Journal Article


Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties

Abstract

Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129I and 131I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2–3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.

Attached files

Authors

Puncher, M
Zhang, W
Harrison, JD
Wakeford, R

Oxford Brookes departments

Faculty of Health and Life Sciences\Department of Biological and Medical Sciences

Dates

Year of publication: 2017
Date of RADAR deposit: 2017-06-29



https://creativecommons.org/licenses/by/3.0/


Related resources

This RADAR resource is the Version of Record of Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties

Details

  • Owner: Rosa Teira Paz
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 593