with a negative DSE (low chance of 

atherosclerosis) and those with a positive DSE (high chance of atherosclerosis). 
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7.1.5. Aims of this Chapter 

1) To measure circulating MP levels in women 5-10 years following either a healthy or 

preeclamptic pregnancy, to determine if elevated levels of MPs persist after the pregnancy.    

 

2) To determine the effect of a DSE on MP levels in patients with suspected 

atherosclerosis. 

 

3) To identify any differences in MP levels between patients with a positive DSE 

compared to those with a negative DSE, in order to investigate if MPs are diagnostically 

useful in atherosclerosis. 
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7.2. Method 

7.2.1. Preeclampsia Vascular Study 

7.2.1.1. Subjects 

    Participants were identified from the John Radcliffe Hospital maternity records, and sent 

invitation letters for the study. The inclusion criteria for cases was females aged between 

21-50 years who had experienced new onset hypertension and proteinuria during a 

previous pregnancy 5-10 years ago. The inclusion criteria for controls was females aged 

between 21-50 years who had a normal obstetric history, during a previous pregnancy 5-10 

years ago. For both cases and controls the exclusion criteria was anyone who showed 

doubt in taking part, any pre-existing renal or cardiac disease, insulin dependent diabetes, 

or pre-existing hypertension. 76 cases and 46 controls were recruited. This study was 

approved by the Oxfordshire Research Ethics Committee (REC No. 08/H0604/127). All 

participants gave written informed consent. 

7.2.1.2. Samples 

   Citrate blood samples were obtained from all participants. Within 15 min, citrate blood 

samples were centrifuged at 1550 g for 20 min, to produce PPP. 250 µl of PPP was taken, 

avoiding the buffy coat, and immediately frozen at -80 ºC. 

 

7.2.2. Dobutamine Stress Echocardiogram Study 

7.2.2.1. Subjects 

   51 participants were recruited from all patients referred to cardiology with a clinical 

indication for DSE testing. Patients were eligible for the study if they were greater than 18 

years old and were able to give informed consent. Patients were excluded if they had a 

previous myocardial infarction in the prior 7 days, unstable cardiopulmonary disease or 

were pregnant.  

   As part of their work-up for a diagnosis of CAD, patients underwent DSE. Patients were 

asked to avoid agents that could antagonise the effects of dobutamine (e.g. beta-blockers) 

for 24 hours prior to their examinations. Following baseline imaging, dobutamine infusion 

commenced at 10 µg/kg/min and increasing by 10 µg/kg/min at 3 minute intervals, up to 

40 µg/kg/min. Termination criteria was the attainment of target heart rate (85 % of 

maximum age-predicted heart rate), the occurrence of significant symptoms, and the 

development of wall motion abnormalities. This study was approved by the Oxfordshire 

Research Ethics Committee (REC No. 08/H0604/127). All participants gave written 

informed consent. 
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7.2.2.2. Samples 

   Citrate blood samples were taken prior to DSE and immediately following DSE. In 9 

participants, citrate blood was also taken following administration of contrast agent, prior 

to DSE, to assess the impact of contrast agent on MP levels. Citrate blood samples were 

centrifuged at 3000 g for 15 min within 10 min of venepuncture. Plasma was then 

centrifuged again at 13,000 g for 2 min to produce PPP. 250 l of PPP was frozen 

immediately and stored at -80 C. 

7.2.2.3. Effect of Dobutamine on Endothelial Cells In Vitro 

   To determine if dobutamine itself could cause the release of EMPs from endothelial 

cells, it was used to stimulate HUVECs. HUVECs were cultured in 48-well plates as 

described in Chapter 3. HUVECS were incubated with 0.05 mg/ml, 0.5 mg/ml and          

2.5 mg/ml of dobutamine (Hameln Pharmaceuticals Ltd, Gloucester, UK) in endothelial 

cell growth media. Supernatant was removed at 1 hour, 5 hours and 25 hours, and analysed 

for EMPs by flow cytometry, using annexin V, lactadherin, CD31, CD62E, CD106 and 

CD144 markers.    

 

7.2.3. Measurement of Microparticles 

   MPs were measured by the optimum flow cytometry assay as described in the Chapter 2. 

All cell-specific markers described in Chapter 2, were used to stain for MPs. 

 

7.2.4. Statistics 

   Statistics were performed using GraphPad Prism 5 (GraphPad Software, San Diego). In 

the Preeclampsia Vascular Study differences in levels between cases and controls were 

assessed for significance using Mann Whitney tests. In the Dobutamine Stress 

Echocardiogram Study, changes in MP levels following DSE were assessed by paired non-

parametric T-tests (Wilcoxon matched-pairs signed rank tests). Differences in 

demographics and baseline MP levels between patient groups were compared by Mann 

Whitney tests. A p-value of <0.05 was considered statistically significant. 
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7.3. Results 

7.3.1. Preeclampsia Vascular Study 

7.3.1.1. Subject Characteristics 

   MP levels were determined in 76 cases with a previous preeclamptic pregnancy and 46 

controls with a previous healthy pregnancy. The age, BMI, waist to hip ratio and BP was 

compared between the two groups to determine any differences in demographics. 

 

Table 7.1 – Demographics of Cases and Controls in Preeclampsia Vascular Study   

  
Cases     
(n=76) 

Controls 
(n=46) p-value 

Age 40.5 ± 5.2 40.7 ± 3.2 0.8012 

BMI 27.5 ± 6.5 25.1 ± 5.3 0.0604 

Waist/Hip Ratio 0.81 ± 0.08 0.80 ± 0.07 0.4443 

Systolic BP 119.7 ± 14.3 110.0 ± 9.7 0.0001*** 

Diastolic BP 78.4 ± 10.2 72.0 ± 7.5 0.0003*** 
 

Mean ± SD. P-value calculated from unpaired t-tests. 

 

   There was no significant difference between the two groups of participants in their age or 

waist/hip ratio. However, the cases had significant higher systolic and diastolic BP, 

compared to controls, although this is still within the normal range of BP. The cases also 

had a non-significant trend towards a higher BMI (Table 7.1). 
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7.3.1.2. Microparticle Levels in Cases and Controls 

   The levels of MPs were compared between the cases and controls, to identify any 

significant differences in MP levels 5-10 years following either a preeclamptic (cases) or a 

healthy (controls) pregnancy (Table 7.2). 

 

Table 7.2 – Microparticle Levels in Cases and Controls 

MP Subtype 
Cases   MPs/µl      

(n=76) 
Controls   MPs/µl 

(n=46) P-Value 

Annexin V+ MPs 1254  (900 - 2215) 1637  (1025 - 2625) 0.1236 

Lactadherin+ MPs 1379  (959 - 2075) 1545  (1069 - 2619) 0.1236 

CD31+CD41+ PMPs 824   (590 - 1553) 958    (475 - 1986) 0.7115 

CD31+CD41- EMPs 7.3    (3.9 - 14.0) 8.6     (5.2 - 14.8) 0.3079 

CD144+ EMPs 5.2    (2.6 - 9.9) 4.2     (2.3 - 7.6) 0.0988 

CD62+ EMPs 5.9    (3.2 - 14.6) 5.0     (2.3 - 14.4) 0.4235 

CD106+ EMPs 6.1    (3.6 - 16.0) 8.0     (3.0 - 23.7) 0.4074 

CD45+ LMPs 6.8    (3.4 - 13.2) 6.2     (3.5 - 13.0) 0.7795 

CD66B+ Granulocyte MPs 4.4    (2.2 - 11.3) 4.4     (1.9 - 13.7) 0.8575 

CD14+ Monocyte MPs 5.0    (2.9 - 12.9) 6.5     (2.9 - 10.1) 0.9201 

CD3+ T-cell MPs 1.5    (0.6 - 2.7) 1.2     (0.6 - 2.1) 0.2077 

Glycophorin A+ RBC MPs 187   (92 - 414) 179    (84 - 557) 0.5701 
 

Median (Inter Quartile Range). P-values calculated by Mann Whitney test 

 

   There were no significant differences in any of the MP subtypes between cases and 

controls.     

 

 

 

 

 

 

 

 

 

 



7.3.2. Dobutamine Stress Echocardiogram Study 

7.3.2.1. Subjects 

   51 patients, 30 males and 21 females, referred for stress echocardiogram testing were 

eligible and were recruited onto the study.  

 

7.3.2.2. Effect of Dobutamine Stress Echocardiogram on MP levels in all Participants 

   To examine the effect of DSE on MP levels in individuals with suspected CAD, the 

effect of DSE testing on MP levels was assessed in all of the participants in the study. 

 

Procoagulant Microparticles 

 

 

Figure 7.1 – Box and Whisker plot (5-95 percentiles) of annexin V+ and lactadherin+ MPs 

 

   Levels of procoagulant MPs, as defined by annexin V and lactadherin binding, were 

significantly increased immediately following DSE (Figure 7.1). 

 

Platelet-derived Microparticles 

 
Figure 7.2 – Box and Whisker plot (5-95 percentiles) of CD31+CD41+ PMPs 

 

   Levels of PMPs, defined by CD31 and CD41 expression, were significantly increased 

immediately following DSE (Figure 7.2). 
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Endothelial Cell-Derived Microparticles 

 
Figure 7.3 – Box and Whisker plot (5-95 percentiles) of CD31+CD41- EMPs 

 

   Levels of CD31+CD41- EMPs were significantly increased immediately following DSE 

(Figure 7.3). Levels of CD144, CD62E and CD106 EMPs were not significantly altered 

during DSE (data not shown).  

 

RBC-Derived Microparticles 

 
Figure 7.4 – Box and Whisker plot (5-95 percentiles) of Glycophorin A+ RBC MPs 

 

   Levels of RBC-Derived MPs, defined by glycophorin A expression, were significantly 

increased immediately following DSE (Figure 7.4). 

 

Other Microparticle Subtypes 

   Levels of LMPs, granulocyte-derived MPs, monocyte-derived MPs and T cell-derived 

MPs were not significantly altered during DSE (data not shown). 
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7.3.2.3. Effect of Contrast Agent on Microparticle Levels 

   Contrast agent is used during the DSE to improve imaging of the heart. Therefore, it was 

important to determine if this was causing the increase in MP levels, rather than the effects 

of the DSE itself. Levels of MPs were examined before and after infusion of the contrast 

agent in 9 participants. There was no significant difference in the levels of any MP subtype 

detected following administration of the contrast agent (data not shown). 

 

7.3.2.4. Microparticle Levels in Participants with a Negative or Positive Dobutamine 

Stress Echocardiogram  

   Participants were divided into those with a negative DSE test and those with a positive 

DSE test, to investigate whether MPs predict the test outcome, and therefore if they may be 

indicative of atherosclerosis. A positive DSE has a strong positive predictive value for 

atherosclerosis and CAD (Hennessy et al., 1997). 

 

Table 7.3 – Demographics of DSE Negative and DSE Positive Participants 

  Negative DSE Positive DSE P-Value

Number 37 14   
Age   
Mean (SD) 59.6 (12.9) 65.3 (7.3) 0.1568 

Males/Females 21/16 9/5 0.6341 
P-value calculated from unpaired T-test. 

 

   There was no significant difference between the age and gender profile of the two 

groups. However, there were more participants with a negative DSE than a positive DSE 

(Table 7.3). 
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7.3.2.5. Baseline levels of Microparticles in DSE Negative and DSE Positive 

Participants 

   To determine if individuals who have a positive DSE result have significantly different 

baseline levels of MP from individuals with a negative DSE, levels were compared by 

Mann Whitney Test (Table 7.4). 

 

Table 7.4 – Comparison of baseline MP levels between participants with a negative 

and positive DSE   

  
Negative DSE 

(n= 37) 
Positive DSE   

(n=14) P-Value 

Annexin V+ MPs 
300.9          

(181.0 - 418.7) 
283.4          

(119.5 - 765.4) 0.8909 

Lactadherin+ MPs 
283.6         

(192.4 - 463.7) 
285.2          

(116.9 - 740.8) 0.9747 

CD31+CD41+ PMPs 
140.9          

(89.3 - 196.8) 
130.4          

(90.2 – 241.4) 0.9916 

CD31+CD41- EMPs 
3.0            

(1.3 – 6.5) 
2.2            

(0.9 - 8.2)  1.0000 

CD144+ EMPs 
2.9            

(1.2 – 6.8) 
3.4            

(2.0 - 7.5) 0.3531 

CD62E+ EMPs 
3.3            

(2.1 – 9.1) 
5.0            

(1.8 – 11.7) 0.6653 

CD106+ EMPs 
4.1            

(2.7 - 10.9) 
3.9            

(1.6 – 10.4) 0.5904 

CD45+ LMPs 
7.2            

(2.1 - 12.8) 
10.5           

(3.3 – 19.9) 0.1872 
CD66B+ Granulocyte 
MPs 

5.5            
(3.0 - 19.8) 

5.7            
(2.0 – 16.7) 0.8576 

CD14+ Monocyte MPs 
3.7            

(1.6 - 11.7) 
7.6            

(3.3 – 15.4) 0.2131 

CD3+ T-Cell MPs  
1.6            

(0.9 – 4.5) 
1.6            

(1.1 - 5.6) 0.6125 
Glycophorin A+ RBC 
MPs 

85.9           
(30.8 - 164.0) 

89.7           
(13.1 - 201.4) 0.9579 

Median (Inter Quartile Range). P-value calculated by Mann Whitney test 

 

   There was no significant difference in the baseline levels of any MP subtype between the 

participants with a negative or positive DSE. However, CD45+ LMPs and CD14+ 

monocyte-derived MPs show a non-significant trend to be higher. 

 

 

 

 

 



7.3.2.6. Change in Microparticles Levels during DSE in DSE Negative and DSE 

Positive Participants 

   To determine if individuals with a positive DSE have a different response to DSE, 

compared to individuals with a negative DSE, the levels of MPs before and after stress 

echocardiogram were examined.  

 

Procoagulant Microparticles 

 

 
Figure 7.5 – Box and Whisker plot (5-95 percentiles). Procoagulant MPs before and after DSE in individuals 

with a positive or negative DSE. 

 

   The levels of procoagulant MPs were significantly increased immediately following DSE 

in individuals with a negative DSE (annexin V+ MPs p=0.0076, lactadherin+ MPs 

p=0.0091), but not in individuals with a positive DSE (Figure 7.5). 
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Platelet-Derived Microparticles 

 
Figure 7.6 – Box and Whisker plot (5-95 percentiles) PMPs before and after DSE in individuals with a 

positive or negative DSE  

 

   The levels of PMPs were significantly increased immediately following DSE in 

individuals with a negative DSE (p=0.0038), but not in individuals with a positive DSE 

(Figure 7.6). 

 

Endothelial Cell-derived Microparticles 

 
Figure 7.7 Box and Whisker plot (5-95 percentiles) CD31+CD41- EMPs before and after DSE in individuals 

with a positive or negative DSE 

 

   The levels of CD31+CD41- EMPs were significantly increased immediately following 

DSE in individuals with a negative DSE (p=0.0500), but not in individuals with a positive 

DSE (Figure 7.7). The levels of CD144+, CD62E+ and CD106+ EMPs were not 

significantly altered by DSE in either patient group (data not shown). 
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RBC-Derived Microparticles 

 
Figure 7.8 – Box and Whisker plot (5-95 percentiles) RBC-derived MPs before and after DSE in individuals 

with a positive or negative DSE  

 

   The levels of RBC-derived MPs were significantly increased immediately following 

DSE in individuals with a negative DSE (p=0.0322), but not in individuals with a positive 

DSE (Figure 7.8). 

 

Other Microparticle Subtypes 

   Levels of LMPs, granulocyte-derived MPs, monocyte-derived MPs and T cell-derived 

MPs were not significantly altered during DSE in either patient group (data not shown). 

 

7.3.2.7. Effect of Dobutamine on Endothelial Cells In Vitro 

   The incubation of HUVECs with dobutamine did not result in the significant increase in 

any subtype of EMP at 25 hours post stimulation, compared to incubation with media 

alone (data not shown). Therefore, dobutamine does not appear to directly stimulate the 

release of EMPs from endothelial cells in vitro. 
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7.4. Discussion 

   MPs are known to be elevated in CAD, for example, significantly higher levels of 

CD31+ EMPs have been reported in CAD patients than in matched controls (Bernal-

Mizrachi et al., 2003) and CD144+ EMPs were found to be elevated in type 2 diabetic 

patients with unstable plaques (Bernard et al., 2009). This raises an interesting question; 

are MPs elevated in individuals prior to diagnosis of CAD, and therefore would they be a 

useful prognostic or diagnostic marker? 
   The two studies in this Chapter examined the levels of MPs in individuals at elevated risk 

of CVD, to determine if MPs may be useful markers of CVD. 

 

7.4.1. Preeclampsia Vascular Study 

   Endothelial dysfunction has been demonstrated to be measurable in women 15-25 years 

following preeclampsia (Ramsay et al., 2003). Therefore, it could be expected that MPs, a 

marker and a potential cause of endothelial dysfunction, may remain elevated for several 

years following a preeclamptic pregnancy. 

   The data in this Chapter indicate that the MP subtypes measured were not significantly 

different between cases and controls, 5-10 years following the pregnancy. The cases in this 

study had significantly higher systolic and diastolic BP than the controls, which in itself 

could have resulted in elevated PMP and EMP levels (Preston et al., 2003), however the 

mean levels of BP were within the normal range. These results suggest that MPs are not a 

linking mechanism between preeclampsia and the future increased risk of CVD.    

  Lok et al (2008) measured MP levels six weeks post partum, and found no significant 

difference between levels of annexin V+ MPs, or percentages of PMPs, EMPs, RBC-

derived MPs or placental-derived MPs between preeclamptic patients and normotensive 

patients. Therefore, perhaps it is not surprising that the current study failed to identify any 

significant differences, 5-10 years following pregnancy. 

 

7.4.2. Dobutamine Stress Echocardiogram Study 

   When examining all 51 participants in the Dobutamine Stress Echocardiogram study, a 

significant increase in procoagulant MPs, PMPs, RBC-derived MPs and CD31+CD41- 

EMPs following DSE, was observed. These data support the findings of Galloway et al 

(1998), who also found a trend for PMPs to increase after DSE. In this older study, PMPs 

were measured during DSE, in only 9 patients.  

   Elevated levels of PMPs have also been identified in healthy individuals, following 

strenuous exercise (Chaar et al., 2011; Maruyama et al., 2012a). Therefore, inducing 
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increased heart rate and cardiac stress has previously been shown to increase PMPs in 

healthy individuals  

   The finding that procoagulant MPs, PMPs, RBC-derived MPs and CD31+CD41- EMPs 

were elevated immediately following DSE, suggests that MPs are produced rapidly in 

response to cardiac stress. There have been few publications on the speed at which MPs are 

produced and released into the circulation. However, a study has shown that elevated MPs 

are detectable in the circulation one hour following ingestion of a high fat meal in healthy 

individuals (Ferreira et al., 2004), suggesting that they can be released very quickly in 

response to certain stimuli. 

   The fact that in vitro stimulation of HUVECs with dobutamine did not result in a 

significant increase in any subtype of EMPs even after 25 hours stimulation, suggests that 

the dobutamine itself is not directly causing the release of CD31+CD41- EMPs from the 

endothelium. The elevated levels of CD31+CD41- EMPs in patients were found within one 

hour of administration of dobutamine. Therefore, it seems unlikely that dobutamine itself is 

triggering the increase in CD31+CD41- EMPs from endothelial cells, and more likely that 

the increased heart rate and shear stress, induced by the dobutamine, are leading to 

elevated EMP levels.  

   Participants were divided into those with a negative DSE and those with a positive DSE, 

to determine if MP levels predicted the DSE test result, and therefore if they were 

indicative of atherosclerosis. The participants with a negative DSE make an ideal disease 

control group, as there are well matched to the DSE positive group and they have very 

similar CVD risk factors. No significant difference in the baseline levels of MPs was 

identified, although there was a non-significant trend for LMPs and monocyte-derived MPs 

to be higher in individuals with a positive DSE. 

   When the change in MP levels was determined in each patient group, it was found that 

procoagulant MPs, PMPs, CD31+CD41- EMPs and RBC-derived MPs were all 

significantly elevated following DSE, in the negative DSE group, but not in the positive 

DSE group. One hypothesis for this could be that these MPs are released during times of 

cardiac stress in individuals without atherosclerosis, as a defence mechanism to remove 

stress and apoptotic signals from the cell. Whereas individuals with atherosclerosis have 

lost this defensive mechanism, potentially putting them at greater risk during times of 

cardiac stress. This is supported by the findings that patients with mild stenosis have more 

circulating CD31+CD42- EMPs than those with severe stenosis (Bernal-Mizrachi et al., 

2004). 

   This study is the first to examine the effect on a wide range of MP subtypes in a large 

cohort of patients of DSE testing. It benefits from having a well matched group of disease 
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controls, who have similar demographics and presenting features to the disease group, but 

who had a negative DSE and are therefore unlikely to have atherosclerosis.  

 

7.4.3. Can Microparticles Predict Future Cardiovascular Events? 

   Endothelial dysfunction is one of the earliest functional disturbances preceding acute 

coronary events. Several studies have shown that EMPs are a marker of endothelial 

activation and damage (Amabile et al., 2005; Wang et al., 2007a). Increased circulating 

levels of CD62E+ EMPs were found to predict poor outcome in pulmonary hypertension 

patients (Amabile et al., 2009). Elevated CD31+CD41- EMPs were shown to be an 

independent predictor of cardiovascular death in end-stage renal failure patients, and were 

found to have a stronger positive relationship to cardiovascular death than other risk factor, 

such as history of CVD and Framingham risk score (Amabile et al., 2012).  

   Elevated plasma levels of CD144+ EMPs may independently predict future 

cardiovascular events and the addition of CD144+ EMP levels as a parameter to the 

Framingham risk model significantly improved the predictive power of the model (Nozaki 

et al., 2009). CD144+ EMPs have also been reported to independently predict future 

cardiovascular events in patients with heart failure (Nozaki et al., 2010). Another study 

found that CD144+ EMPs were positively associated with the presence of coronary non-

calcified vulnerable plaques in type 2 diabetic patients (Bernard et al., 2009), supporting 

the findings of Koga et al (2005) who noted that elevated CD144+ EMP levels were 

predictive for the presence of coronary artery lesions, in diabetic patients. 

   Sinning et al (2011) found that annexinV+CD31+ MPs were an independent predictor of 

cardiovascular events in stable CAD patients. Elevated annexin V+ MPs were also 

associated with an increased risk of venous thromoboembolism independent of other risk 

factors (Bucciarelli et al., 2012).  

   Bulut et al (2009) found that annexin V+CD31+ EMPs were elevated in healthy young 

males with a family history for premature CAD, compared to age, BMI and BP-matched 

group without a family history. They suggest that the release of EMPs is a very early step 

in the development of endothelial dysfunction. Therefore, EMPs appear to be a predictive 

biomarker for future cardiovascular events. 
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7.4.4. Limitations 

   Samples obtained from the Preeclampsia Vascular Study were only centrifuged once 

prior to freezing. However, all samples were processed identically. 

   The patients from the Dobutamine Stress Echocardiogram Study were divided into those 

with a negative or positive DSE result. This gives a good indication as to whether these 

individuals had atherosclerosis or not (Sicari et al., 2008). Ideally patients would have been 

divided based on their ultimate diagnosis, either with atherosclerosis or without. However, 

diagnosis is confirmed by angiogram testing, and this data was not available in time for the 

completion of this thesis. 

 

 7.4.6. Conclusions 

   Levels of MPs were not found to be significantly different in women 5-10 years 

following a preeclamptic pregnancy, compared to women 5-10 years following a healthy 

pregnancy. This suggests that MPs may not be the linking mechanism between 

preeclampsia and future risk of CVD. 

   DSE significantly increased levels of procoagulant MPs, PMPs, CD31+CD41- EMPs and 

RBC-derived MPs, suggesting that increased cardiac stress can trigger the release of these 

MP subtypes. When participants were divided based on the result of their DSE, only those 

with a negative DSE showed the significant increase in procoagulant MPs, PMPs, 

CD31+CD41- EMPs and RBC-derived MPs, suggesting that release of these MPs may be a 

defense mechanism during cardiac stress, and that this defense mechanism is lost in 

individuals with atherosclerosis.  
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Chapter 8 – Conclusions and Future Work 

 

8.1. Aims of the Project 

   The first major aim of this thesis was to develop and validate an assay to measure a wide 

range of circulating MP subtypes, and to examine the issue of pre-analytical and analytical 

sources of variability in the measurement of circulating MPs. This was addressed in 

Chapter 2. Small changes in these variables led to large changes on the levels of MPs 

detected. This emphasised the importance of methodological standardisation for MP 

analysis. A standardised flow cytometric assay was chosen for use in this project due to its 

ability to identify circulating MPs derived from multiple cell types.  

   The second major aim was to validate the cell specific markers by generating MPs in 

vitro using a variety of agonists, and to determine the impact of agonist used on the 

phenotype of EMPs released. In Chapter 3, the cell-specific markers chosen were capable 

of binding to in vitro generated MPs. Varying concentrations of physiological agonists 

were used to generate the release of MPs from cultured endothelial cells. Importantly, the 

phenotype of the EMPs released was dependent on the stimuli used.  

    The third major aim was to investigate alternative techniques for MP analysis and 

examine associations between results from quantitative and functional assays. In Chapter 

4, results from three functional MP assays were found to be associated with flow 

cytometric results for procoagulant MPs and PMPs. These results suggested that the 

quantitative data on MPs generated from the flow cytometric assay correlated closely with 

the functional capacity of MPs. 

   The fourth major aim of this PhD was to measure levels of circulating MPs in healthy 

individuals to establish a normal range and to analyse variability in levels based on age and 

gender. In Chapter 5, a healthy normal range was established using 72 healthy individuals. 

A difference in procoagulant MP and PMP levels between males and females was noted, 

implying that study designs should gender-match control groups to patient groups, when 

investigating MPs. 

   Chapter 5 also aimed to determine the impact of hypoxia on levels of MPs in healthy 

individuals. Hypoxia, long thought to be a trigger for MP release in vitro (Wysoczynski 

and Ratajczak, 2009), was investigated in a group of healthy individuals in vivo. Data in 

this thesis suggest that exposure to short-term hypoxia can lower procoagulant MP, PMP 

and RBC MP levels in healthy individuals, indicating an opposing mechanism to the one 

witnessed in vitro.   
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   The fifth major aim was to determine the impact of therapy on levels of circulating MPs 

and other inflammatory markers in OSA patients and this was examined in Chapter 6. OSA 

is known to be associated with an increased risk of CVD (Lavie et al., 2000; Peker et al., 

2006), and therefore provides a good model for examining patients at a higher risk than the 

general population. Initiation of treatment for 6 months in minimally symptomatic OSA 

patients led to a reduction in annexin V+ MPs and an increase in LMPs, possibly indicating 

a skewing from a procoagulant role to one involving inflammation. Withdrawal of 

treatment in moderate/severe patients resulted in a significant increase in CD62E+ EMPs, 

CD106+ EMPs, granulocyte MPs and monocyte MPs. These results provide the first 

evidence from randomised controlled trials, that MP formation is causally linked to OSA 

and may promote endothelial activation in these patients.  

   The final major aim was to examine levels of circulating MPs in cardiovascular-

associated diseases. Levels of circulating MPs were analysed 5-10 years following a 

preeclamptic pregnancy, in Chapter 7. Preeclampsia is a condition which is known to alter 

circulating levels of procoagulant MPs, LMPs and RBC MPs. These women are also at a 

long-term higher risk of CVD (Valdiviezo et al., 2012). Results in Chapter 7, suggested 

that women with a previous preeclamptic pregnancy do not have significantly different 

levels of circulating MPs compared to women with a previous healthy pregnancy, 

suggesting that preeclampsia itself may not result in long-term alterations to MPs.  

   The work described in Chapter 7 also aimed to determine if circulating MP levels 

provide additional value in the diagnosis of atherosclerosis by DSE. Data in this Chapter 

showed that procoagulant MPs, PMPs, CD31+CD41- EMPs and RBC-derived MPs were 

significantly elevated following cardiac stress. When patients were divided based on the 

results of the DSE, it was found that only patients with a negative DSE have a significant 

elevation in the above mentioned MPs in response to cardiac stress, whereas patients with 

a positive DSE, who are likely to have atherosclerosis, appear to have lost this mechanism.  

 

8.2. Microparticles – Cause or Consequence of Pathology? 

   The question as to whether MPs are effectors in disease or just markers of a pathological 

process is still much debated. It appears that MPs have the capacity to influence 

pathological processes, as they can induce thrombosis, inflammation, endothelial 

dysfunction and angiogenesis. However, they are also released in response to pathological 

stimuli, suggesting that they can also be used as biomarkers of such processes. 

   MPs are no longer considered to be just ‘platelet dust’, and it is known that they have 

many effector functions. They are able to promote and inhibit inflammation, through 

release of cytokines (Wang et al., 2011) and alteration of endothelial cell adhesion marker 
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expression (Barry et al., 1998). They also support thrombosis (Bucciarelli et al., 2012), by 

expressing PS and tissue factor. They can cause endothelial dysyfunction (Brodsky et al., 

2004) and they can increase plaque vulnerability through increased angiogenesis (Leroyer 

et al., 2008a). Therefore, it is unlikely that MPs are innocent bystanders in the 

development of CVD. 

   MPs can be generated by apoptosis, however, they can also induce apoptosis in other 

cells. PMPs from human plasma contain detectable quantities of caspase 3, one of the 

executioner enzymes of apoptosis, and incubation of PMPs with human macrophages can 

induce apoptosis in those cells (Boing et al., 2008). 

   Studies have revealed a direct effect of MPs on endothelial function (Amabile et al., 

2005; Brodsky et al., 2004). For example, MPs can induce adhesion of leucocytes to 

endothelial cells by upregulating adhesion molecules, they can trigger cytokine production 

(Hong et al., 2012), and they can inhibit NO synthase (Agouni et al., 2008), all suggesting 

a causal role in pathology. However, annexin V+CD31+ EMP levels are also elevated as a 

result of endothelial dysfunction (Werner et al., 2006), suggesting that they may be a 

consequence of pathogenesis.  

    In vitro studies have led to much of our understanding of MPs derived from leucocytes. 

Monocyte-derived MP release can be triggered by LPS (Bernimoulin et al., 2009), 

suggesting that they may be a consequence of disease. However, monocyte-derived MPs 

have also been shown to cause activation of the endothelial cells, by delivering IL-1β 

(Wang et al., 2011). The release of granulocyte MPs can be induced by stimulation with 

TNF-α (Daniel et al., 2006), indicating that they may be produced in response to 

inflammation. Neutrophil MPs have been shown to increase expression of adhesion 

molecules on endothelial cells, as well as release of IL-6 and IL-8 (Hong et al., 2012). 

   Current findings in the literature seem to suggest that circulating MPs are both a cause 

and a consequence in the pathogenesis of many diseases, and that they have a physiolocial 

role in health. 

 

8.3. Microparticles – Helpful or Harmful? 

   MPs derived from several cell types are present in all body fluids under physiological 

conditions. In fact, the work described in this thesis, showed that MPs can be identified in 

the circulation of healthy individuals derived from platelets, endothelial cells, monocytes, 

granulocytes, T cells and RBCs. This suggests that they have a physiological role to play. 

Elevated levels of MPs have long been considered detrimental to health. However, recent 

data suggests that MPs may also have beneficial effects in preventing disease (Table 8.1). 
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Table 8.1 – Physiological and Pathological Roles of Microparticles 

MP Subtype Physiological Role Pathological Role References 

Procoagulant MPs Coagulation   (Morel et al., 2006) 

  
Anti-Coagulant Role in 
Healthy   

(Berckmans et al., 
2001) 

    Elevated in Thrombosis 
(Owens and 
Mackman, 2011) 

    
Decreased in Bleeding 
Disorders 

(Nieuwland and 
Sturk, 2007) 

PMPs Coagulation                              (Morel et al., 2006) 

  
Removal of Harmful 
Components   (Boing et al., 2008) 

  
Protective role in Vascular 
Function in Septic Shock   

(Mostefai et al., 
2008b) 

    Elevated in Thrombosis 
(Owens and 
Mackman, 2011) 

    
Decreased in Bleeding 
Disorders 

(Nieuwland and 
Sturk, 2007) 

EMPs Coagulation   (Jy et al., 2005) 

  
Removal of Harmful 
Components   

(Abid Hussein et al., 
2007) 

  
Stimulation of Vascular 
Repair   

(Dignat-George and 
Boulanger, 2011) 

    Endothelial Dysfunction 

(Amabile et al., 
2005; Brodsky et 
al., 2004) 

LMPs   Pro-inflammatory 
(Mesri and Altieri, 
1999) 

Granulocyte MPs Anti-inflammatory   (Dalli et al., 2008) 

    
Pro-inflammatory in 
Vasculitis (Hong et al., 2012) 

Monocyte MPs Coagulation   
(Aleman et al., 
2011) 

    Pro-inflammatory (Wang et al., 2011) 

    Elevated in Thrombosis 
(Owens and 
Mackman, 2011) 

T-Cell MPs 
Transport of Surface 
Molecules    

(Shefler et al., 
2010) 

    Endothelial Dysfunction 
(Mostefai et al., 
2008a) 

RBC MPs 
Prevents Premature RBC 
Death   (Tissot et al., 2010) 

  Anti-inflammatory   
(Sadallah et al., 
2008) 

    
Thrombosis in Sickle Cell 
Disease 

(van Beers et al., 
2009) 
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   MPs are an essential component of the coagulation pathway, as demonstrated by the 

bleeding complications in individuals with Scott Syndrome (Nieuwland and Sturk, 2007). 

Elevated PMPs are found in autoimmune thrombocytopenia patients who are free of 

bleeding compared to those with bleeding complications, suggesting a beneficial role in 

these individuals. However, in the same patients, high levels of PMPs were associated with 

an increased risk of neurological complications due to cerebral infarcts (Jy et al., 1992), 

illustrating both the beneficial and harmful role that MPs can play in a single pathological 

condition. It suggests that MP release is a tightly controlled haemostatic mechanism, which 

can result in pathology if the control is lost 

   MPs are also important cell communication vehicles, providing an efficient mechanism 

of intracellular communication (Diamant et al., 2004; Nomura et al., 2008). MPs can 

express Fas ligand (FasL) on their surface giving them cytotoxic properties (Jodo et al., 

2001). This could potentially result in the apoptosis of harmful cells via FasL binding, 

giving them a beneficial role, or cause the death of useful cells, resulting in them being 

classified as harmful (Freyssinet, 2003). 

   The release of MPs may protect cells by the removal of harmful components. PMPs have 

been found to contain increased concentrations of caspase 3 (Boing et al., 2008), 

suggesting that they act as a waste management system for cells (Tushuizen et al., 2011).     

   EMPs are able to either promote or inhibit inflammation, coagulation and endothelial 

dysfunction, depending on the physiological context. EMPs may contribute to vascular 

injury, impair vasorelaxation and promote arterial stiffness (Brodsky et al., 2004) and 

those expressing PS can also promote thrombosis. However, there are potential beneficial 

effects of EMPs on endothelial integrity, stimulation of vascular repair, induction of 

angiogenesis and promotion of endothelial cell survival (Dignat-George and Boulanger, 

2011). The inhibition of EMP release from HUVECs causes accumulation of caspase 3 and 

ultimately cell detachment, suggesting that EMP release is important for endothelial cell 

survival (Abid Hussein et al., 2007). 

   In this thesis, CD62E+ EMPs and CD106+ EMPs were found to be elevated during 

CPAP therapy withdrawal in patients with moderate/severe OSA. CPAP has been shown to 

improve symptoms and reduce endothelial dysfunction in these patients (Lattimore et al., 

2006), so this implies that the rise in EMPs, following CPAP withdrawal, may be 

detrimental to health.  

   The finding that patients with mild stenosis have more circulating CD31+CD42- EMPs 

than those with severe stenosis (Bernal-Mizrachi et al., 2004), suggests that the release of 

these EMPs in some way protects the endothelial function. This is supported by findings in 

Chapter 7. The release of procoagulant MPs, PMPs, CD31+CD41- EMPs and RBC MPs 
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during DSE in individuals with a negative DSE, suggests that release of certain MP 

subtypes may be a protective mechanism during cardiac stress, and that this has been lost 

in individuals with a positive DSE, who are likely to have CAD. It may be that the release 

of CD31+CD41- EMPs is a protective mechanism for the endothelium during times of 

stress, and that if this mechanism is lost, the viability of endothelial cells deteriorates 

(Tushuizen et al., 2011). The discrepancy between different subtypes of EMPs may be 

explained by the nature of their release. CD31+CD41- EMPs are thought to be formed 

during apoptosis of endothelial cells, whereas elevated CD62E may signify activation of 

the endothelial cells (Jimenez et al., 2003b). 

   In Chapter 6, a significant increase in CD45+ LMPs was noted in OSA patients 

following 6 months of CPAP treatment, which was not seen in patients receiving only 

supportive care. As CPAP therapy has been shown to reduce symptoms of OSA and 

endothelial dysfunction (Lattimore et al., 2006), this may suggest that, in these patients, 

LMPs are actually playing a beneficial role. However, further studies would be needed to 

determine the role of LMPs in this context.  

   Acute exposure to hypoxia in healthy individuals led to a significant reduction in 

procoagulant MPs, PMPs and RBC-derived MPs in Chapter 5. It is possible that circulating 

levels of these MPs in healthy individuals maintains haemostasis, and that short-term 

exposure to hypoxia results in a loss of this balance.  

   It seems that cell-derived MPs can induce both beneficial and detrimental responses in 

terms of inflammation, coagulation, cell comunication and in the regulation of vascular 

function. In disease, it may be that the production of MPs is beneficial to the cell releasing 

them, for the purposes of removing harmful cellular components, but detrimental to the 

surrounding cells, which are activated in response to these MPs. 

 

8.4. Microparticles Detected by Flow Cytometry – Tip of the 

Iceberg? 

   It is thought that the MP population detectable by conventional flow cytometry (above 

0.3-0.5 µm in size) (Shantsila et al., 2010) is just the visible ‘tip of the iceberg’ of all MPs 

(Lacroix et al., 2010). This has been demonstrated by new technologies, such as atomic 

force microscopy (AFM), which suggest that flow cytometry underestimates the 

concentration of vesicles by approximately 1000 fold (Yuana et al., 2010). A study 

comparing conventional with high-sensitivity flow cytomtery found an 8-20 fold increase 

in MP counts (Robert et al., 2012). However, many studies conducted that use 
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conventional flow cytometry show significant differences in MP levels in various clinical 

settings (Amabile et al., 2009; Ayers et al., 2009; Bernal-Mizrachi et al., 2004). 

   The patient studies described in this thesis were determined by conventional flow 

cytometry, as this allows for phenotyping of cell-specific MPs, and it is applicable to 

routine clinical laboratories. From the literature it was assumed that only larger MPs were 

detected by this method. However, these studies also identified significant differences in 

levels between patient groups. Therefore, it appears that the ‘tip of the iceberg’ may well 

be proportional to the total population. Future work making use of new techniques, such as 

AFM, would be able to clarify if the MPs detected by flow cytometry are in fact 

proportional to the total population.  

   Another hypothesis is that conventional flow cytometers can actually detect MPs that are 

much smaller than has been indicated by size-calibrated beads. Van der Pol et al suggested 

that numerous small MPs may be simultaneously illuminated by the laser beam, and are 

counted as a single event. They named this ‘swarm detection’. In polydisperse samples, 

such as plasma, MPs larger than the detection limit of the flow cytometer would be 

detected as a single event, whereas those particles smaller than the detection limit would 

contribute to the MP count by swarm detection. This may explain how flow cytometers are 

able to detect MPs smaller than 0.3 µm (Van Der Pol et al., 2012). 

 

8.5. Effect of Drugs on Microparticles 

   The potential pathogenic role of MPs in a variety of disorders makes them therapeutic 

targets. However, a hurdle in the development of MP-modulating drugs, is the required 

careful targeting of MPs from specific cell types, in order to gain a beneficial effect, whilst 

limiting adverse effects (Morel et al., 2011a). Several existing therapies have already been 

shown to modulate levels of circulating MP. Whether these drugs directly target MPs or 

whether the observed impact on MPs are due to bystander effects is yet to be demonstrated. 

   Simvastatin, a statin, was shown to reduce levels of PMPs and monocyte MPs in patients 

with hypertension and type 2 diabetes (Nomura et al., 2004a; Nomura et al., 2004b). 

Statins deplete cholesterol from cells, which decreases raft association of proteins and 

reduces MP shedding (Del Conde et al., 2005), potentially explaining their ability to lower 

circulating MP levels. Conversely, an in vitro study found that Simvastin increased EMP 

release from HUVECs, and they hypothesised that by inducing EMP release, statins may 

improve the overall condition of the endothelium (Diamant et al., 2008). 

   Anti-platelet treatments can also impact on the levels of circulating MPs. Treatment with 

ticlopidine, an anti-platelet drug, in diabetic patients led to a significant decrease in PMPs 

and monocyte-derived MPs (Nomura et al., 2004c). Similarly, anti-inflammatory 
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treatments, including anti-TNF, result in a reduction of circulating annexin V+ MPs, in 

Crohn’s disease patients (Chamouard et al., 2005).  

   Oxidative stress is a known trigger of MP release, so unsurprisingly treatment of patients 

following myocardial infarction, with vitamin C (an anti-oxidant) leads to a decrease in 

PMPs and CD31+ EMPs (Morel et al., 2003). In contrast, postmenopausal women taking 

hormone replacement therapy were actually found to have higher levels of PMPs, than age-

matched controls (Rank et al., 2012), potentially explaining their increased risk of venous 

thromboembolism. 

   The findings that commonly prescribed therapeutics can significantly alter MP levels, 

needs to be considered when designing studies involving MPs. If medications, such as 

statins, are being used by a patient group, but not in a control group, this could significant 

skew the results. 

 

8.6. Choice of Endothelial Cell-Derived Microparticle Marker 

in Cardiovascular Disease 

   From the studies described in this thesis, it appears that different subtypes of EMPs are 

produced in response to different stimuli. For example, in the CPAP Withdrawal Study, 

CD62E+ EMPs and CD106+ EMPs were elevated during therapy withdrawal, whilst 

CD31+CD41- EMPs and CD144+ EMPs were unaffected. In contrast, in the Dobutamine 

Stress Echocardiogram Study, CD31+CD41- EMPs were elevated during cardiac stress, 

whereas CD62E+, CD106+ and CD144+ EMPs were unchanged. Data in Chapter 3 

indicated that CD62E+ EMP release was specifically triggered by TNF-α and IL-1α, 

whereas CD31+ EMPs and CD144+ EMPs release was triggered by multiple stimuli. 

These findings suggest that there are several different subtypes of EMPs, which are 

phenotypically distinct, and which are produced in response to different stimuli. This leads 

to the question of ‘which EMP subtype should be measured in CVD?’ 

   EMPs express a wide range of endothelial cell antigens, including those constitutively 

expressed on endothelial cells, CD31, CD144 and CD146, as well as inducible endothelial 

markers, CD62E and CD106. Studies investigating EMPs in CVD have used a variety of 

techniques to define EMP, including CD31+CD41- (Amabile et al., 2012), CD31+CD42- 

(Wang et al., 2007a), CD144 (Bernard et al., 2009), CD62E (Amabile et al., 2009), CD51 

(Bernal-Mizrachi et al., 2003), CD146 (Agouni et al., 2008) and CD105 (Bakouboula et 

al., 2008). Results in this thesis and in other publications (Jimenez et al., 2003b) suggest 

that different subtypes of EMPs are released in response to different stimuli. For this 

reason, it is very difficult to compare and contrast findings from different studies. 
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   CD31 (Platelet-Endothelial Cell Adhesion Molecule) is a commonly used marker for the 

investigation of EMPs. It is expressed constitutively on endothelial cells and is involved in 

cell adhesion to the endothelium. It is often used to define EMPs in conjunction with CD41 

or CD42, as exclusion markers for PMPs (Chirinos et al., 2005a; Periard et al., 2007; 

Wang et al., 2007a; Yun et al., 2010). However, even when excluding PMPs, this 

population can also include LMPs (Amabile and Boulanger, 2011), which are rarely 

excluded. Although CD31+CD41- was used as an EMP marker in this thesis, it is 

recognised that the use of negative staining for MP identification is not optimal, and that 

ideally EMPs should be identified by positive staining. 

   CD144 (Vascular-Endothelial Cadherin) is an adhesion molecule which mediates 

homophilic cell adhesion between adjacent endothelial cells, and is believed to be 

important in vascular permeability. CD62E (E-Selectin) is also an adhesion molecule, 

which is only expressed on activated endothelial cells. The ligands for CD62E are 

sialylated carbohydrates expressed on certain leucocytes, making it important in 

inflammation. CD106 (Vascular Cell Adhesion Protein 1) is an adhesion molecule, which 

is up-regulated on endothelial cells in response to TNF-α and IL-1. It is the ligand for Very 

Late Antigen 4 (VLA-4) expressed on leucocytes, and therefore assists in the binding of 

leucocytes to the endothelium. Whether CD31, CD144, CD62E or CD106 actually play a 

role in the function of an individual EMP, or if they are just markers of how that EMP was 

produced is not yet known. However, it is likely that these adhesion molecules may well be 

important in the contact of EMPs with other cells.  

   A limitation of this project is that markers were not used to label EMPs in the same tube. 

This precluded double or triple staining with multiple EMP markers, to determine if 

CD31+CD41-, CD144+, CD62E+ and CD106+ EMPs were completely separate 

populations, or if they overlapped. Future work would examine the concurrent labelling of 

EMPs to establish if certain markers occurred together on the same MPs.  

   The findings in this thesis suggest that the use of one EMP marker is not sufficient, as 

EMPs expressing different cell-surface markers are released under different circumstances. 

CD62E+ EMPs may be a good marker of endothelial activation in individuals at the early 

stages of CVD, when endothelial damage is not yet apparent. CD31+ and CD144+ may be 

more appropriate markers in patients where disease has progressed, and apoptosis of the 

endothelium is a feature. Therefore, when investigating EMPs in CVD it is necessary to 

use a panel of EMP markers in order to gain as much information as possible about the 

nature of endothelial injury. 

 

 



8.7. Future of Microparticle Analysis in Cardiovascular Disease 

   Circulating MPs are useful markers of cell activation or apoptosis occurring within the 

body. MPs can be detected in the circulation from cells, which would not normally be 

easily accessible, such as endothelial cells. The measurement of apoptotic cells is 

hampered by the fact that cells are rapidly removed by phagocytosis. Therefore, circulating 

MPs may provide us with an insight into cellular processes that can not otherwise be 

examined. 

   Circulating levels of MPs are altered during many pathological processes, they can be 

associated with disease severity, and they can indicate treatment success. MPs have also 

been suggested to be potential targets for new therapies. Circulating cell-derived MPs have 

the capability to be involved in both the promotion and prevention of CVD (Figure 8.1). 

 

 
 

Figure 8.1 – Multiple and Conflicting Roles of Circulating Cell-Derived Microparticles in CVD  

 

   Several studies have shown that certain subtypes of MPs are useful in predicting future 

cardiovascular risk (Amabile et al., 2012; Bulut et al., 2009; Koga et al., 2005; Nozaki et 

al., 2009; Sinning et al., 2011; Ueba et al., 2010b), as discussed in Chapter 7. If proved 

conclusively, then there would be benefit in measuring MPs as part of an individuals CVD 
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risk assessment. The integration of MPs, alongside other biomarkers, could improve the 

predictive value of risk assessment models (Nozaki et al., 2009). 

    The use of CVD risk scores can provide a powerful incentive for patients to modify their 

lifestyle factors, and to reduce their risk (Pell, 2012). Any addition to risk score models 

that improves their predictive value would be of benefit to those working in risk prevention 

and their patients.   

   Data in Chapter 6 on MPs in OSA, suggest that circulating MP levels are altered by 

CPAP, a therapy that modulates this disease. However, long-term prospective studies 

would be required in these patients to determine if MPs give prognostic information on 

future risk of CVD in OSA.  

   The role of MP analysis may be as an additive marker in the assessment of CAD. Data in 

this thesis indicate that MPs are released into the circulation in response to cardiac stress, 

but their release is attenuated in individuals with a higher risk of CAD. The measurement 

of MPs during DSE could therefore provide additional diagnostic information during the 

assessment of these patients, although further work would be needed to determine this. 

Angiogram results from these patients would allow for more definitive stratification of 

these patients into those with and those without atherosclerosis. Also, the levels of MPs 

could be assessed periodically over several hours following DSE, to investigate whether 

patients with a positive DSE result actually have a delayed increase in MP levels. 

 

8.8. What Further Work Should be Done? 

   As in many studies, the data presented in this thesis raises many questions, several of 

which I have attempted to address in this Chapter.  

   This thesis has concentrated on the validation and subsequent use of a flow cytometric 

assay to quantitatively measure MPs from various cell types. This approach has proved to 

be very useful in the patient studies, as it revealed that only certain subtypes of MPs were 

significantly altered. However, this data does not provide functional information about 

MPs. Chapter 4 revealed that the flow cytometric data on procoagulant MPs was well 

correlated with assays that measure the functional capability of MPs, suggesting that a 

quantitative measure is associated with the functional ability of MPs.  

   In future studies it would be interesting to measure MPs in patient groups by both flow 

cytometry and by functional assays, to gain more of an understanding into the functional 

capability of these MPs. In addition to MP markers described in this project, other markers 

present on MP such as tissue factor, immunoglobulins and complement components, 

would also be investigated in future experiments, in order to provide additional functional 

information about the role of MPs in disease. 
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   If MPs are proved to be a useful diagnostic marker or a biomarker for future CVD risk by 

long-term prospective studies, several issues will need to be addressed. Firstly, samples 

need to be easily obtainable from patients in clinic, which may well preclude the multiple 

centrifugation protocol described in this and many other studies (Dey-Hazra et al., 2010; 

Lacroix et al., 2012). Indeed, in the majority of studies presented in this thesis, it was not 

possible to obtain plasma that had been centrifuged a second time at 13,000 g. This was 

due to a lack of equipment and logistical issues within the clinical setting. It is optimistic to 

assume that all clinics will have the facilities and staff necessary to process samples in this 

way. Therefore, protocol standardisation needs to take into account the logistics of blood 

sampling and processing in a clinical setting. 

   Secondly, a rapid, reproducible and inexpensive standardised assay needs to be available 

for analysis. The flow cytometric assay described here has been shown to be reproducible 

in Chapter 2, and the reagents required are relatively inexpensive. However, the assay can 

be time consuming, and it requires a technician skilled in flow cytometry to perform. The 

alternative assays described in Chapter 4 offer some advantages in terms of their ability to 

run multiple samples, however, they do not provide the same level of information 

regarding the MPs cellular origin. 

   One major barrier to analysis in clinical samples is the lack of standardisation of pre-

analytical variables. The paper resulting from the findings in Chapter 2 (Ayers et al., 2011) 

made some recommendations for standardisation, along with many other publications 

(Dey-Hazra et al., 2010; Lacroix et al., 2012; Lacroix et al., 2010; Yuana et al., 2011). 

However, a single well-described procedure has not been agreed upon, making it difficult 

to compare results between different laboratories, and ultimately to integrate MPs into 

routine clinical laboratories. 

   Finally, circulating levels of MPs would have to provide additional information over 

existing biomarkers, such as CRP (Koenig et al., 1999) and LDL (Panagiotakos et al., 

2003). These existing markers have been well established and have simple sample 

requirements, as well as reproducible standardised assays. Therefore, as MP analysis 

requires more complex processing, it will need to give information that can not be obtained 

by other means.  

   The mass routine measurement of circulating cell-derived MPs for the assessment of 

CVD may not yet be ready for introduction. However, with the growing interest in MPs 

over the past few years, along with a huge increase in recent publications, some of the 

issues described above may soon be addressed, allowing for a better understanding of MPs 

and their potential role in CVD. 
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