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ABSTRACT. The paper treats the important problem related to risk controlled by the 
simultaneous presence of critical events, randomly appearing on a time interval and shows 
that the expected time fraction of simultaneously present events is insensitive to the 
distribution of events durations. In addition the paper shows that the probability of 
simultaneous presence of critical events is practically insensitive to the distribution of the 
events durations. These counter-intuitive results provides the powerful opportunity to 
evaluate the risk of overlapping of random events through the mean duration times of the 
events only, without requiring the distributions of the events durations, their variance or the 
mixing proportions of the individual distributions, in the case of duration times represented 
by distribution mixtures.  

A closed-form expression for the expected fraction of unsatisfied demand for random 
events following a homogeneous Poisson process in a time interval is introduced for the first 
time. In addition, a closed-form expression related to the expected time fraction of unsatisfied 
demand, for a fixed number of consumers initiating random demands with a specified 
probability, is also introduced for the first time. 

The concepts stochastic separation of random events based on the probability of 
overlapping and the average overlapped fraction are also introduced. Methods for providing 
stochastic separation and optimal stochastic separation achieving balance between risk and 
cost of risk reduction are presented.  
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1. Introduction 
Reliability and risk are often controlled by the simultaneous presence of critical events on 

a time interval. Each critical event is characterised by a particular duration which is a random 
variable and can appear randomly, at any time during an operational interval with given 
length. The simultaneous appearance of two or more critical events during the operational 
interval is a common source of system failures.  

The first major category of this type of failure is present when the simultaneous 
appearance of critical events has engaged servicing resources to the point where a servicing 
resource is no longer available for a new critical event. The lack of intervention resources for 
repair often leads to further failures with severe consequences. 

Consider for example, the breakdowns of heating elements attached to different sections of 
a long subsea oil pipeline. Each of the failed heating elements demands the intervention of a 
special repair vessel. If a single intervention vessel is available and a breakdown of a heating 
element occurs, the repair vessel will be engaged in the repair of the failed heating element. 
If, during the repair, another breakdown of a heating element occurs, no free repair vessel 
will be available to service the new repair. As a result, the delay in conducting the second 
repair will cause the formation of waxy deposits in the affected pipeline section which will 
block the flow in the pipeline. Blocking the flow in the pipeline by waxy deposits entails 
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lengthy and expensive intervention involving cutting and replacing large sections of the 
blocked pipeline. 

The second major category of failure controlled by the simultaneous presence of critical 
events is present when the simultaneous appearance of critical events increases the load on 
the system to a level which exceeds the system’s strength. Commonly, the simultaneous 
appearance of random demands whose number is greater than the capacity of the system 
leads to overloading, with catastrophic consequences for the system. 

The third major category of failures relates to the case where some of the critical events 
weaken/degrade the system’s strength while some of the events increase the load on the 
system. Thus, the simultaneous presence of the critical event ‘repair of a failed power line’ 
and the critical event ‘sudden increase in power consumption’ could also lead to overloading 
and failure of other power lines and completely disrupt the power supply.  

The forth major category of failures relates to the case where the simultaneous presence of 
critical events results in system failures while individually, none of the critical events can 
precipitate failure. A typical example is the clustering of the critical event ‘presence of 
sparks’ and the critical event ‘presence of flammable gases’. A source of sparks is for 
example present if, for a certain period of time, an electromotor with brushes is used. 
Flammable gases could result from accidentally spilled fuel which is an event, also associated 
with certain duration. Explosion is possible if the two events are simultaneously present 
(overlap). 

The maximal tolerable degree of overlapping of risk-critical random events on a time 
interval varies significantly. It depends on the magnitude of the consequences resulting from 
the simultaneous presence of risk-critical events. The maximal tolerable level of overlapping 
must be set individually by the risk experts in the respective application area. 

A very small overlap (simultaneous presence)) of random demands can be tolerated for 
example, in a situation where critically injured people demand a particular piece of life-
saving equipment. In this case, the consequences of unsatisfied demand can be very serious 
and the maximum tolerable level of the risk of simultaneous presence of critical demands is 
very low.  

A larger degree of simultaneous presence of risk-critical events can be tolerated in some 
manufacturing processes where a number of machines demand control equipment, production 
equipment or an operator, at a random time during the production process.  

The discussed examples emphasise the urgent need for new reliability and risk measures 
based (i) on the probability of a simultaneous presence of critical events appearing randomly 
on a time interval and (ii) on the expected time fraction during which randomly appearing 
critical events are simultaneously present on a time interval.  

The problem related to estimating the risk of simultaneously present critical events is 
essentially a problem from geometric probability, where a segment of specified length L is 
covered by randomly located smaller segments with different lengths. The segment with 
length L represents the operational interval while the smaller segments represent the durations 
of the critical random events. Simultaneously present critical events exist if and only if 
overlapping among randomly located smaller segments is present. 

There have been a number of publications related to covering the circumference of a circle 
with segments or a linear segment with segments [1-8]. However, analytical treatment of key 
problems related to estimating the expected lineal fraction covered by m or more random 
segments has been presented only recently [9].  

Despite the progress made in this direction, (i) the dependence of the overlapped time 
fraction on the distribution of the duration times, (ii) the solution of the case related to 
consumers initiating random demands with a specified probability and (iii) the expected 
fraction of unsatisfied demand for random events following a Poisson process on a time 
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interval are still open questions.  
In queuing theory, the Poisson process has been traditionally used as a statistical model for 

random events occurring in a time interval. Despite the abundance of publications on queuing 
systems, none of the published classical studies [10-14], nor more recent texts on different 
problems in queuing theory [15-19] nor recent text on probability [20-22] treats the key 
question related to the dependence of the probability of overlapping of random events on a 
time interval on the distributions of their durations.  

To the best of the author’s knowledge, no theoretical models have ever been reported 
related to (i) the expected time fraction of an overlap of a particular order for risk-critical 
random events following a homogeneous Poisson process in a time interval and (ii) the 
expected time fraction of an overlap for random events initiated with some probability by a 
given number of consumers. 

Furthermore, in queuing theory, a central assumption in deriving the expected lengths of 
queues is the negative exponential distribution of the waiting (servicing) times. As it will be 
demonstrated later, the distribution of the servicing times for a system which includes 
different types of components is not the negative exponential distribution; it is a distribution 
mixture. 

Accordingly, the present paper aims to fill the identified gaps by providing a 
comprehensive treatment of the outlined key questions.  

 
2. Insensitivity of the probability of a simultaneous presence of critical events to the 
distribution of their durations 
The risk measure probability of a simultaneous presence of randomly appearing critical 
events on a time interval is appropriate in cases where almost no overlapping of critical 
events can be tolerated on a time interval. The dependence of the probability of simultaneous 
presence on the distributions of the durations of the random events is a key property of the 
new risk measure, and it will be investigated by using Monte Carlo simulations. 

 
2.1 Simulation experiments 

The critical risk-controlling events were selected to be n random demands serviced by m 
sources ( mn  ). The simulations were performed by an algorithm counting the number of 
instances of event overlaps of order m+1 or higher. An event overlapping of degree m+1 or 
higher is present if more than m events are simultaneously present on the time interval. 
Details related to the pseudo-code of the simulation algorithm for determining the overlapped 
fraction of degree m+1 or higher have been omitted. 

2.1.1  Simulation experiments with single distributions 
The first simulation involved demand times following a log-normal distribution with mean 

140 min, coming from 36 users over a time interval with length 60000 min (1000 hours). 
Each of the 36 users initiates exactly one demand, randomly located on the operational time 
interval (0,60000 min). Simulation experiments with a single source and two sources were 
conducted.  

The simulation results shown in Fig.1 have been obtained after incrementing the standard 
deviation of the demand times by a step of 5min. The calculated probabilities of unsatisfied 
demand of 0.95 and 0.1, correspond to one and two sources servicing the demands. 

If the probability of unsatisfied demand is calculated with a constant length of random 
demand equal to the mean of 140 min of the log-normal distribution, the same values 0.95 
and 0.1 are obtained. The results presented in Figure 1 show that the probability of 
unsatisfied demand is practically insensitive to the variance of the random demands. 
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From the results presented in Figure 1, it can also be concluded that the inclusion of an 
additional source servicing the random demands reduces dramatically the probability of 
unsatisfied demand (from 95% to only 10% in the example from Fig.1)  

In the next simulation experiment, the log-normal distribution of the demand times has 
been replaced by a normal distribution with the same mean (140 min). The number of users 
(36) and the length of the operation interval (1000 hours) were kept the same as in the 
previous simulation experiment. Simulation experiments with a single source and two sources 
were performed and the standard deviation of the normal distribution was varied with a step 
of 5 min. The results were almost identical to the results in Fig.1 (not shown here) and 
indicate that the probability of unsatisfied demand is practically insensitive to the type of the 
distribution, provided that the mean of the distributions remains the same. The calculated 
probabilities of unsatisfied demand were again 0.95 and 0.1, corresponding to one and two 
sources. In the next simulation experiment, a uniform distribution of the duration of random 

demands has been used, with a probability density function 
a

tf
2
1)(   if ata  140140  

and 0)( tf  if at 140  or at 140 , where t is the time. The parameter a determines the 
spread of the uniform distribution. The uniform distribution and its parameter have been 
specified in such a way that its mean (140 min) coincides with the mean of the log-normal 
distribution used in the previous simulation. Again, the random demands come from 36 users 
over a time interval with length 60000 min (1000 hours). Each of the 36 users initiates 
exactly one demand, randomly located along the operational time interval of 1000 hours. 
Simulation experiments with a single source and two sources were performed. The results for 
the probability of unsatisfied demand, for a different spread ‘a’ of the distribution, are shown 
in Fig.2. 

As can be verified from Fig.2, the probabilities of unsatisfied demand characterising the 
uniform distribution are almost identical to the probabilities of unsatisfied demand Fig.1 
characterising the log-normal distribution and the normal distribution.  

In the next simulation experiment, a triangular distribution, with probability density 
function )420/1(004762.0)( ttf   has been used as a model of the demand times. The 
distribution function and the parameters of the triangular distribution have been specified in 
such a way that its mean (140 min) coincides with the means of the log-normal distribution, 
the normal distribution and the uniform distribution used in the previous simulations. 
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Figure 1. Probability of unsatisfied random demand as a function of the variance of the log-normal 

distribution for the demand times. 
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Figure 2. Probability of unsatisfied random demand as a function of the variance of the uniform distribution 

modelling the demand times. 
 
The result from the simulation, based on demand times following a triangular distribution, 

were again: 95.0  for the probability of unsatisfied demand if a single source is present and 
0.1 if two sources are present. 

 
2.1.2  Simulation experiments with distribution mixtures 

In general, the distribution of the duration times of random events is neither normal, 
exponential, lognormal nor any standard distribution. This can be demonstrated immediately, 
by considering the distribution of the repair times in a computer network composed of m 
different types of components (e.g. switches, routers, repeaters, servers, cables, printers, etc.). 
Each component type is characterised by a specific time to repair distribution )(tFi  which 
gives the probability that the time to repair T will be smaller than a specified value t: 

)Pr()( tTtFi  . The hazard/failure rate of the type-i component in the network will be 
denoted by i . The distribution of the repair time given that a failure of a device has occurred 
then follows a distribution mixture.  

Indeed, the repair time T of a failed device can be smaller than t in m distinct mutually 
exclusive ways. The repair time T can be smaller than t if the device belongs to the first type 
of components and its time to repair is smaller than t. The repair time can also be smaller than 
t if the device belongs to the second type of components and its time to repair T is smaller 
than t and so on. The probability ip  that given failure, the failed component will be of type i 
is given by 





m

i
iiip

1
/  ,                                                               (1) 

where i  is the hazard/failure rate of components from type i. The probability that the failed 
component will be of type i and its repair time will be smaller than t is given by the product 

)(tFp ii , where ip  is given by equation (1). Applying the total probability theorem yields the 
equation 

)(...)()()( 2211 tFptFptFptF mm                                          (2) 
for the distribution of the time to repair, which is a mixture of distributions. 

Consequently, simulation experiments using distributions of demand times modelled by 
distribution mixtures were conducted. The first simulation experiment involved a single 
source and 4 users placing random demands. The demand times are coming from a 
distribution mixture defined as follows. With probability 7.01 p , a demand time of 70 
minutes is selected and with probability 3.02 p , a demand time of 40 minutes is selected.  
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The mean   of the demand time is therefore: 612211   pp  minutes while the 
duration of the operation interval was 2880 min (48 hours).  

Two simulations were performed, the first of which had constant demand times of 61 
minutes. The second simulation used demand times sampled from the as-defined distribution 
mixture. Both simulations produced the same result for the probability of unsatisfied demand: 
0.23. The next simulation experiment consisted of reversing the probability of sampling of 
the distributions. With probability 3.01 p , a demand time of duration 701   minutes was 
selected and with probability 7.02 p  a demand time of duration 402   minutes was 
selected. The mean of the demand time is therefore: 492211   pp  minutes. 

The simulation resulted in 0.189 for the probability of unsatisfied demand, which 
coincided with the result 189.0  obtained for the probability of unsatisfied demand by using 
constant demand times of duration 49 minutes, equal to the mean of the distribution mixture.  

The next simulation experiments involved 8 random demands, a single source and two 
sources, sequentially. The random demand times were sampled from a distribution mixture 
composed of two normal distributions with means 1401   min and 802   min, sampled 
with probabilities 4.01 p  and 6.02 p , respectively. 

The standard deviations of the normal distributions composing the distribution mixture 
were increased simultaneously, with a step 4 minutes. The results are shown in Fig.3. 

As can be verified from Fig.3, for both a single source and two sources, the probability of 
unsatisfied random demand is practically insensitive to the variance of the distributions 
composing the mixture. Including an additional source resulted in a dramatic decrease of the 
probability of unsatisfied demand, from 0.9 to 0.16. 

The next simulation involved a single source, two sources and only n=2 random demands. 
The random demand times were sampled from a distribution mixture composed of two 

uniform distributions: 
a

tf
2
1)(1   in the interval ata  500500  and 

a
tf

2
1)(2   in the 

interval ata  400400 , where a is the half-width of the uniform distributions. The 
distributions were centred at means 5001   min and 4002   min, and were sampled with 
probabilities 4.01 p  and 6.02 p , respectively.  

As can be verified from the results in Fig.4, even for the smallest possible number of 
random demands (n=2) which could result in unsatisfied demand, the simulated probability of 
unsatisfied demand (0.28) is still practically insensitive to the variance of the durations of the 
random demands. A simulated probability of unsatisfied demand equal to 0.28 was obtained 
by assuming random demands with constant duration of 440 min, equal to the mean of the 
distribution mixture: 4405004.04006.02211   pp  min. 
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Figure 3. Probability of unsatisfied random demand as a function of the variance of the normal distributions 
composing the mixture. 
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Figure 4. Probability of unsatisfied random demand as a function of the half-length of the rectangular 

distributions composing the mixture. 
 

The simulations were repeated with normal distributions with means 4001   and 
5002   composing the mixture and standard deviations 20 min, with only 2 random 

demands arriving on the time interval of 2880 min (48 hours). The results for the probability 
of unsatisfied demand were the same (0.28) as in the simulation involving uniform single 
distributions composing the mixture. 

The last set of simulation experiments involved altering the distance between the means of 
the individual distributions composing the mixture by keeping the grand mean 440  of 
the distribution mixture constant. According to an equation derived in [23], the variance V of 
a distribution mixture is given by  





m

i
iii VpV

1

2])([  , mi ,...,1                                         (3) 

where m is the number of individual distributions composing the mixture; iV  are the 
variances of the individual distributions composing the mixture; ip  are the probabilities of 

sampling the individual distributions (the mixing proportions) (



m

i
ip

1
1  ); i  are the means 

of the individual distributions and   is the mean of the distribution mixture. The mean of the 

distribution mixture is determined from 



m

i
iip

1
  [24].  

Altering the variance of the distribution mixture by altering the variances of the individual 
distributions has already been explored in the previous simulations. Consequently, the next 
simulation experiment involved altering the means 1  and 2  of the individual distributions 
in such a way that the mean   of the distribution mixture remains equal to 440  min. 

The first simulation involved means of the individual distributions altered to 3001   and 
6502  , correspondingly. As can be verified, this alteration of the means of the individual 

distributions does not change the mean of the distribution mixture: 
4406504.03006.02211   pp  min 

The mean of the distribution mixture remains the same (440 min) as in the simulation 
involving individual distributions with means 4001   and 5002  . The standard 
deviations of the individual distributions were kept the same: 20 min. The number of random 
demands was only 2, serviced by a single source. 
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The simulation with the altered distribution mixture, resulted in a probability of unsatisfied 
demand equal to 0.28, the same as the probability obtained in the previous simulation. 
The next simulation experiment involved another alteration of the means of the individual 
distributions to 2001   and 8002  , correspondingly. As can be verified, the altered 
means do not change the mean of the distribution mixture: 

4408004.02006.02211   pp  min 
The standard deviations of the individual distributions were kept the same: 20 min. The 

simulation with the altered distribution mixture, resulted in a probability of unsatisfied 
demand equal to 0.27, a value which is very close to the probability estimated from the 
previous simulations. 

These results clearly indicate that the type of the distributions of the critical events 
controlling the risk and the variance of the duration times of these events practically have no 
impact on the probability of a simultaneous presence of the events as long as the mean 
remains the same.  

Simulations using duration times sampled from a distribution mixture produce identical 
results for the probability of a simultaneous presence of events as simulations using duration 
times equal to the mean of the distribution mixture. Furthermore, even in the case of two 
randomly appearing events on a time interval, the simulated probability of a simultaneous 
presence of the events is still practically insensitive to the variance of their durations.  

These unexpected results provide the powerful opportunity to estimate the risk of a 
simultaneous presence of critical events, randomly appearing on a time interval, through the 
mean duration times only, without requiring the distributions of the duration times, their 
variance or the mixing proportions of the individual distributions in the common case where 
the duration times follow a distribution mixture. 
 
3. Stochastic separation of random demands based on the probability of overlapping 
Consider a finite time interval during which a fixed number of consumers place a demand for 
a particular service independently and randomly. The durations of the random demands come 
from a uniform distribution with mean 140  min, with a range [ 25,25   ] min. 
Unsatisfied demand occurs if a random demand arrives while all sources are engaged in 
servicing other random demands. Suppose that the maximum tolerable probability of 
unsatisfied demand is  and the random demands follow a Homogeneous Poisson 
process on an operational time interval of 48 hours. 

At a specified level of unsatisfied random demand ( ), the maximum frequency of 
the random demands that can be satisfied by a given number of sources can be determined 
such that the probability of unsatisfied demand does not exceed a specified tolerable level.  

This process will be referred to as stochastic separation of random events based on a 
specified probability of overlapping. In the stochastic separation of random events based on 
the probability of overlapping, the absence of overlapping of the random events is guaranteed 
with a specified probability.  

For random demands with number densities ranging from 01.0  hour-1 to 0.3 hour-1, the 
simulated probability of unsatisfied demand has been plotted as is shown in Fig.5. During the 
simulations, the actual number of random demands on the time interval was a random 
variable whose realisations were obtained by sampling the Poisson distribution. 

The curves correspond to a single source, two sources and three sources servicing the 
random demands. The intersections of the horizontal line corresponding to the maximum 
acceptable probability of unsatisfied demand with the curves, determine the optimal number 
densities of random demands equal to 0.05 for a single source, 0.14 for two sources and 0.265 
for three sources. Number densities of demands larger than the optimal values lead to 

%20

%20
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probability of unsatisfied demand larger than the maximum tolerable value of 20%. Number 
densities smaller than the optimal values, result in an inefficient use of the available sources 
and unnecessary restriction of the volume of random demands that can potentially be 
serviced. The obtained number densities provide not only a stochastic separation of the 
random events at the maximum tolerable probability of overlapping of 20%; they also 
guarantee that the specified stochastic separation is characterised by a minimum cost. The 
optimal stochastic separation of random events is characterised by an optimal balance 
between the probability of overlapping and the cost for reducing the probability of 
overlapping. 

The results in Fig.5 also confirm the conclusion made earlier, that the inclusion of an extra 
source reduces drastically the probability of unsatisfied demand. Thus, for a density of 
random demands equal to 14.0 , the probability of unsatisfied random demand for a single 
source is 0.77. The inclusion of a second source reduced the probability of unsatisfied 
demand to 0.2. 
Consequently, including a second resource drastically improved the degree of stochastic 
separation of random events. 

The results from Fig.5 can also be used to determine the number of sources servicing a 
specified volume of random demands which provide a degree of stochastic separation 
(probability of unsatisfied demand) of 20%. 

Probability of unsatisfied demand
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Figure 5. Probability of unsatisfied random demand as a function of the number density of random demands, for 
a different number of sources. 
 

Thus, for a density of random demands equal to 0.12 hour-1, the optimum number of 
sources is 2. This value can be determined from the closest intersection to the maximum 
tolerable probability level of 20% of the vertical line corresponding to a number density of 
0.12 and the curves (Fig.5). A single source leads to an insufficient degree of stochastic 
separation because the probability of unsatisfied demand is equal to 0.677. Three sources 
yield a too low probability of unsatisfied demand equal to 0.014, which is associated with 
unnecessary investment in extra sources. The optimal degree of stochastic separation 
corresponds to a probability of unsatisfied demand (0.142) and is obtained from 2 sources. 

The proper level of stochastic separation is the key to finding the optimal balance between 
the number of available sources and the risk of unsatisfied demand. More supplied sources 
than the optimal number is costly and undermines the profitability of the enterprise; fewer 
supplied sources than the optimal number increases the risk of unsatisfied demand.  
 

4. Insensitivity of the expected time fraction of simultaneous presence of critical 
events to the distribution of their duration times 
The expected time fraction of simultaneous presence of critical events can also be used as a 
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powerful measure of the risk of simultaneous presence of random events. Consider the 
common case where the randomly appearing events are random demands for a particular 
resource/service. Suppose that m pieces of the resource are available, which can satisfy m 
simultaneous demands, but not m+1 or more simultaneous demands. The random demands 
have durations id  and are represented by segments with lengths ; the operational interval 
is represented by a segment with length L (Fig.6). The risk of unsatisfied demand is estimated with the expected fraction of the time interval 
(0,L) where more than m overlapping random demands are simultaneously present. (Fig.6). 

Before determining the expected time fraction of simultaneously present random demands, 
the following theorem will be proved. An overlapped region of order k is present if, for a 
particular point from the time interval 0,L, exactly k random demands are simultaneously 
present (an overlapping of order k is present). The duration ratios of the random demands are 
given by , i=1,...,n. 
Theorem 1. The expected overlapped fraction of order k (k=0,1,...,n) from the time interval 
(0,L), by n overlapping events with duration fractions , coming from a distribution with 
mean , is given by the k+1st term of the binomial expansion

, where 1  is treated as a single variable 

)1( a  and   is treated as another variable b . 

 
Figure 6. Overlapping of different order k for random demands on a time interval. 

 
Proof. The expected fraction of the interval (0,L) covered by exactly m random events can be 
determined from the probability that a randomly selected point on the time interval 0,L will 
sample simultaneously exactly m overlapping random demands. The probability that a 
randomly selected point on the time interval (0,L) will sample simultaneously exactly m 
overlapping demands is equal to the probability that a fixed point from the time interval (0,L) 
will be covered exactly m times by randomly placed random demands in the time interval 
(0,L). The probability  that a fixed point from the interval (0,L) will be covered by 
exactly m random demands out of n random demands with duration time fractions 1 , 2 ,...,

n  sampled from a distribution with mean   is given by 

                                           (5) 

where  is the sum over all distinct combinations of m indices i1,i2,...,im out of n indices 

1,2,...,n. The number of the combinations of m out of n indices is . 

Equation (5) gives the sum of the probabilities of 
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covering all the cases where exactly m random demands cover the selected point and the rest 
of the random demands )( mn  do not. 

Next, the expected values of the left and right hand side of equation (5) are taken:   

                                    (6) 

Because the time fractions  of the overlapping random demands are statistically 
independent random variables, according to a well-known result in statistics, the expectation 
of a product of statistically independent random variables is equal to the product of the 
expectations of the random variables. Consequently, equation (6) becomes: 
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where   is the expected overlapped time fraction of order m and   is the mean of the 
distribution from which the demand time fractions are sampled. 

As a result, the expected overlapped time fractions of different order are given by the 
separate terms of the binomial expansion of  

1])1[(  n                                                        (8) 
where )1(   is treated as a single variable )1( a  and   is treated as another variable 

b . 

                                         (9) 

Thus, the expected time fraction   from the interval (0,L), covered by exactly m random 
demands, is given by 

mnm

m
n
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 )1(                                                        (10) 

The expected covered fraction of order m, from the time interval (0,L), depends only on 
the mean of the distribution of the demand times and does not depend on the type of the 
distribution of the demand times or the variance of the demand times. 
Now consider a case where n random demands come from a distribution with mean d . The 
demand time fractions of the separate demands are , i=1,...,n. The mean of the 
demand time fractions i  is given by Ld / . Suppose that a single source can satisfy only 
a single random demand at a time. The next result then holds. 
For n random demands and m sources servicing the demands, the expected time fraction 
during which m+1 or more demands are simultaneously present on the time interval is given 
by the expression 
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where   is the mean of the distribution of the duration fractions of the demand times. The 
expected time fraction of unsatisfied demand does not depend on the distribution of the 
demands or their variance.  
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This result follows directly from the previous theorem and its proof will be omitted. 
Now consider a case where n consumers demand a particular resource, during an operating 

period with length L. Suppose that the demands time fractions from each consumer come 
from a separate distribution with mean i  (i=1,...,n). 
Theorem 2. The expected overlapped fractions of order 0,1,2,...n, for n overlapping events 

on a time interval are given by the terms of the expansion 1])1[(
1




i

n

i
i   where )1( i  

is treated as a single variable )1( iia   and i  is treated as another variable iib  . 
This theorem can be proved easily by induction. If all demands time fractions come from 

the same distribution with mean  , the binomial expansion (8) is obtained.  
These theorems and the conclusion that the expected fraction of unsatisfied demand does 

not depend on the distribution of the demand times have been verified by Monte Carlo 
simulations involving direct measurement and accumulation of the overlapping regions. 

If the time fraction of the durations of the random demands is constant: Ld / , the 
expected (average) fraction of time during which exactly m random demands are 

simultaneously present (m = 0,1,...,n) is given by the terms mmn

m
mnnn

 


 )1(
...21

)1)...(1(

, which come from the binomial expansion of the expression n])1[(   .  
Thus, n)1(   is the expected fraction of time during which no random demand is present; 

11)1(   nn  is the expected fraction of time during which exactly one random demand is 

present; 22)1(
21

)1(
 



 nnn  is the expected fraction of time during which exactly two 

random demands are simultaneously present;...; n  is the expected fraction of time during 
which exactly n random demands are simultaneously present. The sum of all expected 
fractions of time is equal to one ( 1])1[(  n ). 
Because the sum of all expected fractions is equal to one, the total expected fraction of time 
during which there is unsatisfied demand (m+1 or more random demands are simultaneously 
present) is given by  
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Now consider the important case of n consumers, each placing a random demand with 
probability  , during the interval (0,L). The time fractions of the random demands come 
from a distribution with mean  . The next theorem then holds. 
Theorem 3. The expected time fractions of different order, for n consumers each placing a 
random demand with probability  , are given by the terms of the binomial expansion of 

1])1[(  n , where 1  is treated as a single variable )1( a  and   is 
treated as another variable b . 
Proof. Placing a random demand with probability 10    is equivalent to sampling the 
demand time fraction from a distribution mixture defined as follows: The time fractions of 
the random demands are sampled with probability   from the distribution with mean   and 
with probability 1  from the constant zero. Indeed, sampling zero demand time with 
probability 1  means a random demand with zero time fraction ( 0 ). A zero demand 
time fraction cannot possibly contribute to the expected overlapped fraction of any order and 
is equivalent to not having a random demand, with probability 1 . 
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The mean of the as-defined distribution mixture is   0)1( . According 
to Theorem 1, the expected overlapped time fraction of a particular order is the same 
irrespective of whether random demands with constant demand fraction equal to    are 
present on the time interval (0,L) or the demand fractions come from the as-defined 
distribution mixture with mean   . Because for demands with constant time fractions 

, the expected overlapped time fraction of any particular order is given by the terms 
of the binomial expansion 1])1[(  n , the theorem has been proven. 
The total expected fraction of time during which there is unsatisfied demand (m+1 or more 
random demands are simultaneously present) is then given by  
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The theorem has been verified by Monte Carlo simulations. 
From equation (12) it can be seen that for a fixed number of consumers initiating demands 
with certain probability  , reducing the mean   of the demand times by a certain factor 

1k  and reducing the probability of initiating the random demands   by the same factor 
1k  has the same effect on the degree of stochastic separation between the random 

demands. Alternatively, the degree of stochastic separation does not change if an increase of 
the mean   of the demand times by a factor 1k  has been compensated by a decrease by 
the same factor of the probability   of initiating a random demand:   )/()( kk . 

Consider the following example. For an operational time interval L=58 hours, a single 
source (m=1) is available for servicing the demands from n=150 consumers, whose demand 
durations follow a uniform distribution within the range (10min, 40min) (with mean 25 
minutes; and mean demand time fraction )6058/(25  ). The probability with which each 
consumer initiates a random demand is 6.0 . For 1m  sources servicing the random 
demands, equation (12) results in 1

2 )1()()1(1 

  nn n   which, after the 
substitution of the numerical values, gives 137.02   for the expected fraction of 
unsatisfied demand. This value has been confirmed by the Monte Carlo simulation result: 

137.02  . 
Next, the demand durations were distributed uniformly in the following intervals: 025  

525  min, 1025 min, 1525 min, 2025  and 2525 , all of which had the same mean 
of 25 min. The simulations for each of the intervals resulted in the same expected fraction of 
unsatisfied demand equal to 137.0 . These results confirm the earlier conclusion that the 
expected fraction of unsatisfied demand is independent of the variance of the demand times. 

Consider finally the case where each of the n consumers initiates a demand with 
probability i  and the demand time fractions characterising the consumer come from a 
separate distribution with mean i (i=1,...,n). Theorem 2, can then be naturally generalised to 
the next theorem. 
Theorem 4. The expected overlapped fractions of order 0,1,2,...n, for n overlapping events 

on a time interval are given by the separate  terms of the expansion 1])1[(
1




ii

n

i
ii   

where )1( ii  is treated as a single variable )1( iiia   and ii  is treated as another 
variable iiib  . 
 
 

 
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5. Stochastic separation based on the expected fraction of unsatisfied demand  
5.1 Fixed number of random demands on a time interval 
Consider a finite time interval during which a number of consumers place a single demand 
for a particular service independently and randomly, during a time interval 0,L. The duration 
times come from a distribution with mean d . The mean demand time fraction is therefore 

Ld / . Unsatisfied demand occurs if a random demand arrives while all m available 
sources are engaged in servicing random demands. Suppose that the maximum tolerable 
expected fraction of unsatisfied demand is  .  

Solving equation (13) with respect to n then yields the maximum number of random 
demands that can be serviced: 
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This equation can be solved by a repeated bisection. 
Figure 7 gives the expected fraction of unsatisfied demand as a function of the number n of 
random demands. The figure corresponds to a demand time fraction 15.0/  Ld  of an 
individual demand. The specified maximum acceptable expected fraction of unsatisfied 
demand was  and the number of available sources was . 
By using repeated bisection, it was determined that at most  users can be serviced by the 
sources without exceeding the specified level  of expected fraction of unsatisfied 
demand. 

At another specified level of the expected fraction of unsatisfied demand (for example, 
), the maximum number n of consumers that can be serviced can be determined 

directly from the curve. As can be verified from the plots in Fig.7, increasing the number of 
sources m increases significantly the number of consumers that can be serviced without 
exceeding the tolerable risk of unsatisfied demand. 

Suppose that the number of consumers n (each placing a single random demand on the 
time interval) and the maximum tolerable expected fraction of unsatisfied demand  have 
been specified. Solving equation (13) with respect to m now yields the number of sources 
required to service the n consumers such that the expected fraction of unsatisfied demand 
does not exceed . The solutions complying with these requirements provide a stochastic 
separation of random events based on the expected overlapped fraction. The stochastic 
separation based on the expected overlapping fraction, guarantees that the expected degree of 
overlapping will be equal to or below a specified tolerable level. 

Finding the minimum number of sources which guarantees a degree of stochastic 
separation based on the expected overlapped fraction is critical in striking the right balance 
between the risk of unsatisfied demand and costs. If the sources are medical personnel, 
repairmen or extra equipment, increasing the number of sources increases the degree of 
stochastic separation but also increases salary costs or investment, which undermines profit. 
Too few sources means increased risk of unsatisfied demand, risk of fatalities, damage to 
health, dissatisfied customers, etc. Again, equation (13) can be solved by a repeated bisection 
with respect to m, by keeping the number of consumers n and the demand time fraction 

Ld /  constant. Figure 8 gives the expected time fraction of unsatisfied demand as a 
function of the number of sources, for different demand time fractions 

6.0,5.0,4.0,3.0,2.0,1.0/  Ld . The number of consumers n is fixed ( ).  

%10 3m
12
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Figure 7. Expected fraction of unsatisfied random demand as a function of the number of consumers n, for 
different number of sources m servicing the demands. 
 

The maximum acceptable level of the expected fraction of unsatisfied demand has been 
specified to be ; the number of consumers have been specified to be and , 
each characterised by a demand time fraction 2.0/  Ld . For these input data, the 
repeated bisection algorithm determined that the minimum number of sources must be 6, in 
order to achieve the 10% expected fraction of unsatisfied demand which is the specified 
degree of stochastic separation between the random events. 

 
Figure 8. The expected fraction of unsatisfied demand as a function of the number of sources, at different 
demand time fractions . 
 

At a specified level of the expected fraction of unsatisfied demand (for example, 
), the minimum number of sources that can guarantee a degree of stochastic separation 
(expected fraction of unsatisfied demand) of  or below can also be determined 
directly from the curves. As can be verified from the graphs, increasing the mean demand 
fraction Ld /  increases significantly the number of sources needed to service the random 
demands so that a degree of stochastic separation below the maximum tolerable level   is 
guaranteed. 

 
5.2 Random demands following a Poisson process on a time interval 
Suppose now that the random demands follow a homogeneous Poisson process with density 
 , on a time interval with length L. The number of available sources is m. The durations of 
the random demands follow a particular distribution with mean  . Unsatisfied demand is 
present only if the number of random demands is greater than the number of available 
sources m. The expected fraction of unsatisfied demand   on the time interval (0,L) is equal 

%10 20n

Ld /

%20

%20
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to the probability that a randomly selected point on the time interval 0,L will sample 
simultaneously exactly m+1 or more overlapping random demands. The probability that a 
randomly selected point on the time interval (0,L) will sample m+1 or more overlapping 
demands is equal to the probability that a fixed point from the time interval (0,L) will be 
covered m+1 or more times by randomly placed random demands  in the time interval (0,L). 

A selected point in the time interval (0,L) can be covered m+1 or more times in the 
following mutually exclusive ways: there are exactly m+1 random demands in the interval 
(0,L) and the selected point has been covered by all of them; there are exactly m+2 random 
demands in the time interval (0,L) and the selected point is covered m+1 or more times, there 
are exactly m+3 random demands in the time interval (0,L) and the selected point is covered 
m+1 or more times and so on. The probability   that the selected point will be covered m+1 
or more times can then be determined as a sum of the probabilities of the following mutually 
exclusive events: (i) exactly m+1 demands are present in the time interval (event 1mA  
characterised by a probability )( 1mAP ) and the selected point is covered by m+1 or more 
random demands (event B characterised by a conditional probability )1|( mBP ; (ii) exactly  
m+2 demands are present in the time interval (event 2mA  characterized by a probability 

)( 2mAP ) and the selected point is covered by m+1 or more random events (event B 
characterised by a conditional probability )2|( mBP  and so on. For the probability   of 
covering the selected point, the total probability theorem yields the expression:  

...)2|()()1|()( 21   mBPAPmBPAP mm                  (14) 
For random demands following a Homogeneous Poisson process with density  , on a time 
interval with length L, the probability that there will be exactly m+1 random demands on the 

time interval 0,L is obtained from 1
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and so on. According to Section 4, the probability that the selected point will be covered with 
order m+1 or higher, given that there are 1 mn  random demands on the time interval, is 

given by ini
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will be covered with order m+1 or higher is zero.  
The substitution in equation (14) yields  
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for the probability that the selected point will be covered: This is also the fraction   of 
unsatisfied demand. 
For practical purpose, the computation of the sum (15) can be truncated with negligible error 
at Nn  , which is, for example, ten times larger than the average number L  of demands in 
the time interval 0,L ( )(10 LN  ). Equation (15) then becomes 
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Suppose that a single source is servicing random demands following a homogeneous 
Poisson process on a time interval. In this case, 1m  and equation (16) becomes 
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Thus, for 68L  hours, 17  hour , average duration of a single demand min15d  and a 
single source ( 1m ), equation (17) yields 52.0 . This value has been confirmed by the 
Monte Carlo simulation. 

For two sources servicing random demands following a homogeneous Poisson process on 
a time interval ( 2m ), equation (16) becomes 
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For the same input data set as in the previous example and two sources ( 2m ) servicing the 
random demands, equation (18) yields 256.0 , which has also been confirmed by the 
Monte Carlo simulation. 

For three sources servicing random demands following a homogeneous Poisson process on 
a time interval ( 3m ), equation (16) becomes 
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For the same input data set as in the previous example and three sources ( 3m ) servicing 
the demands, equation (19) yields 1.0 , which has also been confirmed by the Monte 
Carlo simulation. 

As can be verified, in the case of random demands following a homogeneous Poisson 
process, including additional sources significantly reduces the expected fraction of 
unsatisfied demand. 

Using the closed-form expressions (16) and (12) is significantly more efficient compared 
to estimating the expected fraction of unsatisfied demand by a direct Monte Carlo simulation. 
The closed-form expressions permit their embedding in ultra-fast optimisation loops thereby 
reducing dramatically the computation time. Furthermore, the closed-form expressions also 
permit important inferences to be made about the properties of a system consisting of 
consumers placing random demands on a time interval. 

The presented techniques related to reducing the risk of overlapping of risk-critical events 
by stochastic separation, could become an important extension of the method of separation 
for reliability improvement and risk reduction, recently introduced in [25]. 
 
6. Modelling the dependence of the probability of overlapping of random events on the 
events durations 

Suppose that n events with durations 1d ,..., nd , appear randomly on a time interval 0,L (
Lddd n  ...21 ) such that no overlapping of random events is present (Fig.9a). The 

events start times nsss ,...,, 21  are uniformly distributed along the interval (0,L). The 
configuration in Fig.9a will be referred to as X-configuration. Note that the duration of the 
last event cannot possibly contribute to overlapping on the time interval (0,L) and therefore 
can be ignored. The first 1n  duration intervals 1d ,..., 1nd  can then be ‘cut out’ of the time 
interval (0,L) and the remaining parts of the time interval can be ‘brought together’ to form a 
shorter length )...( 121  ndddL  (Fig.9b). As a result of this operation, the points 

nsss ,...,, 21  marking the start of the random events for the X-configuration transform into a 
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unique Y-configuration where the points nsss ',...,',' 21  are uniformly distributed along the 
length )...( 121  ndddL . As a result, to each X-configuration corresponds exactly one 
Y-configuration. Thus, for the set of all possible X-configurations and the set of all possible 
Y-configurations, the relationship YX   holds.  

 
Figure 9. Scheduling random events in a finite time interval (0,L) by guaranteeing a full time separation 

 
Now suppose that a set of n points nsss ',...,',' 21  are uniformly distributed along the length 

L. If all n randomly generated points fall within the length )...( 121  ndddL  a Y-
configuration is present. By inserting the corresponding demand intervals id  ( 1,...,1  ni ) 
after each start time is , an X-configuration can be obtained with random non-overlapping 
events along the interval 0,L.  

Thus, from each Y-configuration, a unique X-configuration is obtained by placing after 
each randomly generated points is'  a duration interval with length 1d ,..., 1nd  The start times 
in the X-configuration (Fig.9a) are therefore: 11 ss  , 122 ' dss  , 2133 ' ddss  ,...,

121 ...'  nnn dddss . In the obtained X-configuration all random events are fully 
separated. As a result, to each Y-configuration corresponds exactly one X-configuration. 
Thus, for the set of all possible Y-configurations and the set of all possible X-configurations, 
the relationship XY   holds. 

Since for the sets of the X-configurations and Y-configurations XY   and YX   
simultaneously hold, there exists a one-to-one correspondence between the X-configurations, 
characterised by randomly located non-overlapping random events and the Y-configurations, 
characterised by randomly located random points on the smaller time interval

)...( 121  ndddL . Because of the one-to-one correspondence between X-configurations 
and Y-configurations, the probability of an X-configuration can be measured by the 
probability of a Y-configuration. 

Suppose that the start times of the events are uniformly distributed along the length of the 
time interval (0,L). Let 1A , 2A ,..., nA  denote the events ‘the last event has a duration 1d , 2d ,...,

nd , correspondingly. The probability of the event B that there will be no overlapping of 
random events can be determined by the following probabilistic argument. 

Initially, the conditional probability )|( nABP  is determined - the probability that there 
will be no overlapping of random events, given that the last event has a duration nd .  Because 
each random event has an equal chance to be the last event, the probabilities )( iAp  of the 
events iA  are all equal to n/1  ( nAp i /1)(  , ni ,...,2,1 ). 

The probability of an Y-configuration that all n uniformly distributed random points 
nsss ',...,',' 21  along the interval (0,L) will fall in the interval )...( 121  ndddL  is given 

by 
n

n

L
ddL








   )...( 11 . This is also the conditional probability of an X-configuration (no 
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overlapping events) given that the last event has a duration nd . 
n

n
n L

ddABP 






 
  )...(1)|( 11                                               (20) 

However, the absence of overlapping (event B) can occur in n different ways. The absence of 
overlapping can occur given that the last random event has a duration , given that the last 
random event has a duration ,..., and so on. The probabilities )|( iABP , 1,...,1  ni , are 
determined in a similar fashion. According to the total probability theorem, 

                                     (21) 
As a result, the expression 
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(22) 
is obtained for the probability of a full separation (no overlapping) of random events with 
durations 1d ,..., nd . Equation (22) can also be presented as 
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where ndddD  ...21 . Equation (22) has been confirmed by the results from Monte 
Carlo simulations. Thus, for four consumers demanding a particular resource for , 

, , and  respectively, during a time interval of 10 hours, 
the probability of no overlapping calculated from equation (22) is 0.7. This probability has 
been confirmed by the probability of 0.7 estimated from the simulation. (The details of the 
simulation algorithm have been omitted). For a given set of events with duration times 1d ,...,

nd  two types of questions related to the stochastic separation can be posed: 
- The smallest length L of the time interval which provides a stochastic separation with a 

specified probability )(BP . 
- The maximum number of events n with specified durations which still provides a 

stochastic separation of specified probability )(BP . 
Both questions can be answered by solving the non-linear equation (23) with respect to L 

or with respect to n. 
Suppose that four consumers are demanding a particular resource for , 

, , and  respectively. If the probability of no overlapping 
has been specified to be 0.8, the nonlinear equation  
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can be solved with respect to L by a repeated bisection in the interval 
min)2000(min)100( maxmin LLL   because at the ends of this interval )(Lf  has different 

signs ( 0)( min Lf  and 0)( max Lf ). The solution of equation (24), obtained by using a 
standard repeated bisection algorithm, is 16L  hours. Thus, in order to provide the required 
separation probability of 0.8, the length of the time interval needs to be 16 hours. 

Suppose that the durations 1x , 2x ,..., nn xx ,1  of the fists, second,...,nth random event are 
realisations of a random variable X following a statistical distribution with mean   and 

nd

1nd
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standard deviation  . According to equation (23), the probability that the random events will 
be separated (will not overlap) are given by 
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where 



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. Even for a relatively small number of events, the sum of the event durations 
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 in equation (25) can be approximated reasonably well with 

)1( n  and, as a result, the probability )(BP  of a full separation (non-overlapping) of 
random events is given by 
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



 
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)1(1)(                                                           (26) 

This probability is practically insensitive to the variance of the random variable X standing 
for the durations of the demand times. The probability )(BP  depends on the expected value 

)(XE  of the demand times. The probability of event separation is practically insensitive 
to the variance (standard deviation  ) of the demand times X.  

This conclusion has been verified by numerous computer simulations where the 
probability of overlapping has been plotted as a function of the variance of the duration times. 

The practical insensitivity of the probability of full event separation to the variance of the 
duration times, for a very small number of random events, can be understood from analysing 
the expression for the probability of no overlapping of two random events. From equation 
(22), this probability is: 

    2
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2
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1)( LxLxBP                                                  (27) 

where 1x  is the random variable representing the duration time of the first event and 2x  is the 
random variable representing the duration times of the second random event. 

Expanding expression (27) results in 
 22

11
22

22 //21//215.0)( LxLxLxLxBP                             (28) 
Taking expectations from both sides of equation (28) results in 

 )/(/)(21)/(/)(215.0)]([ 22
12

2
22 LxELxELxELxEBPE                   (29) 

In equation (29), xxExE  )()( 21 , where x  is the mean of the duration times of the 
random events.  

It is known that if X is a random variable with finite mean and y is a convex function (
R babaybyay ,;10),)1(()()1()(  ) then the Jensen’s inequality [26] 

holds: 
 ][)]([ xEyxyE                                                    (30) 

The function nLxy )/(  is a convex function for 1n , therefore, according to the Jensen’s 
inequality, nn LxLxE )/(])/[(  . However, for small ratios Lxi /  ( 2,1i ), the terms nn

i Lx /  
are very small, and the error from replacing )/( nn

i LxE  with nnnn
i LxLxE /)/)]([   is also 

very small (For the sake of brevity, the derivation details have been omitted here). 
Consequently,  

 222 /1)//21)()]([ LxLxLxBPBPE                                    (31) 
can be used for the probability of no overlapping of two random events. As a result, for small 
ratios Lx / , the probability of no overlapping of two random events is practically insensitive 
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to the variance of their duration times. Equation (31) has also been verified by computer 
simulations. The simulation results and the theoretical analysis demonstrate that the 
probability of non-overlapping of random events is practically insensitive to the type of the 
distribution of the duration times, provided that the means of the distributions are not altered. 
Also, the probability of non-overlapping of random events is practically insensitive to the 
variance of the duration times. These results provide the valuable opportunity to work with 
random demand times characterised by their means only without requiring information 
related to the variance of the demand times. 
 
Conclusions 
• A closed-form equation has been derived and validated for the expected time fraction of 
simultaneous presence of random events whose times of occurrence follow a homogeneous 
Poisson process in a specified time interval. The equation handles any specified number of 
sources servicing the random events. 
• A closed-form equation has been derived and validated for the expected time fraction of 
unsatisfied demand for a fixed number of consumers which initiate random demands with a 
specified probability.  
• The expected time fraction of simultaneously present events, appearing randomly on a time 
interval, does not depend on the distribution of their duration times or on the variance of the 
duration times as long as the mean remains the same.  
• The concepts stochastic separation of random events based on the probability of 
overlapping and the average overlapped fraction have been introduced for the first time. 
Methods for providing stochastic separation and optimal stochastic separation achieving 
balance between risk and cost of risk reduction have been presented.  
• For a fixed number of consumers initiating demands with certain probability, reducing the 
mean of the demand times by a certain factor and reducing the probability of initiating the 
random demands by the same factor has the same effect on the degree of stochastic 
separation between the random demands. 
• The probability of simultaneously present events, randomly appearing on a time interval, is 
practically insensitive to the distribution of their durations and their variance. This provides 
the valuable opportunity to work with duration times characterised by their means only and 
not requiring information related to the variance of the duration times. 
• The distribution of the repair time of a failed component in a complex system, including 
different types of components, is given by a distribution mixture. 
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