Journal Article


Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies

Abstract

Among existing and emerging technologies to recycle spent Lithium-Ion Batteries (LIBs) from Electric Vehicles (EVs), pyrometallurgical processes are commonly used. However, very little is known about their environmental and energy impacts. In this study, three pyrometallurgical technologies are analyzed and compared in terms of Global Warming Potential (GWP) and Cumulative Energy Demand (CED), namely: an emerging Direct Current (DC) plasma smelting technology (Sc-1), the same DC plasma technology but with an additional pre-treatment stage (Sc-2), and a more commercially mature Ultra-High Temperature (UHT) furnace (Sc-3). The net impacts for the recovered metals are calculated using both ‘open-loop’ and ‘closed-loop’ recycling options. Results reveal that shifting from the UHT furnace technology (Sc-3) to the DC plasma technology could reduce the GWP of the recycling process by up to a factor of 5 (when employing pre-treatment, as is the case with Sc-2). Results also vary across factors e.g. different metal recovery rates, carbon/energy intensity of the electricity grid (in Sc-1 and Sc-2), rates of aluminum recovery (in Sc-2), and sources of coke (in Sc-3). However, the sensitivity analysis showed that these factors do not change the best option which was determined before (as Sc-2) except in a few cases for CED. Overall, the research methodology and application presented by this LCA informs future environmental and energy impact studies that want to assess existing recycling processes of LIB or other emerging technologies.

Attached files

Authors

Rajaeifar, Mohammad Ali
Raugei, Marco
Steubing, Bernhard
Hartwell, Anthony
Anderson, Paul
Heidrich, Oliver

Oxford Brookes departments

School of Engineering, Computing and Mathematics

Dates

Year of publication: 2021
Date of RADAR deposit: 2021-05-11


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License


Related resources

This RADAR resource is Identical to Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies

Details

  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 370