A multibody model of an electric go-kart was developed in Msc-Adams Car software to simulate the vehicle’s dynamic performance. In contrast to an ICE kart, its electric counterpart bares an extra weight load accounted for the batteries and other powertrain components. The model is inspired on a prototype vehicle developed at Universidad de los Andes. The prototype was built on top of an ICE frame where a PMAC motor, controller, battery pack and the subsequent powertrain components were installed. A petrol-based Go-kart weight distribution was defined as baseline and several variants of the electric adaptation with different weight distributions were constructed. The main objective of the model is to evaluate different configurations and identify the ones that can give performance advantages. Step steer simulations ran at 40 km/h (64 mph) were analyzed to assess the dynamic performance of the vehicle for different configuration of the battery bank placement. For most iterations of powertrain location, considerable differences in dynamic response were obtained and the handling balance was identified as Understeer contrary to a priori thoughs. Understeer gradient, weight distribution for both axles, trajectory among other results of interest were observed in the simulations. The model allowed to showcase the effect of redistribution of weight on the dynamic behavior in this specific application. Among the main consequences lies the fact that battery distribution can affect the lifting of the internal rear tire and the detriment in turning effectiveness.
© ASME. Paper No: DETC2019-98112, V003T01A029
Anaya, Jonathan MiklerCalderon, Santiago CamachoBradley, AndrewGonzalez-Mancera, Andres
School of Engineering, Computing and Mathematics
Year of publication: 2019Date of RADAR deposit: 2021-11-04