Thesis (Ph.D)


A web-based approach to engineering adaptive collaborative applications

Abstract

Current methods employed to develop collaborative applications have to make decisions and speculate about the environment in which the application will operate within, the network infrastructure that will be used and the device type the application will operate on. These decisions and assumptions about the environment in which collaborative applications were designed to work are not ideal. These methods produce collaborative applications that are characterised as being inflexible, working on homogeneous networks and single platforms, requiring pre-existing knowledge of the data and information types they need to use and having a rigid choice of architecture. On the other hand, future collaborative applications are required to be flexible; to work in highly heterogeneous environments; be adaptable to work on different networks and on a range of device types. This research investigates the role that the Web and its various pervasive technologies along with a component-based Grid middleware can play to address these concerns. The aim is to develop an approach to building adaptive collaborative applications that can operate on heterogeneous and changing environments. This work proposes a four-layer model that developers can use to build adaptive collaborative applications. The four-layer model is populated with Web technologies such as Scalable Vector Graphics (SVG), the Resource Description Framework (RDF), Protocol and RDF Query Language (SPARQL) and Gridkit, a middleware infrastructure, based on the Open Overlays concept. The Middleware layer (the first layer of the four-layer model) addresses network and operating system heterogeneity, the Group Communication layer enables collaboration and data sharing, while the Knowledge Representation layer proposes an interoperable RDF data modelling language and a flexible storage facility with an adaptive architecture for heterogeneous data storage. And finally there is the Presentation and Interaction layer which proposes a framework (Oea) for scalable and adaptive user interfaces. The four layer model has been successfully used to build a collaborative application, called Wildfurt that overcomes challenges facing collaborative applications. This research has demonstrated new applications for cutting-edge Web technologies in the area of building collaborative applications. SVG has been used for developing superior adaptive and scalable user interfaces that can operate on different device types. RDF and RDFS, have also been used to design and model collaborative applications providing a mechanism to define classes and properties and the relationships between them. A flexible and adaptable storage facility that is able to change its architecture based on the surrounding environments and requirements has also been achieved by combining the RDF technology with the Open Overlays middleware, Gridkit.

DOI (Digital Object Identifier)

Permanent link to this resource: https://doi.org/10.24384/0g7b-za56

Attached files

Authors

Sagar, Musbah Sh.

Contributors

Supervisors: Duce, David; Hopgood, Bob

Oxford Brookes departments

School of Engineering, Computing and Mathematics
Faculty of Technology, Design and Environment

Dates

Year: 2009


Published by Oxford Brookes University
All rights reserved. Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

Details

  • Owner: Unknown user
  • Collection: eTheses
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 115