Journal Article


Technical energy assessment and sizing of a second life battery energy storage system for a residential building equipped with EV charging station

Abstract

This study investigates the design and sizing of the second life battery energy storage system applied to a residential building with an EV charging station. Lithium-ion batteries have an approximate remaining capacity of 75–80% when disposed from Electric Vehicles (EV). Given the increasing demand of EVs, aligned with global net zero targets, and their associated environmental impacts, the service life of these batteries, could be prolonged with their adoption in less demanding second life applications. In this study, a technical assessment of an electric storage system based on second life batteries from electric vehicles (EVs) is conducted for a residential building in the UK, including an EV charging station. The technical and energy performance of the system is evaluated, considering different scenarios and assuming that the EV charging load demand is added to the off-grid photovoltaic (PV) system equipped with energy storage. Furthermore, the Nissan Leaf second life batteries are used as the energy storage system in this study. The proposed off-grid solar driven energy system is modelled and simulated using MATLAB Simulink. The system is simulated on a mid-winter day with minimum solar irradiance and maximum energy demand, as the worst case scenario. A switch for the PV system has been introduced to control the overcharging of the second life battery pack. The results demonstrate that adding the EV charging load to the off-grid system increased the instability of the system. This, however, could be rectified by connecting additional battery packs (with a capacity of 5.850 kWh for each pack) to the system, assuming that increasing the PV installation area is not possible due to physical limitations on site.

Attached files

Authors

Salek, Farhad
Resalati, Shahaboddin
Morrey, Denise
Henshall, Paul
Azizi, Aydin

Oxford Brookes departments

School of Engineering, Computing and Mathematics

Dates

Year of publication: 2022
Date of RADAR deposit: 2022-12-06


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License


Related resources

This RADAR resource is Identical to Technical energy assessment and sizing of a second life battery energy storage system for a residential building equipped with EV charging station

Details

  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 719